JP5704347B2 - Current sensor - Google Patents

Current sensor Download PDF

Info

Publication number
JP5704347B2
JP5704347B2 JP2012037027A JP2012037027A JP5704347B2 JP 5704347 B2 JP5704347 B2 JP 5704347B2 JP 2012037027 A JP2012037027 A JP 2012037027A JP 2012037027 A JP2012037027 A JP 2012037027A JP 5704347 B2 JP5704347 B2 JP 5704347B2
Authority
JP
Japan
Prior art keywords
magnetic
bus bar
magnetic field
conductor portion
current sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012037027A
Other languages
Japanese (ja)
Other versions
JP2013171013A (en
Inventor
高明 宮腰
高明 宮腰
柏木 孝夫
孝夫 柏木
誠二 福岡
誠二 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2012037027A priority Critical patent/JP5704347B2/en
Publication of JP2013171013A publication Critical patent/JP2013171013A/en
Application granted granted Critical
Publication of JP5704347B2 publication Critical patent/JP5704347B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、例えばハイブリッドカーや電気自動車のバッテリー電流やモータ駆動電流を測定する電流センサに関し、特に、ホール素子等の感磁素子を用いてバスバーに流れる電流を測定する電流センサに関する。   The present invention relates to a current sensor that measures a battery current and a motor driving current of, for example, a hybrid car and an electric vehicle, and more particularly, to a current sensor that measures a current flowing through a bus bar using a magnetically sensitive element such as a Hall element.

ホール素子等の感磁素子を用いてバスバーに流れる電流(被測定電流)を非接触状態で検出する電流センサとして、空隙を有するリング状の磁気コアと、空隙に配置された感磁素子とを有する磁気比例式のものが従来から知られている。この種の電流センサに関し、下記特許文献1は、応答性の改善のために、「磁気ギャップ2を有する磁気コア3と、この磁気コア3に巻回した電流線4と、前記磁気コア3の磁気ギャップ2に配置した磁電変換素子5と、この磁電変換素子5と増幅器6の入力端子とを接続した配線7a〜7dとを備え、前記配線7dは、磁気ギャップ2外に引出した後、再度磁気コア3をその長手方向に対して交差する方向に横切らせた」との構成を開示する(特許文献1の[要約])。これによれば、電流線に流れる電流によって磁気コアに磁束が流れた場合にその磁束によって配線には急峻な電圧を発生させることが出来、そしてこの電圧を増幅器へと供給することが出来るので、増幅器においては、はじめから大きな出力電圧を出力することが出来るようになり、これが電流検出器としての応答性を高めることにつながるとしている(特許文献1の段落[0008])。   As a current sensor for detecting a current (current to be measured) flowing through the bus bar in a non-contact state using a magnetic sensing element such as a Hall element, a ring-shaped magnetic core having a gap and a magnetic sensing element arranged in the gap A magnetic proportional type has been known. With respect to this type of current sensor, the following Patent Document 1 describes, for the purpose of improving responsiveness, “a magnetic core 3 having a magnetic gap 2, a current line 4 wound around the magnetic core 3, and the magnetic core 3. A magnetoelectric conversion element 5 disposed in the magnetic gap 2 and wirings 7a to 7d connecting the magnetoelectric conversion element 5 and the input terminal of the amplifier 6 are provided. The wiring 7d is drawn out of the magnetic gap 2 and then again. The configuration of “the magnetic core 3 is traversed in a direction intersecting the longitudinal direction” is disclosed ([Summary] of Patent Document 1). According to this, when a magnetic flux flows in the magnetic core due to a current flowing in the current line, a steep voltage can be generated in the wiring by the magnetic flux, and this voltage can be supplied to the amplifier. In amplifiers, a large output voltage can be output from the beginning, which leads to improved response as a current detector (paragraph [0008] of Patent Document 1).

特開2001−281271号公報JP 2001-281271 A

特許文献1の電流センサではリング状の磁気コアのギャップ中に磁電変換素子を配置しなければならないため、電圧を誘起する導体部のレイアウトに制約があって微妙な設計が出来ず、応答速度の微妙な調整が困難であるという問題があった。   In the current sensor of Patent Document 1, since the magnetoelectric conversion element must be arranged in the gap of the ring-shaped magnetic core, the layout of the conductor part that induces the voltage is limited, and the delicate design cannot be performed. There was a problem that delicate adjustment was difficult.

本発明はこうした状況を認識してなされたものであり、その目的は、応答速度向上のための誘導起電力を発生する導体部のレイアウトの自由度が従来と比較して高い電流センサを提供することにある。   The present invention has been made in view of such a situation, and an object of the present invention is to provide a current sensor having a higher degree of freedom in layout of a conductor portion that generates an induced electromotive force for improving response speed. There is.

本発明のある態様は、電流センサである。この電流センサは、
バスバーと、
2つの空隙を介して相互に対向する2つの磁性体と、
前記2つの磁性体の間であって前記空隙を除く位置に設けられ、前記バスバーに流れる電流によって発生する磁界が感磁面に印加される感磁素子と、
前記感磁素子の出力信号を増幅する増幅器と、
前記バスバーに流れる電流によって発生する磁界が印加され、当該磁界の変化に応じた誘導起電力を発生する導体部とを備え、
前記導体部は、前記2つの磁性体の間の前記空隙の双方ないしそれらの近傍にそれぞれ配置され、各導体部の発生する誘導起電力が前記増幅器の入力側に加えられる。
One embodiment of the present invention is a current sensor. This current sensor
A bus bar,
Two magnetic bodies facing each other through two gaps;
A magnetic sensing element provided between the two magnetic bodies and excluding the air gap, wherein a magnetic field generated by a current flowing through the bus bar is applied to the magnetic sensing surface;
An amplifier for amplifying the output signal of the magnetosensitive element;
A magnetic field generated by a current flowing through the bus bar is applied, and a conductor portion that generates an induced electromotive force according to a change in the magnetic field,
The conductor portion, to not both the gap between the two magnetic bodies are disposed respectively in the vicinity thereof, Ru induced electromotive force generated in each conductor portion is added to the input side of the amplifier.

本発明のもう1つの態様は、電流センサである。この電流センサは、
バスバーと、
2つの空隙を介して相互に対向する2つの磁性体と、
前記2つの磁性体の間であって前記空隙を除く位置に設けられ、前記バスバーに流れる電流によって発生する磁界が感磁面に印加される感磁素子と、
前記感磁素子の出力信号を増幅する増幅器と、
前記バスバーに流れる電流によって発生する磁界が印加され、当該磁界の変化に応じた誘導起電力を発生する導体部とを備え、
前記導体部は、前記2つの磁性体の間の前記空隙の双方ないしそれらの近傍にそれぞれ配置され、各導体部の発生する誘導起電力が前記増幅器の出力側に加えられる。
Another aspect of the present invention is a current sensor. This current sensor
A bus bar,
Two magnetic bodies facing each other through two gaps;
A magnetic sensing element provided between the two magnetic bodies and excluding the air gap, wherein a magnetic field generated by a current flowing through the bus bar is applied to the magnetic sensing surface;
An amplifier for amplifying the output signal of the magnetosensitive element;
A magnetic field generated by a current flowing through the bus bar is applied, and a conductor portion that generates an induced electromotive force according to a change in the magnetic field,
The conductor part, the are respectively disposed on both or near their the gap between the two magnetic bodies, Ru induced electromotive force generated in each conductor portion is added to the output side of the amplifier.

前記導体部は、前記バスバーに流れる電流によって発生する磁界が貫通するコイルであってもよい。The conductor portion may be a coil through which a magnetic field generated by a current flowing through the bus bar passes.

前記感磁素子を搭載する基板を備え、前記基板が前記2つの磁性体の間の前記2つの空隙同士を渡すように配置され、前記導体部が前記基板上のパターンとして形成されていてもよい。   A substrate on which the magnetosensitive element is mounted may be provided, the substrate may be disposed so as to pass between the two gaps between the two magnetic bodies, and the conductor portion may be formed as a pattern on the substrate. .

前記感磁素子を搭載する基板上を除く位置に前記導体部が設けられていてもよい。   The conductor portion may be provided at a position other than on the substrate on which the magnetosensitive element is mounted.

前記バスバーに電流が流れたときに、対向する前記2つの磁性体が互いに逆方向に磁化され、
一方の前記磁性体が磁化されたことにより発生する磁界と、他方の前記磁性体が磁化されたことにより発生する磁界とによって、前記感磁素子に印加される磁界が弱まる位置に前記感磁素子を配置してもよい。
When a current flows through the bus bar, the two magnetic bodies facing each other are magnetized in opposite directions,
The magnetic sensitive element is located at a position where the magnetic field applied to the magnetic sensitive element is weakened by the magnetic field generated by magnetizing one of the magnetic bodies and the magnetic field generated by magnetizing the other magnetic substance. May be arranged.

なお、以上の構成要素の任意の組合せ、本発明の表現を方法やシステムなどの間で変換したものもまた、本発明の態様として有効である。   It should be noted that any combination of the above-described constituent elements, and those obtained by converting the expression of the present invention between methods and systems are also effective as aspects of the present invention.

本発明によれば、感磁素子が2つの磁性体の間であって空隙を除く位置に設けられるため、応答速度向上のための誘導起電力を発生する導体部のレイアウトの自由度が従来と比較して高い電流センサを実現可能である。   According to the present invention, since the magnetosensitive element is provided between the two magnetic bodies and at a position excluding the air gap, the degree of freedom of layout of the conductor portion that generates the induced electromotive force for improving the response speed is conventionally increased. In comparison, a high current sensor can be realized.

本発明の実施の形態1に係る電流センサ1の構成を示す概略斜視図。1 is a schematic perspective view showing a configuration of a current sensor 1 according to Embodiment 1 of the present invention. 図1に示す電流センサ1の原理説明図。FIG. 3 is a principle explanatory diagram of the current sensor 1 shown in FIG. 1. 実施の形態の電流センサ1の出力信号と比較例の出力信号との比較タイムチャート。The comparison time chart of the output signal of current sensor 1 of an embodiment, and the output signal of a comparative example. 本発明の実施の形態2に係る電流センサ2の原理説明図。The principle explanatory drawing of the current sensor 2 which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る電流センサ3の原理説明図。The principle explanatory drawing of the current sensor 3 which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る電流センサ4の原理説明図。The principle explanatory drawing of the current sensor 4 which concerns on Embodiment 4 of this invention. 本発明の実施の形態5に係る電流センサ5の構成を示す概略斜視図。The schematic perspective view which shows the structure of the current sensor 5 which concerns on Embodiment 5 of this invention. 本発明の実施の形態6に係る電流センサ6の構成を示す概略斜視図。The schematic perspective view which shows the structure of the current sensor 6 which concerns on Embodiment 6 of this invention.

以下、図面を参照しながら本発明の好適な実施の形態を詳述する。なお、各図面に示される同一または同等の構成要素、部材等には同一の符号を付し、適宜重複した説明は省略する。また、実施の形態は発明を限定するものではなく例示であり、実施の形態に記述されるすべての特徴やその組み合わせは必ずしも発明の本質的なものであるとは限らない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or equivalent component, member, etc. which are shown by each drawing, and the overlapping description is abbreviate | omitted suitably. In addition, the embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.

図1は、本発明の実施の形態1に係る電流センサ1の構成を示す概略斜視図である。電流センサ1は、被測定電流が流れる導体であるバスバー10と、感磁素子20(ホールIC又はホール素子)と、感磁素子20を搭載した絶縁基板40と、断面コ字状磁性体30A,30B(磁性体コア)と、導体部51(電磁誘導部)とを備える。各部材の相対位置関係は、不図示のケース等で固定される。   FIG. 1 is a schematic perspective view showing a configuration of a current sensor 1 according to Embodiment 1 of the present invention. The current sensor 1 includes a bus bar 10 that is a conductor through which a current to be measured flows, a magnetic sensing element 20 (Hall IC or Hall element), an insulating substrate 40 on which the magnetic sensing element 20 is mounted, a U-shaped magnetic body 30A, 30B (magnetic core) and a conductor part 51 (electromagnetic induction part) are provided. The relative positional relationship between the members is fixed by a case (not shown) or the like.

バスバー10は、平板形状(例えば銅板)である。対をなす磁性体30A,30Bは、両端縁がそれぞれ空隙Gを隔てて対向し、バスバー10が貫通する環状部を成す。磁性体30A,30Bは、好ましくは同材質(保持力が同じ)かつ同形状の半角筒形状の高透磁率磁性材であって、例えば電磁鋼板を断面コ字状に折曲げ加工したものである。そして、一対の磁性体30A,30Bは、全体として感磁素子20とこれが配置されているバスバー部分とを内側に取り囲んで、外部磁界から磁気遮蔽するものである。   The bus bar 10 has a flat plate shape (for example, a copper plate). The magnetic bodies 30A and 30B forming a pair form an annular portion through which the bus bar 10 penetrates with both end edges facing each other with a gap G therebetween. The magnetic bodies 30A and 30B are preferably high permeability magnetic materials having the same material (the same holding force) and the same shape of a half-rectangular cylinder, for example, a magnetic steel sheet bent into a U-shaped cross section. . The pair of magnetic bodies 30A and 30B surround the inside of the magnetosensitive element 20 and the bus bar portion on which it is disposed as a whole, and magnetically shield it from an external magnetic field.

絶縁基板40は、磁性体30A,30Bの間の2つの空隙G同士を渡すように配置される。感磁素子20は、磁性体30A,30Bの間であって空隙Gを除く位置において絶縁基板40上に搭載されてバスバー10に対して固定配置され、バスバー10に流れる電流によって発生する磁界(バスバーを周回する磁界)が感磁面(ホール素子の感磁面)に印加される。感磁素子20は、バスバー10の幅方向の中間に位置し、その感磁面は好ましくはバスバー幅方向の略中央に位置して幅方向と略垂直(感磁方向はバスバー10の幅方向)である。この場合、バスバー電流によって発生する磁界と感磁素子20の感磁面は略垂直となる。   The insulating substrate 40 is disposed so as to pass two gaps G between the magnetic bodies 30A and 30B. The magnetosensitive element 20 is mounted on the insulating substrate 40 at a position between the magnetic bodies 30A and 30B, excluding the gap G, and is fixedly arranged with respect to the bus bar 10, and generates a magnetic field (bus bar generated by a current flowing through the bus bar 10). Is applied to the magnetosensitive surface (the magnetosensitive surface of the Hall element). The magnetic sensitive element 20 is located in the middle of the bus bar 10 in the width direction, and its magnetic sensitive surface is preferably located substantially at the center in the bus bar width direction and substantially perpendicular to the width direction (the magnetic sensitive direction is the width direction of the bus bar 10). It is. In this case, the magnetic field generated by the bus bar current and the magnetic sensitive surface of the magnetic sensitive element 20 are substantially perpendicular.

導体部51は、バスバー10に流れる電流によって発生する磁界が印加され、当該磁界の変化に応じた誘導起電力を発生する。導体部51は、ここでは磁性体30A,30Bの間の2つの空隙Gの一方(ないしその近傍)に位置し、絶縁基板40上の導体パターンとして形成される。導体部51のパターン形状は例えば複数周回するスパイラル状その他のコイルパターンである。導体部51の誘導起電力の立ち上がりは感磁素子20の出力信号の立ち上がりと比較して早いため、導体部51を設けることでバスバー10に流れる電流の変化に対する電流センサ1の応答速度が向上する。   The conductor 51 is applied with a magnetic field generated by a current flowing through the bus bar 10 and generates an induced electromotive force according to the change in the magnetic field. Here, the conductor portion 51 is located in one (or the vicinity thereof) of the two gaps G between the magnetic bodies 30A and 30B, and is formed as a conductor pattern on the insulating substrate 40. The pattern shape of the conductor 51 is, for example, a spiral or other coil pattern that circulates a plurality of times. Since the rise of the induced electromotive force of the conductor portion 51 is faster than the rise of the output signal of the magnetosensitive element 20, the provision of the conductor portion 51 improves the response speed of the current sensor 1 with respect to changes in the current flowing through the bus bar 10. .

図2は、図1に示す電流センサ1の原理説明図である。本図に示す差動増幅器60は、実際には絶縁基板40上に形成される。感磁素子20は、ここではホール素子単体であって増幅器を含まないものとする。増幅器としての差動増幅器60は、オペアンプ61と、抵抗R1〜R4とを有する。感磁素子20の一方の出力端子とオペアンプ61の出力端子との間に抵抗R1,R2が直列接続される。抵抗R1,R2の接続点がオペアンプ61の反転入力端子に接続される。感磁素子20の他方の出力端子に導体部51の一端が接続され、導体部51の他端と接地端子(固定電圧端子)との間に抵抗R3,R4が直列接続される。抵抗R3,R4の接続点がオペアンプ61の非反転入力端子に接続される。   FIG. 2 is an explanatory diagram of the principle of the current sensor 1 shown in FIG. The differential amplifier 60 shown in this figure is actually formed on the insulating substrate 40. Here, it is assumed that the magnetosensitive element 20 is a Hall element alone and does not include an amplifier. A differential amplifier 60 as an amplifier includes an operational amplifier 61 and resistors R1 to R4. Resistors R1 and R2 are connected in series between one output terminal of the magnetosensitive element 20 and the output terminal of the operational amplifier 61. The connection point between the resistors R1 and R2 is connected to the inverting input terminal of the operational amplifier 61. One end of the conductor 51 is connected to the other output terminal of the magnetosensitive element 20, and resistors R3 and R4 are connected in series between the other end of the conductor 51 and the ground terminal (fixed voltage terminal). The connection point of the resistors R3 and R4 is connected to the non-inverting input terminal of the operational amplifier 61.

図2に示すように、バスバー10に電流が流れると、磁性体30A,30Bは互いに逆方向に磁化される。このため、磁性体30Aが磁化されたことにより発生する磁界と、磁性体30Bが磁化されたことにより発生する磁界とによって、感磁素子20に印加される磁界が弱まる。換言すれば、感磁素子20は、バスバー10に流れる電流の発生する磁界によって磁化された一方の磁性体30Aと他方の磁性体30Bのそれぞれ発生する磁界が互いに弱め合う位置に存在する。   As shown in FIG. 2, when a current flows through the bus bar 10, the magnetic bodies 30A and 30B are magnetized in opposite directions. For this reason, the magnetic field applied to the magnetosensitive element 20 is weakened by the magnetic field generated by magnetizing the magnetic body 30A and the magnetic field generated by magnetizing the magnetic body 30B. In other words, the magnetosensitive element 20 exists at a position where the magnetic fields generated by the one magnetic body 30A and the other magnetic body 30B magnetized by the magnetic field generated by the current flowing through the bus bar 10 are weakened.

図3は、本実施の形態の電流センサ1の出力信号と比較例(導体部51が無い場合)の出力信号との比較タイムチャートである。本実施の形態では、感磁素子20の出力信号と比較して立ち上がりの早い導体部51の誘導起電力が出力信号に加わるため、導体部51が無い場合と比較して出力信号の立ち上がり速度(応答速度)が改善している。すなわち、本実施の形態の電流センサ1の出力信号が一定レベルまで上昇する時間t1は、導体部51が無い場合に出力信号が一定レベルまで上昇する時間t2よりも短くなっている。   FIG. 3 is a comparison time chart between the output signal of the current sensor 1 of the present embodiment and the output signal of the comparative example (when the conductor portion 51 is not provided). In the present embodiment, since the induced electromotive force of the conductor portion 51 that rises faster than the output signal of the magnetosensitive element 20 is added to the output signal, the rising speed of the output signal ( Response speed) has been improved. That is, the time t1 when the output signal of the current sensor 1 of the present embodiment rises to a certain level is shorter than the time t2 when the output signal rises to a certain level when there is no conductor 51.

本実施の形態によれば、下記の効果を奏することができる。   According to the present embodiment, the following effects can be achieved.

(1) 導体部51を磁性体30A,30Bの間の2つの空隙Gの一方(ないしその近傍)に設ける一方、感磁素子20を磁性体30A,30Bの間であって空隙Gを除く位置に設けているため、感磁素子20が空隙G(ないしその近傍)に存在する場合と比較して、空隙G内とその近傍で導体部51を自由にレイアウトできる。このため、所望の誘導起電力を発生させることが容易であり、製造時に微妙な応答速度の調整が可能となる。 (1) The conductor 51 is provided in one (or the vicinity thereof) of the two gaps G between the magnetic bodies 30A and 30B, while the magnetosensitive element 20 is located between the magnetic bodies 30A and 30B and excluding the gap G. Therefore, the conductor portion 51 can be laid out freely in and near the gap G as compared with the case where the magnetosensitive element 20 exists in the gap G (or in the vicinity thereof). For this reason, it is easy to generate a desired induced electromotive force, and it is possible to finely adjust the response speed during manufacturing.

(2) 感磁素子20が空隙G(ないしその近傍)に存在すると感磁素子20を避けたレイアウトにするために導体部51の表面積(パターン面積)が大きくなってしまうという問題があるが、本実施の形態では空隙G内とその近傍で感磁素子20を避けたレイアウトには縛られないため、同じインダクタンスであれば導体部51の表面積(パターン面積)を小さくすることができる。 (2) If the magnetosensitive element 20 exists in the gap G (or in the vicinity thereof), there is a problem that the surface area (pattern area) of the conductor portion 51 becomes large in order to obtain a layout that avoids the magnetosensitive element 20. In the present embodiment, the surface area (pattern area) of the conductor portion 51 can be reduced if the inductance is the same because the layout is such that the magnetic sensing element 20 is avoided in and around the gap G.

(3) 感磁素子20の感磁面位置においては、磁性体30Aが磁化されたことにより発生する磁界と、磁性体30Bが磁化されたことにより発生する磁界とが互いに打ち消し合う方向となる。すなわち、残留磁界が低減されている範囲に感磁素子20が配置されることとなり、残留磁界の影響を排除若しくは低減して電流センサ1のゼロアンペア測定精度の向上を図ることができる。 (3) At the position of the magnetosensitive surface of the magnetosensitive element 20, the magnetic field generated by magnetizing the magnetic body 30A and the magnetic field generated by magnetizing the magnetic body 30B are in a direction that cancels each other. That is, the magnetosensitive element 20 is arranged in a range in which the residual magnetic field is reduced, and the zero ampere measurement accuracy of the current sensor 1 can be improved by eliminating or reducing the influence of the residual magnetic field.

(4) 磁性体30A,30Bに用いる磁性材料特有の保磁力(ヒステリシス)に関わらず、電流センサ1の検出出力のヒステリシスを低減することが可能なため、廉価な磁性材料で優れた検出出力特性を実現でき、コストダウンに有利である。 (4) Regardless of the coercivity (hysteresis) peculiar to the magnetic material used for the magnetic bodies 30A and 30B, the hysteresis of the detection output of the current sensor 1 can be reduced. This is advantageous for cost reduction.

(5) 2つのコア(磁性体30A,30B)を対面させる構造のため、コア単体で用いる構造と比較して感磁素子20へ流れ込む磁界が少なくなるため、より広範囲な電流測定が可能となる。 (5) Since the two cores (magnetic bodies 30A and 30B) face each other, the magnetic field flowing into the magnetosensitive element 20 is reduced compared to the structure used by the core alone, so that a wider range of current measurement is possible. .

(6) 1個の磁気遮蔽用の磁性体を用いる構造では、広範囲の電流を測定するためには感磁素子へ流れ込む磁束を少なくするために磁気遮蔽用の磁性体の幅方向寸法を大きくする又はバスバー10と感磁素子20との間の距離を離さなければならないが、本実施の形態では、磁性体30A,30Bを対面させることにより感磁素子20に流れ込む磁束を抑制可能なため、大電流を測定する際にも各磁性体の幅方向寸法やバスバー10と感磁素子20との間の距離は小さくて済み、電流センサ1の小型化が可能である。 (6) In the structure using one magnetic shielding magnetic body, in order to measure a wide range of current, the width dimension of the magnetic shielding magnetic body is increased to reduce the magnetic flux flowing into the magnetosensitive element. Alternatively, the distance between the bus bar 10 and the magnetic sensing element 20 must be increased. However, in this embodiment, since the magnetic bodies 30A and 30B face each other, the magnetic flux flowing into the magnetic sensing element 20 can be suppressed. When measuring the current, the width direction dimension of each magnetic body and the distance between the bus bar 10 and the magnetosensitive element 20 can be small, and the current sensor 1 can be miniaturized.

(7) 磁性体30A,30Bで囲まれた内側に感磁素子20を配置しているため、コア単体を用いる従来構造より感磁素子20へ流れ込む外乱磁界が少なくなり、外乱ノイズ耐性が向上する。 (7) Since the magnetosensitive element 20 is arranged on the inner side surrounded by the magnetic bodies 30A and 30B, the disturbance magnetic field flowing into the magnetosensitive element 20 is less than the conventional structure using a single core, and the disturbance noise resistance is improved. .

図4は、本発明の実施の形態2に係る電流センサ2の原理説明図である。この電流センサ2は、実施の形態1のものと比較して、磁性体30A,30Bの間の2つの空隙Gの他方(ないしその近傍)に導体部52を追加で設けた点で相違し、その他の点で一致する。導体部52は、導体部51と同様に、絶縁基板40上に形成された導体パターン(コイルパターン)であり、バスバー10に流れる電流によって発生する磁界が印加されて当該磁界の変化に応じた誘導起電力を発生する。導体部52は、抵抗R3と導体部51との間に直列に設けられる。本実施の形態では、実施の形態1と比較して大きな誘導起電力を発生でき、1つの導体部だけでは誘導起電力が足りない場合に有利である。   FIG. 4 is an explanatory diagram of the principle of the current sensor 2 according to Embodiment 2 of the present invention. This current sensor 2 is different from the first embodiment in that a conductor portion 52 is additionally provided in the other (or the vicinity thereof) of the two gaps G between the magnetic bodies 30A and 30B. Matches in other respects. Like the conductor portion 51, the conductor portion 52 is a conductor pattern (coil pattern) formed on the insulating substrate 40. A magnetic field generated by a current flowing through the bus bar 10 is applied to the conductor portion 52 in accordance with the change in the magnetic field. Generate electromotive force. The conductor portion 52 is provided in series between the resistor R3 and the conductor portion 51. In the present embodiment, a large induced electromotive force can be generated as compared with the first embodiment, which is advantageous when the induced electromotive force is insufficient with only one conductor portion.

図5は、本発明の実施の形態3に係る電流センサ3の原理説明図である。この電流センサ3は、実施の形態1のものと比較して、導体部51が差動増幅器60の出力信号の経路上(オペアンプ61の出力端子及び抵抗R2の接続点とセンサ出力端子との間)に設けられている点で相違し、その他の点で一致する。本実施の形態では、差動増幅器60または感磁素子20の応答速度が遅くてもセンサ出力信号の立ち上がりを早めることができる。   FIG. 5 is an explanatory diagram of the principle of the current sensor 3 according to Embodiment 3 of the present invention. In the current sensor 3, the conductor 51 is on the path of the output signal of the differential amplifier 60 (between the output terminal of the operational amplifier 61 and the connection point of the resistor R 2 and the sensor output terminal) as compared with the first embodiment. ) Is different, and the other points are the same. In the present embodiment, the rise of the sensor output signal can be accelerated even if the response speed of the differential amplifier 60 or the magnetosensitive element 20 is slow.

図6は、本発明の実施の形態4に係る電流センサ4の原理説明図である。この電流センサ4は、実施の形態3のものと比較して、磁性体30A,30Bの間の2つの空隙Gの他方(ないしその近傍)に導体部52を追加で設けた点で相違し、その他の点で一致する。導体部52は、導体部51と同様に、絶縁基板40上に形成された導体パターン(コイルパターン)であり、バスバー10に流れる電流によって発生する磁界が印加されて当該磁界の変化に応じた誘導起電力を発生する。導体部52は、差動増幅器60の出力信号の経路上(オペアンプ61の出力端子及び抵抗R2の接続点とセンサ出力端子との間)に導体部51と直列に設けられている。本実施の形態では、実施の形態3と比較して大きな誘導起電力を発生でき、1つの導体部だけでは誘導起電力が足りない場合に有利である。   FIG. 6 is an explanatory diagram of the principle of the current sensor 4 according to Embodiment 4 of the present invention. This current sensor 4 is different from that of the third embodiment in that a conductor portion 52 is additionally provided in the other (or the vicinity thereof) of the two gaps G between the magnetic bodies 30A and 30B. Matches in other respects. Like the conductor portion 51, the conductor portion 52 is a conductor pattern (coil pattern) formed on the insulating substrate 40. A magnetic field generated by a current flowing through the bus bar 10 is applied to the conductor portion 52 in accordance with the change in the magnetic field. Generate electromotive force. The conductor 52 is provided in series with the conductor 51 on the path of the output signal of the differential amplifier 60 (between the output terminal of the operational amplifier 61 and the connection point of the resistor R2 and the sensor output terminal). In the present embodiment, a large induced electromotive force can be generated as compared with the third embodiment, which is advantageous when the induced electromotive force is insufficient with only one conductor portion.

図7は、本発明の実施の形態5に係る電流センサ5の構成を示す概略斜視図である。回路構成は実施の形態1又は3と同様であり、図示及び説明を省略する。この電流センサ5は、実施の形態1のものと比較して、絶縁基板40は感磁素子20を磁性体30A,30Bの間に設けられるものの空隙G同士を渡す配置ではなく、導体部51が絶縁基板40上を除く位置に設けられている点で相違し、その他の点で一致する。導体部51は、例えば絶縁基板40から延びる不図示のFPC(フレキシブルプリント基板)上に形成された導体パターン(コイルパターン)とすることができるが、これには限定されず、位置決め保持された空芯コイルとしてもよい。本実施の形態は、絶縁基板40の配置が空隙G同士を渡す配置に限定されない点で設計の自由度が高い。   FIG. 7 is a schematic perspective view showing the configuration of the current sensor 5 according to Embodiment 5 of the present invention. The circuit configuration is the same as in Embodiment 1 or 3, and illustration and description thereof are omitted. In this current sensor 5, the insulating substrate 40 is not arranged to pass the gap G between the magnetic sensing elements 20 between the magnetic bodies 30 </ b> A and 30 </ b> B, but the conductor portion 51 is different from the one in the first embodiment. It differs in that it is provided at a position other than on the insulating substrate 40, and is identical in other points. The conductor portion 51 can be a conductor pattern (coil pattern) formed on an FPC (flexible printed circuit board) (not shown) extending from the insulating substrate 40, for example. A core coil may be used. This embodiment has a high degree of design freedom in that the arrangement of the insulating substrate 40 is not limited to the arrangement that passes the gaps G.

図8は、本発明の実施の形態6に係る電流センサ6の構成を示す概略斜視図である。回路構成は実施の形態2又は4と同様であり、図示及び説明を省略する。この電流センサ6は、実施の形態5のものと比較して、磁性体30A,30Bの間の2つの空隙Gの他方(ないしその近傍)に導体部52を追加で設けた点で相違し、その他の点で一致する。導体部52の形成方法は導体部51と同様でよい。本実施の形態では、実施の形態5と比較して大きな誘導起電力を発生でき、1つの導体部だけでは誘導起電力が足りない場合に有利である。   FIG. 8 is a schematic perspective view showing the configuration of the current sensor 6 according to Embodiment 6 of the present invention. The circuit configuration is the same as in Embodiment 2 or 4, and illustration and description thereof are omitted. This current sensor 6 is different from that of the fifth embodiment in that a conductor portion 52 is additionally provided in the other (or the vicinity thereof) of the two gaps G between the magnetic bodies 30A and 30B. Matches in other respects. The formation method of the conductor part 52 may be the same as that of the conductor part 51. In the present embodiment, a large induced electromotive force can be generated as compared with the fifth embodiment, which is advantageous when the induced electromotive force is insufficient with only one conductor portion.

以上、実施の形態を例に本発明を説明したが、実施の形態の各構成要素や各処理プロセスには請求項に記載の範囲で種々の変形が可能であることは当業者に理解されるところである。   The present invention has been described above by taking the embodiment as an example. However, it is understood by those skilled in the art that various modifications can be made to each component and each processing process of the embodiment within the scope of the claims. By the way.

1〜6 電流センサ
10 バスバー
20 感磁素子
30A,30B 磁性体
40 基板
51,52 導体部
60 差動増幅器
61 オペアンプ
1-6 Current sensor 10 Bus bar 20 Magnetic sensing element 30A, 30B Magnetic body 40 Substrate 51, 52 Conductor section 60 Differential amplifier 61 Operational amplifier

Claims (6)

バスバーと、
2つの空隙を介して相互に対向する2つの磁性体と、
前記2つの磁性体の間であって前記空隙を除く位置に設けられ、前記バスバーに流れる電流によって発生する磁界が感磁面に印加される感磁素子と、
前記感磁素子の出力信号を増幅する増幅器と、
前記バスバーに流れる電流によって発生する磁界が印加され、当該磁界の変化に応じた誘導起電力を発生する導体部とを備え、
前記導体部は、前記2つの磁性体の間の前記空隙の双方ないしそれらの近傍にそれぞれ配置され、各導体部の発生する誘導起電力が前記増幅器の入力側に加えられる、電流センサ。
A bus bar,
Two magnetic bodies facing each other through two gaps;
A magnetic sensing element provided between the two magnetic bodies and excluding the air gap, wherein a magnetic field generated by a current flowing through the bus bar is applied to the magnetic sensing surface;
An amplifier for amplifying the output signal of the magnetosensitive element;
A magnetic field generated by a current flowing through the bus bar is applied, and a conductor portion that generates an induced electromotive force according to a change in the magnetic field,
The conductor portion, to not both the gap between the two magnetic bodies are disposed respectively in the vicinity thereof, Ru induced electromotive force generated in each conductor portion is added to the input side of the amplifier, a current sensor.
バスバーと、
2つの空隙を介して相互に対向する2つの磁性体と、
前記2つの磁性体の間であって前記空隙を除く位置に設けられ、前記バスバーに流れる電流によって発生する磁界が感磁面に印加される感磁素子と、
前記感磁素子の出力信号を増幅する増幅器と、
前記バスバーに流れる電流によって発生する磁界が印加され、当該磁界の変化に応じた誘導起電力を発生する導体部とを備え、
前記導体部は、前記2つの磁性体の間の前記空隙の双方ないしそれらの近傍にそれぞれ配置され、各導体部の発生する誘導起電力が前記増幅器の出力側に加えられる、電流センサ。
A bus bar,
Two magnetic bodies facing each other through two gaps;
A magnetic sensing element provided between the two magnetic bodies and excluding the air gap, wherein a magnetic field generated by a current flowing through the bus bar is applied to the magnetic sensing surface;
An amplifier for amplifying the output signal of the magnetosensitive element;
A magnetic field generated by a current flowing through the bus bar is applied, and a conductor portion that generates an induced electromotive force according to a change in the magnetic field,
Said conductor portions are disposed respectively on both or near their the gap between the two magnetic bodies, Ru induced electromotive force generated in each conductor portion is added to the output side of the amplifier, a current sensor.
前記導体部は、前記バスバーに流れる電流によって発生する磁界が貫通するコイルである、請求項1又は2に記載の電流センサ。   The current sensor according to claim 1 or 2, wherein the conductor portion is a coil through which a magnetic field generated by a current flowing through the bus bar passes. 前記感磁素子を搭載する基板を備え、前記基板が前記2つの磁性体の間の前記2つの空隙同士を渡すように配置され、前記導体部が前記基板上のパターンとして形成されている、請求項1から3のいずれか一項に記載の電流センサ。   A substrate on which the magnetosensitive element is mounted, the substrate is disposed so as to pass between the two gaps between the two magnetic bodies, and the conductor portion is formed as a pattern on the substrate. Item 4. The current sensor according to any one of Items 1 to 3. 前記感磁素子を搭載する基板上を除く位置に前記導体部が設けられている請求項1から3のいずれか一項に記載の電流センサ。   The current sensor according to any one of claims 1 to 3, wherein the conductor portion is provided at a position excluding a substrate on which the magnetosensitive element is mounted. 前記バスバーに電流が流れたときに、対向する前記2つの磁性体が互いに逆方向に磁化され、
一方の前記磁性体が磁化されたことにより発生する磁界と、他方の前記磁性体が磁化されたことにより発生する磁界とによって、前記感磁素子に印加される磁界が弱まる位置に前記感磁素子を配置した、請求項1からのいずれか一項に記載の電流センサ。
When a current flows through the bus bar, the two magnetic bodies facing each other are magnetized in opposite directions,
The magnetic sensitive element is located at a position where the magnetic field applied to the magnetic sensitive element is weakened by the magnetic field generated by magnetizing one of the magnetic bodies and the magnetic field generated by magnetizing the other magnetic substance. The current sensor according to any one of claims 1 to 5 , wherein:
JP2012037027A 2012-02-23 2012-02-23 Current sensor Active JP5704347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012037027A JP5704347B2 (en) 2012-02-23 2012-02-23 Current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012037027A JP5704347B2 (en) 2012-02-23 2012-02-23 Current sensor

Publications (2)

Publication Number Publication Date
JP2013171013A JP2013171013A (en) 2013-09-02
JP5704347B2 true JP5704347B2 (en) 2015-04-22

Family

ID=49265030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012037027A Active JP5704347B2 (en) 2012-02-23 2012-02-23 Current sensor

Country Status (1)

Country Link
JP (1) JP5704347B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6350785B2 (en) * 2013-09-03 2018-07-04 Tdk株式会社 Inverter device
CN107703341A (en) * 2017-09-08 2018-02-16 佛山市南海毅顺电器设备有限公司 A kind of device for being used to measure busbar D.C. high-current
CN109709377A (en) * 2019-03-06 2019-05-03 浙江天地人科技有限公司 A kind of current detector
JP7099483B2 (en) * 2020-02-21 2022-07-12 Tdk株式会社 Current sensor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4506641B2 (en) * 2005-10-21 2010-07-21 株式会社デンソー Current sensor device
JP2008002876A (en) * 2006-06-21 2008-01-10 Fuji Electric Systems Co Ltd Current sensor and electronic watthour meter
EP1965217B1 (en) * 2007-03-02 2012-08-29 Liaisons Electroniques-Mecaniques Lem S.A. High bandwidth open-loop current sensor
JP2009150654A (en) * 2007-12-18 2009-07-09 Yazaki Corp Current sensor
JP2010008050A (en) * 2008-06-24 2010-01-14 Tdk Corp Current sensor
JP5167305B2 (en) * 2010-04-23 2013-03-21 株式会社タムラ製作所 Current detector

Also Published As

Publication number Publication date
JP2013171013A (en) 2013-09-02

Similar Documents

Publication Publication Date Title
US8836317B2 (en) Current sensor
EP2827156B1 (en) Current sensor
US20130169267A1 (en) Current sensor
JP5411285B2 (en) Magnetic balanced current sensor
JP5531215B2 (en) Current sensor
WO2013005459A1 (en) Current sensor
JP4788922B2 (en) Current sensor
EP2442117A1 (en) Magnetic balance current sensor
WO2013001789A1 (en) Current sensor
EP3080827B1 (en) Electrical current sensing apparatus
US20130057273A1 (en) Current sensor
JP2008275321A (en) Current sensor
JP2008215970A (en) Bus bar integrated current sensor
JP5704347B2 (en) Current sensor
JP6384677B2 (en) Current sensor
WO2012046547A1 (en) Current sensor
JP6008756B2 (en) Current sensor and three-phase AC current sensor device
JP5487403B2 (en) Current sensor
JP5678285B2 (en) Current sensor
JP5776905B2 (en) Current sensor
JP7096349B2 (en) Magnetic sensor and current sensor
JP5139822B2 (en) Magnetic field probe
JP6671986B2 (en) Current sensor and method of manufacturing the same
JP6644343B1 (en) Zero flux type magnetic sensor
JP2014202737A (en) Current sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150210

R150 Certificate of patent or registration of utility model

Ref document number: 5704347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150