JP6644343B1 - Zero flux type magnetic sensor - Google Patents

Zero flux type magnetic sensor Download PDF

Info

Publication number
JP6644343B1
JP6644343B1 JP2019147490A JP2019147490A JP6644343B1 JP 6644343 B1 JP6644343 B1 JP 6644343B1 JP 2019147490 A JP2019147490 A JP 2019147490A JP 2019147490 A JP2019147490 A JP 2019147490A JP 6644343 B1 JP6644343 B1 JP 6644343B1
Authority
JP
Japan
Prior art keywords
magnetic flux
magnetic
detecting elements
horizontal
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2019147490A
Other languages
Japanese (ja)
Other versions
JP2021028596A (en
Inventor
管野 正喜
正喜 管野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bifrostec Inc
Original Assignee
Bifrostec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bifrostec Inc filed Critical Bifrostec Inc
Priority to JP2019147490A priority Critical patent/JP6644343B1/en
Application granted granted Critical
Publication of JP6644343B1 publication Critical patent/JP6644343B1/en
Publication of JP2021028596A publication Critical patent/JP2021028596A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】 回路が簡素になり、小型化が容易であり、距離dx、dy、透磁率μの誤差を含みにくく、製造コストを低減しやすいゼロフラックス型磁気センサを提供すること。【解決手段】 ゼロフラックス型磁気センサは、絶縁基板と、磁気検出素子と、励磁素子とを備え、磁気検出素子は前記絶縁基板上に形成され、被測定磁束に応じて特性が変化し、励磁素子は磁気検出素子の近傍に配置され、巻回されない単線配線であり、被測定磁束の一部又は全部を相殺するキャンセル磁束を発生する。【選択図】 図5PROBLEM TO BE SOLVED: To provide a zero-flux type magnetic sensor whose circuit is simple, miniaturization is easy, errors of distances dx, dy and permeability μ are not included, and manufacturing cost is easily reduced. SOLUTION: The zero flux type magnetic sensor includes an insulating substrate, a magnetic detecting element, and an exciting element. The element is a single wire that is arranged near the magnetic detection element and is not wound, and generates a cancel magnetic flux that cancels a part or all of the measured magnetic flux. [Selection diagram] FIG.

Description

本発明は、ゼロフラックス型磁気センサに関する。   The present invention relates to a zero flux type magnetic sensor.

磁気センサは、磁束の密度・方向を計測することを目的としたセンサである。磁気センサの用途は、磁束の計測だけでなく、非接触電流センサ、磁気ヘッド、回転センサ等、多岐にわたる。磁束を検出する磁気検出素子は、原理に応じて電圧、電流等の特性の変化を出力する。磁気検出素子の種類としては、例えば、GMR素子、TMR素子、AMR素子等の磁気抵抗効果素子、ホール素子、コイル等が挙げられる。なお、本明細書では、素子が形成される面(素子面)に水平方向の磁束に対して特性が変化し、素子面に水平方向の磁束を検出する素子を「水平磁束検出素子」といい、素子面に垂直方向の磁束に対して特性が変化し、素子面に垂直方向の磁束を検出する素子を「垂直磁束検出素子」という。例えば、水平磁束検出素子には磁気抵抗効果素子が含まれ、垂直磁束検出素子にはホール素子が含まれる。   The magnetic sensor is a sensor for measuring the density and direction of the magnetic flux. Applications of the magnetic sensor are not limited to measurement of magnetic flux, but also wide-ranging, such as a non-contact current sensor, a magnetic head, and a rotation sensor. A magnetic detection element that detects a magnetic flux outputs a change in characteristics such as voltage and current according to the principle. Examples of the type of the magnetic detection element include a magnetoresistance effect element such as a GMR element, a TMR element, and an AMR element, a Hall element, a coil, and the like. Note that in this specification, an element that changes its characteristics with respect to the magnetic flux in the horizontal direction on the surface on which the element is formed (element surface) and detects the magnetic flux in the horizontal direction on the element surface is referred to as a “horizontal magnetic flux detection element”. An element that changes its characteristics with respect to the magnetic flux in the direction perpendicular to the element surface and detects the magnetic flux in the direction perpendicular to the element surface is called a “vertical magnetic flux detection element”. For example, the horizontal magnetic flux detecting element includes a magnetoresistance effect element, and the vertical magnetic flux detecting element includes a Hall element.

<磁気比例方式>
図1に代表的な磁気検出素子10の例を示す。代表的な磁気検出素子10は4つのGMR素子(第1のGMR素子11〜第4のGMR素子14)を備え、4つのGMR素子は矩形のブリッジ構成を形成する。電源電圧Vcc15とGND16の間において第1のGMR素子11と第3のGMR素子13、第2のGMR素子12と第4のGMR素子14がそれぞれ直列に接続される。代表的な磁気検出素子10の出力は、第1のGMR素子11と第3のGMR素子13の第1の中間電位Vout17と、第2のGMR素子12と第4のGMR素子14の第2の中間電位Vout18との差電圧(出力電圧)Voutである。
<Magnetic proportional method>
FIG. 1 shows an example of a typical magnetic sensing element 10. The typical magnetic sensing element 10 includes four GMR elements (first GMR element 11 to fourth GMR element 14), and the four GMR elements form a rectangular bridge configuration. The first GMR element 11 and the third GMR element 13, and the second GMR element 12 and the fourth GMR element 14 are connected in series between the power supply voltage Vcc15 and the GND 16. A typical output of the magnetic sensing element 10 is a first intermediate potential Vout 17 of the first GMR element 11 and the third GMR element 13 and a second intermediate potential Vout 17 of the second GMR element 12 and the fourth GMR element 14. The difference voltage (output voltage) Vout from the intermediate potential Vout18.

代表的な磁気検出素子10は、4つのGMR素子が形成する面方向の磁束を検出する。例えば、磁束の向きが第2のGMR素子12及び第3のGMR素子13の長手方向(X軸方向)の場合、第2のGMR素子12、第3のGMR素子13の初期抵抗RはΔR減少し、R−ΔRとなる。このとき、他方の第1のGMR素子11及び第4のGMR素子14は長手方向がこの磁束の向きに直交するため、初期抵抗Rのままである。   A typical magnetic detecting element 10 detects a magnetic flux in a plane direction formed by four GMR elements. For example, when the direction of the magnetic flux is in the longitudinal direction (X-axis direction) of the second GMR element 12 and the third GMR element 13, the initial resistance R of the second GMR element 12 and the third GMR element 13 decreases by ΔR. And R−ΔR. At this time, the other first GMR element 11 and fourth GMR element 14 have the initial resistance R because their longitudinal directions are orthogonal to the direction of the magnetic flux.

第1のGMR素子11と第3のGMR素子13の間の第1の中間電位Vout17は、GND16側の第3のGMR素子13の抵抗が減少した分低くなり、第2のGMR素子12と第4のGMR素子14の間の第2の中間電位Vout18は、電源電圧Vcc15側の第2のGMR素子12の抵抗が減少した分高くなる。第1の中間電位Vout17と第2の中間電位Vout18の差電圧(出力電圧)Voutより磁束の変化を測定することができる。ただし、磁束の方向がX軸のプラス方向/マイナス方向のいずれであっても第2のGMR素子12、第3のGMR素子13の抵抗は同じように減少する(偶関数)ため、磁束の向きを判別することはできない。   The first intermediate potential Vout17 between the first GMR element 11 and the third GMR element 13 becomes lower by the decrease in the resistance of the third GMR element 13 on the GND 16 side. The second intermediate potential Vout18 between the four GMR elements 14 is increased by the decrease in the resistance of the second GMR element 12 on the power supply voltage Vcc15 side. The change in magnetic flux can be measured from the difference voltage (output voltage) Vout between the first intermediate potential Vout17 and the second intermediate potential Vout18. However, the resistance of the second GMR element 12 and the resistance of the third GMR element 13 decrease in the same manner regardless of whether the direction of the magnetic flux is in the plus direction or the minus direction of the X axis (even function). Cannot be determined.

磁気センサの用途として、電流Ixの非接触電流センサを考える。電流Ixと、電流Ixが距離dxに作る磁界強度Hxとの関係を(式1)に示す。
Hx=Ix/dx+c1 (式1)
As a use of the magnetic sensor, a non-contact current sensor of a current Ix is considered. The relationship between the current Ix and the magnetic field intensity Hx created by the current Ix at the distance dx is shown in (Equation 1).
Hx = Ix / dx + c1 (Equation 1)

磁界強度Hxは電流Ixに比例し、距離dxに反比例する。地磁気等の誤差c1がある場合、Ix=0でもHxは0にならない。   The magnetic field strength Hx is proportional to the current Ix and inversely proportional to the distance dx. If there is an error c1 such as terrestrial magnetism, Hx does not become 0 even if Ix = 0.

磁束密度Bxと磁界強度Hxの関係を(式2)に示す。
Bx=μ・Hx+c2 (式2)
The relationship between the magnetic flux density Bx and the magnetic field strength Hx is shown in (Equation 2).
Bx = μ · Hx + c2 (Equation 2)

磁束密度Bxは磁界強度Hxと透磁率μに比例する。残留磁束等の誤差c2がある場合、Hx=0でもBxは0にならない。   The magnetic flux density Bx is proportional to the magnetic field strength Hx and the magnetic permeability μ. If there is an error c2 such as a residual magnetic flux, Bx does not become 0 even when Hx = 0.

磁気検出素子の出力電圧Vxと磁束密度Bxと感度aの関係を(式3)に示す。
Vx=a・Bx+c3 (式3)
(Equation 3) shows the relationship between the output voltage Vx of the magnetic detection element, the magnetic flux density Bx, and the sensitivity a.
Vx = a · Bx + c3 (Equation 3)

磁気検出素子の出力電圧Vxは磁束密度Bxと感度aに比例する。しかし、例えば、磁気検出素子が4つのGMR素子からなるブリッジ構成の場合、4つのGMR素子にアンバランスが生じ、即ち、R1〜R4が同じ抵抗値にはならず、オフセット電圧等の誤差c3が残ることがある。このとき、Bx=0でもVxは0にならない。   The output voltage Vx of the magnetic sensing element is proportional to the magnetic flux density Bx and the sensitivity a. However, for example, when the magnetic sensing element has a bridge configuration including four GMR elements, imbalance occurs in the four GMR elements, that is, R1 to R4 do not have the same resistance value, and an error c3 such as an offset voltage is generated. May remain. At this time, Vx does not become 0 even when Bx = 0.

(式1)〜(式3)より、電流Ixと出力電圧Vxの関係を(式4)に示す。
Ix=dx/(a・μ)×(Vx−(a・μ・c1+a・c2+c3)) (式4)
From (Equation 1) to (Equation 3), the relation between the current Ix and the output voltage Vx is shown in (Equation 4).
Ix = dx / (a · μ) × (Vx− (a · μ · c1 + a · c2 + c3)) (Equation 4)

電流Ixは出力電圧Vxと無関係な誤差成分dx/(a・μ)×(a・μ・c1+a・c2+c3)を含む。一般的にはこの誤差成分は無視できると考え、(式5)で近似し、出力電圧Vxと変換感度dx/(a・μ)から電流Ixを求める。
Ix=dx/(a・μ)×Vx (式5)
The current Ix includes an error component dx / (a · μ) × (a · μ · c1 + a · c2 + c3) irrelevant to the output voltage Vx. Generally, this error component is considered to be negligible, and is approximated by (Equation 5), and the current Ix is obtained from the output voltage Vx and the conversion sensitivity dx / (a · μ).
Ix = dx / (a · μ) × Vx (Equation 5)

このように出力電圧Vxから直接電流Ixを求めることを磁気比例方式という。磁気比例方式は、(式4)より、変換感度が変化すると距離dx、感度a、透磁率μによる誤差が生じる。また、出力電圧Vxが小さくなると、誤差成分が無視できなくなり、誤差が相対的に大きくなる。さらに、磁気比例方式はIxが大きくなると磁気飽和の問題が生じるため、ダイナミックレンジは磁気飽和を生じさせない範囲に限られる。したがって、磁気比例方式は、高い精度が求められる磁気センサには用いられない。   Obtaining the current Ix directly from the output voltage Vx in this manner is called a magnetic proportional method. In the magnetic proportional method, according to (Equation 4), when the conversion sensitivity changes, an error occurs due to the distance dx, the sensitivity a, and the magnetic permeability μ. When the output voltage Vx decreases, the error component cannot be ignored, and the error relatively increases. Further, in the magnetic proportional method, since the problem of magnetic saturation occurs when Ix increases, the dynamic range is limited to a range where magnetic saturation does not occur. Therefore, the magnetic proportional method is not used for a magnetic sensor requiring high accuracy.

<ゼロフラックス法(磁気平衡方式)>
高い精度が求められる磁気センサには、ゼロフラックス法(磁気平衡方式)が高級な非接触電流計等によく用いられてきた。図2に、特許文献1に記載されている従来のゼロフラックス型磁気センサ20を示す。従来のゼロフラックス型磁気センサ20は、導体21に通流される被測定電流からの誘導磁界により特性が変化する磁気検出素子22と、磁気検出素子22の近傍に配置され、誘導磁界を相殺するキャンセル磁界を発生するフィードバックコイル(励磁素子)23とを備える。磁気検出素子22の構造は、特許文献1には記載されていないが、図3に概要を示すように、機械的強度とフィードバックコイル23との絶縁性を確保するため、絶縁基板24と、その上に形成されたGMR素子やホール素子等の磁束検出素子25を備え、絶縁基板24はフィードバックコイル23の上に配置されると考えられる。
<Zero flux method (magnetic balance method)>
For magnetic sensors that require high accuracy, the zero flux method (magnetic balance method) has been often used for high-grade non-contact ammeters and the like. FIG. 2 shows a conventional zero-flux type magnetic sensor 20 described in Patent Document 1. The conventional zero-flux type magnetic sensor 20 includes a magnetic detection element 22 whose characteristics change due to an induced magnetic field from a current to be measured flowing through a conductor 21, and a canceler arranged near the magnetic detection element 22 to cancel out the induced magnetic field. A feedback coil (exciting element) 23 for generating a magnetic field. Although the structure of the magnetic sensing element 22 is not described in Patent Document 1, as shown in FIG. 3, in order to ensure mechanical strength and insulation between the feedback coil 23 and an insulating substrate 24, It is considered that a magnetic flux detecting element 25 such as a GMR element or a Hall element is formed thereon, and the insulating substrate 24 is disposed on the feedback coil 23.

従来のゼロフラックス型磁気センサ20は、フィードバックコイル23にキャンセル電流−Iyを流すことにより、磁束密度Bxと大きさが同じで向きが逆のキャンセル磁束−Byを作り出す。キャンセル電流−Iyは、Bxと−Byによる合計出力電圧がゼロになるように制御される。   The conventional zero-flux type magnetic sensor 20 generates a cancel magnetic flux -By having the same magnitude as the magnetic flux density Bx and having the opposite direction by flowing a cancel current -Iy through the feedback coil 23. The cancel current -Iy is controlled so that the total output voltage of Bx and -By becomes zero.

ゼロフラックス型磁気センサ20の制御方法を、図4を用いてさらに説明する。測定対象の電流Ixが作る磁束密度Bxは、B/V変換(磁気検出素子)22においてキャンセル磁束−Byと加算され、出力電圧(差電圧)Voutに変換される。出力電圧Voutはノイズ除去等の処理をされ、差動アンプ26で0Vと比較された後、増幅器27でA倍に増幅され、V/I変換28でキャンセル電流−Iyに変換される。キャンセル電流−Iyは、B/V変換(磁気検出素子)22との距離dyに設けられたフィードバックコイル(励磁素子)に負帰還される。キャンセル電流−Iyは、差動アンプ26の出力が0Vになるように制御される。したがって、Iyにdx/dyとコイルのターン数nをかけることでIxを求めることができる。また、制御中はキャンセル電流−Iyの向きにより、被測定磁束の向きを判別することができる。この関係を(式6)〜(式9)に示す。
−Hy=−Iy/dy+c1’ (式6)
−By=−μ・Hy+c2’ (式7)
−Vy=−a・By+c3’ (式8)
Vx−Vy=a(Bx−By)+c3+c3’ (式9)
The control method of the zero flux type magnetic sensor 20 will be further described with reference to FIG. The magnetic flux density Bx generated by the current Ix to be measured is added to the canceling magnetic flux -By in the B / V conversion (magnetic detection element) 22, and converted into an output voltage (difference voltage) Vout. The output voltage Vout is subjected to processing such as noise removal and the like, and is compared with 0 V by the differential amplifier 26, amplified by A times by the amplifier 27, and converted into the cancel current −Iy by the V / I converter 28. The cancel current -Iy is negatively fed back to a feedback coil (excitation element) provided at a distance dy from the B / V conversion (magnetic detection element) 22. The cancel current -Iy is controlled so that the output of the differential amplifier 26 becomes 0V. Therefore, Ix can be obtained by multiplying Iy by dx / dy and the number of turns n of the coil. During the control, the direction of the magnetic flux to be measured can be determined from the direction of the cancel current -Iy. This relationship is shown in (Equation 6) to (Equation 9).
-Hy = -Iy / dy + c1 '(Equation 6)
−By = −μ · Hy + c2 ′ (Equation 7)
−Vy = −a · By + c3 ′ (Equation 8)
Vx−Vy = a (Bx−By) + c3 + c3 ′ (Equation 9)

各変換時にそれぞれc1’〜c3’の誤差が生じる。一般的にはc1≒c1’、c2≒c2’、c3≒c3’が成り立つ。   At the time of each conversion, an error of c1 'to c3' occurs. Generally, c1 ≒ c1 ', c2 ≒ c2', and c3 ≒ c3 'hold.

ゼロフラックス法のデメリットは、(式9)のVx−Vyがゼロになるように制御するため、制御回路が複雑になることと、磁気検出素子と電流Iyの位置精度が高い必要があることである。一方、誤差成分(c1〜c3、c1’〜c3’)を無視できる場合、Bx−By=0であるから、出力電圧Vx−Vyは感度aのずれや非直線性に左右されない。つまり、ゼロフラックス法のメリットは、感度aの誤差に伴うゲイン誤差がゼロになるため、測定の精度を非常に高くできることである。さらに、ゼロフラックス法はBx−By=0であるため、磁気飽和の問題が生じず、ダイナミックレンジを広くすることができる。   The disadvantages of the zero flux method are that the control circuit is complicated because Vx-Vy in (Equation 9) is controlled to be zero, and that the positional accuracy between the magnetic sensing element and the current Iy needs to be high. is there. On the other hand, when the error components (c1 to c3, c1 'to c3') can be neglected, Bx-By = 0, so that the output voltage Vx-Vy is not affected by the deviation of the sensitivity a or the nonlinearity. In other words, the merit of the zero flux method is that the gain error accompanying the error of the sensitivity a becomes zero, so that the measurement accuracy can be extremely increased. Furthermore, in the zero flux method, since Bx-By = 0, there is no problem of magnetic saturation, and the dynamic range can be widened.

特開2012−21787号公報JP 2012-21787 A

従来のゼロフラックス型磁気センサはフィードバックコイルを備えるため、回路が複雑になるだけでなく、小型化が難しい。また、キャンセル磁界を発生するフィードバックコイルは基板の下に配置されるため、距離dx、dyが長くなり、誤差を含みやすい。さらに、距離dx、dyが長くなるため、透磁率μの誤差も含みやすい。これらの誤差を含まないようにするには、特性のよい材料や高い精度での製造が求められ、製造コストが増大しやすい。   The conventional zero-flux type magnetic sensor has a feedback coil, so that not only the circuit becomes complicated, but also miniaturization is difficult. In addition, since the feedback coil that generates the cancel magnetic field is disposed below the substrate, the distances dx and dy are long, and errors are likely to be included. Further, since the distances dx and dy are long, errors in the magnetic permeability μ are likely to be included. In order to eliminate these errors, a material with good characteristics and high-precision manufacturing are required, and the manufacturing cost tends to increase.

本発明の態様は、回路が簡素になり、小型化が容易であり、距離dx、dy、透磁率μの誤差を含みにくく、製造コストを低減しやすいゼロフラックス型磁気センサを提供することを目的とする。   An aspect of the present invention is to provide a zero-flux type magnetic sensor that has a simple circuit, can be easily miniaturized, does not include errors in distances dx, dy, and magnetic permeability μ, and can easily reduce manufacturing costs. And

(1)本発明の態様は、絶縁基板と、磁気検出素子と、励磁素子とを備え、磁気検出素子は絶縁基板上に形成され、被測定磁束に応じて特性が変化し、励磁素子は磁気検出素子の近傍に配置され、巻回されない単線配線であり、被測定磁束の一部又は全部を相殺するキャンセル磁束を発生することを特徴とするゼロフラックス型磁気センサに関する。このゼロフラックス型磁気センサを用いると、励磁素子は巻回されない単線配線であり、回路を簡素にすることができる。したがって、製造コストを低減しやすい。 (1) An aspect of the present invention includes an insulating substrate, a magnetic detecting element, and an exciting element. The magnetic detecting element is formed on the insulating substrate, and changes in characteristics according to a measured magnetic flux. The present invention relates to a zero-flux type magnetic sensor which is arranged near a detection element, is a single wire that is not wound, and generates a cancel magnetic flux that cancels a part or all of a measured magnetic flux. When this zero-flux type magnetic sensor is used, the exciting element is a single-wire wiring that is not wound, and the circuit can be simplified. Therefore, the manufacturing cost is easily reduced.

(2)本発明の態様では、励磁素子は絶縁基板の下面よりも磁気検出素子の側に配置されていることが好ましい。励磁素子は磁気検出素子の近傍、かつ、絶縁基板の下面よりも磁気検出素子の側に配置されており、磁気検出素子との距離dyを小さくすることができる。また、測定対象を絶縁基板の下面に接することができるため、磁気検出素子との距離dxを小さくすることができる。したがって、ゼロフラックス型磁気センサの小型化が容易である。また、距離dx、dy及び透磁率μの誤差を含みにくい。さらに、(式1)より、より小さなIxを検出することができる。 (2) In the aspect of the present invention, it is preferable that the exciting element is disposed closer to the magnetic detecting element than the lower surface of the insulating substrate. The excitation element is arranged near the magnetic detection element and closer to the magnetic detection element than the lower surface of the insulating substrate, so that the distance dy from the magnetic detection element can be reduced. Further, since the measurement target can be in contact with the lower surface of the insulating substrate, the distance dx from the magnetic detection element can be reduced. Therefore, it is easy to reduce the size of the zero flux type magnetic sensor. Further, it is difficult to include errors in the distances dx and dy and the magnetic permeability μ. Further, a smaller Ix can be detected from (Equation 1).

(3)本発明の態様では、励磁素子は両端に外部端子を備えることが好ましい。励磁素子は両端に外部端子を備えることにより、励磁素子に発生させる被測定磁束のキャンセル磁束の大きさと向きを容易に制御することができる。 (3) In the aspect of the present invention, it is preferable that the exciting element has external terminals at both ends. By providing external terminals at both ends of the exciting element, the magnitude and direction of the canceling magnetic flux of the measured magnetic flux generated in the exciting element can be easily controlled.

(4)本発明の態様では、励磁素子は絶縁基板の内部に配置されていることが好ましい。励磁素子は絶縁基板の内部に配置され、励磁素子と磁気検出素子との距離dyを小さくすることができるとともに、励磁素子の位置精度を高くすることができる。したがって、ゼロフラックス型磁気センサの小型化が容易である。さらに、dy及び透磁率μの誤差を含みにくく、製造コストを低減しやすい。 (4) In the aspect of the present invention, it is preferable that the excitation element is disposed inside the insulating substrate. The exciting element is disposed inside the insulating substrate, so that the distance dy between the exciting element and the magnetic detecting element can be reduced, and the positional accuracy of the exciting element can be increased. Therefore, it is easy to reduce the size of the zero flux type magnetic sensor. Further, errors in dy and the magnetic permeability μ are not easily included, and the manufacturing cost is easily reduced.

(5)本発明の態様では、磁気検出素子は4つの水平磁束検出素子を備え、4つの水平磁束検出素子はブリッジ構成を形成し、励磁素子は1本の直線であり、4つの水平磁束検出素子のうちの向かい合う1対の水平磁束検出素子の間において、他の向かい合う1対の水平磁束検出素子を結ぶ直線に対して平行に配置され、そして、他の向かい合う1対の水平磁束検出素子における被測定磁束の一部又は全部を相殺するキャンセル磁束を発生することが好ましい。GMR素子、AMR素子、TMR素子といった水平磁束検出素子を用いてゼロフラックス型磁気センサを製造することにより、小型化が容易で、誤差を含みにくく、製造コストを低減しやすい。 (5) According to the aspect of the present invention, the magnetic detecting element includes four horizontal magnetic flux detecting elements, the four horizontal magnetic flux detecting elements form a bridge configuration, the exciting element is a single straight line, and the four horizontal magnetic flux detecting elements. A pair of horizontal magnetic flux detecting elements facing each other is disposed in parallel with a straight line connecting the pair of horizontal magnetic flux detecting elements facing each other, and a pair of horizontal magnetic flux detecting elements opposite to each other. It is preferable to generate a cancel magnetic flux that cancels a part or all of the measured magnetic flux. By manufacturing a zero-flux type magnetic sensor using a horizontal magnetic flux detecting element such as a GMR element, an AMR element, or a TMR element, miniaturization is easy, error is not easily included, and manufacturing cost is easily reduced.

(6)本発明の態様では、他の向かい合う1対の水平磁束検出素子の間において、励磁素子に中間端子が設けられていることが好ましい。他の向かい合う1対の水平磁束検出素子の間に設けられている中間端子により、他の向かい合う1対の水平磁束検出素子に異なるキャンセル磁束を発生することができる。被測定磁束の向きによって他の向かい合う1対の水平磁束検出素子の応答が異なることから、被測定磁束の向きを判別することができる。 (6) In the aspect of the present invention, it is preferable that an intermediate terminal is provided on the exciting element between the other pair of horizontal magnetic flux detecting elements facing each other. An intermediate terminal provided between the other pair of horizontal magnetic flux detecting elements can generate different canceling magnetic fluxes in the other pair of horizontal magnetic flux detecting elements. Since the response of the other pair of horizontal magnetic flux detecting elements facing each other differs depending on the direction of the magnetic flux to be measured, the direction of the magnetic flux to be measured can be determined.

(7)本発明の態様では、磁気検出素子は4つの水平磁束検出素子を備え、4つの水平磁束検出素子はブリッジ構成を形成し、4つの水平磁束検出素子のうちの隣り合う2対の水平磁束検出素子はそれぞれ電源電圧VccとGNDの間を直列接続され、励磁素子は2本のL字形であり、L字形の励磁素子を構成する2本の直線部は、隣り合う1対の水平磁束検出素子に対してそれぞれ直角に配置され、励磁素子は4つの水平磁束検出素子のうちの向かい合う1対の水平磁束検出素子における被測定磁束の一部又は全部を相殺するキャンセル磁束を発生することが好ましい。励磁素子がL字形であり、隣り合う1対の水平磁束検出素子に対してそれぞれ直角に配置されているため、被測定磁束の方向が4つの水平磁束検出素子のうちの、いずれの向かい合う1対の水平磁束検出素子に平行であっても、被測定磁束の一部又は全部を相殺するキャンセル磁束を発生することができる。また、2本の励磁素子は、別々に制御することにより、直列接続される隣り合う2対の水平磁束検出素子において異なるキャンセル磁束を発生することができる。 (7) In the aspect of the present invention, the magnetic detecting element includes four horizontal magnetic flux detecting elements, the four horizontal magnetic flux detecting elements form a bridge configuration, and two pairs of adjacent horizontal magnetic flux detecting elements among the four horizontal magnetic flux detecting elements. The magnetic flux detecting elements are connected in series between the power supply voltage Vcc and GND, respectively, and the exciting elements are two L-shaped, and two linear portions constituting the L-shaped exciting element are formed by a pair of adjacent horizontal magnetic fluxes. Each of the exciting elements is arranged at a right angle to the detecting element, and the exciting element generates a canceling magnetic flux that cancels a part or all of a measured magnetic flux in a pair of horizontal magnetic flux detecting elements facing each other among the four horizontal magnetic flux detecting elements. preferable. Since the exciting element is L-shaped and arranged at right angles to a pair of adjacent horizontal magnetic flux detecting elements, the direction of the measured magnetic flux is any one of the four horizontal magnetic flux detecting elements. Even if the magnetic flux is parallel to the horizontal magnetic flux detecting element, a cancel magnetic flux that cancels a part or all of the measured magnetic flux can be generated. By controlling the two excitation elements separately, different cancellation magnetic fluxes can be generated in two pairs of adjacent horizontal magnetic flux detection elements connected in series.

(8)本発明の態様では、磁気検出素子は2つの水平磁束検出素子を備え、2つの水平磁束検出素子は電源電圧VccとGNDの間を直列接続され、励磁素子は1本の直線であり、2つの水平磁束検出素子を結ぶ直線に対して平行に配置され、2つの水平磁束検出素子の間において、励磁素子に中間端子が設けられ、そして、2つの水平磁束検出素子における被測定磁束の一部又は全部を相殺するキャンセル磁束を発生することが好ましい。2つの水平磁束検出素子を備える、いわゆるハーブブリッジ構成を形成する水平磁束検出素子を備えるゼロフラックス型磁気センサを製造することにより、小型化が容易で、誤差を含みにくく、製造コストを低減しやすい。 (8) According to the aspect of the present invention, the magnetic detecting element includes two horizontal magnetic flux detecting elements, the two horizontal magnetic flux detecting elements are connected in series between the power supply voltage Vcc and GND, and the exciting element is a single straight line. An intermediate terminal is provided in the exciting element between the two horizontal magnetic flux detecting elements, and an intermediate terminal is provided between the two horizontal magnetic flux detecting elements. It is preferable to generate a cancel magnetic flux that cancels out part or all. By manufacturing a zero-flux type magnetic sensor having two horizontal magnetic flux detecting elements and a horizontal magnetic flux detecting element forming a so-called herb bridge configuration, it is easy to reduce the size, to include no error, and to reduce the manufacturing cost. .

(9)本発明の態様では、磁気検出素子は4つの垂直磁束検出素子を備え、4つの垂直磁束検出素子はブリッジ構成を形成し、励磁素子は2本の直線であり、励磁素子は、4つの垂直磁束検出素子のうちの向かい合う1対の垂直磁束検出素子にそれぞれ隣接し、向かい合う1対の垂直磁束検出素子を結ぶ直線に直角方向、かつ、絶縁基板上に配置され、そして、それぞれに隣接する垂直磁束検出素子における被測定磁束の一部又は全部を相殺するキャンセル磁束を発生することが好ましい。ホール素子といった垂直磁束検出素子を備えるゼロフラックス型磁気センサを製造することにより、小型化が容易で、誤差を含みにくく、製造コストを低減しやすい。 (9) In the aspect of the present invention, the magnetic detection element includes four vertical magnetic flux detection elements, the four vertical magnetic flux detection elements form a bridge configuration, the excitation element is two straight lines, and the excitation element is 4 Adjacent to a pair of opposing vertical magnetic flux detecting elements of the two vertical magnetic flux detecting elements, are arranged in a direction perpendicular to a straight line connecting the pair of opposing vertical magnetic flux detecting elements, and on an insulating substrate, and are adjacent to each other. It is preferable to generate a cancel magnetic flux that cancels a part or all of the measured magnetic flux in the vertical magnetic flux detecting element. By manufacturing a zero-flux type magnetic sensor including a vertical magnetic flux detecting element such as a Hall element, miniaturization is easy, error is not easily included, and manufacturing cost is easily reduced.

(10)本発明の態様では、磁気検出素子は4つの垂直磁束検出素子を備え、4つの垂直磁束検出素子はブリッジ構成を形成し、4つの垂直磁束検出素子のうちの隣り合う2対の垂直磁束検出素子はそれぞれ電源電圧VccとGNDの間を直列接続され、励磁素子は2本のL字形であり、L字形の励磁素子を構成する2本の直線部は、隣り合う1対の垂直磁束検出素子に対してそれぞれ隣接して平行に、かつ、絶縁基板上に配置され、そして、それぞれに隣接する垂直磁束検出素子における被測定磁束の一部又は全部を相殺するキャンセル磁束を発生することが好ましい。励磁素子がL字形であるため、被測定磁束の方向が4つの水平磁束検出素子のうちの、いずれの向かい合う1対の水平磁束検出素子に平行であっても、被測定磁束の一部又は全部を相殺するキャンセル磁束を発生することができる。また、2本の励磁素子を別々に制御することにより、異なるキャンセル磁束を発生することができる。   (10) In the aspect of the present invention, the magnetic sensing element includes four vertical magnetic flux detecting elements, the four vertical magnetic flux detecting elements form a bridge configuration, and two pairs of adjacent vertical magnetic flux detecting elements among the four vertical magnetic flux detecting elements. The magnetic flux detecting elements are connected in series between the power supply voltage Vcc and GND, respectively, and the exciting elements are two L-shaped, and two linear portions constituting the L-shaped exciting element are formed by a pair of adjacent perpendicular magnetic fluxes. It is arranged adjacent to and parallel to the detecting element and on the insulating substrate, and generates a cancel magnetic flux that cancels a part or all of the measured magnetic flux in the adjacent vertical magnetic flux detecting element. preferable. Since the excitation element is L-shaped, even if the direction of the measured magnetic flux is parallel to any of the pair of opposed horizontal magnetic flux detecting elements of the four horizontal magnetic flux detecting elements, a part or all of the measured magnetic flux is Canceling magnetic flux can be generated. In addition, different cancellation magnetic fluxes can be generated by separately controlling the two exciting elements.

磁気検出素子の代表的な例を示す。A representative example of a magnetic detection element is shown. 従来のゼロフラックス型磁気センサを示す。1 shows a conventional zero flux type magnetic sensor. 磁気検出素子の構造の概要を示す。The outline of the structure of the magnetic sensing element is shown. ゼロフラックス型磁気センサの制御方法を示す。The control method of the zero flux type magnetic sensor will be described. 本実施形態の、水平磁束検出素子を備えるゼロフラックス型磁気センサを示す。1 shows a zero-flux type magnetic sensor including a horizontal magnetic flux detecting element according to the present embodiment. 本実施形態の、水平磁束検出素子を備えるゼロフラックス型磁気センサの変形例を示す。7 shows a modification of the zero-flux type magnetic sensor including the horizontal magnetic flux detecting element of the present embodiment. 本実施形態の、水平磁束検出素子を備えるゼロフラックス型磁気センサの変形例を示す。7 shows a modification of the zero-flux type magnetic sensor including the horizontal magnetic flux detecting element of the present embodiment. 励磁素子に逆向きのキャンセル磁束を発生させたときの、X軸方向の被測定磁束に対する水平磁束検出素子の相対抵抗値を示す。7 shows a relative resistance value of a horizontal magnetic flux detecting element with respect to a measured magnetic flux in the X-axis direction when a reverse direction canceling magnetic flux is generated in an exciting element. 本実施形態のゼロフラックス型磁気センサの出力電圧Voutを示す。4 shows an output voltage Vout of the zero flux type magnetic sensor of the embodiment. 本実施形態の、垂直磁束検出素子を備えるゼロフラックス型磁気センサを示す。1 shows a zero-flux type magnetic sensor including a vertical magnetic flux detecting element according to the present embodiment. 本実施形態の、垂直磁束検出素子を備えるゼロフラックス型磁気センサの変形例を示す。7 shows a modification of the zero-flux type magnetic sensor including the vertical magnetic flux detecting element of the present embodiment.

以下、本発明の好適な実施形態について詳細に説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成のすべてが本発明の解決手段として必須であるとは限らない。   Hereinafter, preferred embodiments of the present invention will be described in detail. The present embodiment described below does not unduly limit the content of the present invention described in the claims, and all the configurations described in the present embodiment are indispensable as means for solving the present invention. Is not always the case.

<ゼロフラックス型磁気センサ全般>
本実施形態のゼロフラックス型磁気センサ30を図5に示す。本実施形態のゼロフラックス型磁気センサ30は、絶縁基板24と、磁気検出素子22と、励磁素子33とを備え、磁気検出素子22は絶縁基板24上に形成され、被測定磁束に応じて特性が変化し、励磁素子33は磁気検出素子22の近傍に配置され、巻回されない単線配線であり、被測定磁束の一部又は全部を相殺するキャンセル磁束を発生する。このゼロフラックス型磁気センサ30を用いると、励磁素子33は巻回されない単線配線であり、回路を簡素にすることができる。したがって、製造コストを低減しやすい。
<General zero flux type magnetic sensors>
FIG. 5 shows the zero flux type magnetic sensor 30 of the present embodiment. The zero-flux type magnetic sensor 30 of the present embodiment includes an insulating substrate 24, a magnetic detecting element 22, and an exciting element 33. The magnetic detecting element 22 is formed on the insulating substrate 24, and has a characteristic according to a measured magnetic flux. The excitation element 33 is arranged near the magnetic detection element 22 and is a single wire that is not wound, and generates a cancel magnetic flux that cancels a part or all of the measured magnetic flux. When the zero-flux type magnetic sensor 30 is used, the exciting element 33 is a single wire that is not wound, and the circuit can be simplified. Therefore, the manufacturing cost is easily reduced.

本実施形態のゼロフラックス型磁気センサ30では、さらに、励磁素子33は絶縁基板24の下面よりも磁気検出素子22の側に配置されている。励磁素子33は磁気検出素子22の近傍、かつ、絶縁基板24の下面よりも磁気検出素子22の側に配置されており、磁気検出素子22との距離dyを小さくすることができる。また、測定対象を絶縁基板24の下面に接することができるため、磁気検出素子22との距離dxを小さくすることができる。したがって、ゼロフラックス型磁気センサ30の小型化が容易である。また、距離dx、dy及び透磁率μの誤差を含みにくい。さらに、(式1)より、より小さなIxを検出することができる。   In the zero-flux type magnetic sensor 30 of the present embodiment, the excitation element 33 is further disposed on the side of the magnetic detection element 22 than the lower surface of the insulating substrate 24. The excitation element 33 is arranged near the magnetic detection element 22 and closer to the magnetic detection element 22 than the lower surface of the insulating substrate 24, so that the distance dy from the magnetic detection element 22 can be reduced. Further, since the measurement target can be in contact with the lower surface of the insulating substrate 24, the distance dx from the magnetic detection element 22 can be reduced. Therefore, size reduction of the zero flux type magnetic sensor 30 is easy. Further, it is difficult to include errors in the distances dx and dy and the magnetic permeability μ. Further, a smaller Ix can be detected from (Equation 1).

本実施形態のゼロフラックス型磁気センサ30では、さらに、励磁素子33は両端に外部端子34を備える。励磁素子33は両端に外部端子34を備えることにより、励磁素子33に発生させる被測定磁束のキャンセル磁束の大きさと向きを容易に制御することができる。   In the zero-flux type magnetic sensor 30 of the present embodiment, the excitation element 33 further includes external terminals 34 at both ends. Since the exciting element 33 has the external terminals 34 at both ends, the magnitude and direction of the canceling magnetic flux of the measured magnetic flux generated in the exciting element 33 can be easily controlled.

本実施形態のゼロフラックス型磁気センサ30では、さらに、励磁素子33は絶縁基板24の内部に配置されている。励磁素子33は絶縁基板24の内部に配置され、励磁素子33と磁気検出素子22との距離dyを小さくすることができるとともに、励磁素子33の位置精度を高くすることができる。したがって、ゼロフラックス型磁気センサ30の小型化が容易である。さらに、dy及び透磁率μの誤差を含みにくく、製造コストを低減しやすい。   In the zero-flux type magnetic sensor 30 of the present embodiment, the exciting element 33 is further disposed inside the insulating substrate 24. The exciting element 33 is disposed inside the insulating substrate 24, so that the distance dy between the exciting element 33 and the magnetic detection element 22 can be reduced, and the positional accuracy of the exciting element 33 can be increased. Therefore, size reduction of the zero flux type magnetic sensor 30 is easy. Further, errors in dy and the magnetic permeability μ are not easily included, and the manufacturing cost is easily reduced.

<水平磁束検出素子を備えるゼロフラックス型磁気センサ>
本実施形態のゼロフラックス型磁気センサ30では、さらに、磁気検出素子22は4つの水平磁束検出素子(第1の水平磁束検出素子35〜第4の水平磁束検出素子38)を備え、4つの水平磁束検出素子はブリッジ構成を形成し、励磁素子33は1本の直線であり、4つの水平磁束検出素子のうちの向かい合う1対の水平磁束検出素子(第1の水平磁束検出素子35と第4の水平磁束検出素子38)の間において、他の向かい合う1対の水平磁束検出素子(第2の水平磁束検出素子36と第3の水平磁束検出素子37)を結ぶ直線に対して平行に配置され、そして、他の向かい合う1対の水平磁束検出素子(第2の水平磁束検出素子36と第3の水平磁束検出素子37)における被測定磁束の一部又は全部を相殺するキャンセル磁束を発生する。GMR素子、AMR素子、TMR素子といった水平磁束検出素子を用いてゼロフラックス型磁気センサを製造することにより、小型化が容易で、誤差を含みにくく、製造コストを低減しやすい。
<Zero flux type magnetic sensor with horizontal magnetic flux detection element>
In the zero-flux type magnetic sensor 30 of the present embodiment, the magnetic detection element 22 further includes four horizontal magnetic flux detection elements (first horizontal magnetic flux detection element 35 to fourth horizontal magnetic flux detection element 38) and four horizontal magnetic flux detection elements. The magnetic flux detecting elements form a bridge configuration, the exciting element 33 is a single straight line, and a pair of horizontal magnetic flux detecting elements (a first horizontal magnetic flux detecting element 35 and a fourth Between the two horizontal magnetic flux detecting elements 38) and the other pair of horizontal magnetic flux detecting elements (the second horizontal magnetic flux detecting element 36 and the third horizontal magnetic flux detecting element 37). And a canceling magnetic flux for canceling a part or all of the measured magnetic flux in another pair of horizontal magnetic flux detecting elements (the second horizontal magnetic flux detecting element 36 and the third horizontal magnetic flux detecting element 37) facing each other. That. By manufacturing a zero-flux type magnetic sensor using a horizontal magnetic flux detecting element such as a GMR element, an AMR element, or a TMR element, miniaturization is easy, error is not easily included, and manufacturing cost is easily reduced.

本実施形態のゼロフラックス型磁気センサ30では、さらに、他の向かい合う1対の水平磁束検出素子(第2の水平磁束検出素子36と第3の水平磁束検出素子37)の間において、励磁素子33に中間端子39が設けられている。他の向かい合う1対の水平磁束検出素子の間に設けられている中間端子39により、他の向かい合う1対の水平磁束検出素子(第2の水平磁束検出素子36と第3の水平磁束検出素子37)に異なるキャンセル磁束を発生させることができる。被測定磁束の向きによって第2の水平磁束検出素子36と第3の水平磁束検出素子37の応答が異なることから、被測定磁束の向きを判別することができる。   In the zero-flux type magnetic sensor 30 according to the present embodiment, the exciting element 33 is further provided between another pair of horizontal magnetic flux detecting elements (the second horizontal magnetic flux detecting element 36 and the third horizontal magnetic flux detecting element 37) facing each other. Is provided with an intermediate terminal 39. An intermediate terminal 39 provided between another pair of the horizontal magnetic flux detecting elements facing each other causes the other pair of the horizontal magnetic flux detecting elements (the second horizontal magnetic flux detecting element 36 and the third horizontal magnetic flux detecting element 37) to face each other. ) Can generate different cancellation magnetic fluxes. Since the response of the second horizontal magnetic flux detecting element 36 and the response of the third horizontal magnetic flux detecting element 37 differ depending on the direction of the magnetic flux to be measured, the direction of the magnetic flux to be measured can be determined.

本実施形態の、水平磁束検出素子を備えるゼロフラックス型磁気センサの変形例を図6に示す。本実施形態のゼロフラックス型磁気センサ40では、磁気検出素子22は4つの水平磁束検出素子(第1の水平磁束検出素子35〜第4の水平磁束検出素子38)を備え、4つの水平磁束検出素子はブリッジ構成を形成し、4つの水平磁束検出素子のうちの隣り合う2対の水平磁束検出素子(第1の水平磁束検出素子35と第3の水平磁束検出素子37、第2の水平磁束検出素子36と第4の水平磁束検出素子38)はそれぞれ電源電圧Vcc15とGND16の間を直列接続され、励磁素子は2本のL字形(第1の励磁素子41と第2の励磁素子42)であり、L字形の励磁素子を構成する2本の直線部は、隣り合う1対の水平磁束検出素子(第1の水平磁束検出素子35と第3の水平磁束検出素子37、第2の水平磁束検出素子36と第4の水平磁束検出素子38)に対してそれぞれ直角に配置され、励磁素子は4つの水平磁束検出素子のうちの向かい合う1対の水平磁束検出素子(第1の水平磁束検出素子35と第4の水平磁束検出素子38、第2の水平磁束検出素子36と第3の水平磁束検出素子37のいずれか一方)における被測定磁束の一部又は全部を相殺するキャンセル磁束を発生する。励磁素子はL字形(第1の励磁素子41と第2の励磁素子42)であり、隣り合う1対の水平磁束検出素子(第1の水平磁束検出素子35と第3の水平磁束検出素子37、第2の水平磁束検出素子36と第4の水平磁束検出素子38)に対してそれぞれ直角に配置されているため、被測定磁束の方向が4つの水平磁束検出素子のうちの、いずれの向かい合う1対の水平磁束検出素子に平行であっても、被測定磁束の一部又は全部を相殺するキャンセル磁束を発生することができる。また、2本の励磁素子を別々に制御することにより、2本の励磁素子は、直列接続される隣り合う2対の水平磁束検出素子(第1の水平磁束検出素子35と第3の水平磁束検出素子37、第2の水平磁束検出素子36と第4の水平磁束検出素子38)において異なるキャンセル磁束を発生することができる。   FIG. 6 shows a modification of the zero-flux type magnetic sensor including the horizontal magnetic flux detecting element according to the present embodiment. In the zero-flux type magnetic sensor 40 of the present embodiment, the magnetic detection element 22 includes four horizontal magnetic flux detection elements (first horizontal magnetic flux detection element 35 to fourth horizontal magnetic flux detection element 38) and four horizontal magnetic flux detections. The elements form a bridge configuration, and two pairs of adjacent horizontal magnetic flux detecting elements (a first horizontal magnetic flux detecting element 35 and a third horizontal magnetic flux detecting element 37, a second horizontal magnetic flux detecting element) among the four horizontal magnetic flux detecting elements. The detection element 36 and the fourth horizontal magnetic flux detection element 38) are connected in series between the power supply voltage Vcc15 and the GND 16, respectively, and the excitation elements are two L-shaped (the first excitation element 41 and the second excitation element 42). The two linear portions constituting the L-shaped exciting element are formed by a pair of adjacent horizontal magnetic flux detecting elements (a first horizontal magnetic flux detecting element 35 and a third horizontal magnetic flux detecting element 37, and a second horizontal magnetic flux detecting element 37). The magnetic flux detecting element 36 and the Are arranged at right angles to the horizontal magnetic flux detecting element 38), and the exciting element is a pair of horizontal magnetic flux detecting elements (first horizontal magnetic flux detecting element 35 and fourth horizontal magnetic flux detecting element 35) facing each other among the four horizontal magnetic flux detecting elements. A canceling magnetic flux for canceling a part or all of the measured magnetic flux in the magnetic flux detecting element 38, any one of the second horizontal magnetic flux detecting element 36 and the third horizontal magnetic flux detecting element 37) is generated. The exciting elements are L-shaped (first exciting element 41 and second exciting element 42), and a pair of adjacent horizontal magnetic flux detecting elements (first horizontal magnetic flux detecting element 35 and third horizontal magnetic flux detecting element 37) are used. , The second horizontal magnetic flux detecting element 36 and the fourth horizontal magnetic flux detecting element 38) are arranged at right angles to each other, so that the direction of the magnetic flux to be measured is any one of the four horizontal magnetic flux detecting elements. Even if the magnetic flux is parallel to the pair of horizontal magnetic flux detecting elements, it is possible to generate a cancel magnetic flux that cancels a part or all of the measured magnetic flux. In addition, by separately controlling the two exciting elements, the two exciting elements can be connected to two pairs of adjacent horizontal magnetic flux detecting elements (the first horizontal magnetic flux detecting element 35 and the third horizontal magnetic flux detecting element) connected in series. The detection element 37, the second horizontal magnetic flux detection element 36, and the fourth horizontal magnetic flux detection element 38) can generate different cancellation magnetic fluxes.

本実施形態の、水平磁束検出素子を備えるゼロフラックス型磁気センサの変形例を図7に示す。本実施形態のゼロフラックス型磁気センサ43では、磁気検出素子22は2つの水平磁束検出素子(第2の水平磁束検出素子36と第3の水平磁束検出素子37)を備え、2つの水平磁束検出素子は電源電圧Vcc15とGND16の間を直列接続され、励磁素子33は1本の直線であり、2つの水平磁束検出素子を結ぶ直線に対して平行に配置され、2つの水平磁束検出素子の間において、励磁素子33に中間端子39が設けられ、そして、2つの水平磁束検出素子における被測定磁束の一部又は全部を相殺するキャンセル磁束を発生する。2つの水平磁束検出素子を備える、いわゆるハーブブリッジ構成を形成する水平磁束検出素子を備えるゼロフラックス型磁気センサを製造することにより、小型化が容易で、誤差を含みにくく、製造コストを低減しやすい。また、中間端子39により、励磁素子33は第2の水平磁束検出素子36と第3の水平磁束検出素子37に逆向きのキャンセル磁束を発生することができる。なお、本実施形態のゼロフラックス型磁気センサ43の出力は、2つの水平磁束検出素子の間の出力電圧Vout44である。   FIG. 7 shows a modification of the zero-flux type magnetic sensor including the horizontal magnetic flux detecting element according to the present embodiment. In the zero-flux type magnetic sensor 43 of the present embodiment, the magnetic detection element 22 includes two horizontal magnetic flux detection elements (a second horizontal magnetic flux detection element 36 and a third horizontal magnetic flux detection element 37) and two horizontal magnetic flux detection elements. The elements are connected in series between the power supply voltage Vcc15 and GND16, and the exciting element 33 is a single straight line, which is arranged parallel to a straight line connecting the two horizontal magnetic flux detecting elements, and is connected between the two horizontal magnetic flux detecting elements. , The excitation element 33 is provided with an intermediate terminal 39, and generates a cancel magnetic flux that cancels a part or all of the measured magnetic flux in the two horizontal magnetic flux detecting elements. By manufacturing a zero-flux type magnetic sensor having two horizontal magnetic flux detecting elements and a horizontal magnetic flux detecting element forming a so-called herb bridge configuration, it is easy to reduce the size, to include no error, and to reduce the manufacturing cost. . The intermediate terminal 39 allows the exciting element 33 to generate a canceling magnetic flux in the second horizontal magnetic flux detecting element 36 and the third horizontal magnetic flux detecting element 37 in the opposite direction. The output of the zero-flux type magnetic sensor 43 of the present embodiment is an output voltage Vout44 between two horizontal magnetic flux detecting elements.

図8に、本実施形態のゼロフラックス型磁気センサ43の励磁素子33に、中間端子39により逆向きのキャンセル磁束を発生させたときの、X軸方向の被測定磁束に対する水平磁束検出素子の相対抵抗値を示す。第2の水平磁束検出素子36にプラス方向のキャンセル磁束(+バイアス)を発生させ、第3の水平磁束検出素子37にはマイナス方向のキャンセル磁束(−バイアス)を発生させる。すると、X軸方向の被測定磁束に対する水平磁束検出素子の相対抵抗値は、第2の水平磁束検出素子36はキャンセル磁束がゼロ(0バイアス)のときよりもマイナス方向にオフセットし、第3の水平磁束検出素子37はキャンセル磁束がゼロ(0バイアス)のときよりもプラス方向にオフセットする。   FIG. 8 shows the relative position of the horizontal magnetic flux detecting element with respect to the measured magnetic flux in the X-axis direction when the canceling magnetic flux in the opposite direction is generated by the intermediate terminal 39 in the exciting element 33 of the zero flux type magnetic sensor 43 of the present embodiment. Indicates the resistance value. The second horizontal magnetic flux detecting element 36 generates a canceling magnetic flux (+ bias) in the plus direction, and the third horizontal magnetic flux detecting element 37 generates a canceling magnetic flux (−bias) in the negative direction. Then, the relative resistance value of the horizontal magnetic flux detecting element with respect to the measured magnetic flux in the X-axis direction is more negatively offset by the second horizontal magnetic flux detecting element 36 than when the canceling magnetic flux is zero (0 bias). The horizontal magnetic flux detecting element 37 is more positively offset than when the cancel magnetic flux is zero (0 bias).

図9に、本実施形態のゼロフラックス型磁気センサ43の出力電圧Voutを示す。出力電圧Voutは被測定磁束ゼロを中心に負の傾きを有する奇関数特性を有し、オフセット量と一致する被測定磁束が加わると出力電圧Voutはピークを示し、いわゆるS字カーブの特性を示す。出力電圧Voutが単調減少の領域を磁気センサとして用いることができ、キャンセル磁束の大きさ(バイアスの大きさ)でその範囲を調整することができる。   FIG. 9 shows an output voltage Vout of the zero flux type magnetic sensor 43 of the present embodiment. The output voltage Vout has an odd function characteristic having a negative slope around zero of the measured magnetic flux, and when a measured magnetic flux coincident with the offset amount is applied, the output voltage Vout shows a peak and shows a so-called S-shaped curve characteristic. . A region where the output voltage Vout monotonously decreases can be used as a magnetic sensor, and the range can be adjusted by the magnitude of the cancel magnetic flux (magnitude of the bias).

<垂直磁束検出素子を備えるゼロフラックス型磁気センサ>
本実施形態の、垂直磁束検出素子を備えるゼロフラックス型磁気センサ50を図10に示す。本実施形態のゼロフラックス型磁気センサ50は4つの垂直磁束検出素子(第1の垂直磁束検出素子51〜第4の垂直磁束検出素子54)を備え、4つの垂直磁束検出素子はブリッジ構成を形成し、励磁素子は2本の直線(第1の励磁素子41、第2の励磁素子42)であり、励磁素子は、4つの垂直磁束検出素子のうちの向かい合う1対の垂直磁束検出素子(第1の垂直磁束検出素子51と第4の垂直磁束検出素子54)にそれぞれ隣接し、向かい合う1対の垂直磁束検出素子を結ぶ直線に直角方向、かつ、絶縁基板24上に配置され、そして、それぞれに隣接する垂直磁束検出素子における被測定磁束の一部又は全部を相殺するキャンセル磁束を発生する。ホール素子といった垂直磁束検出素子を備えるゼロフラックス型磁気センサを製造することにより、小型化が容易で、誤差を含みにくく、製造コストを低減しやすい。また、2本の励磁素子を別々に制御することにより、2本の励磁素子は、隣接し、かつ、向かい合う1対の垂直磁束検出素子(第1の垂直磁束検出素子51と第4の垂直磁束検出素子54)において異なるキャンセル磁束を発生することができる。
<Zero flux type magnetic sensor with vertical magnetic flux detection element>
FIG. 10 shows a zero-flux type magnetic sensor 50 including a vertical magnetic flux detecting element according to the present embodiment. The zero flux type magnetic sensor 50 of the present embodiment includes four vertical magnetic flux detecting elements (first vertical magnetic flux detecting element 51 to fourth vertical magnetic flux detecting element 54), and the four vertical magnetic flux detecting elements form a bridge configuration. The exciting elements are two straight lines (the first exciting element 41 and the second exciting element 42), and the exciting element is a pair of facing perpendicular magnetic flux detecting elements (the fourth The first perpendicular magnetic flux detecting element 51 and the fourth perpendicular magnetic flux detecting element 54) are respectively disposed on the insulating substrate 24 in a direction perpendicular to a straight line connecting a pair of facing perpendicular magnetic flux detecting elements and on the insulating substrate 24. A cancel magnetic flux that cancels a part or all of the magnetic flux to be measured in the vertical magnetic flux detecting element adjacent to. By manufacturing a zero flux type magnetic sensor including a vertical magnetic flux detecting element such as a Hall element, miniaturization is easy, errors are not easily included, and manufacturing costs are easily reduced. In addition, by separately controlling the two exciting elements, the two exciting elements are adjacent to and opposed to each other by a pair of vertical magnetic flux detecting elements (a first vertical magnetic flux detecting element 51 and a fourth vertical magnetic flux detecting element). Different cancellation magnetic fluxes can be generated in the detection element 54).

本実施形態の、垂直磁束検出素子を備えるゼロフラックス型磁気センサの変形例を図11に示す。本実施形態のゼロフラックス型磁気センサ60は4つの垂直磁束検出素子(第1の垂直磁束検出素子51〜第4の垂直磁束検出素子54)を備え、4つの垂直磁束検出素子はブリッジ構成を形成し、4つの垂直磁束検出素子のうちの隣り合う2対の垂直磁束検出素子(第1の垂直磁束検出素子51と第3の垂直磁束検出素子53、第2の垂直磁束検出素子52と第4の垂直磁束検出素子54)はそれぞれ電源電圧Vcc15とGND16の間を直列接続され、励磁素子は2本のL字形(第1の励磁素子41、第2の励磁素子42)であり、L字形の励磁素子を構成する2本の直線部は、隣り合う1対の垂直磁束検出素子に対してそれぞれ隣接して平行に、かつ、絶縁基板上に配置され、そして、それぞれに隣接する垂直磁束検出素子における被測定磁束の一部又は全部を相殺するキャンセル磁束を発生する。また、2本の励磁素子を別々に制御することにより、2本の励磁素子は、隣り合う1対の垂直磁束検出素子に対してそれぞれ異なるキャンセル磁束を発生することができる。   FIG. 11 shows a modification of the zero-flux type magnetic sensor including the vertical magnetic flux detecting element of the present embodiment. The zero-flux type magnetic sensor 60 of the present embodiment includes four vertical magnetic flux detecting elements (first vertical magnetic flux detecting element 51 to fourth vertical magnetic flux detecting element 54), and the four vertical magnetic flux detecting elements form a bridge configuration. And two adjacent pairs of the vertical magnetic flux detecting elements (the first vertical magnetic flux detecting element 51 and the third vertical magnetic flux detecting element 53, the second vertical magnetic flux detecting element 52 and the fourth Are connected in series between the power supply voltage Vcc15 and the GND 16, respectively, and the excitation elements are two L-shaped (the first excitation element 41 and the second excitation element 42). The two linear portions constituting the exciting element are arranged adjacent to and in parallel with a pair of adjacent vertical magnetic flux detecting elements, respectively, on the insulating substrate, and each adjacent vertical magnetic flux detecting element. In To generate a cancellation magnetic flux to offset some or all of the measured magnetic flux. Further, by separately controlling the two exciting elements, the two exciting elements can generate different canceling magnetic fluxes for a pair of adjacent vertical magnetic flux detecting elements.

なお、上記のように本実施形態について詳細に説明したが、本発明の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは当業者には容易に理解できるであろう。したがって、このような変形例はすべて本発明の範囲に含まれる。例えば、明細書において、少なくとも一度、より広義又は同義の異なる用語とともに記載された用語は、明細書のいかなる箇所においても、その異なる用語に置き換えることができる。   Although the present embodiment has been described in detail as described above, those skilled in the art can easily understand that many modifications that do not substantially depart from the novel matter and effects of the present invention are possible. Therefore, all such modified examples are included in the scope of the present invention. For example, in the description, a term described at least once with a broader or synonymous different term can be replaced with the different term in any place in the specification.

10 代表的な磁気検出素子、11 第1のGMR素子、12 第2のGMR素子、13 第3のGMR素子、14 第4のGMR素子、15 電源電圧Vcc、16 GND、17 第1の中間電位Vout、18 第2の中間電位Vout、20 従来のゼロフラックス型磁気センサ、21 導体、22 磁気検出素子(B/V変換)、23 フィードバックコイル(励磁素子)、24 絶縁基板、25 磁束検出素子、26 差動アンプ、27 増幅器、28 V/I変換、30、40、43、50、60 ゼロフラックス型磁気センサ、33 励磁素子、34 外部端子、35 第1の水平磁束検出素子、36 第2の水平磁束検出素子、37 第3の水平磁束検出素子、38 第4の水平磁束検出素子、39 中間端子、41 第1の励磁素子、42 第2の励磁素子、44 出力電圧Vout、51 第1の垂直磁束検出素子、52 第2の垂直磁束検出素子、53 第3の垂直磁束検出素子、54 第4の垂直磁束検出素子 DESCRIPTION OF SYMBOLS 10 Representative magnetic sensing element, 11 1st GMR element, 12 2nd GMR element, 13 3rd GMR element, 14 4th GMR element, 15 power supply voltage Vcc, 16 GND, 17 1st intermediate potential Vout, 18 Second intermediate potential Vout, 20 Conventional zero flux type magnetic sensor, 21 Conductor, 22 Magnetic detecting element (B / V conversion), 23 Feedback coil (Exciting element), 24 Insulating substrate, 25 Magnetic flux detecting element, 26 differential amplifier, 27 amplifier, 28 V / I conversion, 30, 40, 43, 50, 60 zero flux type magnetic sensor, 33 excitation element, 34 external terminal, 35 first horizontal magnetic flux detection element, 36 second Horizontal magnetic flux detecting element, 37 Third horizontal magnetic flux detecting element, 38 Fourth horizontal magnetic flux detecting element, 39 Intermediate terminal, 41 First exciting element, 42 Second excitation element, 44 output voltage Vout, 51 first vertical magnetic flux detection element, 52 second vertical magnetic flux detection element, 53 third vertical magnetic flux detection element, 54 fourth vertical magnetic flux detection element

Claims (10)

絶縁基板と、磁気検出素子と、励磁素子とを備え、
前記磁気検出素子は前記絶縁基板上に形成され、被測定磁束に応じて特性が変化して前記被測定磁束を検出することができ、
前記励磁素子は前記磁気検出素子の近傍に配置され、巻回されない単線配線であり、前記被測定磁束の一部又は全部を相殺するキャンセル磁束を発生し、
前記励磁素子は前記絶縁基板の内部に配置されていることを特徴とするゼロフラックス型磁気センサ。
Including an insulating substrate, a magnetic detection element, and an excitation element,
The magnetic detection element is formed on the insulating substrate, and can change the characteristic according to the measured magnetic flux to detect the measured magnetic flux,
The excitation element is arranged near the magnetic detection element, is a single wire that is not wound, and generates a cancel magnetic flux that cancels a part or all of the measured magnetic flux ,
The zero-flux type magnetic sensor, wherein the exciting element is disposed inside the insulating substrate .
絶縁基板と、磁気検出素子と、励磁素子とを備え、
前記磁気検出素子は前記絶縁基板上に形成され、被測定磁束に応じて特性が変化して前記被測定磁束を検出することができ、
前記励磁素子は前記磁気検出素子の近傍に配置され、巻回されない単線配線であり、
前記磁気検出素子は4つの水平磁束検出素子を備え、
前記4つの水平磁束検出素子はブリッジ構成を形成し、
前記励磁素子は1本の直線であり、前記4つの水平磁束検出素子のうちの向かい合う1対の水平磁束検出素子の間において、他の向かい合う1対の水平磁束検出素子を結ぶ直線に対して平行に配置され、そして、前記他の向かい合う1対の水平磁束検出素子における前記被測定磁束の一部又は全部を相殺するキャンセル磁束を発生することを特徴とするゼロフラックス型磁気センサ。
Including an insulating substrate, a magnetic detection element, and an excitation element,
The magnetic detection element is formed on the insulating substrate, and can change the characteristic according to the measured magnetic flux to detect the measured magnetic flux,
The excitation element is a single wire that is arranged near the magnetic detection element and is not wound,
The magnetic detecting element includes four horizontal magnetic flux detecting elements,
The four horizontal magnetic flux detecting elements form a bridge configuration,
The exciting element is a single straight line, and between a pair of opposed horizontal magnetic flux detecting elements of the four horizontal magnetic flux detecting elements, is parallel to a straight line connecting another opposed horizontal magnetic flux detecting element. And a cancel flux which cancels out a part or all of the measured magnetic flux in the pair of horizontal magnetic flux detecting elements facing each other .
請求項に記載のゼロフラックス型磁気センサであって、
前記他の向かい合う1対の水平磁束検出素子の間において、前記励磁素子に中間端子が設けられていることを特徴とするゼロフラックス型磁気センサ。
It is a zero flux type magnetic sensor according to claim 2 ,
A zero-flux type magnetic sensor, wherein an intermediate terminal is provided on the exciting element between the pair of other facing horizontal magnetic flux detecting elements.
絶縁基板と、磁気検出素子と、励磁素子とを備え、
前記磁気検出素子は前記絶縁基板上に形成され、被測定磁束に応じて特性が変化して前記被測定磁束を検出することができ、
前記励磁素子は前記磁気検出素子の近傍に配置され、巻回されない単線配線であり、
前記磁気検出素子は4つの水平磁束検出素子を備え、
前記4つの水平磁束検出素子はブリッジ構成を形成し、
前記4つの水平磁束検出素子のうちの隣り合う2対の水平磁束検出素子はそれぞれ電源電圧VccとGNDの間を直列接続され、
前記励磁素子は2本のL字形であり、
L字形の前記励磁素子を構成する2本の直線部は、隣り合う1対の水平磁束検出素子に対してそれぞれ直角に配置され、
前記励磁素子は前記4つの水平磁束検出素子のうちの向かい合う1対の水平磁束検出素子における前記被測定磁束の一部又は全部を相殺するキャンセル磁束を発生することを特徴とするゼロフラックス型磁気センサ。
Including an insulating substrate, a magnetic detection element, and an excitation element,
The magnetic detection element is formed on the insulating substrate, and can change the characteristic according to the measured magnetic flux to detect the measured magnetic flux,
The excitation element is a single wire that is arranged near the magnetic detection element and is not wound,
The magnetic detecting element includes four horizontal magnetic flux detecting elements,
The four horizontal magnetic flux detecting elements form a bridge configuration,
Two pairs of adjacent horizontal magnetic flux detection elements of the four horizontal magnetic flux detection elements are connected in series between a power supply voltage Vcc and GND, respectively.
The exciting element has two L shapes,
The two linear portions forming the L-shaped exciting element are arranged at right angles to a pair of adjacent horizontal magnetic flux detecting elements, respectively.
A zero-flux type magnetic sensor, wherein the exciting element generates a cancel magnetic flux that cancels a part or all of the measured magnetic flux in a pair of horizontal magnetic flux detecting elements facing each other among the four horizontal magnetic flux detecting elements. .
絶縁基板と、磁気検出素子と、励磁素子とを備え、
前記磁気検出素子は前記絶縁基板上に形成され、被測定磁束に応じて特性が変化して前記被測定磁束を検出することができ、
前記励磁素子は前記磁気検出素子の近傍に配置され、巻回されない単線配線であり、
前記磁気検出素子は2つの水平磁束検出素子を備え、
前記2つの水平磁束検出素子は電源電圧VccとGNDの間を直列接続され、
前記励磁素子は1本の直線であり、前記2つの水平磁束検出素子を結ぶ直線に対して平行に配置され、前記2つの水平磁束検出素子の間において、前記励磁素子に中間端子が設けられ、そして、前記2つの水平磁束検出素子における前記被測定磁束の一部又は全部を相殺するキャンセル磁束を発生することを特徴とするゼロフラックス型磁気センサ。
Including an insulating substrate, a magnetic detection element, and an excitation element,
The magnetic detection element is formed on the insulating substrate, and can change the characteristic according to the measured magnetic flux to detect the measured magnetic flux,
The exciting element is a single wire that is arranged near the magnetic sensing element and is not wound,
The magnetic detecting element includes two horizontal magnetic flux detecting elements,
The two horizontal magnetic flux detecting elements are connected in series between a power supply voltage Vcc and GND,
The exciting element is one straight line, is arranged in parallel to a straight line connecting the two horizontal magnetic flux detecting elements, and between the two horizontal magnetic flux detecting elements, an intermediate terminal is provided on the exciting element, And a zero flux type magnetic sensor characterized by generating a cancel magnetic flux for canceling a part or all of the measured magnetic flux in the two horizontal magnetic flux detecting elements .
請求項2乃至5のいずれか1項に記載のゼロフラックス型磁気センサであって、
前記励磁素子は前記絶縁基板の内部に配置されていることを特徴とするゼロフラックス型磁気センサ。
It is a zero flux type magnetic sensor according to any one of claims 2 to 5 ,
The zero-flux type magnetic sensor, wherein the exciting element is disposed inside the insulating substrate.
絶縁基板と、磁気検出素子と、励磁素子とを備え、
前記磁気検出素子は前記絶縁基板上に形成され、被測定磁束に応じて特性が変化して前記被測定磁束を検出することができ、
前記励磁素子は前記磁気検出素子の近傍に配置され、巻回されない単線配線であり、
前記磁気検出素子は4つの垂直磁束検出素子を備え、
前記4つの垂直磁束検出素子はブリッジ構成を形成し、
前記励磁素子は2本の直線であり、
前記励磁素子は、前記4つの垂直磁束検出素子のうちの向かい合う1対の垂直磁束検出素子にそれぞれ隣接し、前記向かい合う1対の垂直磁束検出素子を結ぶ直線に直角方向、かつ、前記絶縁基板上に配置され、そして、それぞれに隣接する垂直磁束検出素子における前記被測定磁束の一部又は全部を相殺するキャンセル磁束を発生することを特徴とするゼロフラックス型磁気センサ。
Including an insulating substrate, a magnetic detection element, and an excitation element,
The magnetic detection element is formed on the insulating substrate, and can change the characteristic according to the measured magnetic flux to detect the measured magnetic flux,
The excitation element is a single wire that is arranged near the magnetic detection element and is not wound,
The magnetic detecting element includes four perpendicular magnetic flux detecting elements,
The four perpendicular magnetic flux detecting elements form a bridge configuration,
The exciting element is two straight lines,
The exciting element is adjacent to a pair of opposed vertical magnetic flux detecting elements of the four perpendicular magnetic flux detecting elements, respectively, in a direction perpendicular to a straight line connecting the pair of opposed vertical magnetic flux detecting elements, and on the insulating substrate. And a canceling magnetic flux for canceling a part or all of the measured magnetic flux in the adjacent vertical magnetic flux detecting elements .
絶縁基板と、磁気検出素子と、励磁素子とを備え、
前記磁気検出素子は前記絶縁基板上に形成され、被測定磁束に応じて特性が変化して前記被測定磁束を検出することができ、
前記励磁素子は前記磁気検出素子の近傍に配置され、巻回されない単線配線であり、
前記磁気検出素子は4つの垂直磁束検出素子を備え、
前記4つの垂直磁束検出素子はブリッジ構成を形成し、
前記4つの垂直磁束検出素子のうちの隣り合う2対の垂直磁束検出素子はそれぞれ電源電圧VccとGNDの間を直列接続され、
前記励磁素子は2本のL字形であり、
L字形の前記励磁素子を構成する2本の直線部は、隣り合う1対の垂直磁束検出素子に対してそれぞれ隣接して平行に、かつ、前記絶縁基板上に配置され、そして、それぞれに隣接する垂直磁束検出素子における前記被測定磁束の一部又は全部を相殺するキャンセル磁束を発生することを特徴とするゼロフラックス型磁気センサ。
Including an insulating substrate, a magnetic detection element, and an excitation element,
The magnetic detection element is formed on the insulating substrate, and can change the characteristic according to the measured magnetic flux to detect the measured magnetic flux,
The excitation element is a single wire that is arranged near the magnetic detection element and is not wound,
The magnetic detecting element includes four perpendicular magnetic flux detecting elements,
The four perpendicular magnetic flux detecting elements form a bridge configuration,
Two pairs of adjacent vertical magnetic flux detecting elements of the four vertical magnetic flux detecting elements are connected in series between a power supply voltage Vcc and GND, respectively.
The exciting element has two L shapes,
The two linear portions forming the L-shaped exciting element are arranged adjacent to and in parallel with a pair of adjacent vertical magnetic flux detecting elements and on the insulating substrate, and are adjacent to each other. A zero-flux type magnetic sensor, which generates a cancel magnetic flux for canceling a part or all of the measured magnetic flux in the vertical magnetic flux detecting element .
請求項1乃至8のいずれか1項に記載のゼロフラックス型磁気センサであって、A zero-flux type magnetic sensor according to any one of claims 1 to 8,
前記被測定磁束を発生する測定対象は前記絶縁基板の下面よりも前記磁気検出素子の逆側に配置されることを特徴とするゼロフラックス型磁気センサ。  A zero-flux type magnetic sensor, wherein a measurement object that generates the magnetic flux to be measured is arranged on a side opposite to the magnetic detection element with respect to a lower surface of the insulating substrate.
請求項1乃至のいずれか1項に記載のゼロフラックス型磁気センサであって、
前記励磁素子は両端に外部端子を備えることを特徴とするゼロフラックス型磁気センサ。
It is a zero flux type magnetic sensor according to any one of claims 1 to 9 ,
A zero-flux type magnetic sensor, wherein the exciting element has external terminals at both ends.
JP2019147490A 2019-08-09 2019-08-09 Zero flux type magnetic sensor Expired - Fee Related JP6644343B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019147490A JP6644343B1 (en) 2019-08-09 2019-08-09 Zero flux type magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019147490A JP6644343B1 (en) 2019-08-09 2019-08-09 Zero flux type magnetic sensor

Publications (2)

Publication Number Publication Date
JP6644343B1 true JP6644343B1 (en) 2020-02-12
JP2021028596A JP2021028596A (en) 2021-02-25

Family

ID=69412143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019147490A Expired - Fee Related JP6644343B1 (en) 2019-08-09 2019-08-09 Zero flux type magnetic sensor

Country Status (1)

Country Link
JP (1) JP6644343B1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4433820B2 (en) * 2004-02-20 2010-03-17 Tdk株式会社 Magnetic detection element, method of forming the same, magnetic sensor, and ammeter
WO2007002302A2 (en) * 2005-06-28 2007-01-04 Wyle Laboratories, Inc. Magnetoresistive sensor based eddy current crack finder
JP4632142B2 (en) * 2006-05-17 2011-02-16 日立金属株式会社 2-axis magnetic field sensor
JP5594915B2 (en) * 2010-03-12 2014-09-24 アルプス・グリーンデバイス株式会社 Current sensor
CN105143902B (en) * 2013-03-18 2018-01-23 日立金属株式会社 Magnetic sensor
US9519034B2 (en) * 2014-05-15 2016-12-13 Everspin Technologies, Inc. Bipolar chopping for 1/F noise and offset reduction in magnetic field sensors
EP3002758B1 (en) * 2014-10-03 2017-06-21 Crocus Technology S.A. Self-referenced MRAM cell and magnetic field sensor comprising the self-referenced MRAM cell
JP6724459B2 (en) * 2016-03-23 2020-07-15 Tdk株式会社 Magnetic sensor
JP2018046061A (en) * 2016-09-12 2018-03-22 株式会社デンソー Magnetic resistance element, magnetism detector, and manufacturing method for magnetic resistance element

Also Published As

Publication number Publication date
JP2021028596A (en) 2021-02-25

Similar Documents

Publication Publication Date Title
US8952687B2 (en) Current sensor
WO2013005458A1 (en) Current sensor
US11397225B2 (en) Current sensor, magnetic sensor and circuit
US11199593B2 (en) Magnetic sensor
JP2002243766A (en) Electric current sensor
JP6503802B2 (en) Magnetic sensor
JP2006300906A (en) Magneto-impedance sensor element
WO2012046547A1 (en) Current sensor
JP6384677B2 (en) Current sensor
JP5704347B2 (en) Current sensor
JP2010286415A (en) Current sensor unit
JP6644343B1 (en) Zero flux type magnetic sensor
CN110687339B (en) Current sensor
US20170205447A1 (en) Current sensor
JP7119633B2 (en) magnetic sensor
WO2012029439A1 (en) Current sensor
JP5504483B2 (en) Current sensor
JP7299616B2 (en) Zero-flux magnetic sensor, non-contact ammeter provided with the same, control circuit and control method for zero-flux magnetic sensor
JP7119695B2 (en) magnetic sensor
WO2024034169A1 (en) Magnetic sensor and magnetic measurement method
JP7286932B2 (en) magnetic sensor
JP6226091B2 (en) Current sensor
WO2017141763A1 (en) Current sensor
JP2002040043A (en) Acceleration sensor
JP2011196698A (en) Current detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190829

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190829

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191220

R150 Certificate of patent or registration of utility model

Ref document number: 6644343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees