JP6006959B2 - Method for forming recess, corner corner finishing method and mold manufacturing method - Google Patents

Method for forming recess, corner corner finishing method and mold manufacturing method Download PDF

Info

Publication number
JP6006959B2
JP6006959B2 JP2012076037A JP2012076037A JP6006959B2 JP 6006959 B2 JP6006959 B2 JP 6006959B2 JP 2012076037 A JP2012076037 A JP 2012076037A JP 2012076037 A JP2012076037 A JP 2012076037A JP 6006959 B2 JP6006959 B2 JP 6006959B2
Authority
JP
Japan
Prior art keywords
corner
cutting
finishing
tool
cutting edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012076037A
Other languages
Japanese (ja)
Other versions
JP2013202750A (en
Inventor
英二 社本
英二 社本
鈴木 教和
教和 鈴木
望月 学
望月  学
望月 貴之
貴之 望月
一志 小畠
一志 小畠
浜田 晴司
晴司 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUGA ZOUKEI KOUGYO CO. LTD.
Nagoya University NUC
ALMT Corp
Taga Electric Co Ltd
Tokai National Higher Education and Research System NUC
Original Assignee
SUGA ZOUKEI KOUGYO CO. LTD.
Nagoya University NUC
ALMT Corp
Taga Electric Co Ltd
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUGA ZOUKEI KOUGYO CO. LTD., Nagoya University NUC, ALMT Corp, Taga Electric Co Ltd, Tokai National Higher Education and Research System NUC filed Critical SUGA ZOUKEI KOUGYO CO. LTD.
Priority to JP2012076037A priority Critical patent/JP6006959B2/en
Publication of JP2013202750A publication Critical patent/JP2013202750A/en
Application granted granted Critical
Publication of JP6006959B2 publication Critical patent/JP6006959B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は角隅部の加工方法に係り、特に、金型のように閉じた三次元凹部に含まれる角隅部の加工方法に関するものである。 The present invention relates to a corner corner processing method, and more particularly, to a corner corner processing method included in a closed three-dimensional recess like a mold.

金型の加工や更には一般的な製品でも、図1に示すように閉じた三次元凹部内に角隅部を作り出す必要がある場合が少なくない。
そのような場合、従来は、逆の形状を図2のように、切削加工によって作り、その形状を例えば放電加工によって転写して目的の粗形状を作り出し、更に磨きをかけていた。そのため、精度を高く出せず、しかも手間が掛かって加工効率が低いだけでなく、コストも高くついていた。
Even in the machining of molds and even general products, it is often necessary to create corners in closed three-dimensional recesses as shown in FIG.
In such a case, conventionally, as shown in FIG. 2, the opposite shape is made by cutting, and the shape is transferred by, for example, electric discharge machining to produce a target rough shape, and further polished. For this reason, the accuracy is not high, and it takes time and effort, and not only the processing efficiency is low, but also the cost is high.

また、微細で複雑な形状を有する製品例として、リフレックスリフレクタと称される反射板がある。リフレックスリフレクタは自動車等に取り付けておくと、向かってくる他車から放射された光を、その他車の方向に折り返し反射するため、自車が不点灯時であっても自車の存在をその他車に知らせることができるようになっている。
このリフレックスリフレクタは、反転型で製作した成型品であるが、上記した放電加工により作り出した金型では精度的に対応できず、特許文献1に示すように、矢型状のピンを多数束ねてマトリクス状にし、これを電鋳メッキ処理に供して作り出した金型を使用していた。
しかしながら、この方法でも製作誤差が出易く、しかも上記した放電加工より更に手間が掛かっていた。
In addition, as an example of a product having a fine and complicated shape, there is a reflector called a reflex reflector. When the reflex reflector is attached to an automobile, etc., the light emitted from the other vehicle is reflected back in the direction of the other vehicle. The car can be informed.
Although this reflex reflector is a molded product produced by an inversion type, it cannot be accurately handled by a mold produced by the above-described electric discharge machining, and as shown in Patent Document 1, many arrow-shaped pins are bundled. In this way, a mold was used which was made into a matrix and subjected to electroforming plating treatment.
However, this method is also prone to manufacturing errors and takes more time than the above-described electric discharge machining.

特開2005−125649号公報JP 2005-125649 A

角隅部を作り出す場合でも、切削加工できれば手間が掛からず加工効率が高くなるが、エンドミルのような回転工具による切削では回転半径を下回る角隅部を作り出すことができず、角隅部を高い精度で作り出したい場合には不本意ながら上記のような手法を利用してきた。
本発明は上記従来の問題点に着目して為されたものであり、切削方式でありながら高精度の角隅部を作り出せて、上記した課題を解決できる、新規且つ有用な方法を提供することを、その目的とする。
Even when producing the corners, but troublesome if cutting machining efficiency increases not Kakekara can not produce corners below the rotation radius at the cutting by the rotary tool such as an end mill, higher the corners If you want to produce it with precision, you have been reluctantly using the method described above.
The present invention has been made paying attention to the above-mentioned conventional problems, and provides a novel and useful method that can solve the above-mentioned problems by creating a high-precision corner corner while being a cutting method. Is the purpose.

本発明は上記課題を解決するためになされたものであり、請求項1の発明は、互いに直交する三角形状の三面で構成され稜線が角隅部になっている閉じた凹部を切削により形成する方法において、V字状の切れ刃稜線部を備える刃先部を有する切削工具を用いて、切削方向の運動成分を持つように楕円振動を加えながら被削材に対して相対的に連続したワンパスの折れ曲がったツールパスで切削運動させ、一方側の直線状の切れ刃稜線部で前記三面のうちの一面を形成し、かつ他方側の直線状の切れ刃稜線部で前記三面のうちの二面を形成するように調整しながら切削することで、前記V字状の切れ刃稜線部の輪郭の掃引形状の転写で前記三面を同時に仕上げることを特徴とする凹部の形成方法である。
請求項2の発明は、請求項1に記載した凹部の形成方法において、複数の凹部を平面や曲面上に並べて形成することを特徴とする凹部の形成方法である。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and the invention of claim 1 is formed by cutting a closed concave portion constituted by three triangular faces orthogonal to each other and having a ridge line as a corner corner. In the method, using a cutting tool having a cutting edge portion having a V-shaped cutting edge ridge portion, a one-pass relatively continuous with respect to the work material while applying elliptical vibration so as to have a motion component in the cutting direction . Cutting is performed with a bent tool path, one of the three surfaces is formed by the linear cutting edge ridge portion on one side, and two of the three surfaces are formed by the linear cutting edge ridge portion on the other side. In the method of forming a recess, the three surfaces are simultaneously finished by transferring the sweep shape of the contour of the V-shaped cutting edge ridge line by cutting while adjusting to form .
The invention of claim 2 is the method for forming a concave portion according to claim 1, which is the method of forming the recess and forming side by side a plurality of recesses on a plane or a curved surface.

請求項3の発明は、切削により閉じた凹部に含まれる角隅部仕上げ加工方法において、切削工具に切削方向の運動成分を持つように楕円振動を加えながら、予め粗く形成された被削材の角隅部に向かって、相対的に切削運動させ、前記角隅部で切削運動の方向を変えて連続したツールパスで前記角隅部仕上げ加工する際に、楕円振動面を、切削方向と前記被削材の切り取り厚さの方向を含む面と、切削方向と前記切削工具の切れ刃の稜線方向を含む面との間の面とすることを特徴とする角隅部の仕上げ加工方法である。
請求項4の発明は、請求項3に記載した角隅部仕上げ加工方法において、直交する角隅部仕上げ加工することを特徴とする角隅部の仕上げ加工方法である。
According to a third aspect of the present invention, there is provided a method for finishing a corner portion included in a concave portion closed by cutting, and a work material formed coarsely in advance while applying elliptical vibration so that the cutting tool has a motion component in the cutting direction. towards the corners, by relatively cutting movement, when finishing the angle corner tool paths successively changing the direction of the cutting movement the angle corner, an elliptical vibration plane, cutting direction wherein a plane including the direction of the cut thickness of the workpiece, finishing method of corners, characterized in that the surface between the plane including the ridge line direction of the cutting edge of the cutting direction said cutting tool and It is.
A fourth aspect of the present invention, the finishing method of the corner portion according to claim 3, a finishing method of corners, characterized in that finishing the corners orthogonal.

請求項5の発明は、請求項3または4に記載した角隅部仕上げ加工方法において、送り運動も加えてその送り運動によって角隅部を稜線とする二つの同時に仕上げ加工することを特徴とする角隅部の仕上げ加工方法である。 A fifth aspect of the present invention, the finishing method of the corner portion according to claim 3 or 4, to simultaneously finish the two faces to the ridge line of the corner portion by the feed movement also added feed movement This is a characteristic corner corner finishing method.

請求項6の発明は、請求項から5のいずれかに記載した角隅部仕上げ加工方法において、逃げ面が切削済みの面から離れる向きに楕円運動を加えながら切削運動させることを特徴とする角隅部の仕上げ加工方法である。 The invention of claim 6 is characterized in that, in the corner corner finishing processing method according to any one of claims 3 to 5, the cutting motion is performed while applying an elliptical motion in a direction in which the flank faces away from the cut surface. This is a method for finishing corners .

請求項7の発明は、閉じた凹部を有する金型の製造方法において、請求項1から6のいずれかに記載した方法を利用して前記凹部を形成または仕上げ加工する工程を備える金型の製造方法である。 A seventh aspect of the present invention is a method of manufacturing a mold having a closed concave portion, wherein the method includes the step of forming or finishing the concave portion using the method according to any one of the first to sixth aspects. Is the method.

本発明の方法によれば、手間の掛からない、切削により高い精度の角隅部を作り出せる。 According to the method of the present invention, it is possible to create a corner portion with high accuracy by cutting, which is not troublesome.

本発明の角隅部仕上げ加工方法を利用して製作する三次元構造体の例である。It is an example of the three-dimensional structure manufactured using the finishing method of the corner part of this invention. 図1の三次元構造体を、従来の方法(放電加工)により製作する場合の説明図である。It is explanatory drawing in the case of manufacturing the three-dimensional structure of FIG. 1 by the conventional method (electric discharge machining). 本発明の角隅部仕上げ加工方法を利用して角隅部を作り出す場合の説明図である。It is explanatory drawing in the case of producing a corner part using the finishing method of a corner part of this invention. 図1の三次元構造体を本発明の角隅部仕上げ加工方法を利用して製作する場合の切削工具のツールパスの説明図である。It is explanatory drawing of the tool path of the cutting tool in the case of manufacturing the three-dimensional structure of FIG. 1 using the finishing method of the corner part of this invention. 本発明の実施の形態に係る凹部の形成方法による一つの凹部の製作直後の状態を示す斜視図である。It is a perspective view which shows the state immediately after manufacture of one recessed part by the formation method of the recessed part which concerns on embodiment of this invention. 図5で使用した切削工具の刃先部の五面図である。FIG. 6 is a five-side view of a cutting edge portion of the cutting tool used in FIG. 5. 図5で製作した凹部の上面図と断面図である。It is the upper side figure and sectional drawing of the recessed part manufactured in FIG. 図5で製作中の切削工具の刃先部の当て姿勢と楕円振動の軌跡を示す側面図である。It is a side view which shows the contact attitude | position of the blade edge | tip part of the cutting tool in manufacture in FIG. 5, and the locus | trajectory of elliptical vibration. 図5で製作中の切削工具の刃先部の移動軌跡を示す斜視図である。It is a perspective view which shows the movement locus | trajectory of the blade edge | tip part of the cutting tool in manufacture in FIG. 図5の凹部を平面上に多数並べて製作したリフレックスリフレクタの金型の上面図である。It is a top view of the metal mold | die of the reflex reflector produced by arranging many recessed parts of FIG. 5 on a plane. 図5の凹部を曲面上に多数並べてリフレックスリフレクタの金型を製作する途中の段階を示す側面図である。FIG. 6 is a side view showing a stage in the middle of manufacturing a mold for a reflex reflector by arranging a large number of recesses in FIG. 5 on a curved surface.

A.一般の角隅部の加工方法
図3(1)に示すように、予め粗く形成された被削材の角隅部に向かって、切削工具を用いて切削運動だけを与えて切削加工すると、角隅部で、切削速度がゼロになり、少なくともその近傍では極めて低い切削速度になる。
そのような低い切削速度においては、切りくずと工具すくい面との間、または仕上げ面と工具逃げ面との間で生じる摩擦力が垂下特性(速度が増加すると摩擦力が低下する特性)を持つため、自励振動の一つである摩擦振動(スティックスリップを含む)を生じやすいことが知られている。この振動を生じると、高い精度で、角隅部を作り出すことはできない。しかしながら、本発明では、切削工具Aに対して切削方向の運動成分を持つように、図中曲線で示す微小な高周波楕円振動(円振動を含む)を加えながら切削させるので、刃先が常に振動速度を持つため、実際の切削速度がゼロになることも、極めて小さくなることもない。そのため、摩擦振動の問題を生じない。
A. As shown in the processing method of a general corners Figure 3 (1), toward the corner portion of the workpiece which has previously been coarsely formed, the cutting processing is given only cutting movement with a cutting tool, the corner At the corner , the cutting speed becomes zero, and at least in the vicinity thereof, the cutting speed is extremely low.
At such a low cutting speed, the friction force generated between the chip and the tool rake face or between the finished surface and the tool flank face has a drooping characteristic (characteristic that the friction force decreases as the speed increases). Therefore, it is known that frictional vibration (including stick-slip) that is one of self-excited vibrations is likely to occur. When this vibration occurs, the corners cannot be created with high accuracy. However, in the present invention, cutting is performed while applying minute high-frequency elliptical vibration (including circular vibration) indicated by a curve in the drawing so that the cutting tool A has a motion component in the cutting direction, so that the cutting edge always has a vibration speed. Therefore, the actual cutting speed does not become zero or extremely small. Therefore, the problem of frictional vibration does not occur.

また、そのような低い切削速度においては、被削材と工具材料の組み合わせによって、分離したばかりの被削材の新生面と工具表面が凝着しやすく、仕上げ面がむしれたり、工具表面がはく離するなどの問題を生じる。しかしながら、本発明では、上記したように刃先が常に振動速度を持つため、凝着現象は起り難い。さらに、切削速度(見かけの平均速度)より切削方向の最大振動速度を大きくすることで、振動周期ごとに工具が被削材から離脱するため、被削材の新生面が空気や切削油材で汚されることで化学的活性が低下し、凝着が抑制されるものと考えられる。   Also, at such a low cutting speed, the new surface of the work material that has just separated and the tool surface tend to adhere due to the combination of the work material and the tool material, and the finished surface may peel off or the tool surface may peel off. Cause problems. However, in the present invention, since the cutting edge always has a vibration speed as described above, the adhesion phenomenon hardly occurs. In addition, by increasing the maximum vibration speed in the cutting direction from the cutting speed (apparent average speed), the tool is detached from the work material at each vibration cycle, so the new surface of the work material becomes dirty with air or cutting oil. It is considered that the chemical activity is reduced and adhesion is suppressed.

また、振動軌跡を直線ではなく、楕円としたことで、切削方向と切り取り厚さの方向を含む面内で、切削の瞬間に、工具に相対的に切りくず流出方向の速度を持たせて、切りくずの流出を妨げる摩擦力が発生せず、逆に切りくずの流出を促進させることができる。また、切削方向と切れ刃の稜線方向を含む面内で、切削の瞬間に、いわゆる引き切り方向の速度を持たせて、包丁で切る時に引きながら切ると切れ易いように、切りくずの生成・排出を促進させることができる。実用的な(即ち、三次元的な)角隅部の加工では、楕円振動面を上記二つの間の面とすることで、両者の中間的な効果が得られ、いずれの場合にも、楕円振動を付加しない場合に比べて、大幅に切りくず生成・排出が容易になる。 In addition, by making the vibration trajectory not an straight line but an ellipse, in the plane including the cutting direction and the cutting thickness direction, at the moment of cutting, the tool has a speed in the chip discharge direction relative to the tool, The frictional force that prevents the chip from flowing out is not generated, and the chip outflow can be promoted. In addition, in the plane including the cutting direction and the ridge line direction of the cutting edge, at the moment of cutting, the speed of the so-called cutting direction is given, so that the chip can be generated and cut easily so that it is easy to cut while pulling with a knife. Emission can be promoted. In practical (that is, three-dimensional) corner corner processing, by setting the elliptical vibration surface between the two surfaces, an intermediate effect between them can be obtained. Compared to the case where vibration is not added, chip generation and discharge are greatly facilitated.

なお、その切削方向の振動と切り取り厚さ方向の振動との位相関係については、逃げ面で仕上げ面を押しつぶす向きではなく、逃げ面(一つの平面とは限らず、実用的な切削では二つ以上の平面か曲面となる。これらのすべての面)が常に切削済の仕上げ面から離れる向きに楕円運動するように調整することで、鏡面仕上げが可能となる。   Note that the phase relationship between the vibration in the cutting direction and the vibration in the cutting thickness direction is not the direction in which the finished surface is crushed by the flank, but the flank (not necessarily a single plane, but two in practical cutting). The above-mentioned plane or curved surface (all these surfaces) can be mirror-finished by adjusting so that the elliptical motion of all these surfaces always away from the finished finished surface.

また、図3(2)に示すように、切削運動の方向を変えて連続したツールパスで角隅部仕上げることもできる。
角隅部で切削方向が急に変化する前後では、切削方向に対する工具のすくい角と逃げ角が大きく変化する。角隅部前は、すくい角が(正の側に)大きい(刃が鋭い)ため、切削抵抗が小さく、切りくずの生成・排出が容易である。一方、角隅部後は、すくい角が小さい(負の側に絶対値が大きい、刃が鈍い)ため、切削抵抗が大きく、切りくずの生成・排出が困難になり、角の角度、被削材、工具の形状等によっては、切りくずの生成・排出が不可能になる場合もある。
また、角隅部後で特に背分力(切り取り厚さの方向、切削方向と切れ刃に垂直な方向の成分)が大きくなるため、被削材と工具、それらを支える機械構造等の変形によって所望の切り取りを実現できなくなり、所望の形状を作り出すことができなかったり、工具が欠損するなどの問題を生じる。金型鋼などの難削材では実用上不可能に近く、不可能でない場合にも、角隅部後の仕上げ面性状が劣化する(うねりやむしれが生じる等の問題がある)。
しかしながら、本発明では、楕円振動を与えるので、切削方向が変わっても、振動方向に対する相対的な振動軌跡が変化し難く、切削方向に対する振動効果をそのまま享受できるので、上記した切りくず生成・排出の促進により、特に背分力が低減され、変形による加工誤差やばりの問題が大幅に軽減され、高精度の角隅部を作り出せる。
また、角隅部直後の工具姿勢のままで工具が被削材から離脱する場合には、いわゆる出口ばりが大きくなったりする問題が考えられるが、上記した切りくず生成・排出の促進により、特に背分力が低減され、変形による加工誤差やばりの問題が大幅に軽減される。
Further, as shown in FIG. 3B, the corners can be finished with a continuous tool path by changing the direction of the cutting motion.
Before and after the cutting direction suddenly changes at the corners , the rake angle and clearance angle of the tool with respect to the cutting direction change greatly. In front of the corner, the rake angle is large (on the positive side) (the blade is sharp), so that the cutting resistance is small, and chip generation and discharge are easy. On the other hand, after the corner , the rake angle is small (absolute value on the negative side is large and the blade is dull), so the cutting resistance is large and it becomes difficult to generate and discharge chips. Depending on the material and the shape of the tool, it may be impossible to generate and discharge chips.
In addition, the back component force (the direction of the cutting thickness, the component in the direction of cutting and the direction perpendicular to the cutting edge) increases especially after the corners , so deformation of the work material and tools, the mechanical structure that supports them, etc. It becomes impossible to realize a desired cut-out, resulting in problems that a desired shape cannot be created and a tool is lost. In difficult-to-cut materials such as mold steel, it is practically impossible, and even if it is not possible, the finished surface properties after the corners deteriorate (problems such as swell and whip).
However, in the present invention, since elliptical vibration is given, even if the cutting direction changes, the relative vibration trajectory relative to the vibration direction hardly changes, and the vibration effect with respect to the cutting direction can be enjoyed as it is. By promoting this, the back force is reduced, machining errors and flash problems due to deformation are greatly reduced, and highly accurate corners can be created.
In addition, when the tool is detached from the work material with the tool posture immediately after the corner corner, there may be a problem that the so-called exit beam becomes large. The back force is reduced, and machining errors and flash problems due to deformation are greatly reduced.

楕円振動の軌跡の一部が加工形状に転写されて残ることで、角隅部に若干の丸みが残ることとなるが、エンドミル工具などを(サブ)ミリメートルオーダの半径で回転させた場合と違って、楕円振動の振幅はマイクロメートルオーダの微小寸法とすることができ、一般的な製品(金型を含む)の角隅部として問題になることはない。
また、楕円振動の周波数は、一般には超音波領域の高周波を利用するため、比較的大きな機械構造は応答することができず、その結果ほとんど変形を生じないため加工精度に悪影響を及ぼすことはない。
When a part of the locus of elliptical vibration is transferred to the machining shape and remains, a slight roundness remains at the corner, but unlike when rotating an end mill tool or the like with a radius of (sub) millimeter order. Thus, the amplitude of the elliptical vibration can be set to a minute dimension on the order of micrometers, and does not become a problem as a corner of a general product (including a mold).
In addition, since the frequency of elliptical vibration generally uses the high frequency in the ultrasonic region, a relatively large mechanical structure cannot respond, and as a result, hardly deforms, so that the machining accuracy is not adversely affected. .

上記したように、本発明の仕上げ加工方法を利用すれば、この楕円振動を利用することにより切削で角隅部を複数のツールパスでも連続したツールパスでも高精度に作り出すことに成功している。当該楕円振動は、特許第3500434号に記載のものであり、超音波を利用しミクロンオーダーで生成したものである。 As described above, if the finishing method of the present invention is used, by using this elliptical vibration, it has succeeded in producing a corner corner with high accuracy by cutting a plurality of tool paths or a continuous tool path. . The elliptical vibration is described in Japanese Patent No. 3500344, and is generated on the micron order using ultrasonic waves.

本発明の加工の際には、上記した切削運動に、送り運動も加えれば角隅部を稜線とする二つの同時に仕上げることができる。
例えば、図1に示した三次元形状を、図4に示すように、切削運動以外に、送り運動(等高線に沿った複数のツールパスでもよいし、らせん状につながったツールパスでもよい)を与えることにより、その送り運動に沿った形状の面を仕上げることができる。図4において、各ツールパスを稜線方向に見ると、図3に示すように切削が行われている。仕上げ面は工具の刃先形状が送り運動方向に転写されて形成されるので、フラットバイトとRバイトのいずれを使用しても、送り運動を直線的にすれば図4(1)に示すように、平面を作り出せ、Rバイトを使用して送り運動を曲線的にすれば図4(2)に示すように、曲面を作り出せる。これは開いた三次元切削の場合と同様である。
In the machining according to the present invention, if a feeding motion is added to the above-described cutting motion, two surfaces having corners as ridge lines can be simultaneously finished .
For example, as shown in FIG. 4, the three-dimensional shape shown in FIG. 1 is fed with a feed motion (a plurality of tool paths along contour lines or a tool path connected in a spiral shape) in addition to the cutting motion. By giving, the surface of the shape along the feed movement can be finished . In FIG. 4, when each tool path is viewed in the ridge line direction, cutting is performed as shown in FIG. Since the finished surface is formed by transferring the shape of the cutting edge of the tool in the feed movement direction, as shown in FIG. If a plane can be created and the feeding motion is curved using an R bite, a curved surface can be created as shown in FIG. This is the same as in the case of open three-dimensional cutting.

B.リフレックスリフレクタの金型の製作例
本発明の凹部の形成方法によれば、工具刃先の形状をそのまま転写することにより、その掃引形状として精度の高い角隅部を作り出すこともできる。
従って、その一例として、連続した一つのツールパスにより、三面を同時に仕上げて製作したリフレックスリフレクタの金型の製作例を以下に説明する。
B. Reflex reflector mold manufacturing example
According to the method for forming a recess according to the present invention, it is possible to create a highly accurate corner portion as the sweep shape by transferring the shape of the tool edge as it is.
Therefore, as an example, a manufacturing example of a reflex reflector mold manufactured by finishing three surfaces simultaneously with one continuous tool path will be described below.

図5はブロック状の上面が平らな金属体1に閉じた凹部3を一つ形成した直後を示している。この凹部3は互いに直交する三角形状の三面5、7、9が鏡面で構成されており、この三面5、7、9の隣り合う面どうしの稜線部が角隅部11、13、15になっている。
この凹部3は切削工具21で切削されて形成されている。
FIG. 5 shows a state immediately after the formation of one closed recess 3 in the metal body 1 having a flat block-like upper surface. In this recess 3, three triangular surfaces 5, 7, 9 that are orthogonal to each other are configured as mirror surfaces, and the ridges between adjacent surfaces of the three surfaces 5, 7, 9 become corner corners 11, 13, 15. ing.
The recess 3 is formed by cutting with a cutting tool 21.

切削工具21の先端部の刃先部には、図6に示すように、すくい面23が形成されている。すくい面23は両側に先端部25からV字状に傾斜して延びる主切れ刃稜線部27、29が存在する平面になっており、工具の下面には傾斜した稜線部31を挟んで逃げ面33、35が形成されている。
切削工具21の刃先部の形状は、図7に示す金属体1に形成する凹部3に対応しており、その一部断面図に示すように、主切れ刃稜線部27、29の交差する刃先角αは、溝角θ(0)に対応し、主切れ刃稜線部27の傾斜角βは一方側の面5の傾斜角θ(1)に対応し、主切れ刃稜線部29の傾斜角γは他方側の面7、9の傾斜角θ(2)に対応している。
As shown in FIG. 6, a rake face 23 is formed at the cutting edge of the tip of the cutting tool 21. The rake face 23 is a flat surface in which main cutting edge ridge lines 27 and 29 extending in a V shape from the tip 25 are present on both sides, and a flank face sandwiching the inclined ridge line 31 on the lower surface of the tool. 33 and 35 are formed.
The shape of the cutting edge portion of the cutting tool 21 corresponds to the concave portion 3 formed in the metal body 1 shown in FIG. 7, and the cutting edge where the main cutting edge ridge line portions 27 and 29 intersect as shown in a partial cross-sectional view thereof. The angle α corresponds to the groove angle θ (0), the inclination angle β of the main cutting edge ridge line portion 27 corresponds to the inclination angle θ (1) of the surface 5 on one side, and the inclination angle of the main cutting edge ridge line portion 29. γ corresponds to the inclination angle θ (2) of the other surfaces 7 and 9.

図8に示すように、この切削工具21を金属体1に対して姿勢保持する。この姿勢では、進行方向後側には逃げ角εが形成されている。上記した姿勢で、切削工具21に矢印に示すような超音波楕円振動を与える。この楕円振動面は切削方向と切り取り厚さの方向を含む面と、切削方向と切れ刃の稜線方向を含む面との間の面になっている。また、楕円振動面は、逃げ面33、35が切削済みの新生面から離れる向きを持っている。   As shown in FIG. 8, the cutting tool 21 is held in a posture with respect to the metal body 1. In this posture, a clearance angle ε is formed on the rear side in the traveling direction. In the posture described above, ultrasonic elliptical vibration as shown by an arrow is given to the cutting tool 21. This elliptical vibration surface is a surface between a surface including the cutting direction and the direction of the cutting thickness and a surface including the cutting direction and the ridge line direction of the cutting edge. Further, the elliptical vibration surface has a direction in which the flank surfaces 33 and 35 are separated from the cut new surface.

上記姿勢を保持したまま、切削工具21の刃先部の先端部25を、金属体1内に送り込んで進行させると、主切れ刃稜線部27、先端部25、および主切れ刃稜線部29と連続した輪郭が金属体1に転写される。
図5、図7の矢印に示すツールパスPは連続したワンパス(一筆書き)可能になっており、切削工具21をこのツールパスPに合わせて進行させると、図10に示すようにワンパス(一筆書き)でこの輪郭の移動軌跡である掃引形状が凹部3として作り出される。
When the tip 25 of the cutting edge of the cutting tool 21 is fed into the metal body 1 and advanced while maintaining the above posture, the main cutting edge ridge line 27, the leading edge 25, and the main cutting edge ridge line 29 are continuous. The finished contour is transferred to the metal body 1.
The tool path P indicated by the arrows in FIGS. 5 and 7 is capable of continuous one-pass (one-stroke writing). When the cutting tool 21 is advanced along the tool path P, as shown in FIG. The sweep shape which is the movement trajectory of the contour is created as the concave portion 3.

刃先部の先端部25とそれを挟む主切れ刃稜線部27、29の輪郭の移動軌跡によって稜線部が作り出される。この稜線部が凹部3の角隅部11、13になる。
主切れ刃稜線部27はツールパスPを含む面に存在するように設定されているので、その輪郭の移動軌跡により一つの面5が作り出される。また、主切れ刃稜線部29はツールパスPを含む面と交差し、且つツールパスPが折れ曲がっているので、その輪郭の移動軌跡により、二つの面7、9が作り出され、この二つの面7、9の間の稜線部で角隅部15が作り出される。
従って、凹部3では、互いに直交する三角形状の三面5、7、9が作り出され、それぞれの稜線が角隅部になっている。作り出された三面5、7、9は鏡面になっており、誤差を生じさせる「磨き」は不要となっている。
A ridge line portion is created by the movement trajectory of the contours of the leading edge portion 25 of the blade edge portion and the main cutting edge ridge line portions 27 and 29 sandwiching it. This ridge portion becomes the corner portions 11 and 13 of the recess 3.
Since the main cutting edge ridge line portion 27 is set to exist on the surface including the tool path P, one surface 5 is created by the movement trajectory of the contour. Further, since the main cutting edge ridge line portion 29 intersects the surface including the tool path P and the tool path P is bent, two surfaces 7 and 9 are created by the movement trajectory of the contour. A corner 15 is created at the ridge between 7 and 9.
Therefore, in the recessed part 3, the triangular three surfaces 5, 7, and 9 orthogonal to each other are created, and each ridgeline is a corner part. The created three surfaces 5, 7, and 9 are mirror surfaces, and no “polishing” that causes errors is required.

なお、上記では、1回の切削で凹部3を製作しているが、回数は限定されない。従って、凹部3を深くしたい場合には、凹部3の深さ方向に少しずつ工具を送り、複数回の切削(複数回のツールパス)で加工しても良い。
また、三面を同時に仕上げなくても、図3(1)に示すように、一面ずつ3回に分けて仕上げてもよく、図3(2)に示すように、二面を仕上げた後、三つ目の面のみを仕上げても良い。
In addition, although the recessed part 3 is manufactured by one cutting in the above, the frequency | count is not limited. Therefore, when it is desired to deepen the concave portion 3, the tool may be fed little by little in the depth direction of the concave portion 3 and processed by a plurality of times of cutting (a plurality of tool paths).
Further, even if the three surfaces are not finished at the same time, as shown in FIG. 3 (1), the surfaces may be divided into three times, and after the two surfaces are finished as shown in FIG. Only the second side may be finished.

この凹部3を多数並べて製作すると、図10に示すようなリフレックスリフレクタの金型37となる。
上記の図10に示す金型37は金属体1の平面に直交三面体の再帰反射形状を作り出したものであるが、図11に示すように切削工具21の工具姿勢を傾けて矢印に示す方向に進行させることで、自由曲面に作り出すこともできる。
When a large number of the recesses 3 are arranged, a reflex reflector mold 37 as shown in FIG. 10 is obtained.
The mold 37 shown in FIG. 10 above is one in which a retroreflective shape of an orthogonal trihedron is created on the plane of the metal body 1, but the tool posture of the cutting tool 21 is tilted as shown in FIG. It is possible to create a free-form surface by proceeding to.

以上、本発明の実施の形態について詳述してきたが、具体的構成は、この実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲における設計の変更などがあっても発明に含まれる。
例えば、上記実施の形態では、被切削物は、金属体に限定されず、切削できるものであればよく、アモルファス状態のNi系のコーティング層やガラスや、更には、超硬合金やSiCなどのセラミックスも含まれる。
The embodiment of the present invention has been described in detail above. However, the specific configuration is not limited to this embodiment, and the present invention can be changed even if there is a design change without departing from the gist of the present invention. included.
For example, in the above-described embodiment, the workpiece is not limited to a metal body and may be any material that can be cut, such as an amorphous Ni-based coating layer or glass, and further, a cemented carbide or SiC. Ceramics are also included.

本発明の方法は、高い精度の角隅度が求められる金型の製造業での実施に特に適している。 The method of the present invention is particularly suitable for implementation in the mold manufacturing industry where a high degree of accuracy is required.

1…金属体 3…凹部
5、7、9…面 11、13、15…角隅部
21…切削工具 23…すくい面
25…先端部 27、29…主切れ刃稜線部
31…稜線部 33、35…逃げ面
α…刃先角 β、γ…傾斜角
ε…逃げ角
θ(0)…溝角 θ(1)、θ(2)…傾斜角
DESCRIPTION OF SYMBOLS 1 ... Metal body 3 ... Recessed 5, 7, 9 ... Surface 11, 13, 15 ... Corner corner 21 ... Cutting tool 23 ... Rake face 25 ... Tip part 27, 29 ... Main cutting edge ridgeline part 31 ... Ridge line part 33, 35 ... Flank α ... Cutting edge angle β, γ ... Tilt angle ε ... Flank angle θ (0) ... Groove angle θ (1), θ (2) ... Tilt angle

Claims (7)

互いに直交する三角形状の三面で構成され稜線が角隅部になっている閉じた凹部を切削により形成する方法において、
V字状の切れ刃稜線部を備える刃先部を有する切削工具を用いて、
切削方向の運動成分を持つように楕円振動を加えながら被削材に対して相対的に連続したワンパスの折れ曲がったツールパスで切削運動させ、
一方側の直線状の切れ刃稜線部で前記三面のうちの一面を形成し、かつ他方側の直線状の切れ刃稜線部で前記三面のうちの二面を形成するように調整しながら切削することで、
前記V字状の切れ刃稜線部の輪郭の掃引形状の転写で前記三面を同時に仕上げることを特徴とする凹部の形成方法
In the method of forming a closed recess by cutting, which is composed of three triangular faces orthogonal to each other and the ridge line is a corner ,
Using a cutting tool having a cutting edge portion provided with a V-shaped cutting edge ridge line portion ,
While applying elliptical vibration so as to have a motion component in the cutting direction, the cutting motion is performed with a continuous one-pass bent tool path relative to the work material,
Cut while adjusting so that one of the three surfaces is formed by the linear cutting edge ridge portion on one side and two of the three surfaces are formed by the linear cutting edge ridge portion on the other side With that
A method of forming a recess , wherein the three surfaces are simultaneously finished by transferring the sweep shape of the contour of the V-shaped cutting edge ridge line portion.
請求項1に記載した凹部の形成方法において、
複数の凹部を平面や曲面上に並べて形成することを特徴とする凹部の形成方法
In the formation method of the recessed part described in Claim 1,
A method for forming a recess, wherein a plurality of recesses are formed side by side on a plane or curved surface.
切削により閉じた凹部に含まれる角隅部仕上げ加工方法において、
切削工具に切削方向の運動成分を持つように楕円振動を加えながら、予め粗く形成された被削材の角隅部に向かって、相対的に切削運動させ、
前記角隅部で切削運動の方向を変えて連続したツールパスで前記角隅部仕上げ加工する際に、
楕円振動面を、切削方向と前記被削材の切り取り厚さの方向を含む面と、切削方向と前記切削工具の切れ刃の稜線方向を含む面との間の面とすることを特徴とする角隅部の仕上げ加工方法。
In the finishing method for corners included in the recesses closed by cutting,
While applying elliptical vibration so that the cutting tool has a motion component in the cutting direction, the cutting tool is relatively moved toward the corners of the work material that is formed roughly in advance.
When finishing the angle corner tool paths successively changing the direction of the cutting movement the angle corner,
The elliptical vibration surface is a surface between a surface including a cutting direction and a cutting thickness direction of the work material, and a surface including a cutting direction and a ridge line direction of a cutting edge of the cutting tool. Corner corner finishing method.
請求項3に記載した角隅部仕上げ加工方法において、
直交する角隅部仕上げ加工することを特徴とする角隅部の仕上げ加工方法。
In the corner corner finishing processing method according to claim 3,
A corner corner finishing method characterized by finishing corner corners orthogonal to each other.
請求項3または4に記載した角隅部仕上げ加工方法において、
送り運動も加えてその送り運動によって角隅部を稜線とする二つの同時に仕上げ加工することを特徴とする角隅部の仕上げ加工方法。
In the corner corner finishing method according to claim 3 or 4,
A corner corner finishing method characterized in that, in addition to a feed motion, two surfaces having a corner corner as a ridge line are simultaneously finished by the feed motion.
請求項から5のいずれかに記載した角隅部仕上げ加工方法において、
逃げ面が切削済みの面から離れる向きに楕円運動を加えながら切削運動させることを特徴とする角隅部の仕上げ加工方法。
In the corner corner finishing processing method according to any one of claims 3 to 5,
A corner corner finishing method, characterized in that a cutting motion is performed while an elliptical motion is applied in a direction in which the flank faces away from the cut surface.
閉じた凹部を有する金型の製造方法において、
請求項1から6のいずれかに記載した方法を利用して前記凹部を形成または仕上げ加工する工程を備える金型の製造方法。
In a method for manufacturing a mold having a closed recess,
The manufacturing method of a metal mold | die provided with the process of forming or finishing the said recessed part using the method as described in any one of Claim 1 to 6.
JP2012076037A 2012-03-29 2012-03-29 Method for forming recess, corner corner finishing method and mold manufacturing method Active JP6006959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012076037A JP6006959B2 (en) 2012-03-29 2012-03-29 Method for forming recess, corner corner finishing method and mold manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012076037A JP6006959B2 (en) 2012-03-29 2012-03-29 Method for forming recess, corner corner finishing method and mold manufacturing method

Publications (2)

Publication Number Publication Date
JP2013202750A JP2013202750A (en) 2013-10-07
JP6006959B2 true JP6006959B2 (en) 2016-10-12

Family

ID=49522415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012076037A Active JP6006959B2 (en) 2012-03-29 2012-03-29 Method for forming recess, corner corner finishing method and mold manufacturing method

Country Status (1)

Country Link
JP (1) JP6006959B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111151978A (en) * 2020-01-08 2020-05-15 孔令豹 Precision machining process of integrated metal pyramid reflector

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102404055B1 (en) * 2017-09-11 2022-05-30 오라폴 아메리카스 인코포레이티드 Method and apparatus for manufacturing retroreflector prism with polygonal aperture
CN111055094B (en) * 2019-12-30 2021-11-02 福建夜光达科技股份有限公司 Manufacturing method of microprism mold for reducing splicing hidden bands
CN111880471B (en) * 2020-07-03 2022-06-10 哈尔滨工业大学 Calculation method for cutting track of ultrasonic elliptical vibration cutting technology
JP7033368B1 (en) * 2020-08-05 2022-03-10 ナルックス株式会社 A method for manufacturing a mold for a retroreflective optical element and a method for manufacturing a retroreflective optical element.
JP7089574B2 (en) * 2020-12-01 2022-06-22 芝浦機械株式会社 Processing machine and manufacturing method of workpiece

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192001A (en) * 1987-10-02 1989-04-11 Taga Electric Co Ltd Supersonic vibration cutting method and device therefor
JPH01109003A (en) * 1987-10-22 1989-04-26 Matsushita Electric Works Ltd Cutting tool
JP2677821B2 (en) * 1988-06-14 1997-11-17 株式会社アマダ V-shaped grooving machine
JPH0750094Y2 (en) * 1988-06-17 1995-11-15 株式会社アマダ V-shaped groove processing machine
JP3500434B2 (en) * 1993-09-01 2004-02-23 財団法人新産業創造研究機構 Vibration cutting method and vibration cutting device
JP2003127595A (en) * 2001-10-23 2003-05-08 Towa Corp Engraving device and method
JP2004249369A (en) * 2003-02-18 2004-09-09 Towa Corp Cutting method of workpiece and workpiece
JP2004345017A (en) * 2003-05-22 2004-12-09 Canon Inc Method and device for grooving
JP2005138264A (en) * 2003-11-10 2005-06-02 Canon Inc Cutting method and cutting apparatus
JP4553967B2 (en) * 2008-03-19 2010-09-29 パナソニック株式会社 Cutting apparatus, processing method, and mold processed by the processing method
JP2011104664A (en) * 2009-11-12 2011-06-02 Nippori Sekkei:Kk Machining device and method for pyramid recessed part

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111151978A (en) * 2020-01-08 2020-05-15 孔令豹 Precision machining process of integrated metal pyramid reflector

Also Published As

Publication number Publication date
JP2013202750A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
JP6006959B2 (en) Method for forming recess, corner corner finishing method and mold manufacturing method
JP6347258B2 (en) Radius end mill and cutting method
JP6262850B2 (en) Cutting insert, cutting tool, and manufacturing method of cut workpiece
JP4658667B2 (en) Manufacturing method of annular optical element and manufacturing method of mold for annular optical element
US10343226B2 (en) Cutting insert and cutting tool
JP6428919B2 (en) Cutting tool, skiving machine and method
JP6240559B2 (en) Drill and drill manufacturing method
JP2015229240A (en) Method of manufacturing cutting tool, and cutting tool
JP7061371B2 (en) Machine parts and their applications in cutting
WO2017213026A1 (en) Micromachining method, die manufacturing method, and micromachining apparatus
JP4313686B2 (en) Manufacturing method of mold for annular optical element
JP2017217720A5 (en)
JP6847230B2 (en) Manufacturing method for cutting inserts, cutting tools and cutting products
CN111670081A (en) End mill and machining method
JP6930245B2 (en) Cutting insert
JP2007313590A (en) Thread cutting tip, and its manufacturing method
JPH1080816A (en) Solid ball end mill
JP2006289871A (en) Method for manufacturing ring zone optical element and method for manufacturing mold for ring zone optical element
JP2019202402A (en) Reamer and reamer manufacturing method
JP2023137858A (en) ball end mill
JP2000334834A (en) Method and apparatus for producing molding mold for molding sheet
RU2456130C2 (en) Method of shaping workpiece wavy surface by planning
JP4320644B2 (en) Grinding method
JP7303464B2 (en) end mill
JP2000233310A (en) Cutting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160912

R150 Certificate of patent or registration of utility model

Ref document number: 6006959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250