JP2013202750A - Method for machining angular part/corner part, method for manufacturing die using the method for machining, die manufactured by the method for manufacturing and molded product molded using the die - Google Patents

Method for machining angular part/corner part, method for manufacturing die using the method for machining, die manufactured by the method for manufacturing and molded product molded using the die Download PDF

Info

Publication number
JP2013202750A
JP2013202750A JP2012076037A JP2012076037A JP2013202750A JP 2013202750 A JP2013202750 A JP 2013202750A JP 2012076037 A JP2012076037 A JP 2012076037A JP 2012076037 A JP2012076037 A JP 2012076037A JP 2013202750 A JP2013202750 A JP 2013202750A
Authority
JP
Japan
Prior art keywords
corner
cutting
angular
cutting edge
processing method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012076037A
Other languages
Japanese (ja)
Other versions
JP6006959B2 (en
Inventor
Eiji Shamoto
英二 社本
Norikazu Suzuki
教和 鈴木
Manabu Mochizuki
望月  学
Takayuki Mochizuki
貴之 望月
Kazushi Obata
一志 小畠
Seishi Hamada
晴司 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUGA ZOKEI KOGYO KK
Nagoya University NUC
Taga Electric Co Ltd
Allied Material Corp
Original Assignee
SUGA ZOKEI KOGYO KK
Nagoya University NUC
Taga Electric Co Ltd
Allied Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUGA ZOKEI KOGYO KK, Nagoya University NUC, Taga Electric Co Ltd, Allied Material Corp filed Critical SUGA ZOKEI KOGYO KK
Priority to JP2012076037A priority Critical patent/JP6006959B2/en
Publication of JP2013202750A publication Critical patent/JP2013202750A/en
Application granted granted Critical
Publication of JP6006959B2 publication Critical patent/JP6006959B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Turning (AREA)
  • Milling, Broaching, Filing, Reaming, And Others (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the following problems: a highly accurate angular part or corner part cannot be produced by cutting for a die of a reflex reflector; the die is therefore manufactured by electroforming using an arrow-shaped pin; and thus labor and time are required; a manufacturing error tends to occur; and further high cost is required.SOLUTION: An angular part or a corner part can be highly accurately produced in even cutting by applying elliptic vibrations. Accordingly, when a cutting tool 21 with a cutting edge part including angular cutting edge ridge line parts 27 and 29 is used and cutting is performed in accordance with a tool path P, angular parts 11, 13 and 15 and three surfaces 5, 7 and 9 for forming a corner part where respective ends are gathered can be simultaneously finished in sweeping shapes of the cutting edge ridge line parts 27 and 29, and a recess 3 of a reflex reflector can be manufactured with the so-called one stroke.

Description

本発明は角部・角隅部の加工方法に係り、特に、金型のように閉じた三次元凹部に含まれる角部・角隅部の加工方法に関するものである。   The present invention relates to a method for processing corners / corner corners, and more particularly to a method for processing corners / corner corners included in a closed three-dimensional recess like a mold.

金型の加工や更には一般的な製品でも、図1に示すように閉じた三次元凹部内に角部や角部の隅に当たる角隅部を作り出す必要がある場合が少なくない。
そのような場合、従来は、逆の形状を図2のように、切削加工によって作り、その形状を例えば放電加工によって転写して目的の粗形状を作り出し、更に磨きをかけていた。そのため、精度を高く出せず、しかも手間が掛かって加工効率が低いだけでなく、コストも高くついていた。
Even in the processing of molds and even general products, it is often necessary to create corners that correspond to corners or corners in closed three-dimensional recesses as shown in FIG.
In such a case, conventionally, as shown in FIG. 2, the opposite shape is made by cutting, and the shape is transferred by, for example, electric discharge machining to produce a target rough shape, and further polished. For this reason, the accuracy is not high, and it takes time and effort, and not only the processing efficiency is low, but also the cost is high.

また、微細で複雑な形状を有する製品例として、リフレックスリフレクタと称される反射板がある。リフレックスリフレクタは自動車等に取り付けておくと、向かってくる他車から放射された光を、その他車の方向に折り返し反射するため、自車が不点灯時であっても自車の存在をその他車に知らせることができるようになっている。
このリフレックスリフレクタは、反転型で製作した成型品であるが、上記した放電加工により作り出した金型では精度的に対応できず、特許文献1に示すように、矢型状のピンを多数束ねてマトリクス状にし、これを電鋳メッキ処理に供して作り出した金型を使用していた。
しかしながら、この方法でも製作誤差が出易く、しかも上記した放電加工より更に手間が掛かっていた。
In addition, as an example of a product having a fine and complicated shape, there is a reflector called a reflex reflector. When the reflex reflector is attached to an automobile, etc., the light emitted from the other vehicle is reflected back in the direction of the other vehicle. The car can be informed.
Although this reflex reflector is a molded product produced by an inversion type, it cannot be accurately handled by a mold produced by the above-described electric discharge machining, and as shown in Patent Document 1, many arrow-shaped pins are bundled. In this way, a mold was used which was made into a matrix and subjected to electroforming plating treatment.
However, this method is also prone to manufacturing errors and takes more time than the above-described electric discharge machining.

特開2005−125649号公報JP 2005-125649 A

角部や角隅部を作り出す場合でも、切削加工できれば手間が掛からず加工効率が高くなるが、エンドミルのような回転工具による切削では回転半径を下回る角部を作り出すことができず、角部や角隅部を高い精度で作り出したい場合には不本意ながら上記のような手法を利用してきた。
本発明は上記従来の問題点に着目して為されたものであり、切削方式でありながら高精度の角部や角隅部を作り出せて、上記した課題を解決できる、新規且つ有用な加工方法を提供することを、その目的とする。
Even when creating corners and corners, if cutting can be done, labor is not required and machining efficiency increases.However, cutting with a rotary tool such as an end mill cannot produce corners that are less than the turning radius. The above-mentioned method has been used reluctantly to produce corners with high accuracy.
The present invention has been made paying attention to the above-mentioned conventional problems, and it is a novel and useful machining method that can solve the above-mentioned problems by creating high-precision corners and corners while being a cutting method. The purpose is to provide

本発明は上記課題を解決するためになされたものであり、請求項1の発明は、切削により閉じた凹部に含まれる角部・角隅部の加工方法において、切削工具に切削方向の運動成分を持つように楕円振動を加えながら被削材に対して相対的に切削運動させることを特徴とする加工方法である。   SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and the invention of claim 1 is directed to a cutting tool motion component in a cutting direction in a method of processing corners / corner corners included in a recess closed by cutting. The machining method is characterized in that an elliptical vibration is applied so as to have a cutting motion relative to the work material.

請求項2の発明は、請求項1に記載した角部・角隅部の加工方法において、切削方向を変えながら連続して切削運動させることを特徴とする加工方法である。   A second aspect of the present invention is the processing method for corners / corner corners according to the first aspect, wherein the cutting is continuously performed while changing the cutting direction.

請求項3の発明は、請求項1または2に記載した角部・角隅部の加工方法において、逃げ面が切削済みの面から離れる向きに楕円運動を加えながら切削運動させることを特徴とする加工方法である。   The invention of claim 3 is characterized in that in the corner / corner corner machining method according to claim 1 or 2, the cutting movement is performed while applying an elliptical movement in a direction in which the flank faces away from the cut surface. It is a processing method.

請求項4の発明は、請求項1から3のいずれかに記載した角部・角隅部の加工方法において、送り運動も加えてその送り運動によって角部・角隅部を形成する面も同時に作り出すことを特徴とする加工方法である。   According to a fourth aspect of the present invention, in the corner / corner corner processing method according to any one of the first to third aspects, in addition to the feeding motion, the surfaces forming the corners / corner corners by the feeding motion are also simultaneously formed. It is a processing method characterized by producing.

請求項5の発明は、請求項1から3のいずれかに記載した角部・角隅部の加工方法において、切れ刃稜線部を備える刃先部を有する切削工具を用い、その切れ刃稜線部の輪郭の掃引形状の転写で角部を形成する面も同時に作り出すことを特徴とする加工方法である。   According to a fifth aspect of the present invention, in the corner / corner corner processing method according to any one of the first to third aspects, a cutting tool having a cutting edge portion provided with a cutting edge ridge line portion is used. The processing method is characterized in that a surface that forms a corner is also created simultaneously by transferring the sweep shape of the contour.

請求項6の発明は、請求項5に記載した角部・角隅部の加工方法において、互いに直交する三つの角部と一つの角隅部で構成された凹部の形成に際し、V字状の切れ刃稜線部を備える刃先部を有する切削工具を用い、一方側の切れ刃稜線部をツールパスを含む面に存在するように調整しながら切削することで、切れ刃稜線部の輪郭の掃引形状の転写で前記角部と角隅部を形成する三面も同時に仕上げることを特徴とする加工方法である。   According to a sixth aspect of the present invention, in the corner / corner corner processing method according to the fifth aspect of the present invention, when forming a concave portion constituted by three corner portions and one corner portion orthogonal to each other, Using a cutting tool having a cutting edge with a cutting edge ridge line, and cutting while adjusting the cutting edge ridge line on one side to be present on the surface including the tool path, the sweep shape of the contour of the cutting edge ridge line In this processing, the three surfaces forming the corner and the corner are also simultaneously finished.

請求項7の発明は、請求項5または6に記載した角部・角隅部の加工方法において、複数の凹部を平面や曲面上に並べて形成することを特徴とする加工方法である。   The invention of claim 7 is the processing method for corners / corner corners according to claim 5 or 6, characterized in that a plurality of recesses are formed side by side on a flat surface or curved surface.

請求項8の発明は、請求項1から7のいずれかに記載した方法を利用して凹部に含まれる角部或いは角部及び角隅部を形成する工程を備える金型の製造方法である。
請求項9の発明は、請求項8の製造方法によって製造された金型である。
請求項10の発明は、請求項9の金型を用いて成形された成型品である。
Invention of Claim 8 is a manufacturing method of a metal mold | die provided with the process of forming the corner | angular part contained in a recessed part or a corner | angular part, and a corner corner using the method as described in any one of Claim 1-7.
A ninth aspect of the invention is a mold manufactured by the manufacturing method of the eighth aspect.
The invention of claim 10 is a molded product molded using the mold of claim 9.

本発明の角部・角隅部の加工方法によれば、手間の掛からない、切削により高い精度の角部・角隅部を作り出せる。   According to the corner / corner corner machining method of the present invention, it is possible to create corners / corner corners with high accuracy by cutting, which does not require time and effort.

本発明の角部・角隅部の加工方法を利用して製作する三次元構造体の例である。It is an example of the three-dimensional structure manufactured using the processing method of the corner | angular part and corner | angular corner part of this invention. 図1の三次元構造体を、従来の方法(放電加工)により製作する場合の説明図である。It is explanatory drawing in the case of manufacturing the three-dimensional structure of FIG. 1 by the conventional method (electric discharge machining). 本発明の角部・角隅部の加工方法を利用して角部・角隅部を作り出す場合の説明図である。It is explanatory drawing at the time of producing a corner | angular part and a corner corner using the processing method of a corner | angular part / corner corner part of this invention. 図1の三次元構造体を本発明の角部・角隅部の加工方法を利用して製作する場合の切削工具のツールパスの説明図である。It is explanatory drawing of the tool path of the cutting tool in the case of manufacturing the three-dimensional structure of FIG. 1 using the processing method of the corner | angular part and corner corner part of this invention. 本発明の実施の形態に係る角部・角隅部の加工方法による一つの凹部の製作直後の状態を示す斜視図である。It is a perspective view which shows the state immediately after manufacture of one recessed part by the processing method of the corner | angular part and corner | angular corner part which concerns on embodiment of this invention. 図5で使用した切削工具の刃先部の五面図である。FIG. 6 is a five-side view of a cutting edge portion of the cutting tool used in FIG. 5. 図5で製作した凹部の上面図と断面図である。It is the upper side figure and sectional drawing of the recessed part manufactured in FIG. 図5で製作中の切削工具の刃先部の当て姿勢と楕円振動の軌跡を示す側面図である。It is a side view which shows the contact attitude | position of the blade edge | tip part of the cutting tool in manufacture in FIG. 5, and the locus | trajectory of elliptical vibration. 図5で製作中の切削工具の刃先部の移動軌跡を示す斜視図である。It is a perspective view which shows the movement locus | trajectory of the blade edge | tip part of the cutting tool in manufacture in FIG. 図5の凹部を平面上に多数並べて製作したリフレックスリフレクタの金型の上面図である。It is a top view of the metal mold | die of the reflex reflector produced by arranging many recessed parts of FIG. 5 on a plane. 図5の凹部を曲面上に多数並べてリフレックスリフレクタの金型を製作する途中の段階を示す側面図である。FIG. 6 is a side view showing a stage in the middle of manufacturing a mold for a reflex reflector by arranging a large number of recesses in FIG. 5 on a curved surface.

A.一般の角部・角隅部の加工方法
図3(1)に示すように、予め粗く形成された被削材の角部に向かって、切削工具を用いて切削運動だけを与えて切削加工すると、角部で、切削速度がゼロになり、少なくともその近傍では極めて低い切削速度になる。
そのような低い切削速度においては、切りくずと工具すくい面との間、または仕上げ面と工具逃げ面との間で生じる摩擦力が垂下特性(速度が増加すると摩擦力が低下する特性)を持つため、自励振動の一つである摩擦振動(スティックスリップを含む)を生じやすいことが知られている。この振動を生じると、高い精度で、角部を作り出すことはできない。しかしながら、本発明では、切削工具Aに対して切削方向の運動成分を持つように、図中曲線で示す微小な高周波楕円振動(円振動を含む)を加えながら切削させるので、刃先が常に振動速度を持つため、実際の切削速度がゼロになることも、極めて小さくなることもない。そのため、摩擦振動の問題を生じない。
A. General Corner / Corner Corner Machining Method As shown in FIG. 3 (1), when a cutting tool is used to give only a cutting motion toward a corner of a work material that is formed in advance roughly, cutting is performed. At the corner, the cutting speed becomes zero, and at least in the vicinity thereof, the cutting speed is extremely low.
At such a low cutting speed, the friction force generated between the chip and the tool rake face or between the finished surface and the tool flank face has a drooping characteristic (characteristic that the friction force decreases as the speed increases). Therefore, it is known that frictional vibration (including stick-slip) that is one of self-excited vibrations is likely to occur. If this vibration occurs, the corner cannot be created with high accuracy. However, in the present invention, cutting is performed while applying a minute high-frequency elliptical vibration (including circular vibration) indicated by a curve in the drawing so that the cutting tool A has a motion component in the cutting direction. Therefore, the actual cutting speed does not become zero or extremely small. Therefore, the problem of frictional vibration does not occur.

また、そのような低い切削速度においては、被削材と工具材料の組み合わせによって、分離したばかりの被削材の新生面と工具表面が凝着しやすく、仕上げ面がむしれたり、工具表面がはく離するなどの問題を生じる。しかしながら、本発明では、上記したように刃先が常に振動速度を持つため、凝着現象は起り難い。さらに、切削速度(見かけの平均速度)より切削方向の最大振動速度を大きくすることで、振動周期ごとに工具が被削材から離脱するため、被削材の新生面が空気や切削油材で汚されることで化学的活性が低下し、凝着が抑制されるものと考えられる。   Also, at such a low cutting speed, the new surface of the work material that has just separated and the tool surface tend to adhere due to the combination of the work material and the tool material, and the finished surface may peel off or the tool surface may peel off. Cause problems. However, in the present invention, since the cutting edge always has a vibration speed as described above, the adhesion phenomenon hardly occurs. In addition, by increasing the maximum vibration speed in the cutting direction from the cutting speed (apparent average speed), the tool is detached from the work material at each vibration cycle, so the new surface of the work material becomes dirty with air or cutting oil. It is considered that the chemical activity is reduced and adhesion is suppressed.

また、振動軌跡を直線ではなく、楕円としたことで、切削方向と切り取り厚さの方向を含む面内で、切削の瞬間に、工具に相対的に切りくず流出方向の速度を持たせて、切りくずの流出を妨げる摩擦力が発生せず、逆に切りくずの流出を促進させることができる。また、切削方向と切れ刃の稜線方向を含む面内で、切削の瞬間に、いわゆる引き切り方向の速度を持たせて、包丁で切る時に引きながら切ると切れ易いように、切りくずの生成・排出を促進させることができる。実用的な(即ち、三次元的な)角部の加工では、楕円振動面を上記二つの間の面とすることで、両者の中間的な効果が得られ、いずれの場合にも、楕円振動を付加しない場合に比べて、大幅に切りくず生成・排出が容易になる。   In addition, by making the vibration trajectory not an straight line but an ellipse, in the plane including the cutting direction and the cutting thickness direction, at the moment of cutting, the tool has a speed in the chip discharge direction relative to the tool, The frictional force that prevents the chip from flowing out is not generated, and the chip outflow can be promoted. In addition, in the plane including the cutting direction and the ridge line direction of the cutting edge, at the moment of cutting, the speed of the so-called cutting direction is given, so that the chip can be generated and cut easily so that it is easy to cut while pulling with a knife. Emission can be promoted. In practical (ie, three-dimensional) corner processing, an elliptical vibration surface is used as the surface between the two to obtain an intermediate effect between the two. Compared with the case where no is added, chip generation / discharge is greatly facilitated.

なお、その切削方向の振動と切り取り厚さ方向の振動との位相関係については、逃げ面で仕上げ面を押しつぶす向きではなく、逃げ面(一つの平面とは限らず、実用的な切削では二つ以上の平面か曲面となる。これらのすべての面)が常に切削済の仕上げ面から離れる向きに楕円運動するように調整することで、鏡面仕上げが可能となる。   Note that the phase relationship between the vibration in the cutting direction and the vibration in the cutting thickness direction is not the direction in which the finished surface is crushed by the flank, but the flank (not necessarily a single plane, but two in practical cutting). The above-mentioned plane or curved surface (all these surfaces) can be mirror-finished by adjusting so that the elliptical motion of all these surfaces always away from the finished finished surface.

また、図3(2)に示すように、切削運動の方向を変えて連続したツールパスで角部を作り出すこともできる。
角部で切削方向が急に変化する前後では、切削方向に対する工具のすくい角と逃げ角が大きく変化する。角部前は、すくい角が(正の側に)大きい(刃が鋭い)ため、切削抵抗が小さく、切りくずの生成・排出が容易である。一方、角部後は、すくい角が小さい(負の側に絶対値が大きい、刃が鈍い)ため、切削抵抗が大きく、切りくずの生成・排出が困難になり、角の角度、被削材、工具の形状等によっては、切りくずの生成・排出が不可能になる場合もある。
また、角部後で特に背分力(切り取り厚さの方向、切削方向と切れ刃に垂直な方向の成分)が大きくなるため、被削材と工具、それらを支える機械構造等の変形によって所望の切り取りを実現できなくなり、所望の形状を作り出すことができなかったり、工具が欠損するなどの問題を生じる。金型鋼などの難削材では実用上不可能に近く、不可能でない場合にも、角部後の仕上げ面性状が劣化する(うねりやむしれが生じる等の問題がある)。
しかしながら、本発明では、楕円振動を与えるので、切削方向が変わっても、振動方向に対する相対的な振動軌跡が変化し難く、切削方向に対する振動効果をそのまま享受できるので、上記した切りくず生成・排出の促進により、特に背分力が低減され、変形による加工誤差やばりの問題が大幅に軽減され、高精度の角部を作り出せる。
また、角部直後の工具姿勢のままで工具が被削材から離脱する場合には、いわゆる出口ばりが大きくなったりする問題が考えられるが、上記した切りくず生成・排出の促進により、特に背分力が低減され、変形による加工誤差やばりの問題が大幅に軽減される。
Further, as shown in FIG. 3 (2), it is possible to create a corner portion with a continuous tool path by changing the direction of the cutting motion.
Before and after the cutting direction suddenly changes at the corner, the rake angle and clearance angle of the tool with respect to the cutting direction change greatly. In front of the corner, the rake angle is large (on the positive side) (the blade is sharp), so that the cutting resistance is small, and chip generation and discharge are easy. On the other hand, after the corner, the rake angle is small (absolute value on the negative side is large, the blade is dull), so the cutting resistance is large and it becomes difficult to generate and discharge chips. Depending on the shape of the tool, it may be impossible to generate and discharge chips.
In addition, the back force (direction of the cutting thickness, the component in the cutting direction and the direction perpendicular to the cutting edge) increases especially after the corners, so it is desirable to modify the work material and tool, and the mechanical structure that supports them. This makes it impossible to realize the desired cutting, resulting in problems such as failure to create a desired shape and missing tools. In difficult-to-cut materials such as mold steel, it is practically impossible, and even when it is not possible, the finished surface properties after the corners deteriorate (there are problems such as swell and whip).
However, in the present invention, since elliptical vibration is given, even if the cutting direction changes, the relative vibration trajectory relative to the vibration direction hardly changes, and the vibration effect with respect to the cutting direction can be enjoyed as it is. By promoting this, the back force is reduced, machining errors and flash problems due to deformation are greatly reduced, and highly accurate corners can be created.
In addition, when the tool is detached from the work material with the tool posture immediately after the corner, there may be a problem that the so-called exit beam becomes large. The component force is reduced, and the problem of machining errors and flash due to deformation is greatly reduced.

楕円振動の軌跡の一部が加工形状に転写されて残ることで、角部に若干の丸みが残ることとなるが、エンドミル工具などを(サブ)ミリメートルオーダの半径で回転させた場合と違って、楕円振動の振幅はマイクロメートルオーダの微小寸法とすることができ、一般的な製品(金型を含む)の角部として問題になることはない。
また、楕円振動の周波数は、一般には超音波領域の高周波を利用するため、比較的大きな機械構造は応答することができず、その結果ほとんど変形を生じないため加工精度に悪影響を及ぼすことはない。
When a part of the locus of elliptical vibration is transferred to the machining shape and remains, a slight roundness remains at the corner, but unlike when rotating an end mill tool or the like with a radius of (sub) millimeter order. The amplitude of the elliptical vibration can be as small as a micrometer order, and does not become a problem as a corner of a general product (including a mold).
In addition, since the frequency of elliptical vibration generally uses the high frequency in the ultrasonic region, a relatively large mechanical structure cannot respond, and as a result, hardly deforms, so that the machining accuracy is not adversely affected. .

上記したように、本発明の加工方法では、この楕円振動を利用することにより切削で角部を複数のツールパスでも連続したツールパスでも高精度に作り出すことに成功している。当該楕円振動は、特許第3500434号に記載のものであり、超音波を利用しミクロンオーダーで生成したものである。
なお、上記では角部に関して説明してきたが、角隅部は角部の隅の部位なので、上記したように角部を高精度で作り出せば、角隅部も高精度に作り出されることになる。
As described above, in the machining method of the present invention, by utilizing this elliptical vibration, a corner portion can be created with high accuracy by cutting even in a plurality of tool paths or continuous tool paths. The elliptical vibration is described in Japanese Patent No. 3500344, and is generated on the micron order using ultrasonic waves.
Although the corner portion has been described above, the corner portion is a portion of the corner portion. Therefore, if the corner portion is created with high accuracy as described above, the corner portion is also created with high accuracy.

本発明の加工の際には、上記した切削運動に、送り運動も加えれば角部を形成する面も同時に作り出すことができる。
例えば、図1に示した三次元形状を、図4に示すように、切削運動以外に、送り運動(等高線に沿った複数のツールパスでもよいし、らせん状につながったツールパスでもよい)を与えることにより、その送り運動に沿った形状の面を作り出すことができる。図4において、各ツールパスを角部近傍で角部稜線方向に見ると、図3に示すように切削が行われている。面は工具の刃先形状が送り運動方向に転写されて形成されるので、フラットバイトとRバイトのいずれを使用しても、送り運動を直線的にすれば図4(1)に示すように、平面を作り出せ、Rバイトを使用して送り運動を曲線的にすれば図4(2)に示すように、曲面を作り出せる。これは開いた三次元切削の場合と同様である。
In the machining according to the present invention, if a feeding motion is added to the above-described cutting motion, a surface forming a corner can be created at the same time.
For example, as shown in FIG. 4, the three-dimensional shape shown in FIG. 1 is fed with a feed motion (a plurality of tool paths along contour lines or a tool path connected in a spiral shape) in addition to the cutting motion. By giving, a surface having a shape along the feeding movement can be created. In FIG. 4, when each tool path is viewed in the corner ridge line direction in the vicinity of the corner, cutting is performed as shown in FIG. Since the surface is formed by transferring the shape of the cutting edge of the tool in the feed movement direction, as shown in FIG. If a plane can be created and the feed movement is made curved using an R bite, a curved surface can be created as shown in FIG. This is the same as in the case of open three-dimensional cutting.

B.リフレックスリフレクタの金型の製作例
上記した本発明の加工方法によれば、工具刃先の形状をそのまま転写することにより、その掃引形状として精度の高い角部や角隅部を作り出すこともできる。
従って、その一例として、連続した一つのツールパスにより、三面を同時に仕上げて製作したリフレックスリフレクタの金型の製作例を以下に説明する。
B. Example of Manufacturing Reflex Reflector Mold According to the above-described processing method of the present invention, by accurately transferring the shape of the tool blade edge as it is, a highly accurate corner or corner can be created as the sweep shape.
Therefore, as an example, a manufacturing example of a reflex reflector mold manufactured by finishing three surfaces simultaneously with one continuous tool path will be described below.

図5はブロック状の上面が平らな金属体1に閉じた凹部3を一つ形成した直後を示している。この凹部3は互いに直交する三角形状の三面5、7、9が鏡面で構成されており、この三面5、7、9の隣り合う面どうしの稜線部が角隅部11、13、15になっている。
この凹部3は切削工具21で切削されて形成されている。
FIG. 5 shows a state immediately after the formation of one closed recess 3 in the metal body 1 having a flat block-like upper surface. In this recess 3, three triangular surfaces 5, 7, 9 that are orthogonal to each other are configured as mirror surfaces, and the ridges between adjacent surfaces of the three surfaces 5, 7, 9 become corner corners 11, 13, 15. ing.
The recess 3 is formed by cutting with a cutting tool 21.

切削工具21の先端部の刃先部には、図6に示すように、すくい面23が形成されている。すくい面23は両側に先端部25からV字状に傾斜して延びる主切れ刃稜線部27、29が存在する平面になっており、工具の下面には傾斜した稜線部31を挟んで逃げ面33、35が形成されている。
切削工具21の刃先部の形状は、図7に示す金属体1に形成する凹部3に対応しており、その一部断面図に示すように、主切れ刃稜線部27、29の交差する刃先角αは、溝角θ(0)に対応し、主切れ刃稜線部27の傾斜角βは一方側の面5の傾斜角θ(1)に対応し、主切れ刃稜線部29の傾斜角γは他方側の面7、9の傾斜角θ(2)に対応している。
As shown in FIG. 6, a rake face 23 is formed at the cutting edge of the tip of the cutting tool 21. The rake face 23 is a flat surface in which main cutting edge ridge lines 27 and 29 extending in a V shape from the tip 25 are present on both sides, and a flank face sandwiching the inclined ridge line 31 on the lower surface of the tool. 33 and 35 are formed.
The shape of the cutting edge portion of the cutting tool 21 corresponds to the concave portion 3 formed in the metal body 1 shown in FIG. 7, and the cutting edge where the main cutting edge ridge line portions 27 and 29 intersect as shown in a partial cross-sectional view thereof. The angle α corresponds to the groove angle θ (0), the inclination angle β of the main cutting edge ridge line portion 27 corresponds to the inclination angle θ (1) of the surface 5 on one side, and the inclination angle of the main cutting edge ridge line portion 29. γ corresponds to the inclination angle θ (2) of the other surfaces 7 and 9.

図8に示すように、この切削工具21を金属体1に対して姿勢保持する。この姿勢では、進行方向後側には逃げ角εが形成されている。上記した姿勢で、切削工具21に矢印に示すような超音波楕円振動を与える。この楕円振動面は切削方向と切り取り厚さの方向を含む面と、切削方向と切れ刃の稜線方向を含む面との間の面になっている。また、楕円振動面は、逃げ面33、35が切削済みの新生面から離れる向きを持っている。   As shown in FIG. 8, the cutting tool 21 is held in a posture with respect to the metal body 1. In this posture, a clearance angle ε is formed on the rear side in the traveling direction. In the posture described above, ultrasonic elliptical vibration as shown by an arrow is given to the cutting tool 21. This elliptical vibration surface is a surface between a surface including the cutting direction and the direction of the cutting thickness and a surface including the cutting direction and the ridge line direction of the cutting edge. Further, the elliptical vibration surface has a direction in which the flank surfaces 33 and 35 are separated from the cut new surface.

上記姿勢を保持したまま、切削工具21の刃先部の先端部25を、金属体1内に送り込んで進行させると、主切れ刃稜線部27、先端部25、および主切れ刃稜線部29と連続した輪郭が金属体1に転写される。
図5、図7の矢印に示すツールパスPは連続したワンパス(一筆書き)可能になっており、切削工具21をこのツールパスPに合わせて進行させると、図10に示すようにワンパス(一筆書き)でこの輪郭の移動軌跡である掃引形状が凹部3として作り出される。
When the tip 25 of the cutting edge of the cutting tool 21 is fed into the metal body 1 and advanced while maintaining the above posture, the main cutting edge ridge line 27, the leading edge 25, and the main cutting edge ridge line 29 are continuous. The finished contour is transferred to the metal body 1.
The tool path P indicated by the arrows in FIGS. 5 and 7 is capable of continuous one-pass (one-stroke writing). When the cutting tool 21 is advanced along the tool path P, as shown in FIG. The sweep shape which is the movement trajectory of the contour is created as the concave portion 3.

刃先部の先端部25とそれを挟む主切れ刃稜線部27、29の輪郭の移動軌跡によって稜線部が作り出される。この稜線部が凹部3の角隅部11、13になる。
主切れ刃稜線部27はツールパスPを含む面に存在するように設定されているので、その輪郭の移動軌跡により一つの面5が作り出される。また、主切れ刃稜線部29はツールパスPを含む面と交差し、且つツールパスPが折れ曲がっているので、その輪郭の移動軌跡により、二つの面7、9が作り出され、この二つの面7、9の間の稜線部で角隅部15が作り出される。
従って、凹部3では、互いに直交する三角形状の三面5、7、9が作り出され、それぞれの稜線が角隅部になっている。作り出された三面5、7、9は鏡面になっており、誤差を生じさせる「磨き」は不要となっている。
A ridge line portion is created by the movement trajectory of the contours of the leading edge portion 25 of the blade edge portion and the main cutting edge ridge line portions 27 and 29 sandwiching it. This ridge portion becomes the corner portions 11 and 13 of the recess 3.
Since the main cutting edge ridge line portion 27 is set so as to exist on the surface including the tool path P, one surface 5 is created by the movement locus of the contour. Moreover, since the main cutting edge ridge line portion 29 intersects the surface including the tool path P and the tool path P is bent, the two surfaces 7 and 9 are created by the movement trajectory of the contour. A corner 15 is created at the ridge between 7 and 9.
Therefore, in the recessed part 3, the triangular three surfaces 5, 7, and 9 orthogonal to each other are created, and each ridgeline is a corner part. The created three surfaces 5, 7, and 9 are mirror surfaces, and no “polishing” that causes errors is required.

なお、上記では、1回の切削で凹部3を製作しているが、回数は限定されない。従って、凹部3を深くしたい場合には、凹部3の深さ方向に少しずつ工具を送り、複数回の切削(複数回のツールパス)で加工しても良い。
また、三面を同時に仕上げなくても、図3(1)に示すように、一面ずつ3回に分けて仕上げてもよく、図3(2)に示すように、二面を仕上げた後、三つ目の面のみを仕上げても良い。
In addition, although the recessed part 3 is manufactured by one cutting in the above, the frequency | count is not limited. Therefore, when it is desired to deepen the concave portion 3, the tool may be fed little by little in the depth direction of the concave portion 3 and processed by a plurality of times of cutting (a plurality of tool paths).
Moreover, even if the three sides are not finished at the same time, as shown in FIG. 3 (1), the finish may be divided into three times for each side, as shown in FIG. 3 (2). Only the second side may be finished.

この凹部3を多数並べて製作すると、図10に示すようなリフレックスリフレクタの金型37となる。
上記の図10に示す金型37は金属体1の平面に直交三面体の再帰反射形状を作り出したものであるが、図11に示すように切削工具21の工具姿勢を傾けて矢印に示す方向に進行させることで、自由曲面に作り出すこともできる。
When a large number of the recesses 3 are arranged, a reflex reflector mold 37 as shown in FIG. 10 is obtained.
The mold 37 shown in FIG. 10 above is one in which a retroreflective shape of an orthogonal trihedron is created on the plane of the metal body 1, but the tool posture of the cutting tool 21 is tilted as shown in FIG. It is possible to create a free-form surface by proceeding to.

以上、本発明の実施の形態について詳述してきたが、具体的構成は、この実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲における設計の変更などがあっても発明に含まれる。
例えば、上記実施の形態では、被切削物は、金属体に限定されず、切削できるものであればよく、アモルファス状態のNi系のコーティング層やガラスや、更には、超硬合金やSiCなどのセラミックスも含まれる。
The embodiment of the present invention has been described in detail above. However, the specific configuration is not limited to this embodiment, and the present invention can be changed even if there is a design change without departing from the gist of the present invention. included.
For example, in the above-described embodiment, the workpiece is not limited to a metal body and may be any material that can be cut, such as an amorphous Ni-based coating layer or glass, and further, a cemented carbide or SiC. Ceramics are also included.

本発明の角隅加工方法は、高い精度の角隅度が求められる金型の製造業での実施に特に適している。   The corner corner processing method of the present invention is particularly suitable for implementation in a mold manufacturing industry that requires a highly accurate corner angle.

1…金属体 3…凹部
5、7、9…面 11、13,15…角隅部
21…切削工具 23…すくい面
25…先端部 27、29…主切れ刃稜線部
31…稜線部 33、35…逃げ面
α…刃先角 β、γ…傾斜角
ε…逃げ角
θ(0)…溝角 θ(1)、θ(2)…傾斜角
DESCRIPTION OF SYMBOLS 1 ... Metal body 3 ... Concave part 5, 7, 9 ... Surface 11, 13, 15 ... Corner corner part 21 ... Cutting tool 23 ... Rake face 25 ... Tip part 27, 29 ... Main cutting edge ridgeline part 31 ... Ridge line part 33, 35 ... Flank α ... Cutting edge angle β, γ ... Tilt angle ε ... Flank angle θ (0) ... Groove angle θ (1), θ (2) ... Tilt angle

Claims (10)

切削により閉じた凹部に含まれる角部・角隅部の加工方法において、切削工具に切削方向の運動成分を持つように楕円振動を加えながら被削材に対して相対的に切削運動させることを特徴とする加工方法。   In the processing method of corners and corners included in recesses closed by cutting, the cutting tool is caused to perform a cutting motion relative to the work material while applying an elliptical vibration so as to have a motion component in the cutting direction. A characteristic processing method. 請求項1に記載した角部・角隅部の加工方法において、
切削方向を変えながら連続して切削運動させることを特徴とする加工方法。
In the processing method of the corner | angular part and corner | corner corner part described in Claim 1,
A machining method characterized by continuously making a cutting motion while changing a cutting direction.
請求項1または2に記載した角部・角隅部の加工方法において、
逃げ面が切削済みの面から離れる向きに楕円運動を加えながら切削運動させることを特徴とする加工方法。
In the processing method of the corner | angular part and corner | corner corner part described in Claim 1 or 2,
A machining method characterized by performing a cutting motion while applying an elliptical motion in a direction in which the flank faces away from the cut surface.
請求項1から3のいずれかに記載した角部・角隅部の加工方法において、
送り運動も加えてその送り運動によって角部・角隅部を形成する面も同時に作り出すことを特徴とする加工方法。
In the processing method of the corner | angular part and corner | corner corner part in any one of Claim 1 to 3,
A machining method characterized in that in addition to a feed movement, a surface that forms corners and corners is simultaneously created by the feed movement.
請求項1から3のいずれかに記載した角部・角隅部の加工方法において、
切れ刃稜線部を備える刃先部を有する切削工具を用い、その切れ刃稜線部の輪郭の掃引形状の転写で角部を形成する面も同時に作り出すことを特徴とする加工方法。
In the processing method of the corner | angular part and corner | corner corner part in any one of Claim 1 to 3,
A machining method characterized by using a cutting tool having a cutting edge portion having a cutting edge ridge line portion, and simultaneously creating a surface forming a corner portion by transferring a sweep shape of the contour of the cutting edge ridge line portion.
請求項5に記載した角部・角隅部の加工方法において、
互いに直交する三つの角部と一つの角隅部で構成された凹部の形成に際し、V字状の切れ刃稜線部を備える刃先部を有する切削工具を用い、一方側の切れ刃稜線部をツールパスを含む面に存在するように調整しながら切削することで、切れ刃稜線部の輪郭の掃引形状の転写で前記角部と角隅部を形成する三面も同時に仕上げることを特徴とする加工方法。
In the processing method of the corner | angular part and corner | angular corner part described in Claim 5,
When forming a recess composed of three corners and one corner that are orthogonal to each other, a cutting tool having a cutting edge portion having a V-shaped cutting edge ridge line portion is used, and the cutting edge ridge line portion on one side is used as a tool. A machining method characterized by simultaneously finishing the three surfaces forming the corner and the corner by transferring the sweep shape of the contour of the cutting edge ridge line by cutting while adjusting to be present on the surface including the path .
請求項5または6に記載した角部・角隅部の加工方法において、
複数の凹部を平面や曲面上に並べて形成することを特徴とする加工方法。
In the processing method of the corner | angular part and corner | angular corner part described in Claim 5 or 6,
A processing method characterized by forming a plurality of concave portions side by side on a flat surface or curved surface.
請求項1から7のいずれかに記載した方法を利用して凹部に含まれる角部或いは角部及び角隅部を形成する工程を備える金型の製造方法。   The manufacturing method of a metal mold | die provided with the process of forming the corner | angular part contained in a recessed part or a corner | angular part, and a corner | angular corner part using the method in any one of Claim 1-7. 請求項8の製造方法によって製造された金型。   A mold manufactured by the manufacturing method according to claim 8. 請求項9の金型を用いて成形された成型品。   A molded product molded using the mold according to claim 9.
JP2012076037A 2012-03-29 2012-03-29 Method for forming recess, corner corner finishing method and mold manufacturing method Active JP6006959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012076037A JP6006959B2 (en) 2012-03-29 2012-03-29 Method for forming recess, corner corner finishing method and mold manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012076037A JP6006959B2 (en) 2012-03-29 2012-03-29 Method for forming recess, corner corner finishing method and mold manufacturing method

Publications (2)

Publication Number Publication Date
JP2013202750A true JP2013202750A (en) 2013-10-07
JP6006959B2 JP6006959B2 (en) 2016-10-12

Family

ID=49522415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012076037A Active JP6006959B2 (en) 2012-03-29 2012-03-29 Method for forming recess, corner corner finishing method and mold manufacturing method

Country Status (1)

Country Link
JP (1) JP6006959B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111055094A (en) * 2019-12-30 2020-04-24 福建夜光达科技股份有限公司 Manufacturing method of microprism mold for reducing splicing hidden bands
CN111880471A (en) * 2020-07-03 2020-11-03 哈尔滨工业大学 Calculation method for cutting track of ultrasonic elliptical vibration cutting technology
JP2020533637A (en) * 2017-09-11 2020-11-19 オラフォル アメリカズ インコーポレイテッド How to make a retroreflective prism with a polygonal aperture and its device
WO2022030475A1 (en) * 2020-08-05 2022-02-10 ナルックス株式会社 Manufacturing method for retroreflective optical element mold, and manufacturing method for retroreflective optical element
JP2022087422A (en) * 2020-12-01 2022-06-13 芝浦機械株式会社 Processing machine and manufacturing method of workpiece

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111151978A (en) * 2020-01-08 2020-05-15 孔令豹 Precision machining process of integrated metal pyramid reflector

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192001A (en) * 1987-10-02 1989-04-11 Taga Electric Co Ltd Supersonic vibration cutting method and device therefor
JPH01109003A (en) * 1987-10-22 1989-04-26 Matsushita Electric Works Ltd Cutting tool
JPH01316114A (en) * 1988-06-14 1989-12-21 Amada Co Ltd Two-axis control for v-shaped groove working machine
JPH024716U (en) * 1988-06-17 1990-01-12
JPH0768401A (en) * 1993-09-01 1995-03-14 Eiji Shamoto Vibrational cutting work method and vibrational cutting work device
JP2003127595A (en) * 2001-10-23 2003-05-08 Towa Corp Engraving device and method
JP2004249369A (en) * 2003-02-18 2004-09-09 Towa Corp Cutting method of workpiece and workpiece
JP2004345017A (en) * 2003-05-22 2004-12-09 Canon Inc Method and device for grooving
JP2005138264A (en) * 2003-11-10 2005-06-02 Canon Inc Cutting method and cutting apparatus
JP2009255275A (en) * 2008-03-19 2009-11-05 Panasonic Corp Cutting device, machining method, and die machined by the machining method
JP2011104664A (en) * 2009-11-12 2011-06-02 Nippori Sekkei:Kk Machining device and method for pyramid recessed part

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192001A (en) * 1987-10-02 1989-04-11 Taga Electric Co Ltd Supersonic vibration cutting method and device therefor
JPH01109003A (en) * 1987-10-22 1989-04-26 Matsushita Electric Works Ltd Cutting tool
JPH01316114A (en) * 1988-06-14 1989-12-21 Amada Co Ltd Two-axis control for v-shaped groove working machine
JPH024716U (en) * 1988-06-17 1990-01-12
JPH0768401A (en) * 1993-09-01 1995-03-14 Eiji Shamoto Vibrational cutting work method and vibrational cutting work device
JP2003127595A (en) * 2001-10-23 2003-05-08 Towa Corp Engraving device and method
JP2004249369A (en) * 2003-02-18 2004-09-09 Towa Corp Cutting method of workpiece and workpiece
JP2004345017A (en) * 2003-05-22 2004-12-09 Canon Inc Method and device for grooving
JP2005138264A (en) * 2003-11-10 2005-06-02 Canon Inc Cutting method and cutting apparatus
JP2009255275A (en) * 2008-03-19 2009-11-05 Panasonic Corp Cutting device, machining method, and die machined by the machining method
JP2011104664A (en) * 2009-11-12 2011-06-02 Nippori Sekkei:Kk Machining device and method for pyramid recessed part

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020533637A (en) * 2017-09-11 2020-11-19 オラフォル アメリカズ インコーポレイテッド How to make a retroreflective prism with a polygonal aperture and its device
JP7241740B2 (en) 2017-09-11 2023-03-17 オラフォル アメリカズ インコーポレイテッド Method and device for fabricating retroreflective prisms with polygonal apertures
CN111055094A (en) * 2019-12-30 2020-04-24 福建夜光达科技股份有限公司 Manufacturing method of microprism mold for reducing splicing hidden bands
CN111055094B (en) * 2019-12-30 2021-11-02 福建夜光达科技股份有限公司 Manufacturing method of microprism mold for reducing splicing hidden bands
CN111880471A (en) * 2020-07-03 2020-11-03 哈尔滨工业大学 Calculation method for cutting track of ultrasonic elliptical vibration cutting technology
CN111880471B (en) * 2020-07-03 2022-06-10 哈尔滨工业大学 Calculation method for cutting track of ultrasonic elliptical vibration cutting technology
WO2022030475A1 (en) * 2020-08-05 2022-02-10 ナルックス株式会社 Manufacturing method for retroreflective optical element mold, and manufacturing method for retroreflective optical element
JP7033368B1 (en) * 2020-08-05 2022-03-10 ナルックス株式会社 A method for manufacturing a mold for a retroreflective optical element and a method for manufacturing a retroreflective optical element.
JP2022087422A (en) * 2020-12-01 2022-06-13 芝浦機械株式会社 Processing machine and manufacturing method of workpiece
JP7089574B2 (en) 2020-12-01 2022-06-22 芝浦機械株式会社 Processing machine and manufacturing method of workpiece

Also Published As

Publication number Publication date
JP6006959B2 (en) 2016-10-12

Similar Documents

Publication Publication Date Title
JP6006959B2 (en) Method for forming recess, corner corner finishing method and mold manufacturing method
JP6119916B2 (en) Cutting inserts and cutting tools
JP6262850B2 (en) Cutting insert, cutting tool, and manufacturing method of cut workpiece
WO2012020784A1 (en) Cutting insert, cutting tool, and method for producing cut article using cutting insert and cutting tool
US8708609B2 (en) Gear milling cutter as well as a replaceable milling insert therefor
JP7061371B2 (en) Machine parts and their applications in cutting
JP5379140B2 (en) Cutting inserts for chip removal machining of processed products
US10343226B2 (en) Cutting insert and cutting tool
JP6240559B2 (en) Drill and drill manufacturing method
US11400524B2 (en) Drill and method of producing drilled product
US11890687B2 (en) Milling tool and workpiece machining method
KR20090078791A (en) Modular drilling tool and method for the production thereof
KR20180090361A (en) Composite Machining Tools
WO2017213026A1 (en) Micromachining method, die manufacturing method, and micromachining apparatus
JP2017217720A5 (en)
CN111670081A (en) End mill and machining method
JP2007313590A (en) Thread cutting tip, and its manufacturing method
JP2019202402A (en) Reamer and reamer manufacturing method
WO2018003873A1 (en) Cutting insert
JPH1080816A (en) Solid ball end mill
RU2456130C2 (en) Method of shaping workpiece wavy surface by planning
US20220032381A1 (en) Ball end mill and cutting insert
JP2020082208A (en) Cutting insert, cutting edge replaceable rotary cutting tool and usage of cutting edge replaceable cutting tool
RU2282524C2 (en) Articles planing method
US11642748B2 (en) Machining program creation method, workpiece machining method, and machine tool control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160912

R150 Certificate of patent or registration of utility model

Ref document number: 6006959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250