JP5998368B2 - Method for manufacturing electrochemical device - Google Patents

Method for manufacturing electrochemical device Download PDF

Info

Publication number
JP5998368B2
JP5998368B2 JP2012270709A JP2012270709A JP5998368B2 JP 5998368 B2 JP5998368 B2 JP 5998368B2 JP 2012270709 A JP2012270709 A JP 2012270709A JP 2012270709 A JP2012270709 A JP 2012270709A JP 5998368 B2 JP5998368 B2 JP 5998368B2
Authority
JP
Japan
Prior art keywords
electrode group
separator
case
pressure
electrochemical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012270709A
Other languages
Japanese (ja)
Other versions
JP2014116237A (en
Inventor
澤井 岳彦
岳彦 澤井
慎治 齊藤
慎治 齊藤
和憲 浦尾
和憲 浦尾
潤 中川
潤 中川
一真 花井
一真 花井
充博 松本
充博 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEI Corp
Original Assignee
SEI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEI Corp filed Critical SEI Corp
Priority to JP2012270709A priority Critical patent/JP5998368B2/en
Publication of JP2014116237A publication Critical patent/JP2014116237A/en
Application granted granted Critical
Publication of JP5998368B2 publication Critical patent/JP5998368B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Description

本発明は電気化学デバイス、特にリチウム二次電池またはリチウムイオンキャパシタに関する。   The present invention relates to an electrochemical device, particularly a lithium secondary battery or a lithium ion capacitor.

リチウム二次電池やリチウムイオンキャパシタに代表される電気化学デバイスは近年、車載用途に開発されつつありデバイスの長寿命化が課題となっている。この対策として、(a)正・負極材の改良、(b)集電箔の改良、(c)セパレータの改良など色々な解決策が提案されてきた(特許文献1〜3)。   In recent years, electrochemical devices typified by lithium secondary batteries and lithium ion capacitors are being developed for in-vehicle applications, and it is an issue to extend the life of the devices. As countermeasures, various solutions such as (a) improvement of positive / negative electrode materials, (b) improvement of current collector foil, and (c) improvement of separator have been proposed (Patent Documents 1 to 3).

しかしながら、上記(a)、(b)および(c)の対策を講じても電気化学デバイスの長寿命化に課題がある。
例えば、電池ケース内に正・負極電極と当該電極間を介して挿入されているセパレータからなる電極捲回群または積層電極群を有するリチウム二次電池において、電極群に所定の一定圧力が印加されていなければ、セパレータと正もしくは負極電極との密着性が阻害されてセパレータとの界面で空間を生じたり、また接触していても触れているだけで電解液の移動が容易でなくなったりするため、電池の抵抗が大きくなり、さらには充放電中にその悪影響が増大して早期に寿命となる問題がある。
However, even if the measures (a), (b) and (c) are taken, there is a problem in extending the lifetime of the electrochemical device.
For example, in a lithium secondary battery having an electrode winding group or a stacked electrode group consisting of a positive and negative electrode and a separator inserted between the electrodes in a battery case, a predetermined constant pressure is applied to the electrode group. Otherwise, the adhesion between the separator and the positive or negative electrode will be hindered, creating a space at the interface with the separator, or even if it is in contact, the electrolyte solution will not be easy to move. In addition, there is a problem that the resistance of the battery is increased, and further, its adverse effect is increased during charging / discharging, resulting in an early life.

このため、リチウム電池における電極群への加圧が検討されている。例えば円筒形電池や角形電池の金属等のケースの場合、電極群総厚さや電極群直径が電池ケースの面間や内径より大きいと、大きく加圧されることになる。また、ラミネートフィルムを電池ケースとして用いるパウチ形セルの場合には、真空に減圧することで加圧される。
これらの加圧方法により電極に圧力が加わり、電極の膨張収縮を制御できて長寿命化が図れる。
しかしながら、セパレータとしてフィルムセパレータを使用する場合は、組立時に電池ケースに挿入できない場合や、無理に加圧をかけすぎるとフィルムを損傷して短絡を生じ、場合によっては安全性を損ねる場合があるという問題がある。
For this reason, the pressurization to the electrode group in a lithium battery is examined. For example, in the case of a cylindrical battery or a metal case of a rectangular battery, when the total thickness of the electrode group and the electrode group diameter are larger than the distance between the surfaces of the battery case and the inner diameter, the pressure is greatly increased. In the case of a pouch-type cell using a laminate film as a battery case, it is pressurized by reducing the pressure to a vacuum.
By applying pressure to these electrodes, pressure is applied to the electrodes, and the expansion and contraction of the electrodes can be controlled, thereby extending the life.
However, when a film separator is used as the separator, it cannot be inserted into the battery case during assembly, or if excessive pressure is applied, the film may be damaged, resulting in a short circuit, which may impair safety in some cases. There's a problem.

従来、正極と負極とをセパレータを介して積層した発電要素を有し、ラミネートフィルムを電池外装材として用いて、その発電要素の周縁部を熱融着にて接合することにより、発電要素を密封している薄板状のラミネート型電池と、このラミネート型電池を単独でまたは積層した状態で収納する電池ケースと、内部に封入した流体により、この単独のラミネート型電池または積層状態のラミネート型電池を電池ケースの内部で加圧する加圧バッグとを備えている電池パックが知られている(特許文献4)。
しかしながら、加圧バッグを挿入することで電池の薄型化に困難になるという問題がある。また、加圧バッグを準備しなければならず、製造工程が複雑になるという問題がある。
Conventionally, it has a power generation element in which a positive electrode and a negative electrode are laminated via a separator, and the power generation element is sealed by joining the peripheral edge of the power generation element by thermal fusion using a laminate film as a battery exterior material. A laminated laminate type battery, a battery case for storing the laminated type battery alone or in a stacked state, and a single laminated type battery or a laminated type laminated battery by a fluid sealed inside. A battery pack including a pressure bag that pressurizes inside a battery case is known (Patent Document 4).
However, there is a problem that it becomes difficult to reduce the thickness of the battery by inserting the pressure bag. In addition, there is a problem that a pressure bag must be prepared and the manufacturing process becomes complicated.

特許第3867030号公報Japanese Patent No. 3867030 国際公開WO2011/049153号公報International Publication No. WO2011 / 049153 特開2009−81048号公報JP 2009-81048 A 特開2012−129009号公報JP 2012-129209 A

本発明は以上のような問題に対処するためになされたもので、リチウム二次電池やリチウムイオンキャパシタなどの電気化学デバイスのケース内で正・負極電極群に適正な圧力を印加することで、長寿命な電気化学デバイスの提供を目的とする。   The present invention was made to cope with the above problems, and by applying an appropriate pressure to the positive and negative electrode groups in the case of an electrochemical device such as a lithium secondary battery or a lithium ion capacitor, The purpose is to provide a long-life electrochemical device.

本発明は、ケース内に収容され、正極および負極間にセパレータを介して、捲回または積層してなる電極群に有機電解液を浸透または浸積させてリチウムイオンの吸蔵・放出を繰返し行なう電気化学デバイスであって、上記セパレータが織布または不織布製のセパレータであり、上記電極群の主面に0.3〜1.1kgf/cm2の圧力が印加されていることを特徴とする。 The present invention is an electric device in which lithium ions are repeatedly occluded and released by infiltrating or immersing an organic electrolyte in a group of electrodes wound or laminated through a separator between a positive electrode and a negative electrode. In the chemical device, the separator is a woven or non-woven separator, and a pressure of 0.3 to 1.1 kgf / cm 2 is applied to a main surface of the electrode group.

また、本発明の電気化学デバイスにおける電極群は、上記ケース収容前の該電極群製造時の総厚さまたは群径をL1、上記ケースの対向する内壁面間の長さをL0とするとき、L1≧L0となるように設計されており、上記セパレータの圧縮可能な緩衝作用を利用して上記ケースに収容後、上記セパレータの復元力により上記電極群の主面に0.3〜1.1kgf/cm2の圧力が印加されることを特徴とする。
ここで、電極群製造時の群径は捲回された電極群の最大径をいう。
また、上記電極群全体をテープにより締め付けることにより上記電極群の主面に0.3〜1.1kgf/cm2の圧力が印加されることを特徴とする。
In the electrochemical device of the present invention, the total thickness or group diameter at the time of manufacturing the electrode group before housing the case is L 1 , and the length between the opposing inner wall surfaces of the case is L 0 . Is designed so that L 1 ≧ L 0, and is accommodated in the case by using the compressible buffering action of the separator, and then the main surface of the electrode group is 0.3 by the restoring force of the separator. A pressure of ˜1.1 kgf / cm 2 is applied.
Here, the group diameter at the time of manufacturing the electrode group refers to the maximum diameter of the wound electrode group.
Further, a pressure of 0.3 to 1.1 kgf / cm 2 is applied to the main surface of the electrode group by fastening the entire electrode group with a tape.

本発明の電気化学デバイスがリチウム二次電池またはリチウムイオンキャパシタであることを特徴とする。   The electrochemical device of the present invention is a lithium secondary battery or a lithium ion capacitor.

本発明の電気化学デバイスに用いるセパレータは、織布または不織布製のセパレータであるので、合成樹脂製のフィルムセパレータに比較して、電極面への接触が充放電中の電極の膨張収縮に対して追従するように緩衝体として作用しやすくなる。また、それぞれ対向する正、負極面に対して当該セパレータを介して0.3〜1.1kgf/cm2の圧力が加えられていることで電解液の移動がより容易になる。その結果、電気化学デバイスの長寿命が図れる。 Since the separator used in the electrochemical device of the present invention is a woven or non-woven separator, the contact with the electrode surface is less affected by the expansion and contraction of the electrode during charging / discharging than the synthetic resin film separator. It becomes easy to act as a buffer so as to follow. Moreover, the movement of electrolyte solution becomes easier because the pressure of 0.3-1.1 kgf / cm < 2 > is applied via the said separator with respect to the positive and negative electrode surfaces which respectively oppose. As a result, the lifetime of the electrochemical device can be increased.

角形リチウム二次電池の構成を示す斜視図である。It is a perspective view which shows the structure of a square lithium secondary battery. 電極群への加圧力が印加される方向の断面図である。It is sectional drawing of the direction where the applied pressure to an electrode group is applied.

本発明の一例として、角形リチウム二次電池の例について図1を参照して説明する。図1はリチウム二次電池の構成を示す斜視図である。
図1に示すように、リチウム二次電池1は、対向する内壁面間との距離長さをL0とするケース2内に総厚さをLとする電極群3が収容され、この電極群3に電気的に接続される正・負極用タブ4がケース本体上部2a部分よりケース外部に引き出されている。電極群3をケース2に収容し、ケース本体上部2aにより封止することでリチウム二次電池1が得られる。この電極群3に有機電解液を浸透または浸積させてリチウムイオンの吸蔵・放出を繰返し行なう。本発明はリチウムイオンキャパシタにも応用される。
As an example of the present invention, an example of a prismatic lithium secondary battery will be described with reference to FIG. FIG. 1 is a perspective view showing a configuration of a lithium secondary battery.
As shown in FIG. 1, a lithium secondary battery 1 includes an electrode group 3 having a total thickness L accommodated in a case 2 having a distance length L 0 between opposing inner wall surfaces. A positive / negative electrode tab 4 that is electrically connected to 3 is pulled out of the case body from the upper portion 2a of the case body. The lithium secondary battery 1 is obtained by housing the electrode group 3 in the case 2 and sealing it with the case body upper part 2a. The organic electrolyte is permeated or immersed in the electrode group 3 to repeatedly occlude and release lithium ions. The present invention is also applied to a lithium ion capacitor.

本発明は、電極群3に使用されるセパレータを織布または不織布製のセパレータとして、かつ電極群3の主面3aへの加圧力Fが0.3〜1.1kgf/cm2、好ましくは0.8〜1.0kgf/cm2となるようにする。
加圧力Fが0.3kgf/cm2未満では電池の内部抵抗が上昇して放電能力を失うおそれがあり、1.1kgf/cm2をこえると電極間で短絡が生じ易くなる。
In the present invention, the separator used for the electrode group 3 is a woven or non-woven separator, and the pressure F applied to the main surface 3a of the electrode group 3 is 0.3 to 1.1 kgf / cm 2 , preferably 0. .8 to 1.0 kgf / cm 2 .
If the applied pressure F is less than 0.3 kgf / cm 2 , the internal resistance of the battery may increase and the discharge capacity may be lost, and if it exceeds 1.1 kgf / cm 2 , a short circuit is likely to occur between the electrodes.

電極群3の主面3aへの加圧力を発生させるための好ましい方法として、図2を参照して説明する。図2は電極群3への加圧力Fが印加される方向の断面図であり、図2(a)は電極群製造時の総厚を示す図であり、図2(b)はケースに収容するために電極群が圧縮された状態を示す図であり、図2(c)はケースに収容された後の電極群の厚さを示す図である。
電極群3は正極5および負極6間にセパレータ7を介して相互に積層されている。この電極群3は、ケース2に収容する前の電極群3製造時の総厚さをL1、図1に示すケース2の対向する内壁面間との距離長さをL0とするとき、L1≧L0に設計されている(図2(a))。
A preferred method for generating the pressure applied to the main surface 3a of the electrode group 3 will be described with reference to FIG. 2 is a cross-sectional view in the direction in which the pressing force F is applied to the electrode group 3, FIG. 2 (a) is a diagram showing the total thickness when the electrode group is manufactured, and FIG. 2 (b) is housed in a case. FIG. 2C is a diagram showing the thickness of the electrode group after being accommodated in the case.
The electrode group 3 is laminated between the positive electrode 5 and the negative electrode 6 with a separator 7 interposed therebetween. When the electrode group 3, L 1 the total thickness of the front of the electrode group 3 during manufacture to accommodate the case 2, the distance length between the between inner wall surface facing the case 2 shown in FIG. 1 and L 0, L 1 ≧ L 0 is designed (FIG. 2A).

図2(a)に示すように、正極5の断面厚さL5a、負極6の断面厚さL6a、セパレータ7の断面厚さL7aとすると、これらが相互に積層されることで電極群3の厚さはL1になる。ここで、L5aおよびL6aは、金属箔および固体の活物質からなる電極であるため、電極群の主面3aに圧力を印加しても厚みが薄くなる割合は少ない。これに対して、L7aは織布または不織布製セパレータの断面であるので、フィルム製のセパレータに比較して、圧力Fが印加されると織布または不織布の緩衝作用により圧縮されやすくなる。すなわち、圧力Fが印加されても、L5aの長さは略L5b、およびL6aの長さは略L6bであるのに対して、圧力Fが印加されると、L7bはL7aよりも短くなる。
このため、電極群3の厚さがL1であっても電極群の主面3aの厚さ方向に圧力Fを加えることで、セパレータ7の断面厚さが薄くなり、電極群3の厚さがL2となる(図2(b))。L2<L0になるように圧縮することにより、電極群3をケース2に収容することができる。また、L2がL0と同一であってもケース2を僅かに変形することで電極群3を収容することができる。
As shown in FIG. 2 (a), cross-sectional thickness L 5a of the positive electrode 5, cross-sectional thickness L 6a of the negative electrode 6, when the cross-sectional thickness L 7a of the separator 7, the electrode group in that they are laminated to each other The thickness of 3 is L 1 . Here, since L 5a and L 6a are electrodes made of a metal foil and a solid active material, the ratio of thickness reduction is small even when pressure is applied to the main surface 3a of the electrode group. On the other hand, L 7a is a cross section of a woven or non-woven fabric separator, and therefore is more likely to be compressed by the buffering action of the woven or non-woven fabric when pressure F is applied as compared to a film separator. That is, even when the pressure F is applied, the length of L 5a is approximately L 5b and the length of L 6a is approximately L 6b , whereas when the pressure F is applied, L 7b is L 7a Shorter than.
Therefore, even if the thickness of the electrode group 3 is L 1 , the pressure F is applied in the thickness direction of the main surface 3 a of the electrode group, so that the cross-sectional thickness of the separator 7 is reduced, and the thickness of the electrode group 3 is reduced. Becomes L 2 (FIG. 2B). The electrode group 3 can be accommodated in the case 2 by compressing so that L 2 <L 0 . Even if L 2 is the same as L 0 , the electrode group 3 can be accommodated by slightly deforming the case 2.

電極群の主面3aの厚さ方向に圧力Fを加える方法としては、L2<L0とすることができる方法であればよく、例えば、電極群をテープ類で巻回する方法、ケース2の内壁間クリアランスを利用する方法等がある。
電極群をテープ類で巻回する方法は、電極群に圧力Fを印加できるように接着テープなどで電極群の周囲をテープで締め付けることにより、L2<L0とする方法である。この場合、テープの締め付け後の電極群はそのままケース内に収容する。
As a method of applying the pressure F in the thickness direction of the main surface 3a of the electrode group, any method that can satisfy L 2 <L 0 may be used. For example, a method of winding the electrode group with tapes, case 2 There is a method of using the clearance between the inner walls.
The method of winding the electrode group with tapes is a method in which L 2 <L 0 by tightening the periphery of the electrode group with an adhesive tape or the like so that the pressure F can be applied to the electrode group. In this case, the electrode group after tightening the tape is accommodated in the case as it is.

ケース2の内壁間クリアランスを利用する方法は、セパレータ7の復元力により電極群に圧力を加える方法である。
電極群3が圧縮機などによりL2<L0に圧縮されて、圧縮後直ちにケース2内に収容され、セパレータ7の復元力により、製造時の断面厚さL1になろうとするが、収容されたケース2の内壁面との距離以上になることはできないので、電極群3の厚さがL0となる(図2(c))。この復元力により電極群3の主面に圧力が印加される。
本発明においては、セパレータ7の種類、厚さ等を調整することにより、0.3〜1.1kgf/cm2、好ましくは0.8〜1.0kgf/cm2の圧力を電極群3の主面に印加する。
例えば、セルロース繊維製等のセパレータを用いた場合、電極群3の断面厚さ全体を圧縮して、0.3〜1.1kgf/cm2の圧力を印加し、ケース内に挿入することで組み立てられる。この圧力は、圧力センサーにより、または、この電極群をパウチ型セルに入れ、内部を減圧にしたときの電極群の厚さ減少率等で制御できる。
The method using the clearance between the inner walls of the case 2 is a method of applying pressure to the electrode group by the restoring force of the separator 7.
The electrode group 3 is compressed to L 2 <L 0 by a compressor or the like, and is accommodated in the case 2 immediately after the compression, and due to the restoring force of the separator 7, the sectional thickness L 1 at the time of manufacture is about to be accommodated. Since the distance from the inner wall surface of the case 2 cannot be more than the distance, the thickness of the electrode group 3 becomes L 0 (FIG. 2C). Pressure is applied to the main surface of the electrode group 3 by this restoring force.
In the present invention, a pressure of 0.3 to 1.1 kgf / cm 2 , preferably 0.8 to 1.0 kgf / cm 2 is applied to the main electrode group 3 by adjusting the type and thickness of the separator 7. Apply to the surface.
For example, when a separator made of cellulose fiber or the like is used, it is assembled by compressing the entire cross-sectional thickness of the electrode group 3, applying a pressure of 0.3 to 1.1 kgf / cm 2 and inserting it into the case. It is done. This pressure can be controlled by a pressure sensor or by a thickness reduction rate of the electrode group when the electrode group is put in a pouch-type cell and the inside is decompressed.

本発明で使用できるセパレータは、正極および負極を電気的に絶縁して、かつ電解液を保持するものであり、また、電極群製造時にある程度圧縮されても復元力のある合成繊維または無機繊維製の織布や不織布などを挙げることができる。
合成繊維としては、ポリプロピレン、ポリエチレン等のポリオレフィン繊維、ポリエステル繊維、ポリアミド繊維、塩化ビニル繊維、ポリフェニレンサルファイド繊維、全芳香族ポリエステル繊維、ポリパラフェニレンベンゾビスオキサゾール繊維、芳香族ポリアミド繊維、半芳香族ポリアミド繊維、ポリイミド繊維、ポリアミドイミド繊維、メラミン繊維、ポリベンゾイミダゾール繊維、ポリケトン(ポリエーテルエーテルケトン等)繊維、ポリアクリロニトリル繊維、ポリビニールアルコール繊維、ポリアセタール繊維、ポリテトラフルオロエチレン繊維、ポリビニリデンフルオライド繊維、その他フルオロポリマー繊維、セルロース繊維、セルロース変性体(カルボキシメチルセルロース等)繊維等を挙げることができる。
無機繊維としては、シリカ、アルミナ、二酸化チタン、チタン酸バリウム、アルミナ−シリカ複合酸化物、炭化ケイ素、ジルコニア、ガラス等のほか、タルク、モンモリロナイトなどの粘土、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカなどの鉱物資源由来物質あるいはそれらの人造物等の繊維状物あるいはウィスカー等を挙げることができる。
これらの中で、好ましいものは、セルロース繊維製の織布や不織布などを挙げることができる。
The separator that can be used in the present invention electrically insulates the positive electrode and the negative electrode and retains the electrolyte solution, and is made of synthetic fiber or inorganic fiber that has resilience even if it is compressed to some extent when the electrode group is manufactured. Woven fabric and non-woven fabric.
Synthetic fibers include polyolefin fibers such as polypropylene and polyethylene, polyester fibers, polyamide fibers, vinyl chloride fibers, polyphenylene sulfide fibers, wholly aromatic polyester fibers, polyparaphenylene benzobisoxazole fibers, aromatic polyamide fibers, and semi-aromatic polyamides. Fiber, polyimide fiber, polyamideimide fiber, melamine fiber, polybenzimidazole fiber, polyketone (polyether ether ketone, etc.) fiber, polyacrylonitrile fiber, polyvinyl alcohol fiber, polyacetal fiber, polytetrafluoroethylene fiber, polyvinylidene fluoride fiber Other examples include fluoropolymer fibers, cellulose fibers, and cellulose-modified (such as carboxymethyl cellulose) fibers.
Inorganic fibers include silica, alumina, titanium dioxide, barium titanate, alumina-silica composite oxide, silicon carbide, zirconia, glass, etc., clays such as talc and montmorillonite, boehmite, zeolite, apatite, kaolin, mullite, Examples thereof include fibrous materials such as spinel, olivine, sericite, bentonite, and mica, or fibrous materials such as artificial products or whiskers.
Of these, preferred are cellulose fiber woven fabrics and nonwoven fabrics.

本発明に使用できるセパレータの厚みは、電気化学デバイスの種類や用途によって適宜選択されるが、10〜100μmであることが好ましく、15〜50μmであることがより好ましい。
また、空隙率は、50〜95%であることが好ましく、65〜80%であることがより好ましい。
ここで空隙率とは、坪量M(g/cm2)、厚さT(μm)、ポリマー密度D(g/cm3)より、空隙率(%)=[1−(M/T)/D]×100の式にて算出した値である。
The thickness of the separator that can be used in the present invention is appropriately selected depending on the type and application of the electrochemical device, but is preferably 10 to 100 μm, and more preferably 15 to 50 μm.
The porosity is preferably 50 to 95%, more preferably 65 to 80%.
Here, the porosity is based on the basis weight M (g / cm 2 ), the thickness T (μm), and the polymer density D (g / cm 3 ), and the porosity (%) = [1− (M / T) / D] × 100.

本発明の電気化学デバイスは、正極板活物質として、層状またはスピネル構造のリチウム含有金属酸化物やその固溶体、またオリビン構造のリチウム含有金属リン酸化合物やリチウム含有金属珪酸化物およびそれらのフッ化物、さらには硫黄等のリチウム含有化合物を主材料とし、該材料と、バインダーと、導電材から構成されている合材層がアルミ箔の上に形成されている。
層状、スピネル構造のリチウム含有金属酸化物としては、LiCoO2、Li(Ni/Co/Mn)O2、LiMn24また固溶体としてLi2MnO3−LiMO2(M=Ni,Co,Mn)などが挙げられ、リチウム含有金属リン酸化合物としては、LiFePO4、LiCoPO4、LiMnPO4などが挙げられ、珪酸化物としてはLiFeSiO4等が挙げられる。またフッ化物としてはLi2FePO4・F等がある。リチウム含有化合物としては、LiS4、LiTi2(PO43、LiFeO2などが挙げられる。この中で、電気化学特性、安全性やコスト面で、LiCoO2、Li(Nix/Coy/Mnz)O2(x+y+z=1)、Li(Nix/Mny)O4(x+y=2)、LiFePO4を用いることが好ましい。また導電材としてはカーボンブラックやカーボンナノチューブが挙げられる。そして合成樹脂製バインダーを加えた活物質合材層をアルミ箔表面に形成させる。
The electrochemical device of the present invention has a layered or spinel structure lithium-containing metal oxide or solid solution as a positive electrode active material, a lithium-containing metal phosphate compound or lithium-containing metal silicate having an olivine structure, and fluorides thereof. Further, a lithium-containing compound such as sulfur is used as a main material, and a composite layer composed of the material, a binder, and a conductive material is formed on an aluminum foil.
Lithium-containing metal oxides having a layered and spinel structure include LiCoO 2 , Li (Ni / Co / Mn) O 2 , LiMn 2 O 4 , and Li 2 MnO 3 —LiMO 2 (M = Ni, Co, Mn) as a solid solution. Examples of the lithium-containing metal phosphate compound include LiFePO 4 , LiCoPO 4 , and LiMnPO 4, and examples of the siliceous oxide include LiFeSiO 4 . Examples of the fluoride include Li 2 FePO 4 · F. Examples of the lithium-containing compound include LiS 4 , LiTi 2 (PO 4 ) 3 , LiFeO 2 and the like. In this, electrochemical characteristics, in safety and cost, LiCoO 2, Li (Ni x / Co y / Mn z) O 2 (x + y + z = 1), Li (Ni x / Mn y) O 4 (x + y = 2), LiFePO 4 is preferably used. Examples of the conductive material include carbon black and carbon nanotubes. Then, an active material mixture layer to which a synthetic resin binder is added is formed on the aluminum foil surface.

一方、対極の負極活物質としては、電気化学デバイスがリチウム二次電池の場合は黒鉛や非晶質などの炭素材を、また金属シリコンや金属スズ、あるいはそれらの酸化物などを単独で、または炭素材との混合物を、さらにはチタン酸リチウムを前二者は銅箔上に、後者はアルミ箔上に、正極に用いたものと同様の導電材やバインダーとともに合材層を形成させる。電気化学デバイスがキャパシタの場合はアルミ箔上に活性炭、導電材やバインダーとの合材層を形成させる。   On the other hand, as the negative electrode active material of the counter electrode, when the electrochemical device is a lithium secondary battery, a carbon material such as graphite or amorphous, metal silicon or metal tin, or an oxide thereof alone, or A mixture layer with a carbon material and further lithium titanate are formed on a copper foil, the latter on an aluminum foil, and a composite layer is formed on the aluminum foil together with the same conductive material and binder as those used for the positive electrode. When the electrochemical device is a capacitor, a composite layer of activated carbon, a conductive material and a binder is formed on the aluminum foil.

本発明の電気化学デバイスにおいて、上述する電極群が浸漬される電解液としては、リチウム電解質塩を含む非水電解液またはイオン伝導ポリマーなどを用いることが好ましい。
また、正・負極活物質と共に使用できるバインダーとしては、ポリフッ化ビニリデン(PVdF)、カルボキシメチルセルロース(CMC)、スチレンブタジエン共重合体エマルジョン(SBR)、ポリビニールアルコール(PVA)、ポリアクリルエマルジョン、シリコンエマルジョンなどを用いることができる。
In the electrochemical device of the present invention, it is preferable to use a nonaqueous electrolytic solution containing lithium electrolyte salt, an ion conductive polymer, or the like as the electrolytic solution in which the electrode group described above is immersed.
The binder that can be used together with the positive and negative electrode active materials includes polyvinylidene fluoride (PVdF), carboxymethyl cellulose (CMC), styrene butadiene copolymer emulsion (SBR), polyvinyl alcohol (PVA), polyacryl emulsion, and silicon emulsion. Etc. can be used.

リチウム塩を含む非水電解液における非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)等が挙げられる。
また、上記非水溶媒に溶解できるリチウム塩としては、六フッ化リン酸リチウム(LiPF6)、ホウ四フッ化リチウム(LiBF4)、トリフルオロメタンスルホン酸リチウム(LiSO3CF4)等が挙げられる。
Examples of the non-aqueous solvent in the non-aqueous electrolyte containing a lithium salt include ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and methyl ethyl carbonate (MEC).
Examples of lithium salts that can be dissolved in the non-aqueous solvent include lithium hexafluorophosphate (LiPF 6 ), lithium borotetrafluoride (LiBF 4 ), and lithium trifluoromethanesulfonate (LiSO 3 CF 4 ). .

本発明の電気化学デバイスのケースは、電気化学デバイス種類、用途、形状により適宜選択され、電極群に圧力を印加できる強度を有する材質、形状であれば特に限定されるものではなく、鉄、ステンレス鋼、アルミニウム等の金属類、または金属類とプラスチックフィルムとの積層体、ポリカーボネートなどの合成樹脂類を用いたケースが挙げられる。   The case of the electrochemical device of the present invention is not particularly limited as long as it is appropriately selected depending on the type, application, and shape of the electrochemical device and is a material and shape having a strength capable of applying pressure to the electrode group. Examples include cases using metals such as steel and aluminum, laminates of metals and plastic films, and synthetic resins such as polycarbonate.

本発明の電気化学デバイスには、リチウムイオン二次電池、リチウムイオンキャパシタ、電気二重層キャパシタ、電解コンデンサ等が含まれ、これらの電気化学デバイスは、携帯電話、パーソナルコンピューター、電気自動車やハイブリッド自動車用に使用できる。   The electrochemical device of the present invention includes a lithium ion secondary battery, a lithium ion capacitor, an electric double layer capacitor, an electrolytic capacitor, etc., and these electrochemical devices are for mobile phones, personal computers, electric vehicles and hybrid vehicles. Can be used for

実施例1、比較例1
リチウム二次電池の正極を以下の方法で製造した。
二次粒子径が2〜3μmの導電性カーボンが表面にコートされたオリビン型リン酸鉄リチウムを正極活物質とし、該活物質84質量部に、導電剤として10質量部の導電性カーボンおよび導電性カーボン繊維体の混合体と、結着剤として6質量部のポリフッ化ビニリデンを添加した。これに分散溶媒として、N−メチルピロリドンを添加し、混練して、正極合剤(正極スラリー)を作製した。
20μm厚さで、150mm幅のアルミニウム箔を準備する。上記正極スラリーを該アルミニウム箔の両面に塗布、乾燥した。その後、プレス、裁断してリチウム二次電池用の正極を得た。アルミニウム箔の両面に正極スラリーを塗布・乾燥後、プレスした時の正極総厚さは160μmであった。
Example 1 and Comparative Example 1
A positive electrode of a lithium secondary battery was produced by the following method.
An olivine type lithium iron phosphate coated with conductive carbon having a secondary particle diameter of 2 to 3 μm on the surface is used as a positive electrode active material, and 10 parts by mass of conductive carbon and conductive as a conductive agent are added to 84 parts by mass of the active material. The carbon fiber mixture and 6 parts by mass of polyvinylidene fluoride as a binder were added. To this, N-methylpyrrolidone was added as a dispersion solvent and kneaded to prepare a positive electrode mixture (positive electrode slurry).
An aluminum foil having a thickness of 20 μm and a width of 150 mm is prepared. The positive electrode slurry was applied to both sides of the aluminum foil and dried. Then, the positive electrode for lithium secondary batteries was obtained by pressing and cutting. The total thickness of the positive electrode when pressed after applying and drying the positive electrode slurry on both sides of the aluminum foil was 160 μm.

上記正極の対極となる負極を以下の方法で製造した。
黒鉛材にカーボンナノチューブ導電材を1質量部添加し、バインダーのポリフッ化ビニリデン(PVdF)溶液を5質量部添加してスラリーを作製した。次ぎに10μm厚さの銅箔に当該スラリーを塗工して乾燥した。その後、プレス処理をしてリチウム二次電池用の負極を得た。プレスした時の負極総厚さは124μmであった。
A negative electrode serving as a counter electrode of the positive electrode was produced by the following method.
1 part by mass of a carbon nanotube conductive material was added to the graphite material, and 5 parts by mass of a polyvinylidene fluoride (PVdF) solution of a binder was added to prepare a slurry. Next, the slurry was applied to a copper foil having a thickness of 10 μm and dried. Thereafter, press treatment was performed to obtain a negative electrode for a lithium secondary battery. The total negative electrode thickness when pressed was 124 μm.

前述の負極と正極を用いて3.4V−500mAhの角形リチウムイオン電池を作製するために、電解液にはエチレンカーボネート(EC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)溶媒を混合した溶液中に6フッ化リン酸リチウム(LiPF6)を1mol/l溶解したものを用いた。角形リチウムイオン電池は、縦×横×厚さ×電極群に圧力を印加する面方向の内面間距離が約10cm×8cm×0.3cm×0.22cmの電池ケースを用いた。
セパレータには、セルロース製の厚さ25μmの不織布を用いた。一方、比較例としてポリエチレンフィルム製の同厚さのフィルムセパレータを用いた。
In order to produce a 3.4 V-500 mAh prismatic lithium ion battery using the negative electrode and the positive electrode, ethylene carbonate (EC), dimethyl carbonate (DMC), and methyl ethyl carbonate (MEC) solvent were mixed in the electrolyte. lithium hexafluorophosphate in the solution (LiPF 6) was prepared by dissolving 1 mol / l. As the prismatic lithium ion battery, a battery case in which the distance between the inner surfaces in the surface direction in which pressure is applied to the vertical × horizontal × thickness × electrode group was about 10 cm × 8 cm × 0.3 cm × 0.22 cm was used.
A cellulose nonwoven fabric with a thickness of 25 μm was used for the separator. On the other hand, the film separator of the same thickness made from a polyethylene film was used as a comparative example.

前述の正極、負極を用いて、それぞれの極板間にセパレータを介して積層し、上記電解液を注液後、ラミネートフィルムを熱溶着して角形セルを作製した。実施例1では電極群やセルロース不織布セパレータに0.9kgf/cm2の圧力が印加されるように電極群を接着テープにて締め付けた。
また比較例としてポリエチレンフィルムセパレータを用いて実施例1と同様の圧力がかかるようにした。そしてこの電池を比較例1とした。
Using the positive electrode and the negative electrode described above, the electrode plates were laminated via separators, and after pouring the electrolyte solution, a laminate film was thermally welded to produce a square cell. In Example 1, the electrode group was clamped with an adhesive tape so that a pressure of 0.9 kgf / cm 2 was applied to the electrode group and the cellulose nonwoven fabric separator.
As a comparative example, a polyethylene film separator was used, and the same pressure as in Example 1 was applied. This battery was referred to as Comparative Example 1.

実施例2、比較例2
電極群に印加される圧力を0.4kgf/cm2とする以外は、セルロース不織布セパレータを用いる実施例1と同一の電極群構成および実施例1と同様の方法で電池を作製して実施例2とした。
同様に、圧力を0.2kgf/cm2とする以外は実施例1と同一の電極群構成および実施例1と同様の方法で電池を作製して比較例2とした。
Example 2 and Comparative Example 2
Except that the pressure applied to the electrode group and 0.4 kgf / cm 2 is carried out to produce a battery in the same manner as in Example 1 the same electrode group configuration and Example 1 and using the cellulose nonwoven fabric separator Example 2 It was.
Similarly, a battery was produced in the same manner as in Example 1 and in the same manner as in Example 1 except that the pressure was 0.2 kgf / cm 2 , and used as Comparative Example 2.

各実施例および各比較例で得られた、3.4V−500mAhの電池を以下の方法で評価した。各電池の初充電と容量確認後、下表の各ItAの定電流で2.0Vまでの放電を行ない、0.2ItA放電に対する各ItA放電容量の比率を算出して各率放電性能を調べた。また各電池のSOC50%時の放電直流抵抗を測定した、さらに、各電池において、25℃下で3ItAでの充電と放電を繰返し、容量推移を測定して1000サイクル後の容量維持率をまとめた。表1にそれらの結果を示した。   The 3.4 V-500 mAh battery obtained in each example and each comparative example was evaluated by the following method. After the initial charge and capacity check of each battery, discharge was performed up to 2.0 V at a constant current of each ItA in the table below, and the ratio of each ItA discharge capacity to 0.2 ItA discharge was calculated to examine each rate discharge performance. . In addition, the discharge DC resistance at 50% SOC of each battery was measured. Further, in each battery, charging and discharging at 3 ItA at 25 ° C. were repeated, and the capacity transition was measured to summarize the capacity maintenance rate after 1000 cycles. . Table 1 shows the results.

Figure 0005998368
Figure 0005998368

表1より、セルロース不織布セパレータの実施例1、2およびポリエチレンフィルムセパレータの比較例1では、30ItA放電では急激に容量が落ちるものの放電は可能であることが分かった。これに対して比較例2では10ItAの時点で放電不可能となった。これは放電直流抵抗の結果から、電極群に印加される圧力が0.3kgf/cm2未満になると極端に電池の内部抵抗が上昇し、放電能力を失ったためと考えられる。そして低圧力では、電極郡内で十分に各電極面とセパレータ面とが接触できずに、また一部では空間が生じたりしてイオン伝導が損なわれているためと考えられる。
また、ポリエチレンセパレータの比較例1とセルロース不織布セパレータの実施例1を比較すると、同圧力を印加できたとしても直流抵抗が低く、放電能力も高くなることも分かった。これは電極面にセパレータを通して圧力が印加されても、薄いフィルムが電極面のすべてにおいて隙間なく張り付くことが困難であること、またポリエチレンフイルムは電解液の極性溶媒に対して撥水性であるために、電解液の保持がしにくいことが原因であると考えられる。
From Table 1, it was found that in Examples 1 and 2 of the cellulose nonwoven fabric separator and Comparative Example 1 of the polyethylene film separator, the discharge was possible although the capacity decreased rapidly with 30 ItA discharge. On the other hand, in Comparative Example 2, it became impossible to discharge at the time of 10 ItA. From the result of the discharge DC resistance, it is considered that when the pressure applied to the electrode group is less than 0.3 kgf / cm 2 , the internal resistance of the battery is extremely increased and the discharge capability is lost. At a low pressure, it is considered that each electrode surface cannot be sufficiently in contact with the separator surface in the electrode group, and that the ionic conduction is impaired due to a part of the space.
Moreover, when the comparative example 1 of a polyethylene separator and Example 1 of a cellulose nonwoven fabric separator were compared, even if the same pressure could be applied, it turned out that direct current | flow resistance is low and a discharge capability becomes high. This is because even if pressure is applied through the separator to the electrode surface, it is difficult for a thin film to stick on all the electrode surfaces without gaps, and because polyethylene film is water repellent with respect to the polar solvent of the electrolyte. It is thought that this is because it is difficult to hold the electrolytic solution.

表1に示す容量維持率の結果より、電極群の加える圧力の低い比較例2では急激な容量劣化を来たし、実施例2では容量低下はあるものの電池としては作動状態にある。これに対して実施例1ではほとんど容量低下せずに電池動作が可能であることが分かった。また、ポリエチレンフィルムの比較例1では電池生の初期では実施例1と大差ない性能を示したが、サイクル寿命試験では実施例2の圧力を下げた場合よりも悪い結果となった。これは前述したようにセパレータや電極板に十分な圧力が印加されていたとしても、セパレータの極性溶媒に対する濡れ性が悪く、かつ保持能力が低下するために、充放電を繰り返すうちにセパレータから電解液が移動して少なくなり、リチウムイオン伝導能力の低下により、容量が低下したものと考えられる。   From the results of the capacity maintenance ratio shown in Table 1, the comparative example 2 where the pressure applied by the electrode group was low caused rapid capacity deterioration, and in Example 2, although the capacity was lowered, the battery was in operation. On the other hand, in Example 1, it turned out that a battery operation | movement is possible, without almost a capacity | capacitance fall. Moreover, in the comparative example 1 of the polyethylene film, the performance that was not much different from that in Example 1 was shown at the beginning of the battery life, but in the cycle life test, the result was worse than that in the case where the pressure in Example 2 was lowered. As described above, even when sufficient pressure is applied to the separator and the electrode plate, the wettability of the separator with respect to the polar solvent is poor and the holding ability is lowered. It is considered that the capacity decreased due to the decrease in the lithium ion conductivity, as the liquid moved and decreased.

上記結果は角形電池や円筒形電池の電池ケース内壁間距離とセパレータを含む電極群厚さや群径との距離差によって小さくなるほど加圧が大きくかけられる方式でも同じ効果が得られた。
具体的に、実施例1と同一の電池ケースを用いて、実施例1と同じ電極群を圧縮機にて0.19cmの厚さとなるように圧縮して、圧縮後直ちに電池ケース内に収容した場合、実施例1と略同一の各率放電性能、放電直流抵抗、および容量維持率の結果が得られた。また本実施例の正・負極材にかかわらず他の正・負極材でも、またリチウムイオンキャパシタでも同様の効果が得られた。
The above results were obtained even in a system in which the pressure was increased as the distance between the inner wall of the battery case of the rectangular battery or the cylindrical battery and the electrode group thickness and group diameter including the separator decreased.
Specifically, using the same battery case as in Example 1, the same electrode group as in Example 1 was compressed to a thickness of 0.19 cm with a compressor, and was immediately accommodated in the battery case after compression. In this case, the results of the rate discharge performance, the discharge DC resistance, and the capacity retention rate substantially the same as in Example 1 were obtained. In addition, the same effect was obtained with other positive / negative electrode materials and lithium ion capacitors regardless of the positive / negative electrode materials of this example.

本発明のリチウム二次電池およびリチウムイオンキャパシタなどの電気化学デバイスは、長寿命の電池となり車載等の産業用電池への展開が可能となる。   Electrochemical devices such as the lithium secondary battery and lithium ion capacitor of the present invention become a long-life battery and can be developed into industrial batteries such as in-vehicle use.

1 リチウム二次電池
2 ケース
3 電極群
4 正・負極用タブ
5 正極
6 負極
7 セパレータ
DESCRIPTION OF SYMBOLS 1 Lithium secondary battery 2 Case 3 Electrode group 4 Tab for positive / negative electrodes 5 Positive electrode 6 Negative electrode 7 Separator

Claims (3)

ケース内に収容され、正極および負極間にセパレータを介して、捲回または積層してなる電極群に有機電解液を浸透または浸積させてリチウムイオンの吸蔵・放出を繰返し行なう電気化学デバイスの製造方法であって、
前記セパレータが織布または不織布製のセパレータであり、
前記電極群の主面に0.3〜1.1kgf/cm2の圧力が印加されており、
前記電極群は、前記ケース収容前の該電極群製造時の総厚さまたは群径をL1、前記ケースの対向する内壁面間の長さをL0とするとき、L1 0となるように設計されており、前記セパレータの圧縮可能な緩衝作用を利用して圧縮した後に前記ケースに収容され、前記セパレータの復元力により前記電極群の主面に前記圧力が印加され
前記電極群の周囲をテープにより締め付けることにより前記圧縮がなされることを特徴とする電気化学デバイスの製造方法。
Manufacture of electrochemical devices that are housed in a case and in which lithium electrolyte is repeatedly occluded / desorbed by infiltrating or immersing the organic electrolyte in a wound or laminated electrode group through a separator between the positive and negative electrodes A method,
The separator is a woven or non-woven separator;
A pressure of 0.3 to 1.1 kgf / cm 2 is applied to the main surface of the electrode group,
When the total thickness or group diameter at the time of manufacturing the electrode group before housing the case is L 1 and the length between the opposing inner wall surfaces of the case is L 0 , the electrode group has L 1 > L 0 It is designed to be accommodated in the case after being compressed using the compressible buffering action of the separator, and the pressure is applied to the main surface of the electrode group by the restoring force of the separator ,
The method for producing an electrochemical device, wherein the compression is performed by fastening the periphery of the electrode group with a tape .
前記電気化学デバイスがリチウム二次電池であることを特徴とする請求項1記載の電気化学デバイスの製造方法。   The method for producing an electrochemical device according to claim 1, wherein the electrochemical device is a lithium secondary battery. 前記電気化学デバイスがリチウムイオンキャパシタであることを特徴とする請求項1記載の電気化学デバイスの製造方法。   The method of manufacturing an electrochemical device according to claim 1, wherein the electrochemical device is a lithium ion capacitor.
JP2012270709A 2012-12-11 2012-12-11 Method for manufacturing electrochemical device Expired - Fee Related JP5998368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012270709A JP5998368B2 (en) 2012-12-11 2012-12-11 Method for manufacturing electrochemical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012270709A JP5998368B2 (en) 2012-12-11 2012-12-11 Method for manufacturing electrochemical device

Publications (2)

Publication Number Publication Date
JP2014116237A JP2014116237A (en) 2014-06-26
JP5998368B2 true JP5998368B2 (en) 2016-09-28

Family

ID=51172014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012270709A Expired - Fee Related JP5998368B2 (en) 2012-12-11 2012-12-11 Method for manufacturing electrochemical device

Country Status (1)

Country Link
JP (1) JP5998368B2 (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435871A (en) * 1987-07-31 1989-02-06 Nippon Telegraph & Telephone Lithium secondary cell
JP3533117B2 (en) * 1999-07-23 2004-05-31 日本電気株式会社 Method of manufacturing film-covered battery
JP2002216849A (en) * 2001-01-15 2002-08-02 Mitsubishi Cable Ind Ltd Manufacturing method of lithium ion secondary cell
JP2003297431A (en) * 2002-04-04 2003-10-17 Sony Corp Battery
JP4313992B2 (en) * 2002-07-12 2009-08-12 トヨタ自動車株式会社 Design method for prismatic secondary battery
JP2007258084A (en) * 2006-03-24 2007-10-04 Sanyo Electric Co Ltd Lithium secondary battery
JP5186881B2 (en) * 2006-11-30 2013-04-24 日産自動車株式会社 Bipolar battery
JP2009104902A (en) * 2007-10-23 2009-05-14 Mitsui Mining & Smelting Co Ltd Method of manufacturing nonaqueous electrolytic solution secondary battery
JP2009266737A (en) * 2008-04-28 2009-11-12 Panasonic Corp Lithium ion secondary battery and its manufacturing method
JP2010073571A (en) * 2008-09-19 2010-04-02 Panasonic Corp Lithium ion secondary battery and method of manufacturing the same
JP2010086754A (en) * 2008-09-30 2010-04-15 Nissan Motor Co Ltd Method for manufacturing battery
JP2010140795A (en) * 2008-12-12 2010-06-24 Panasonic Corp Nonaqueous electrolyte secondary battery
JP2010287470A (en) * 2009-06-12 2010-12-24 Panasonic Corp Nonaqueous secondary battery and its manufacturing method

Also Published As

Publication number Publication date
JP2014116237A (en) 2014-06-26

Similar Documents

Publication Publication Date Title
JP6003041B2 (en) Separator with heat-resistant insulation layer
JP3253632B2 (en) Novel battery and manufacturing method thereof
US10044071B2 (en) Nonaqueous electrolyte secondary battery and method for manufacturing same
JP6738339B2 (en) Electrochemical element separator, method for producing the same, and method for producing the electrochemical element
KR102129497B1 (en) Lithium ion secondary battery
WO2013051416A1 (en) Electrical device
KR102155150B1 (en) Energy storage device, energy storage system, and method
US20180315970A1 (en) Nonaqueous electrolyte secondary battery
JP2000235868A (en) Nonaqueous electrolyte secondary battery
KR20150137541A (en) Li Secondary Battery
JP2021052006A (en) Power storage element
JP7001430B2 (en) Pressurization method and manufacturing method of film exterior battery
JP5999433B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JPWO2013047379A1 (en) Lithium secondary battery and manufacturing method thereof
JP6417270B2 (en) Electrochemical element separator and method for producing electrochemical element
US20230112577A1 (en) Energy storage device
JP7108052B2 (en) Storage element and method for manufacturing storage element
US20130260189A1 (en) Graphene in lithium ion batteries
JP2021158109A (en) Energy storage device
WO2020059806A1 (en) Secondary battery
WO2016148185A1 (en) Negative electrode for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell in which said negative electrode is used
WO2018131094A1 (en) Electrochemical device
JP3648540B2 (en) Nonaqueous electrolyte secondary battery
JP5998368B2 (en) Method for manufacturing electrochemical device
US20220246899A1 (en) Manufacturing method for electrode of electricity storage device and electrode of electricity storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160802

R150 Certificate of patent or registration of utility model

Ref document number: 5998368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees