JP6738339B2 - Electrochemical element separator, method for producing the same, and method for producing the electrochemical element - Google Patents
Electrochemical element separator, method for producing the same, and method for producing the electrochemical element Download PDFInfo
- Publication number
- JP6738339B2 JP6738339B2 JP2017539910A JP2017539910A JP6738339B2 JP 6738339 B2 JP6738339 B2 JP 6738339B2 JP 2017539910 A JP2017539910 A JP 2017539910A JP 2017539910 A JP2017539910 A JP 2017539910A JP 6738339 B2 JP6738339 B2 JP 6738339B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- separator
- porous layer
- layer
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 24
- 229920005989 resin Polymers 0.000 claims description 118
- 239000011347 resin Substances 0.000 claims description 118
- 239000004840 adhesive resin Substances 0.000 claims description 69
- 229920006223 adhesive resin Polymers 0.000 claims description 69
- 239000000945 filler Substances 0.000 claims description 49
- 238000002844 melting Methods 0.000 claims description 43
- 239000000203 mixture Substances 0.000 claims description 43
- 230000008018 melting Effects 0.000 claims description 41
- 229920006038 crystalline resin Polymers 0.000 claims description 39
- 239000002245 particle Substances 0.000 claims description 38
- 229920006127 amorphous resin Polymers 0.000 claims description 35
- 238000000576 coating method Methods 0.000 claims description 26
- 239000011248 coating agent Substances 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 25
- 239000011230 binding agent Substances 0.000 claims description 19
- 238000010438 heat treatment Methods 0.000 claims description 18
- 239000002033 PVDF binder Substances 0.000 claims description 16
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 16
- 239000008151 electrolyte solution Substances 0.000 claims description 14
- 229920001577 copolymer Polymers 0.000 claims description 11
- 239000007788 liquid Substances 0.000 claims description 11
- 238000003825 pressing Methods 0.000 claims description 9
- 238000001035 drying Methods 0.000 claims description 8
- 239000011737 fluorine Substances 0.000 claims description 6
- 229910052731 fluorine Inorganic materials 0.000 claims description 6
- 238000010030 laminating Methods 0.000 claims description 6
- 239000000178 monomer Substances 0.000 claims description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 4
- 229920002554 vinyl polymer Polymers 0.000 claims description 4
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 claims description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims 1
- 239000010410 layer Substances 0.000 description 209
- 229910052744 lithium Inorganic materials 0.000 description 58
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 56
- 238000003860 storage Methods 0.000 description 32
- 230000000052 comparative effect Effects 0.000 description 23
- 238000012360 testing method Methods 0.000 description 23
- 238000011156 evaluation Methods 0.000 description 19
- 239000002904 solvent Substances 0.000 description 15
- 230000014759 maintenance of location Effects 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- 239000011255 nonaqueous electrolyte Substances 0.000 description 14
- 239000010419 fine particle Substances 0.000 description 13
- 238000007600 charging Methods 0.000 description 11
- 238000007731 hot pressing Methods 0.000 description 11
- -1 polyethylene Polymers 0.000 description 11
- 230000001965 increasing effect Effects 0.000 description 10
- 239000004743 Polypropylene Substances 0.000 description 9
- 239000006185 dispersion Substances 0.000 description 9
- 229920001155 polypropylene Polymers 0.000 description 9
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 8
- 239000000470 constituent Substances 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 239000002002 slurry Substances 0.000 description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 7
- 230000001070 adhesive effect Effects 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 238000007599 discharging Methods 0.000 description 7
- 239000011888 foil Substances 0.000 description 7
- 239000011148 porous material Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 239000004698 Polyethylene Substances 0.000 description 6
- 230000008602 contraction Effects 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 229920000573 polyethylene Polymers 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 229920003048 styrene butadiene rubber Polymers 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000002174 Styrene-butadiene Substances 0.000 description 5
- 239000003575 carbonaceous material Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229910003002 lithium salt Inorganic materials 0.000 description 5
- 159000000002 lithium salts Chemical class 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- 239000004642 Polyimide Substances 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 239000011149 active material Substances 0.000 description 4
- 229910001593 boehmite Inorganic materials 0.000 description 4
- 239000006229 carbon black Substances 0.000 description 4
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 4
- 239000012212 insulator Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- 229920000098 polyolefin Polymers 0.000 description 4
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 3
- 229920000178 Acrylic resin Polymers 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000002482 conductive additive Substances 0.000 description 3
- 238000010277 constant-current charging Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 235000019441 ethanol Nutrition 0.000 description 3
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 3
- 229910052809 inorganic oxide Inorganic materials 0.000 description 3
- 230000010220 ion permeability Effects 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 239000012982 microporous membrane Substances 0.000 description 3
- 239000007773 negative electrode material Substances 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229920000779 poly(divinylbenzene) Polymers 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 239000007774 positive electrode material Substances 0.000 description 3
- 229920003002 synthetic resin Polymers 0.000 description 3
- 239000000057 synthetic resin Substances 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- QLSSITLVZFHSJT-UHFFFAOYSA-N 1-(3-chlorophenyl)-n-methylpropan-2-amine Chemical compound CNC(C)CC1=CC=CC(Cl)=C1 QLSSITLVZFHSJT-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- GUUVPOWQJOLRAS-UHFFFAOYSA-N Diphenyl disulfide Chemical compound C=1C=CC=CC=1SSC1=CC=CC=C1 GUUVPOWQJOLRAS-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 2
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 229910000733 Li alloy Inorganic materials 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- 239000004640 Melamine resin Substances 0.000 description 2
- 229920000877 Melamine resin Polymers 0.000 description 2
- 239000004962 Polyamide-imide Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 150000005678 chain carbonates Chemical class 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010281 constant-current constant-voltage charging Methods 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- MSYLJRIXVZCQHW-UHFFFAOYSA-N formaldehyde;6-phenyl-1,3,5-triazine-2,4-diamine Chemical compound O=C.NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 MSYLJRIXVZCQHW-UHFFFAOYSA-N 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000005001 laminate film Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000002931 mesocarbon microbead Substances 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- 239000010450 olivine Substances 0.000 description 2
- 229910052609 olivine Inorganic materials 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 229920002312 polyamide-imide Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- YTZKOQUCBOVLHL-UHFFFAOYSA-N tert-butylbenzene Chemical compound CC(C)(C)C1=CC=CC=C1 YTZKOQUCBOVLHL-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 229910000314 transition metal oxide Inorganic materials 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical compound O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- FZKPQHFEMFIDNR-UHFFFAOYSA-N 2-hydroxyethyl hydrogen sulfite Chemical compound OCCOS(O)=O FZKPQHFEMFIDNR-UHFFFAOYSA-N 0.000 description 1
- SFPQDYSOPQHZAQ-UHFFFAOYSA-N 2-methoxypropanenitrile Chemical compound COC(C)C#N SFPQDYSOPQHZAQ-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- 229910018136 Li 2 Ti 3 O 7 Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012349 LiCo0.995Mg0.005O2 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910013275 LiMPO Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910014089 LiMn1/3Ni1/3Co1/3O2 Inorganic materials 0.000 description 1
- 229910014873 LiMn5/12Ni5/12Co1/6O2 Inorganic materials 0.000 description 1
- 229910013716 LiNi Inorganic materials 0.000 description 1
- 229910014667 LiNi3/5Mn1/5Co1/5O2 Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 229920001145 Poly(N-vinylacetamide) Polymers 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical class OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 229920005603 alternating copolymer Polymers 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052586 apatite Inorganic materials 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 239000012237 artificial material Substances 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 description 1
- 229910001632 barium fluoride Inorganic materials 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- HHNHBFLGXIUXCM-GFCCVEGCSA-N cyclohexylbenzene Chemical compound [CH]1CCCC[C@@H]1C1=CC=CC=C1 HHNHBFLGXIUXCM-GFCCVEGCSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 1
- 125000003709 fluoroalkyl group Chemical group 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 150000002240 furans Chemical class 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 229920006015 heat resistant resin Polymers 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- MRNHPUHPBOKKQT-UHFFFAOYSA-N indium;tin;hydrate Chemical compound O.[In].[Sn] MRNHPUHPBOKKQT-UHFFFAOYSA-N 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 1
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N methyl acetate Chemical compound COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- PYLWMHQQBFSUBP-UHFFFAOYSA-N monofluorobenzene Chemical compound FC1=CC=CC=C1 PYLWMHQQBFSUBP-UHFFFAOYSA-N 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001690 polydopamine Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- ZUHZGEOKBKGPSW-UHFFFAOYSA-N tetraglyme Chemical compound COCCOCCOCCOCCOC ZUHZGEOKBKGPSW-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229920006259 thermoplastic polyimide Polymers 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/52—Separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/443—Particulate material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Inorganic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Cell Separators (AREA)
- Secondary Cells (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Description
本発明は、電気化学素子が有する電極との間で高い密着強度を確保し得る電気化学素子用セパレータおよびその製造方法、並びに前記電気化学素子用セパレータを用いた電気化学素子の製造方法に関するものである。 The present invention relates to an electrochemical element separator capable of ensuring high adhesion strength with an electrode of an electrochemical element, a method for producing the same, and a method for producing an electrochemical element using the electrochemical element separator. is there.
近年、携帯電話、PDA、ノートパソコンなどのモバイル機器(携帯機器)の重要性が高まるとともに、それに搭載される電池の重要性も益々増している。特に環境への配慮から、繰り返し充電できる二次電池の重要性が増大している。このような二次電池は、現在では、前記のモバイル機器のような小型機器の電源用途だけでなく、自動車や、電動自転車、家庭用電力貯蔵システム、業務用電力貯蔵システムなどの大型機器への適用も検討されている。 In recent years, as mobile devices (portable devices) such as mobile phones, PDAs, and notebook computers have become more important, the batteries installed therein have become more important. Particularly, due to environmental considerations, the importance of rechargeable secondary batteries is increasing. Such secondary batteries are currently used not only for power supply of small devices such as the above-mentioned mobile devices but also for large devices such as automobiles, electric bicycles, household power storage systems, and commercial power storage systems. Application is also being considered.
二次電池を前記のような用途に適用するにあたっては、各種の電池特性の向上が求められるが、例えば、エネルギー密度の向上を図ると、一般に、高温環境下での使用や長期間での使用によって劣化が激しくなり、電池の耐久性の問題が生じる。また、エネルギー密度の上昇によって、電池の発煙・発火といった異常の発生を抑制する安全性の確保が難しくなる。 In applying the secondary battery to the above-mentioned applications, it is required to improve various battery characteristics. For example, when the energy density is improved, generally, use in a high temperature environment or long-term use is required. Causes severe deterioration and causes a problem of battery durability. Further, due to the increase in energy density, it becomes difficult to secure safety that suppresses the occurrence of abnormalities such as battery smoke and ignition.
このため、例えば通常の二次電池のセパレータとして使用されているポリオレフィン製の微多孔膜の表面に、耐熱性に優れた微粒子を含む層を形成した積層体をセパレータとして用いることで、二次電池の安全性の向上を図る技術が開発されている(特許文献1など)。 For this reason, for example, by using a laminate having a layer containing fine particles having excellent heat resistance as a separator on the surface of a polyolefin microporous film that is used as a separator for a normal secondary battery, a secondary battery Has been developed (Patent Document 1 and the like).
また、前記の二次電池の劣化要因として、高温環境下での貯蔵や充放電を繰り返す過程で、非水電解液が分解して電池内でガスが発生したり電池内の電極自体が膨張収縮したりし、これらによって正極−負極間の距離にばらつきが生じて充放電反応の均一性が失われることが挙げられる。 In addition, as a cause of deterioration of the secondary battery, the non-aqueous electrolyte decomposes to generate gas in the battery or the electrode itself in the battery expands and contracts during the process of repeated storage and charging/discharging in a high temperature environment. In some cases, the distance between the positive electrode and the negative electrode varies due to these, and the uniformity of the charge/discharge reaction is lost.
一方、こうした問題の発生を抑制する技術の開発も行われている。特許文献2には、正極と負極との間に配した多孔質隔膜(セパレータ)と、正極または負極とを、ポリフッ化ビニリデンなどの高分子の粉体によって接着することで、充放電サイクル経過後の容量維持率などを高め得た電池が提案されている。 On the other hand, techniques for suppressing the occurrence of such problems are being developed. In Patent Document 2, a porous diaphragm (separator) disposed between a positive electrode and a negative electrode and a positive electrode or a negative electrode are adhered with a polymer powder such as polyvinylidene fluoride, so that after a charge/discharge cycle has elapsed. There has been proposed a battery that can improve the capacity retention rate of the battery.
また、特許文献3には、融点が100〜170℃である樹脂を主成分とする樹脂多孔質層(I)と、耐熱温度が150℃以上のフィラーを主成分として含む耐熱多孔質層(II)とを有し、かつ少なくとも片面に、前記樹脂の融点よりも低い温度で加熱することで接着性が発現する接着性樹脂が存在しているセパレータを使用することにより、セパレータと電極とを一体化させ、高温貯蔵中や充放電を繰り返した状況下における正極−負極間の距離のばらつきを抑えて、高温貯蔵特性や充放電サイクル特性の低下抑制を可能としたリチウム二次電池などの電気化学素子が提案されている。 Further, in Patent Document 3, a resin porous layer (I) containing a resin having a melting point of 100 to 170° C. as a main component, and a heat resistant porous layer containing a filler having a heat resistant temperature of 150° C. or more as a main component (II ), and a separator and an electrode are integrated by using a separator on which at least one surface has an adhesive resin that exhibits adhesiveness when heated at a temperature lower than the melting point of the resin. Of lithium secondary batteries, etc., which suppresses the variation in the distance between the positive electrode and the negative electrode during high temperature storage and repeated charging/discharging and suppresses deterioration of high temperature storage characteristics and charge/discharge cycle characteristics. Elements have been proposed.
ところで、セパレータと電極とを接着性樹脂(高分子)で一体化する場合、両者の密着強度を高めようとすると、通常、電池の負荷特性が低下する。よって、セパレータと電極との密着強度を高めて前記のような電池特性をより向上させるには、負荷特性の低下も抑制可能な技術の開発が求められる。 By the way, when the separator and the electrode are integrated with an adhesive resin (polymer), if the adhesion strength between them is attempted to be increased, the load characteristics of the battery are usually deteriorated. Therefore, in order to increase the adhesion strength between the separator and the electrode and further improve the battery characteristics as described above, it is necessary to develop a technique capable of suppressing the deterioration of the load characteristics.
本発明は、前記事情に鑑みてなされたものであり、その目的は、電気化学素子が有する電極との間で、高い密着強度を確保し得る電気化学素子用セパレータおよびその製造方法、並びに前記電気化学素子用セパレータを用いた電気化学素子の製造方法を提供することにある。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a separator for an electrochemical element capable of ensuring a high adhesion strength with an electrode of an electrochemical element, a method for producing the same, and the electric An object of the present invention is to provide a method of manufacturing an electrochemical device using a separator for a chemical device.
前記目的を達成し得た本発明の電気化学素子用セパレータは、融点が100〜170℃である熱溶融性樹脂(A)を主成分とする樹脂多孔質層(I)と、耐熱多孔質層(II)とを有する電気化学素子用セパレータであって、少なくとも一方の表面に、接着性樹脂(C)の層を有しており、前記接着性樹脂(C)は、ポリフッ化ビニリデン、またはフッ化ビニリデンとフッ素を含有する重合性ビニルモノマーとの共重合体であって、結晶質の樹脂(C1)と非晶質の樹脂(C2)との混合物で構成されており、前記結晶質の樹脂(C1)は、融点が80〜170℃であり、前記非晶質の樹脂(C2)は、融点がないか、または融点が70℃以下であり、前記混合物中での、前記非晶質の樹脂(C2)の割合が、10質量%以上50質量%以下であり、前記接着性樹脂(C)の層が存在する面での、前記接着性樹脂(C)の層の目付けが、0.1〜1.5g/m2であることを特徴とするものである。The separator for an electrochemical device of the present invention which can achieve the above-mentioned object has a resin porous layer (I) containing a heat-meltable resin (A) as a main component and having a melting point of 100 to 170° C., and a heat-resistant porous layer. (II), which has a layer of an adhesive resin (C) on at least one surface thereof, and the adhesive resin (C) is polyvinylidene fluoride or fluorine. A copolymer of vinylidene chloride and a polymerizable vinyl monomer containing fluorine, which is composed of a mixture of a crystalline resin (C1) and an amorphous resin (C2). (C1) has a melting point of 80 to 170° C., the amorphous resin (C2) has no melting point or has a melting point of 70° C. or less, and the amorphous resin (C2) in the mixture is The ratio of the resin (C2) is 10% by mass or more and 50% by mass or less, and the basis weight of the layer of the adhesive resin (C) on the surface where the layer of the adhesive resin (C) is present is 0. It is characterized by being 1 to 1.5 g/m 2 .
本発明の電気化学素子用セパレータは、前記結晶質の樹脂(C1)と、前記非晶質の樹脂(C2)とを分散させた塗液を、前記樹脂多孔質層(I)または前記耐熱多孔質層(II)の表面に塗布して塗膜を形成する工程と、前記塗膜を、前記非晶質の樹脂(C2)が流動する温度で乾燥して、前記接着性樹脂(C)の層を形成する工程とを有する本発明の製造方法によって製造することができる。 The separator for an electrochemical device of the present invention comprises a coating liquid in which the crystalline resin (C1) and the amorphous resin (C2) are dispersed in the resin porous layer (I) or the heat resistant porous layer. Coating the surface of the resin layer (II) to form a coating film, and drying the coating film at a temperature at which the amorphous resin (C2) flows to obtain the adhesive resin (C). It can be manufactured by the manufacturing method of the present invention including the step of forming a layer.
また、本発明の電気化学素子の製造方法は、正極、負極、非水電解液および本発明の電気化学素子用セパレータを有する電気化学素子の製造方法であって、前記正極と前記負極とを、前記電気化学素子用セパレータを介して積層して電極体を形成する工程と、前記電極体を加熱しながら加圧して、前記電気化学素子用セパレータと、前記正極および/または前記負極とを接着して一体化する工程とを有することを特徴とする。 Further, the method for producing an electrochemical device of the present invention is a method for producing an electrochemical device having a positive electrode, a negative electrode, a non-aqueous electrolyte and a separator for an electrochemical device of the present invention, wherein the positive electrode and the negative electrode are: A step of forming an electrode body by laminating via the electrochemical device separator, and pressing the electrode body while heating to bond the electrochemical device separator to the positive electrode and/or the negative electrode. And a step of integrating them.
本発明によれば、電気化学素子が有する電極との間で高い密着強度を確保し得る電気化学素子用セパレータおよびその製造方法、並びに前記電気化学素子用セパレータを用いた電気化学素子の製造方法を提供することができる。 According to the present invention, there are provided a separator for an electrochemical element capable of ensuring high adhesion strength with an electrode of an electrochemical element, a method for producing the same, and a method for producing an electrochemical element using the separator for an electrochemical element. Can be provided.
本発明の電気化学素子用セパレータ(以下、単に「セパレータ」という)は、その少なくとも片面に、接着性樹脂(C)の層が存在している。本発明のセパレータは、この接着性樹脂(C)の作用によって電気化学素子を構成する正極および/または負極と接着して一体化することができる。よって、本発明のセパレータを使用し、これを正極および/または負極と一体化させた電極体を用いた電気化学素子では、高温貯蔵途中や充放電を繰り返した状況下においても、正極−負極間の距離にばらつきが生じ難く、充放電特性の低下が抑制される。 The electrochemical device separator of the present invention (hereinafter, simply referred to as “separator”) has an adhesive resin (C) layer on at least one surface thereof. The separator of the present invention can be bonded and integrated with the positive electrode and/or the negative electrode forming the electrochemical element by the action of the adhesive resin (C). Therefore, in the electrochemical device using the electrode body in which the separator of the present invention is used and which is integrated with the positive electrode and/or the negative electrode, the positive electrode and the negative electrode can be used even during high-temperature storage and under repeated charging/discharging conditions. Is less likely to vary, and deterioration of charge/discharge characteristics is suppressed.
また、電極とセパレータとが一体化していることにより、電気化学素子の組み立て時などにおいて、巻回電極体での巻きズレや積層電極体での各構成要素の位置ズレを抑制できることから、電気化学素子の生産性を高めることもできる。 In addition, since the electrode and the separator are integrated, it is possible to suppress the winding deviation in the wound electrode body and the positional deviation of each component in the laminated electrode body during the assembly of the electrochemical element. The productivity of the device can also be increased.
しかしながら、接着性樹脂(C)は、電極表面に接着することで、電気化学素子の充放電反応に伴う正極−負極間でのイオンの移動を阻害する。電気化学素子を軽負荷で充放電する際には、接着性樹脂(C)がイオンの移動を阻害することによる電池特性への影響はあまり問題にならないが、より大きな電流値で充放電を行うと、その影響が大きくなって、負荷特性の低下が生じてしまう虞がある。 However, the adhesive resin (C) adheres to the surface of the electrode to inhibit the movement of ions between the positive electrode and the negative electrode due to the charge/discharge reaction of the electrochemical element. When the electrochemical device is charged and discharged with a light load, the influence of the adhesive resin (C) on the battery characteristics due to the inhibition of ion migration does not pose a problem, but the charging and discharging is performed with a larger current value. Then, the influence thereof becomes large, and the load characteristics may be deteriorated.
そこで、本発明では、接着性樹脂(C)の層を、特定の結晶質の樹脂(C1)と特定の非晶質の樹脂(C2)との混合物で構成するようにした。これにより、接着性樹脂(C)の層によって電極とセパレータとが一体化した状態での接着性樹脂(C)の層を、その層内をイオンが良好に移動できる構造にし得ると共に、電極とセパレータとの密着強度も高めることができる。よって、本発明のセパレータを用いて構成した電気化学素子では、高温貯蔵特性や充放電サイクル特性を高めつつ、良好な負荷特性も維持することができる。 Therefore, in the present invention, the layer of the adhesive resin (C) is made of a mixture of a specific crystalline resin (C1) and a specific amorphous resin (C2). As a result, the layer of the adhesive resin (C) in the state where the electrode and the separator are integrated by the layer of the adhesive resin (C) can have a structure in which ions can move well in the layer, and The adhesion strength with the separator can also be increased. Therefore, in the electrochemical device constituted by using the separator of the present invention, it is possible to improve the high temperature storage characteristics and the charge/discharge cycle characteristics while maintaining good load characteristics.
また、本発明のセパレータでは、樹脂多孔質層(I)によるシャットダウン機能と、耐熱多孔質層(II)によるセパレータ全体の耐熱性を高める作用とによって、電気化学素子内が異常に昇温した際の安全性を高めることもできる。すなわち、電池が高温となった場合には、電池内において樹脂多孔質層(I)が収縮しようとするが、高温でも形状が安定に保持される耐熱多孔質層(II)によって、セパレータ全体の熱収縮が抑制され、樹脂多孔質層(I)が溶融しシャットダウンを生じても、耐熱多孔質層(II)により正極と負極の絶縁が保たれる。 Further, in the separator of the present invention, when the temperature inside the electrochemical device is abnormally increased due to the shutdown function of the resin porous layer (I) and the action of increasing the heat resistance of the entire separator by the heat resistant porous layer (II). It can also increase the safety of. That is, when the temperature of the battery becomes high, the resin porous layer (I) tries to shrink in the battery, but the heat-resistant porous layer (II) keeps the shape stable even at high temperature makes the entire separator Thermal contraction is suppressed, and even if the resin porous layer (I) melts and shuts down, the heat-resistant porous layer (II) maintains the insulation between the positive electrode and the negative electrode.
接着性樹脂(C)の層は、結晶質の樹脂(C1)と非晶質の樹脂(C2)との混合物で構成するが、結晶質の樹脂(C1)および非晶質の樹脂(C2)には、ポリフッ化ビニリデン(PVDF)、またはフッ化ビニリデンとフッ素を含有する重合性ビニルモノマーとの共重合体を使用する。結晶性の異なる複数の樹脂(C1)および(C2)の混合物で層を形成することで、電極との接着強度を高めつつ、層を多孔質化することができ、層内でのイオンの移動をスムーズにすることができる。よって、このような接着性樹脂(C)の層を有するセパレータを用いることで、電極との密着強度が大きく、かつ負荷特性が良好な電気化学素子とすることができる。 The layer of the adhesive resin (C) is composed of a mixture of the crystalline resin (C1) and the amorphous resin (C2), and the crystalline resin (C1) and the amorphous resin (C2) For this, polyvinylidene fluoride (PVDF) or a copolymer of vinylidene fluoride and a polymerizable vinyl monomer containing fluorine is used. By forming a layer from a mixture of a plurality of resins (C1) and (C2) having different crystallinity, the layer can be made porous while enhancing the adhesive strength with the electrode, and the migration of ions within the layer can be achieved. Can be smooth. Therefore, by using a separator having such a layer of the adhesive resin (C), it is possible to obtain an electrochemical element having a high adhesion strength with an electrode and good load characteristics.
フッ化ビニリデンとフッ素を含有する重合性ビニルモノマーとの共重合体としては、例えば、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(PVDF−HFP)、フッ化ビニリデン−クロロトリフルオロエチレン共重合体(PVDF−CTFE)、フッ化ビニリデン−テトラフルオロエチレン共重合体(PVDF−TFE)、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体(PVDF−HFP−TFE)などが挙げられる。 As a copolymer of vinylidene fluoride and a polymerizable vinyl monomer containing fluorine, for example, vinylidene fluoride-hexafluoropropylene copolymer (PVDF-HFP), vinylidene fluoride-chlorotrifluoroethylene copolymer ( PVDF-CTFE), vinylidene fluoride-tetrafluoroethylene copolymer (PVDF-TFE), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer (PVDF-HFP-TFE) and the like.
結晶質の樹脂(C1)は、非晶質の樹脂(C2)よりも結晶性が高いことに起因して、融点、すなわち、JIS(日本工業規格) K 7121の規定に準じて、示差走査熱量計(DSC)を用いて測定される融解温度が、非晶質の樹脂(C2)よりも高くなる。具体的には、結晶質の樹脂(C1)は、融点が80℃以上170℃以下である。 The crystalline resin (C1) has higher crystallinity than the amorphous resin (C2), and therefore has a melting point, that is, a differential scanning calorific value in accordance with JIS (Japanese Industrial Standard) K 7121. The melting temperature measured using a meter (DSC) is higher than that of the amorphous resin (C2). Specifically, the crystalline resin (C1) has a melting point of 80° C. or higher and 170° C. or lower.
他方、非晶質の樹脂(C2)は、融点がない(すなわち、DSCを用いた前記方法によって融解挙動が確認されない)か、または融点(DSCを用いた前記方法で測定される融解温度)が、結晶質の樹脂(C1)よりも低くなる。具体的には、非晶質の樹脂(C2)は、融点が観測できる場合、その融点は70℃以下である。 On the other hand, the amorphous resin (C2) has no melting point (that is, no melting behavior is confirmed by the above method using DSC) or a melting point (melting temperature measured by the above method using DSC). , Which is lower than that of the crystalline resin (C1). Specifically, when the melting point of the amorphous resin (C2) can be observed, the melting point is 70° C. or lower.
樹脂(C1)が結晶質であることは、融点が80℃以上170℃以下であることで確認でき、樹脂(C2)が非晶質であることは、融点が観測されないか、融点が70℃以下であることで確認できるが、その他の方法、例えば、樹脂(C1)のX線回折強度曲線において、樹脂(C1)の結晶由来のピークが存在していることや、樹脂(C2)のX線回折強度曲線において、樹脂(C2)の結晶由来のピークが存在していないことなどによっても確認できる。 The fact that the resin (C1) is crystalline can be confirmed by the melting point being 80° C. or higher and 170° C. or lower, and the fact that the resin (C2) is amorphous means that the melting point is not observed or the melting point is 70° C. It can be confirmed by the following, but other methods, for example, in the X-ray diffraction intensity curve of the resin (C1), the presence of a peak derived from the crystal of the resin (C1) and the X of the resin (C2) It can also be confirmed by the absence of a peak derived from the resin (C2) crystal in the line diffraction intensity curve.
接着性樹脂(C)の層において、結晶質の樹脂(C1)は粒子状で存在していることが好ましい。結晶質の樹脂(C1)が粒子状で層内に点在し、その周囲に非晶質の樹脂(C2)が存在して層を形成することで、結晶質の樹脂(C1)と非晶質の樹脂(C2)との間に形成される隙間が大きくなり、層の多孔質化が容易になる。 In the layer of the adhesive resin (C), the crystalline resin (C1) is preferably present in the form of particles. The crystalline resin (C1) is in the form of particles and scattered in the layer, and the amorphous resin (C2) is present around it to form a layer. The gap formed with the high quality resin (C2) becomes large, and it becomes easy to make the layer porous.
結晶質の樹脂(C1)が粒子状の場合、その粒子径がある程度小さいと、接着性樹脂(C)の層内でより多くの前記粒子を平均的に点在させることができ、層の多孔質化がより一層容易になる。よって、結晶質の樹脂(C1)が粒子状の場合の平均粒子径は、0.5μm以下であることが好ましく、0.4μm以下であることがより好ましい。なお、あまりに小さな粒径の樹脂(C1)は、製造や取り扱いが困難となることから、結晶質の樹脂(C1)の平均粒子径は、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。 When the crystalline resin (C1) is in the form of particles, if the particle size is small to a certain extent, more of the particles can be dispersed evenly in the layer of the adhesive resin (C), and the porosity of the layer can be improved. Quality improvement becomes easier. Therefore, when the crystalline resin (C1) is in the form of particles, the average particle size is preferably 0.5 μm or less, more preferably 0.4 μm or less. Since the resin (C1) having a too small particle diameter is difficult to manufacture and handle, the average particle diameter of the crystalline resin (C1) is preferably 0.01 μm or more, and 0.1 μm or more. Is more preferable.
本明細書でいう結晶質の樹脂(C1)の平均粒子径は、レーザー散乱粒度分布計(例えば、堀場製作所製「LA−920」)を用いて測定した数平均粒子径である。 The average particle size of the crystalline resin (C1) as used herein is a number average particle size measured using a laser scattering particle size distribution meter (for example, "LA-920" manufactured by Horiba Ltd.).
接着性樹脂(C)の層において、結晶質の樹脂(C1)と非晶質の樹脂(C2)との合計量中の、非晶質の樹脂(C2)の割合は、10質量%以上、好ましくは20質量%以上、より好ましくは30質量%以上であって、50質量%以下、好ましくは40質量%以下である。言い換えれば、結晶質の樹脂(C1)と非晶質の樹脂(C2)との合計量中の、結晶質の樹脂(C1)の割合は、50質量%以上、好ましくは60質量%以上であって、90質量%以下、好ましくは80質量%以下、より好ましくは70質量%以下である。結晶質の樹脂(C1)と非晶質の樹脂(C2)との混合物が、両者を前記のような割合で含有し、これにより接着性樹脂(C)の層が形成されている場合には、電極との密着強度を高める作用と、電気化学素子の負荷特性を高く維持する作用とが、より良好に発揮される。 In the layer of the adhesive resin (C), the ratio of the amorphous resin (C2) in the total amount of the crystalline resin (C1) and the amorphous resin (C2) is 10% by mass or more, It is preferably 20% by mass or more, more preferably 30% by mass or more, and 50% by mass or less, preferably 40% by mass or less. In other words, the proportion of the crystalline resin (C1) in the total amount of the crystalline resin (C1) and the amorphous resin (C2) is 50% by mass or more, preferably 60% by mass or more. 90 mass% or less, preferably 80 mass% or less, more preferably 70 mass% or less. In the case where the mixture of the crystalline resin (C1) and the amorphous resin (C2) contains both of them in the above proportions, and thus the layer of the adhesive resin (C) is formed, Further, the effect of increasing the adhesion strength with the electrode and the effect of maintaining the load characteristics of the electrochemical element at a high level are exhibited more favorably.
接着性樹脂(C)の層は、セパレータを正極および負極のいずれか一方のみと一体化させる場合には、セパレータ表面のうち、一体化が予定される電極と接する側の表面にのみ存在させればよいが、セパレータを正極および負極の両者と一体化する場合には、セパレータの両面に存在させる。 When the separator is integrated with only one of the positive electrode and the negative electrode, the layer of the adhesive resin (C) is allowed to exist only on the surface of the separator surface which is in contact with the electrode to be integrated. However, when the separator is integrated with both the positive electrode and the negative electrode, they are present on both sides of the separator.
セパレータにおける接着性樹脂(C)の層の存在面において、接着性樹脂(C)の層の目付けは、電極との接着を良好にする観点から、0.1g/m2以上であり、0.2g/m2以上であることが好ましく、0.4g/m2以上であることがより好ましい。ただし、セパレータにおける接着性樹脂(C)の層の存在面において、接着性樹脂(C)の層の目付けが大きすぎると、セパレータ全体の厚みが大きくなりすぎたり、接着性樹脂(C)がセパレータの空孔を塞ぐ可能性が高くなり、電気化学素子内部でのイオンの移動が阻害されたりする虞がある。よって、セパレータにおける接着性樹脂(C)の層の存在面において、接着性樹脂(C)の目付けは、1.5g/m2以下であり、1g/m2以下であることが好ましく、0.9g/m2以下であることがより好ましい。On the surface where the adhesive resin (C) layer is present in the separator, the basis weight of the adhesive resin (C) layer is 0.1 g/m 2 or more from the viewpoint of good adhesion to the electrode, and It is preferably 2 g/m 2 or more, and more preferably 0.4 g/m 2 or more. However, if the weight of the layer of the adhesive resin (C) is too large on the surface where the layer of the adhesive resin (C) in the separator is present, the thickness of the entire separator becomes too large, or the adhesive resin (C) becomes too thick. There is a high possibility that the holes of the electrochemical device will be blocked, and the movement of ions inside the electrochemical device may be hindered. Therefore, the basis weight of the adhesive resin (C) on the surface where the layer of the adhesive resin (C) in the separator is present is 1.5 g/m 2 or less, preferably 1 g/m 2 or less, and It is more preferably 9 g/m 2 or less.
なお、セパレータの両面に接着性樹脂(C)の層を形成する場合には、どちらの層についても、目付けが前記範囲となることが望ましい。 When forming a layer of the adhesive resin (C) on both surfaces of the separator, it is desirable that the basis weight of both layers be within the above range.
本発明のセパレータでは、接着性樹脂(C)に関して前記の構成を採用することで、例えば、電気化学素子を構成する電極とセパレータとの間の180°での剥離試験を実施した際に得られる剥離強度を、加熱プレス前の状態では、0.05N/20mm未満、好ましくは0.03N/20mm以下、より好ましくは0N/20mm(全く接着力のない状態)とすることができ、また、50〜100℃の温度で加熱プレスした後の状態では、0.1N/20mm以上、好ましくは0.2N/20mm以上とすることができる。 In the separator of the present invention, by adopting the above-mentioned constitution with respect to the adhesive resin (C), for example, it is obtained when a peeling test at 180° between the electrode constituting the electrochemical element and the separator is carried out. The peel strength before heating and pressing can be less than 0.05 N/20 mm, preferably 0.03 N/20 mm or less, more preferably 0 N/20 mm (no adhesive force at all), and 50 In the state after hot pressing at a temperature of -100°C, it can be 0.1 N/20 mm or more, preferably 0.2 N/20 mm or more.
本明細書でいう電極とセパレータとの間の180°での剥離強度は、以下の方法により測定される値である。セパレータおよび電極を、それぞれ長さ5cm×幅2cmのサイズに切り出し、切り出したセパレータと電極と重ねる。加熱プレスした後の状態の剥離強度を求める場合には、片端から2cm×2cmの領域を加熱プレスして試験片を作製する。この試験片のセパレータと電極とを加熱プレスしていない側の端部を開き、セパレータと負極とを、これらの角度が180°になるように折り曲げる。その後、引張試験機を用い、試験片の180°に開いたセパレータの片端側と電極の片端側とを把持して、引張速度10mm/minで引っ張り、セパレータと電極とを加熱プレスした領域で両者が剥離したときの強度を測定する。また、セパレータと電極との加熱プレス前の状態での剥離強度は、前記のように切り出した各セパレータと電極とを重ね、加熱をせずにプレスする以外は前記と同様に試験片を作製し、前記と同じ方法で剥離試験を行う。 The peel strength at 180° between the electrode and the separator as used herein is a value measured by the following method. Each of the separator and the electrode is cut into a size of 5 cm in length and 2 cm in width, and the cut separator and the electrode are stacked. To obtain the peel strength in the state after hot pressing, a test piece is prepared by hot pressing a region of 2 cm×2 cm from one end. The end of the test piece on the side where the separator and the electrode are not heated and pressed is opened, and the separator and the negative electrode are bent so that their angles are 180°. Then, using a tensile tester, one end side of the separator and one end side of the electrode opened at 180° of the test piece were grasped and pulled at a pulling speed of 10 mm/min, and the separator and the electrode were both heated and pressed in the area. The strength when peeled off is measured. Further, the peeling strength of the separator and the electrode in the state before the heating and pressing is performed in the same manner as the above except that the separator and the electrode cut out as described above are stacked and pressed without heating. A peeling test is performed in the same manner as described above.
本発明のセパレータは、融点が100〜170℃の熱溶融性樹脂(A)を主成分とする樹脂多孔質層(I)と、前記樹脂多孔質層(I)の熱収縮を抑制する耐熱多孔質層(II)とを有している。樹脂多孔質層(I)は、本発明のセパレータを用いた電気化学素子において、正極と負極との短絡を防止しつつ、イオンを透過するセパレータ本来の機能を有する層であり、耐熱多孔質層(II)は、セパレータに耐熱性を付与する役割を担う層である。 The separator of the present invention comprises a resin porous layer (I) mainly composed of a heat-meltable resin (A) having a melting point of 100 to 170° C., and a heat-resistant porous material that suppresses thermal contraction of the resin porous layer (I). And a quality layer (II). The resin porous layer (I) is a layer having an original function of a separator that allows ions to pass while preventing a short circuit between the positive electrode and the negative electrode in the electrochemical device using the separator of the present invention, and the heat resistant porous layer (II) is a layer that plays a role of imparting heat resistance to the separator.
樹脂多孔質層(I)は、融点が100℃以上170℃以下、すなわち、JIS K 7121の規定に準じて、DSCを用いて測定される融解温度が、100℃以上170℃以下の熱溶融性樹脂(A)を主成分としている。このような熱溶融性樹脂(A)を主成分とする樹脂多孔質層(I)を有するセパレータとすることで、これを用いた電気化学素子内が高温となった場合に、熱溶融性樹脂(A)が溶融してセパレータの孔を塞ぐ、いわゆるシャットダウン機能を確保することができる。 The resin porous layer (I) has a melting point of 100° C. or higher and 170° C. or lower, that is, a melting temperature measured by DSC in accordance with JIS K 7121 is 100° C. or higher and 170° C. or lower. The resin (A) is the main component. By using the separator having the resin porous layer (I) containing such a heat-meltable resin (A) as a main component, the heat-meltable resin can be used when the temperature inside the electrochemical device using the separator becomes high. It is possible to secure a so-called shutdown function in which (A) melts and blocks the holes of the separator.
樹脂多孔質層(I)の主成分となる熱溶融性樹脂(A)は、融点が100℃以上170℃以下で、電気絶縁性を有しており、電気化学的に安定で、更に後で詳述する電気化学素子の有する非水電解液や、耐熱多孔質層(II)形成用の組成物に使用する媒体に安定な熱可塑性樹脂であれば特に制限はないが、ポリエチレン(PE)、ポリプロピレン(PP)、エチレン−プロピレン共重合体などのポリオレフィンなどが好ましく、これらの熱溶融性樹脂(A)の中から、使用する接着性樹脂(C)の接着性が発現する温度よりも融点が高いものを選択することが好ましい。 The heat-meltable resin (A), which is the main component of the resin porous layer (I), has a melting point of 100° C. or higher and 170° C. or lower, has electrical insulation properties, is electrochemically stable, and is later There is no particular limitation as long as it is a stable thermoplastic resin for the medium used for the nonaqueous electrolytic solution contained in the electrochemical device to be described in detail or the composition for forming the heat resistant porous layer (II), but polyethylene (PE), Polypropylene (PP), polyolefin such as ethylene-propylene copolymer, and the like are preferable, and the melting point is higher than the temperature at which the adhesiveness of the adhesive resin (C) to be used among these thermofusible resins (A) develops. It is preferable to select the higher one.
樹脂多孔質層(I)には、例えば、従来から知られているリチウム二次電池などの電気化学素子で使用されているポリオレフィン製の微多孔膜、すなわち、無機フィラーなどを混合したポリオレフィンを用いて形成したフィルムやシートに、一軸または二軸延伸を施して微細な空孔を形成したものなどを用いることができる。また、前記の熱溶融性樹脂(A)と、他の樹脂を混合してフィルムやシートとし、その後、前記他の樹脂のみを溶解する溶媒中に、これらフィルムやシートを浸漬して、前記他の樹脂のみを溶解させて空孔を形成したものを、樹脂多孔質層(I)として使用することもできる。更に、熱溶融性樹脂(A)製の不織布を樹脂多孔質層(I)として使用することもできる。また、前記例示の樹脂製の微多孔膜と不織布とを複数積層したり、微多孔膜同士や不織布同士を複数積層したりしたものを樹脂多孔質層(I)として使用することもできる。 For the resin porous layer (I), for example, a microporous film made of polyolefin used in a conventionally known electrochemical element such as a lithium secondary battery, that is, a polyolefin mixed with an inorganic filler is used. The film or sheet thus formed may be uniaxially or biaxially stretched to form fine pores. Further, the above-mentioned heat-meltable resin (A) is mixed with another resin to form a film or sheet, and thereafter, the film or sheet is immersed in a solvent that dissolves only the other resin, and the other A resin porous layer (I) can also be obtained by dissolving only the resin of (1) to form pores. Furthermore, a non-woven fabric made of the heat-fusible resin (A) can be used as the resin porous layer (I). Further, a resin porous layer (I) may be formed by laminating a plurality of the resin-made microporous membranes and nonwoven fabrics described above, or laminating a plurality of microporous membranes or nonwoven fabrics.
樹脂多孔質層(I)には、強度向上などを目的としてフィラーを含有させることもできる。このようなフィラーとしては、例えば、耐熱多孔質層(II)に使用されるフィラー(耐熱温度が150℃以上で電気絶縁性のフィラー)の具体例として後述する各種フィラーが挙げられる。 The resin porous layer (I) may contain a filler for the purpose of improving strength. Examples of such a filler include various fillers described later as specific examples of the filler (electrically insulating filler having a heat resistant temperature of 150° C. or higher) used in the heat resistant porous layer (II).
樹脂多孔質層(I)における「熱溶融性樹脂(A)を主成分とする」とは、熱溶融性樹脂(A)を、樹脂多孔質層(I)の構成成分の全体積(空孔部分を除く全体積。以下同じ。)中、70体積%以上含むことを意味している。樹脂多孔質層(I)における熱溶融性樹脂(A)の量は、樹脂多孔質層(I)の構成成分の全体積中、80体積%以上であることが好ましく、90体積%以上であることがより好ましく、100体積%であってもよい。 In the resin porous layer (I), "having the heat-melting resin (A) as a main component" means that the heat-melting resin (A) is the total volume (voids) of the components of the resin porous layer (I). The total volume excluding a portion. The same applies hereinafter.), which means that 70% by volume or more is contained. The amount of the heat-fusible resin (A) in the resin porous layer (I) is preferably 80% by volume or more and 90% by volume or more in the total volume of the constituent components of the resin porous layer (I). More preferably, it may be 100% by volume.
耐熱多孔質層(II)は、例えば、耐熱温度が150℃以上で電気絶縁性のフィラーを主成分として含む構成とすることができる。前記フィラーとしては、耐熱温度が150℃以上であり、電気絶縁性を有しており、電気化学素子内において電気化学的に安定で、電気化学素子内の非水電解液に対して安定であれば特に制限はない。本明細書でいう前記フィラーにおける「耐熱温度が150℃以上」とは、少なくとも150℃において変形などの形状変化が目視で確認されないことを意味している。前記フィラーの耐熱温度は、200℃以上であることが好ましく、300℃以上であることがより好ましく、500℃以上であることが更に好ましい。 The heat resistant porous layer (II) can be configured to have, for example, a heat resistant temperature of 150° C. or higher and an electrically insulating filler as a main component. The filler has a heat-resistant temperature of 150° C. or higher, has electrical insulation, is electrochemically stable in the electrochemical device, and stable to the non-aqueous electrolyte in the electrochemical device. There is no particular limitation. The “heat resistant temperature of 150° C. or higher” in the filler as used herein means that no shape change such as deformation is visually confirmed at least at 150° C. The heat resistant temperature of the filler is preferably 200° C. or higher, more preferably 300° C. or higher, and further preferably 500° C. or higher.
耐熱温度が150℃以上で電気絶縁性のフィラーは、電気絶縁性を有する無機微粒子であることが好ましく、具体的には、酸化鉄、シリカ(SiO2)、アルミナ(Al2O3)、チタニア(TiO2)、チタン酸バリウム(BaTiO3)などの無機酸化物微粒子;窒化アルミニウム、窒化ケイ素などの無機窒化物微粒子;フッ化カルシウム、フッ化バリウム、硫酸バリウムなどの難溶性のイオン結晶微粒子;シリコン、ダイヤモンドなどの共有結合性結晶微粒子;モンモリロナイトなどの粘土微粒子;などが挙げられる。ここで、前記無機酸化物微粒子は、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、マイカなどの鉱物資源由来物質またはこれらの人造物などの微粒子であってもよい。また、これらの無機微粒子を構成する無機化合物は、必要に応じて、元素置換されていたり、固溶体化されていたりしてもよく、更に前記の無機微粒子は表面処理が施されていてもよい。また、無機微粒子は、金属、SnO2、スズ−インジウム酸化物(ITO)などの導電性酸化物、カーボンブラック、グラファイトなどの炭素質材料などで例示される導電性材料の表面を、電気絶縁性を有する材料(例えば、前記の無機酸化物など)で被覆することにより電気絶縁性を持たせた粒子であってもよい。The electrically insulating filler having a heat resistant temperature of 150° C. or higher is preferably inorganic fine particles having electrically insulating properties, and specifically, iron oxide, silica (SiO 2 ), alumina (Al 2 O 3 ), titania Inorganic oxide particles such as (TiO 2 ) and barium titanate (BaTiO 3 ); inorganic nitride particles such as aluminum nitride and silicon nitride; sparingly soluble ionic crystal particles such as calcium fluoride, barium fluoride and barium sulfate; Examples thereof include covalent bond crystal particles such as silicon and diamond; clay particles such as montmorillonite. Here, the fine particles of the inorganic oxide may be fine particles such as substances derived from mineral resources such as boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine, mica, or artificial materials thereof. Further, the inorganic compounds constituting these inorganic fine particles may be element-substituted or may be solid-solved, if necessary, and the inorganic fine particles may be surface-treated. In addition, the inorganic fine particles are formed on the surface of a conductive material such as a metal, SnO 2 , a conductive oxide such as tin-indium oxide (ITO), a carbonaceous material such as carbon black or graphite, and an electrically insulating material. The particles may be electrically insulating by being coated with a material having (for example, the above-mentioned inorganic oxide).
耐熱温度が150℃以上で電気絶縁性のフィラーには、有機微粒子を用いることもできる。有機微粒子の具体例としては、ポリイミド、メラミン系樹脂、フェノール系樹脂、架橋ポリメチルメタクリレート(架橋PMMA)、架橋ポリスチレン(架橋PS)、ポリジビニルベンゼン(PDVB)、ベンゾグアナミン−ホルムアルデヒド縮合物などの架橋高分子の微粒子;熱可塑性ポリイミドなどの耐熱性高分子の微粒子;などが挙げられる。これらの有機微粒子を構成する有機樹脂(高分子)は、前記例示の材料の混合物、変性体、誘導体、共重合体(ランダム共重合体、交互共重合体、ブロック共重合体、グラフト共重合体)、架橋体(前記の耐熱性高分子の場合)であってもよい。 Organic fine particles can be used as the electrically insulating filler having a heat resistant temperature of 150° C. or higher. Specific examples of the organic fine particles include polyimide, melamine resin, phenol resin, crosslinked polymethylmethacrylate (crosslinked PMMA), crosslinked polystyrene (crosslinked PS), polydivinylbenzene (PDVB), benzoguanamine-formaldehyde condensate and the like. Examples thereof include fine particles of molecules; fine particles of heat-resistant polymer such as thermoplastic polyimide. The organic resin (polymer) constituting these organic fine particles is a mixture of the materials exemplified above, a modified product, a derivative, a copolymer (random copolymer, alternating copolymer, block copolymer, graft copolymer). ), and a crosslinked body (in the case of the above-mentioned heat-resistant polymer).
耐熱温度が150℃以上で電気絶縁性のフィラーは、前記例示のものを1種単独で使用してもよく、2種以上を併用してもよいが、前記例示の各種フィラーの中でも無機酸化物微粒子が好ましく、より具体的には、アルミナ、シリカ、ベーマイトより選ばれる少なくとも1種であることがより好ましい。 As the electrically insulating filler having a heat resistant temperature of 150° C. or higher, one of the above-mentioned examples may be used alone, or two or more thereof may be used in combination. Fine particles are preferable, and more specifically, at least one selected from alumina, silica, and boehmite is more preferable.
耐熱温度が150℃以上で電気絶縁性のフィラーの粒径は、平均粒子径で、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましく、0.3μm以上であることが最も好ましく、また、5μm以下であることが好ましく、2μm以下であることがより好ましく、1μm以下であることが最も好ましい。耐熱温度が150℃以上で電気絶縁性のフィラーの平均粒子径は、例えば、レーザー散乱粒度分布計(例えば、HORIBA社製「LA−920」)を用い、前記フィラーを溶解しない媒体に分散させて測定した数平均粒子径として規定することができる(後記の実施例における前記フィラーの平均粒子径は、この方法で測定した値である)。 The average particle size of the electrically insulating filler having a heat resistant temperature of 150° C. or higher is preferably 0.01 μm or more, more preferably 0.1 μm or more, and 0.3 μm or more. Is most preferable, 5 μm or less is preferable, 2 μm or less is more preferable, and 1 μm or less is most preferable. The average particle size of the electrically insulating filler having a heat resistant temperature of 150° C. or higher is obtained by dispersing the filler in a medium that does not dissolve, using a laser scattering particle size distribution meter (for example, “LA-920” manufactured by HORIBA). It can be defined as the measured number average particle diameter (the average particle diameter of the filler in the examples described later is the value measured by this method).
耐熱温度が150℃以上で電気絶縁性のフィラーの形状としては、例えば、球状に近い形状であってもよく、板状であってもよいが、短絡防止の点からは、板状の粒子であることが好ましい。板状粒子の代表的なものとしては、板状のAl2O3や板状のベーマイトなどが挙げられる。The shape of the electrically insulating filler having a heat resistant temperature of 150° C. or higher may be, for example, a shape close to a sphere or a plate shape, but from the viewpoint of short circuit prevention, a plate-like particle is used. It is preferable to have. Typical plate-like particles include plate-like Al 2 O 3 and plate-like boehmite.
前記フィラーが板状粒子である場合の形態としては、アスペクト比が、5以上であることが好ましく、10以上であることがより好ましく、また、100以下であることが好ましく、50以下であることがより好ましい。更に、粒子の平板面の長軸方向長さと短軸方向長さの比(長軸方向長さ/短軸方向長さ)の平均値は、3以下であることが好ましく、2以下であることがより好ましく、1に近い値であることが特に好ましい。 When the filler is plate-like particles, the aspect ratio is preferably 5 or more, more preferably 10 or more, and preferably 100 or less, and 50 or less. Is more preferable. Further, the average value of the ratio of the major axis direction length to the minor axis direction length (long axis direction length/minor axis direction length) of the flat plate surface of the particles is preferably 3 or less, and 2 or less. Is more preferable, and a value close to 1 is particularly preferable.
なお、板状の前記フィラーにおける前記の平板面の長軸方向長さと短軸方向長さの比の平均値は、例えば、走査型電子顕微鏡(SEM)により撮影した画像を画像解析することにより求めることができる。更に板状粒子における前記のアスペクト比も、SEMにより撮影した画像を、画像解析することにより求めることができる。 The average value of the ratio of the length in the major axis direction to the length in the minor axis direction of the flat plate surface in the plate-like filler is determined by, for example, performing image analysis on an image taken by a scanning electron microscope (SEM). be able to. Furthermore, the aspect ratio of the plate-like particles can also be obtained by image analysis of an image taken by SEM.
セパレータ中での前記フィラーの存在形態は、平板面がセパレータの面に対して略平行であることが好ましく、より具体的には、セパレータの表面近傍における板状の前記フィラーについて、その平板面とセパレータ面との平均角度が30°以下であることが好ましい〔最も好ましくは、当該平均角度が0°、すなわち、セパレータの表面近傍における板状の平板面が、セパレータの面に対して平行である〕。ここでいう「表面近傍」とは、セパレータの表面から全体厚みに対しておよそ10%の範囲を指す。板状の前記フィラーの存在形態が前記のような場合には、樹脂多孔質層(I)の熱収縮をより効果的に防ぐことができ、全体として熱収縮率の特に小さなセパレータを形成することができる。 The existence form of the filler in the separator is preferably a plate surface is substantially parallel to the surface of the separator, more specifically, for the plate-like filler in the vicinity of the surface of the separator, the plate surface and The average angle with the separator surface is preferably 30° or less [most preferably, the average angle is 0°, that is, the plate-shaped flat plate surface near the surface of the separator is parallel to the surface of the separator. ]. The term “vicinity of the surface” as used herein refers to a range from the surface of the separator to approximately 10% of the total thickness. In the case where the plate-like filler is present as described above, it is possible to more effectively prevent heat shrinkage of the resin porous layer (I), and to form a separator having a particularly small heat shrinkage rate as a whole. You can
また、本発明のセパレータを用いた電気化学素子において、高出力の特性を必要とする場合には、前記フィラーには、一次粒子が凝集した二次粒子構造のフィラーを用いることが好ましい。このようなフィラーを用いることで、耐熱多孔質層(II)の空隙を大きくすることが可能となり、高い出力特性の電気化学素子を形成することができる。 Further, in the electrochemical device using the separator of the present invention, when high output characteristics are required, it is preferable to use a filler having a secondary particle structure in which primary particles are aggregated, as the filler. By using such a filler, the voids of the heat resistant porous layer (II) can be enlarged, and an electrochemical device having high output characteristics can be formed.
耐熱多孔質層(II)が、耐熱温度が150℃以上で電気絶縁性のフィラーを主成分として含む場合の、「耐熱温度が150℃以上で電気絶縁性のフィラーを主成分として含む」とは、前記フィラーを、耐熱多孔質層(II)の構成成分の全体積(空孔部分を除く全体積。以下同じ。)中、70体積%以上含むことを意味している。耐熱多孔質層(II)における前記フィラーの量は、耐熱多孔質層(II)の構成成分の全体積中、80体積%以上であることが好ましく、90体積%以上であることがより好ましい。耐熱多孔質層(II)中の前記フィラーを前記のように高含有量とすることで、セパレータ全体の熱収縮を良好に抑制して、高い耐熱性を付与することができる。 When the heat-resistant porous layer (II) has a heat-resistant temperature of 150° C. or higher as the main component and an electrically insulating filler as a main component, the phrase “containing the heat-resistant temperature of 150° C. or higher as an electrically insulating filler as the main component” It means that the filler is contained in an amount of 70% by volume or more in the total volume of the constituent components of the heat-resistant porous layer (II) (total volume excluding pores. The same applies hereinafter). The amount of the filler in the heat resistant porous layer (II) is preferably 80% by volume or more, and more preferably 90% by volume or more in the total volume of the constituent components of the heat resistant porous layer (II). By setting the content of the filler in the heat-resistant porous layer (II) to be high as described above, heat shrinkage of the entire separator can be suppressed well, and high heat resistance can be imparted.
また、耐熱多孔質層(II)が、耐熱温度が150℃以上で電気絶縁性のフィラーを主成分として含む場合には、前記フィラー同士を結着したり耐熱多孔質層(II)と樹脂多孔質層(I)とを結着したりするためにバインダ樹脂(B)を含有させることが望ましい。よって、耐熱多孔質層(II)における前記フィラー量の好適上限値は、例えば、耐熱多孔質層(II)の構成成分の全体積中、99体積%である。なお、耐熱多孔質層(II)における前記フィラーの量を70体積%未満とすると、例えば、耐熱多孔質層中(II)のバインダ樹脂(B)の量を多くする必要が生じるが、その場合には耐熱多孔質層(II)の空孔がバインダ樹脂(B)によって埋められてしまい、例えばセパレータとしての機能を喪失する虞がある。 When the heat-resistant porous layer (II) has a heat-resistant temperature of 150° C. or higher as a main component and contains an electrically insulating filler, the fillers are bound to each other or the heat-resistant porous layer (II) and the resin porous layer are combined. It is desirable to contain a binder resin (B) for binding the quality layer (I). Therefore, the suitable upper limit of the amount of the filler in the heat resistant porous layer (II) is, for example, 99% by volume in the total volume of the constituent components of the heat resistant porous layer (II). When the amount of the filler in the heat resistant porous layer (II) is less than 70% by volume, for example, it is necessary to increase the amount of the binder resin (B) in the heat resistant porous layer (II). In this case, the pores of the heat resistant porous layer (II) are filled with the binder resin (B), and there is a possibility that the function as a separator may be lost.
耐熱多孔質層(II)に用いるバインダ樹脂(B)としては、前記フィラー同士や耐熱多孔質層(II)と樹脂多孔質層(I)とを良好に接着でき、電気化学的に安定で、かつ電気化学素子用の非水電解液に対して安定であれば特に制限はない。具体的には、フッ素樹脂(PVDFなど)、フッ素系ゴム、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルピロリドン(PVP)、ポリN−ビニルアセトアミド、架橋アクリル樹脂、ポリウレタン、エポキシ樹脂などが挙げられる。これらのバインダ樹脂(B)は1種単独で使用してもよく、2種以上を併用しても構わない。 As the binder resin (B) used for the heat resistant porous layer (II), the fillers can be favorably adhered to each other and the heat resistant porous layer (II) and the resin porous layer (I) can be favorably adhered, and electrochemically stable, There is no particular limitation as long as it is stable with respect to the non-aqueous electrolyte solution for electrochemical device. Specifically, fluororesin (PVDF etc.), fluorocarbon rubber, styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), polyvinyl alcohol (PVA), polyvinyl butyral (PVB), polyvinyl pyrrolidone ( PVP), poly N-vinyl acetamide, crosslinked acrylic resin, polyurethane, epoxy resin and the like. These binder resins (B) may be used alone or in combination of two or more.
前記例示のバインダ樹脂(B)の中でも、150℃以上の耐熱性を有する耐熱樹脂が好ましく、特に、フッ素系ゴム、SBRなどの柔軟性の高い材料がより好ましい。これらの具体例としては、ダイキン工業社製の「ダイエルラテックスシリーズ(フッ素ゴム、商品名)」、JSR社製の「TRD−2001(SBR、商品名)」、日本ゼオン社製の「EM−400B(SBR、商品名)」などが挙げられる。また、アクリル酸ブチルを主成分とし、これを架橋した構造を有する低ガラス転移温度の架橋アクリル樹脂(自己架橋型アクリル樹脂)も好ましい。 Among the binder resins (B) exemplified above, a heat-resistant resin having a heat resistance of 150° C. or higher is preferable, and a highly flexible material such as fluororubber or SBR is particularly preferable. Specific examples thereof include "Daiel Latex Series (fluorine rubber, trade name)" manufactured by Daikin Industries, Ltd., "TRD-2001 (SBR, trade name)" manufactured by JSR, and "EM- manufactured by Zeon Corporation". 400B (SBR, trade name)" and the like. Further, a low glass transition temperature crosslinked acrylic resin (self-crosslinking acrylic resin) having a structure in which butyl acrylate is the main component and which is crosslinked is also preferable.
なお、これらバインダ樹脂(B)を使用する場合には、後記する耐熱多孔質層(II)形成用の組成物(スラリーなど)の媒体に溶解させるか、または分散させたエマルジョンの形態で用いればよい。 When these binder resins (B) are used, they may be dissolved or dispersed in a medium of a composition (slurry or the like) for forming a heat resistant porous layer (II) described later or used in the form of an emulsion. Good.
また、耐熱多孔質層(II)は、耐熱性の高い樹脂、例えば、JIS K 7121の規定に準じて、DSCを用いて測定される融解温度が180℃以上である樹脂や、熱硬化性樹脂、熱分解温度が200℃以上の樹脂などで構成することも可能である。具体的には、ポリイミド、ポリアミドイミド、ポリアミド、セルロース、架橋ポリメタクリル酸メチル、架橋ポリスチレン、架橋ポリジビニルベンゼン、スチレン−ジビニルベンゼン共重合体架橋物、ポリイミド、メラミン樹脂、フェノール樹脂、ベンゾグアナミン−ホルムアルデヒド縮合物、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンスルフィド、ポリテトラフルオロエチレン、ポリアクリロニトリル、ポリアセタールなどが挙げられ、ポリイミド、ポリアミドイミド、全芳香族ポリアミド(アラミド)、セルロースが好ましく用いられる。 The heat-resistant porous layer (II) is a resin having high heat resistance, for example, a resin having a melting temperature of 180° C. or higher measured by DSC according to JIS K 7121, or a thermosetting resin. It is also possible to use a resin having a thermal decomposition temperature of 200° C. or higher. Specifically, polyimide, polyamideimide, polyamide, cellulose, crosslinked polymethylmethacrylate, crosslinked polystyrene, crosslinked polydivinylbenzene, styrene-divinylbenzene copolymer crosslinked product, polyimide, melamine resin, phenol resin, benzoguanamine-formaldehyde condensation And polysulfone, polyether sulfone, polyphenylene sulfide, polytetrafluoroethylene, polyacrylonitrile, polyacetal, and the like, and polyimide, polyamideimide, wholly aromatic polyamide (aramid), and cellulose are preferably used.
耐熱多孔質層(II)の空孔率は、電気化学素子の有する非水電解液の保液量を確保してイオン透過性を良好にするために、乾燥した状態で、40%以上であることが好ましく、50%以上であることがより好ましい。一方、強度の確保と内部短絡の防止の観点から、耐熱多孔質層(II)の空孔率は、乾燥した状態で、80%以下であることが好ましく、70%以下であることがより好ましい。なお、空孔率:P(%)は、耐熱多孔質層(II)の厚み、面積あたりの質量、構成成分の密度から、下記(1)式を用いて各成分iについての総和を求めることにより計算できる。 The porosity of the heat-resistant porous layer (II) is 40% or more in a dry state in order to secure a holding amount of the non-aqueous electrolytic solution contained in the electrochemical element and improve ion permeability. It is preferably 50% or more, and more preferably 50% or more. On the other hand, from the viewpoint of securing strength and preventing internal short circuit, the porosity of the heat resistant porous layer (II) is preferably 80% or less, and more preferably 70% or less in a dry state. .. In addition, the porosity: P (%) is obtained by calculating the sum of each component i from the thickness of the heat resistant porous layer (II), the mass per area, and the density of the constituents by using the following formula (1). Can be calculated by
P =100−(Σai/ρi)×(m/t) (1)P=100−(Σa i /ρ i )×(m/t) (1)
ここで、前記(1)式中、ai:質量%で表した成分iの比率、ρi:成分iの密度(g/cm3)、m:耐熱多孔質層(II)の単位面積あたりの質量(g/cm2)、t:耐熱多孔質層(II)の厚み(cm)である。Here, in the formula (1), a i : ratio of the component i expressed in mass%, ρ i : density of the component i (g/cm 3 ), m: per unit area of the heat resistant porous layer (II) (G/cm 2 ) and t: thickness (cm) of the heat resistant porous layer (II).
本発明のセパレータは、樹脂多孔質層(I)と耐熱多孔質層(II)とを、それぞれ1層ずつ有していてもよく、複数有していてもよい。具体的には、樹脂多孔質層(I)の片面にのみ耐熱多孔質層(II)を配置してセパレータとする他、例えば、樹脂多孔質層(I)の両面に耐熱多孔質層(II)を配置してセパレータとしてもよい。ただし、セパレータの有する層数が多くなりすぎると、セパレータの厚みを増やして電気化学素子の内部抵抗の増加やエネルギー密度の低下を招く虞があるので好ましくなく、セパレータ中の層数は5層以下であることが好ましい。 The separator of the present invention may have one resin porous layer (I) and one heat resistant porous layer (II), or may have two or more layers. Specifically, the heat-resistant porous layer (II) is arranged only on one side of the resin porous layer (I) to form a separator. For example, the heat-resistant porous layer (II) is formed on both sides of the resin porous layer (I). ) May be arranged to serve as a separator. However, if the number of layers that the separator has is too large, the thickness of the separator may increase, which may lead to an increase in the internal resistance of the electrochemical element and a decrease in the energy density, which is not preferable, and the number of layers in the separator is 5 or less. Is preferred.
本発明のセパレータは、例えば、樹脂多孔質層(I)に、耐熱温度が150℃以上で電気絶縁性のフィラーおよびバインダ樹脂(B)などを含有する耐熱多孔質層(II)形成用組成物(スラリーなど)を塗布した後、所定の温度で乾燥し、その後接着性樹脂(C)を分散させた塗液〔結晶質の樹脂(C1)および非晶質の樹脂(C2)を含む分散液〕を塗布して塗膜を形成し、この塗膜を乾燥して、樹脂多孔質層(I)と耐熱多孔質層(II)とを有するセパレータの表面に接着性樹脂(C)の層を形成する方法により製造することができる。 The separator of the present invention is, for example, a composition for forming a heat-resistant porous layer (II) in which the resin porous layer (I) contains an electrically insulating filler having a heat-resistant temperature of 150° C. or higher and a binder resin (B). After coating (slurry or the like), the coating liquid is dried at a predetermined temperature and then the adhesive resin (C) is dispersed therein [a dispersion liquid containing a crystalline resin (C1) and an amorphous resin (C2). ] To form a coating film, the coating film is dried, and a layer of the adhesive resin (C) is formed on the surface of the separator having the resin porous layer (I) and the heat resistant porous layer (II). It can be manufactured by the forming method.
耐熱多孔質層(II)が、耐熱温度が150℃以上で電気絶縁性のフィラーを主成分として含む場合には、耐熱多孔質層(II)形成用組成物は、例えば、前記フィラーおよびバインダ樹脂(B)などを含有し、これらを溶媒(分散媒を含む。以下同じ。)に分散させたものである。なお、バインダ樹脂(B)については溶媒に溶解させることもできる。耐熱多孔質層(II)形成用組成物に用いられる溶媒は、前記フィラーなどを均一に分散でき、また、バインダ樹脂(B)を均一に溶解または分散できるものであればよいが、例えば、トルエンなどの芳香族炭化水素、テトラヒドロフランなどのフラン類、メチルエチルケトン、メチルイソブチルケトンなどのケトン類など、一般に有機溶媒が好適に用いられる。なお、これらの溶媒に、界面張力を制御する目的で、アルコール(エチレングリコール、プロピレングリコールなど)、または、モノメチルアセテートなどの各種プロピレンオキサイド系グリコールエーテルなどを適宜添加してもよい。また、バインダ樹脂(B)が水溶性である場合、エマルジョンとして使用する場合などでは、水を溶媒としてもよく、この際にもアルコール類(メチルアルコール、エチルアルコール、イソプロピルアルコール、エチレングリコールなど)を適宜加えて界面張力を制御することもできる。 When the heat-resistant porous layer (II) has a heat-resistant temperature of 150° C. or more as a main component and contains an electrically insulating filler, the heat-resistant porous layer (II)-forming composition is, for example, the filler and the binder resin. It contains (B) and the like and is dispersed in a solvent (including a dispersion medium; the same applies hereinafter). The binder resin (B) can be dissolved in a solvent. The solvent used in the composition for forming the heat resistant porous layer (II) may be any solvent as long as it can uniformly disperse the filler and the like and can also uniformly dissolve or disperse the binder resin (B). For example, toluene In general, organic solvents such as aromatic hydrocarbons such as, furans such as tetrahydrofuran, ketones such as methyl ethyl ketone and methyl isobutyl ketone are preferably used. For the purpose of controlling the interfacial tension, alcohols (ethylene glycol, propylene glycol, etc.), various propylene oxide-based glycol ethers such as monomethyl acetate, etc. may be appropriately added to these solvents. Further, when the binder resin (B) is water-soluble, or when it is used as an emulsion, water may be used as a solvent, and alcohols (methyl alcohol, ethyl alcohol, isopropyl alcohol, ethylene glycol, etc.) may be used at this time as well. The interfacial tension can be controlled by appropriately adding it.
耐熱多孔質層(II)形成用組成物は、前記フィラーおよびバインダ樹脂(B)を含む固形分含量を、例えば10〜80質量%とすることが好ましい。 The composition for forming the heat resistant porous layer (II) preferably has a solid content of, for example, 10 to 80% by mass containing the filler and the binder resin (B).
なお、前記フィラーとして板状粒子を用い、かかる板状粒子の配向性を高めてその機能をより有効に作用させるためには、板状粒子を含有する耐熱多孔質層(II)形成用組成物を樹脂多孔質層(I)に塗布した後、前記組成物にシェアや磁場をかけるといった方法を用いればよい。例えば、板状の前記フィラーを含有する耐熱多孔質層(II)形成用組成物を樹脂多孔質層(I)に塗布した後、一定のギャップを通すことで、前記組成物にシェアをかけることができる。 In addition, using plate-like particles as the filler, in order to enhance the orientation of such plate-like particles and make their functions work more effectively, a composition for forming a heat-resistant porous layer (II) containing plate-like particles is used. May be applied to the resin porous layer (I), and then a shear or magnetic field may be applied to the composition. For example, after applying a heat-resistant porous layer (II)-forming composition containing the plate-shaped filler to the resin porous layer (I), a certain gap is passed to share the composition. You can
また、前記耐熱性の高い樹脂により耐熱多孔質層(II)を形成する場合には、前記樹脂を溶媒に溶解させた塗液を、樹脂多孔質層(I)の表面に塗布し乾燥させる方法;前記樹脂を溶媒に溶解させた塗液を樹脂多孔質層(I)の表面に塗布し、貧溶媒により相分離させる方法;などを採用することができ、更に、一旦別の基板上に前記樹脂を溶媒に溶解させた塗液の塗膜を形成した後、樹脂多孔質層(I)の表面に転写させる方法を使用することもできる。 Further, when the heat resistant porous layer (II) is formed from the resin having high heat resistance, a method in which a coating solution obtained by dissolving the resin in a solvent is applied to the surface of the resin porous layer (I) and dried A method in which a coating solution obtained by dissolving the resin in a solvent is applied to the surface of the resin porous layer (I) and phase separation is performed with a poor solvent; It is also possible to use a method of forming a coating film of a coating solution in which a resin is dissolved in a solvent and then transferring the coating film onto the surface of the resin porous layer (I).
また、耐熱多孔質層(II)の空孔率や空孔径を調整するために、アルミナ、シリカ、チタニアなど、前述した耐熱温度が150℃以上で電気絶縁性のフィラーを、前記樹脂を含む塗液に混合することもできる。 In addition, in order to adjust the porosity and the pore diameter of the heat resistant porous layer (II), an electrically insulating filler having a heat resistant temperature of 150° C. or higher, such as alumina, silica, or titania, is applied to the resin containing the resin. It can also be mixed with a liquid.
前記のようにして形成した樹脂多孔質層(I)と耐熱多孔質層(II)との積層物に、接着性樹脂(C)を分散させた塗液を塗布して、接着性樹脂(C)の層を形成することで本発明のセパレータを製造することができる。なお、この場合、前記の通り、耐熱多孔質層(II)は樹脂多孔質層(I)の片面または両面に形成することができ、また、接着性樹脂(C)の層は、樹脂多孔質層(I)と耐熱多孔質層(II)との積層物の片面または両面に形成することができる。 A coating liquid in which the adhesive resin (C) is dispersed is applied to the laminate of the resin porous layer (I) and the heat resistant porous layer (II) formed as described above to obtain the adhesive resin (C The separator of the present invention can be produced by forming the layer (1). In this case, as described above, the heat resistant porous layer (II) can be formed on one side or both sides of the resin porous layer (I), and the layer of the adhesive resin (C) is a resin porous layer. It can be formed on one side or both sides of a laminate of the layer (I) and the heat resistant porous layer (II).
また、前記フィラーなどの構成物の持つ作用をより有効に発揮させるために、前記構成物を偏在させて、セパレータの膜面と平行または略平行に、前記構成物が層状に集まった形態としてもよい。 Further, in order to more effectively exert the action of the constituents such as the filler, the constituents are unevenly distributed, and the constituents are gathered in layers in parallel or substantially parallel to the membrane surface of the separator. Good.
接着性樹脂(C)を分散させた塗液を塗布して形成される塗膜を乾燥する際の温度は、非晶質の樹脂(C2)が流動する温度とする。ここでいう「非晶質の樹脂(C2)が流動する温度」とは、非晶質の樹脂(C2)が融点を有している場合には、その融点以上の温度であり、融点を有していない場合には、JIS K 7121に規定の方法で、DSCを用いて求められるガラス転移温度(Tg)以上の温度であるか、または、JIS K 7206に規定の方法に従って求められる軟化点以上の温度を意味している。 The temperature at which the coating film formed by applying the coating liquid in which the adhesive resin (C) is dispersed is dried is the temperature at which the amorphous resin (C2) flows. When the amorphous resin (C2) has a melting point, the "temperature at which the amorphous resin (C2) flows" is a temperature equal to or higher than the melting point and has a melting point. If not, the temperature is equal to or higher than the glass transition temperature (Tg) determined by DSC by the method specified in JIS K 7121, or is equal to or higher than the softening point determined by the method specified in JIS K 7206. Means the temperature of.
このような温度で乾燥することで、非晶質の樹脂(C2)が流動して層を形成する。なお、前記塗膜の乾燥温度は、結晶質の樹脂(C1)の融点未満の温度とすることが好ましく、これにより、結晶質の樹脂(C1)の粒子が、そのままの形状で残り、その周りに非晶質の樹脂(C2)が隙間を形成しつつ流動して層を形成するため、層がより良好に多孔質化する。 By drying at such a temperature, the amorphous resin (C2) flows to form a layer. The drying temperature of the coating film is preferably set to a temperature lower than the melting point of the crystalline resin (C1), whereby the particles of the crystalline resin (C1) remain in their original shape, Further, the amorphous resin (C2) flows while forming a gap to form a layer, so that the layer is made more porous.
本発明のセパレータの製造方法は、前記の方法に限定される訳ではなく、他の方法によって製造してもよい。例えば、前記の耐熱多孔質層(II)形成用組成物を、ライナーのような基材表面に塗布し、乾燥して耐熱多孔質層(II)を形成した後、基材から剥離し、この耐熱多孔質層(II)を樹脂多孔質層(I)となる微多孔膜などと重ねて熱プレスなどにより一体化して積層物とし、その後、この積層物の片面または両面に前記と同様にして接着性樹脂(C)の層を形成する方法でセパレータを製造することもできる。 The manufacturing method of the separator of the present invention is not limited to the above-mentioned method and may be manufactured by other methods. For example, the composition for forming the heat resistant porous layer (II) is applied to the surface of a substrate such as a liner, dried to form the heat resistant porous layer (II), and then peeled from the substrate. The heat resistant porous layer (II) is overlaid with a microporous membrane or the like to be the resin porous layer (I) by heat pressing or the like to form a laminate, and then one or both sides of this laminate are treated in the same manner as above. The separator can also be manufactured by a method of forming a layer of the adhesive resin (C).
このようにして製造されるセパレータの厚みは、電気化学素子用セパレータに使用するため、正極と負極とをより確実に隔離する観点から、6μm以上であることが好ましく、10μm以上であることがより好ましい。他方、セパレータが厚すぎると、電気化学素子としたときのエネルギー密度が低下してしまうことがあるため、その厚みは、50μm以下であることが好ましく、30μm以下であることがより好ましい。 The thickness of the separator manufactured in this manner is preferably 6 μm or more, and more preferably 10 μm or more, from the viewpoint of more surely separating the positive electrode and the negative electrode because the separator is used for the electrochemical device separator. preferable. On the other hand, if the separator is too thick, the energy density when used as an electrochemical element may decrease, so the thickness is preferably 50 μm or less, and more preferably 30 μm or less.
また、セパレータを構成する樹脂多孔質層(I)の厚みをX(μm)、耐熱多孔質層(II)の厚みをY(μm)としたとき、XとYとの比率X/Yは、10以下であることが好ましく、7以下であることがより好ましく、5以下であることが最も好ましく、また、1以上であることが好ましく、2以上であることがより好ましく、3以上であることが最も好ましい。本発明のセパレータでは、樹脂多孔質層(I)の厚み比率を大きくし耐熱多孔質層(II)を薄くしても、セパレータ全体の熱収縮を抑制することが可能であり、電気化学素子内でのセパレータの熱収縮による短絡の発生を高度に抑制することができる。なお、セパレータにおいて、樹脂多孔質層(I)が複数存在する場合には、厚みXはその総厚みであり、耐熱多孔質層(II)が複数存在する場合には、厚みYはその総厚みである。 Further, when the thickness of the resin porous layer (I) constituting the separator is X (μm) and the thickness of the heat resistant porous layer (II) is Y (μm), the ratio X/Y of X and Y is It is preferably 10 or less, more preferably 7 or less, most preferably 5 or less, more preferably 1 or more, more preferably 2 or more, and 3 or more. Is most preferred. In the separator of the present invention, even if the thickness ratio of the resin porous layer (I) is increased and the heat-resistant porous layer (II) is thinned, it is possible to suppress the thermal contraction of the entire separator. It is possible to highly suppress the occurrence of a short circuit due to thermal contraction of the separator in the above. In the separator, when there are a plurality of resin porous layers (I), the thickness X is the total thickness thereof, and when there are a plurality of heat resistant porous layers (II), the thickness Y is the total thickness thereof. Is.
具体的な値で表現すると、樹脂多孔質層(I)の厚み〔樹脂多孔質層(I)が複数存在する場合には、その総厚み。〕は、5μm以上であることが好ましく、また、30μm以下であることが好ましい。そして、耐熱多孔質層(II)の厚み〔耐熱多孔質層(II)が複数存在する場合には、その総厚み。〕は、1μm以上であることが好ましく、2μm以上であることがより好ましく、4μm以上であることが更に好ましく、また、20μm以下であることが好ましく、10μm以下であることがより好ましく、6μm以下であることが更に好ましい。樹脂多孔質層(I)が薄すぎると、シャットダウン特性が弱くなる虞があり、厚すぎると、電気化学素子のエネルギー密度の低下を引き起こす虞があることに加えて、熱収縮しようとする力が大きくなり、セパレータ全体の熱収縮を抑える効果が小さくなる虞がある。また、耐熱多孔質層(II)が薄すぎると、セパレータ全体の熱収縮を抑制する効果が小さくなる虞があり、厚すぎると、セパレータ全体の厚みの増大を引き起こしてしまう。 Expressed in a concrete value, the thickness of the resin porous layer (I) [when there are a plurality of resin porous layers (I), the total thickness thereof. ] Is preferably 5 μm or more and 30 μm or less. Then, the thickness of the heat resistant porous layer (II) [when there are a plurality of heat resistant porous layers (II), the total thickness thereof. ] Is preferably 1 μm or more, more preferably 2 μm or more, further preferably 4 μm or more, preferably 20 μm or less, more preferably 10 μm or less, and 6 μm or less Is more preferable. If the resin porous layer (I) is too thin, the shutdown characteristics may be weakened, and if it is too thick, the energy density of the electrochemical element may be lowered, and in addition, the force for thermal contraction may be reduced. There is a possibility that the effect becomes large and the effect of suppressing the thermal contraction of the entire separator becomes small. Further, if the heat resistant porous layer (II) is too thin, the effect of suppressing the heat shrinkage of the entire separator may be reduced, and if it is too thick, the thickness of the entire separator may be increased.
セパレータ全体の空孔率としては、非水電解液の保液量を確保してイオン透過性を良好にする観点から、乾燥した状態で、30%以上であることが好ましい。一方、セパレータ強度の確保と内部短絡の防止の観点から、セパレータの空孔率は、乾燥した状態で、70%以下であることが好ましい。なお、セパレータの空孔率:P(%)は、前記(1)式において、mをセパレータの単位面積あたりの質量(g/cm2)とし、tをセパレータの厚み(cm)とすることで、前記(1)式を用いて求めることができる。The porosity of the entire separator is preferably 30% or more in a dry state from the viewpoint of ensuring a liquid holding amount of the non-aqueous electrolyte and improving ion permeability. On the other hand, the porosity of the separator is preferably 70% or less in a dry state from the viewpoint of securing the strength of the separator and preventing an internal short circuit. The porosity of the separator: P (%) can be calculated by setting m to be the mass per unit area of the separator (g/cm 2 ) and t to be the thickness (cm) of the separator in the formula (1). , Can be obtained using the above equation (1).
また、前記(1)式において、mを樹脂多孔質層(I)の単位面積あたりの質量(g/cm2)とし、tを樹脂多孔質層(I)の厚み(cm)とすることで、前記(1)式を用いて樹脂多孔質層(I)の空孔率:P(%)を求めることもできる。この方法により求められる樹脂多孔質層(I)の空孔率は、30〜70%であることが好ましい。Further, in the formula (1), m is the mass per unit area of the resin porous layer (I) (g/cm 2 ), and t is the thickness of the resin porous layer (I) (cm). The porosity: P (%) of the resin porous layer (I) can also be obtained by using the above formula (1). The porosity of the resin porous layer (I) obtained by this method is preferably 30 to 70%.
また、本発明のセパレータは、JIS P 8117に準拠した方法で行われ、0.879g/mm2の圧力下で100mlの空気が膜を透過する秒数で示されるガーレー値が、10〜500secであることが望ましい。透気度が大きすぎると、イオン透過性が小さくなり、他方、小さすぎると、セパレータの強度が小さくなることがある。更に、セパレータの強度としては、直径1mmのニードルを用いた突き刺し強度で50g以上であることが望ましい。かかる突き刺し強度が小さすぎると、リチウムのデンドライト結晶が発生した場合に、セパレータの突き破れによる短絡が発生する場合がある。前記の構成を採用することにより、前記の透気度や突き刺し強度を有するセパレータとすることができる。Further, the separator of the present invention is performed by a method according to JIS P 8117, and a Gurley value indicated by the number of seconds in which 100 ml of air permeates the membrane under a pressure of 0.879 g/mm 2 is 10 to 500 sec. Is desirable. If the air permeability is too high, the ion permeability will be low, while if it is too low, the strength of the separator may be low. Further, the strength of the separator is preferably 50 g or more as the puncture strength using a needle having a diameter of 1 mm. When the puncture strength is too low, when a dendrite crystal of lithium is generated, a short circuit may occur due to breakage of the separator. By adopting the above configuration, a separator having the air permeability and the puncture strength can be obtained.
本発明のセパレータを適用できる電気化学素子は、非水電解液を用いるものであれば特に限定されるものではなく、リチウム二次電池の他、リチウム一次電池やスーパーキャパシタなど、例えば高温での安全性が要求される用途であれば好ましく適用できる。すなわち、本発明のセパレータを適用可能な電気化学素子は、セパレータ以外の構成および構造については特に制限はなく、従来から知られている非水電解液を有する各種電気化学素子(リチウム二次電池、リチウム一次電池、スーパーキャパシタなど)が備えている各種構成・構造を採用することができる。 The electrochemical device to which the separator of the present invention can be applied is not particularly limited as long as it uses a non-aqueous electrolytic solution, and other than a lithium secondary battery, a lithium primary battery, a supercapacitor, etc. It can be preferably applied if it is required to be used. That is, the electrochemical device to which the separator of the present invention can be applied is not particularly limited as to the configuration and structure other than the separator, and various electrochemical devices having a conventionally known non-aqueous electrolytic solution (lithium secondary battery, Various configurations and structures provided in the lithium primary battery, supercapacitor, etc. can be adopted.
以下、一例として、リチウム二次電池への適用について詳述する。リチウム二次電池の形態としては、スチール缶やアルミニウム缶などを外装缶として使用した筒形(角筒形や円筒形など)などが挙げられる。また、金属を蒸着したラミネートフィルムを外装体としたソフトパッケージ電池とすることもできる。 Hereinafter, as an example, the application to a lithium secondary battery will be described in detail. Examples of the form of the lithium secondary battery include a tubular shape (square tubular shape or cylindrical shape) using a steel can, an aluminum can, or the like as an outer can. It is also possible to use a soft package battery having a laminated film formed by vapor-depositing a metal as an exterior body.
リチウム二次電池に係る正極には、従来から知られているリチウム二次電池に用いられている正極を使用することができる。例えば、正極活物質としては、従来から知られているリチウム二次電池に用いられている活物質、すなわち、Liイオンを吸蔵放出可能な活物質であれば特に制限はない。例えば、Li1+xMO2(−0.1<x<0.1、M:Co、Ni、Mn、Al、Mgなど)で表される層状構造のリチウム含有遷移金属酸化物、LiMn2O4やその元素の一部を他元素で置換したスピネル構造のリチウムマンガン酸化物、LiMPO4(M:Co、Ni、Mn、Feなど)で表されるオリビン型化合物などを用いることが可能である。As the positive electrode of the lithium secondary battery, the positive electrode used in conventionally known lithium secondary batteries can be used. For example, the positive electrode active material is not particularly limited as long as it is an active material used in conventionally known lithium secondary batteries, that is, an active material capable of occluding and releasing Li ions. For example, a lithium-containing transition metal oxide having a layered structure represented by Li 1+x MO 2 (−0.1<x<0.1, M: Co, Ni, Mn, Al, Mg, etc.), LiMn 2 O 4, or It is possible to use a lithium manganese oxide having a spinel structure in which a part of the element is replaced with another element, an olivine type compound represented by LiMPO 4 (M:Co, Ni, Mn, Fe, etc.).
前記層状構造のリチウム含有遷移金属酸化物の具体例としては、LiCoO2やLiNi1−xCox−yAlyO2(0.1≦x≦0.3、0.01≦y≦0.2)などの他、少なくともCo、NiおよびMnを含む酸化物(LiMn1/3Ni1/3Co1/3O2、LiMn5/12Ni5/12Co1/6O2、LiNi3/5Mn1/5Co1/5O2など)などを例示することができる。Specific examples of the lithium-containing transition metal oxide of the layer structure, LiCoO 2 and LiNi 1-x Co x-y Al y O 2 (0.1 ≦ x ≦ 0.3,0.01 ≦ y ≦ 0. 2) and the like, oxides containing at least Co, Ni and Mn (LiMn 1/3 Ni 1/3 Co 1/3 O 2 , LiMn 5/12 Ni 5/12 Co 1/6 O 2 , LiNi 3/ 5 Mn 1/5 Co 1/5 O 2 ) and the like.
また、正極の導電助剤としては、例えば、カーボンブラックなどの炭素材料が挙げられ、正極のバインダとしては、ポリフッ化ビニリデン(PVDF)などのフッ素樹脂が挙げられる。そして、正極には、前記の正極活物質、導電助剤およびバインダを含む正極合剤により構成される正極合剤層が、集電体の片面または両面に形成されたものを使用することができる。 Examples of the conductive additive for the positive electrode include a carbon material such as carbon black, and examples of the binder for the positive electrode include a fluororesin such as polyvinylidene fluoride (PVDF). Then, as the positive electrode, a positive electrode mixture layer formed of the positive electrode mixture containing the positive electrode active material, the conductive additive and the binder can be used on one side or both sides of the current collector. ..
正極の集電体としては、アルミニウムなどの金属の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、厚みが10〜30μmのアルミニウム箔が好適に用いられる。 As the current collector of the positive electrode, a foil of metal such as aluminum, punching metal, net, expanded metal or the like can be used, but usually, an aluminum foil having a thickness of 10 to 30 μm is preferably used.
正極側のリード部は、通常、正極作製時に、集電体の一部に正極合剤層を形成せずに集電体の露出部を残し、そこをリード部とすることによって設けられる。ただし、リード部は必ずしも当初から集電体と一体化されたものであることは要求されず、集電体にアルミニウム製の箔などを後から接続することによって設けてもよい。 The lead portion on the positive electrode side is usually provided by leaving the exposed portion of the current collector as a lead portion without forming the positive electrode mixture layer on a part of the current collector during the production of the positive electrode. However, the lead portion is not necessarily required to be integrated with the current collector from the beginning, and may be provided by connecting an aluminum foil or the like to the current collector later.
負極としては、従来から知られているリチウム二次電池に用いられている負極、すなわち、Liイオンを吸蔵放出可能な炭素材料、リチウム合金、リチウムと合金可能な金属、リチウム金属から選ばれる少なくとも1種を活物質として用いた負極であれば特に制限はない。活物質としては、より具体的には、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ(MCMB)、炭素繊維などの、リチウムを吸蔵、放出可能な炭素系材料の1種または2種以上の混合物が用いられる。また、Si、Sn、Ge、Bi、Sb、Inなどの元素およびその合金、もしくはリチウム金属やリチウム/アルミニウム合金、Li4Ti5O12、Li2Ti3O7といったLi含有酸化物も負極活物質として用いることができる。これらの負極活物質に導電助剤(カーボンブラックなどの炭素材料など)やPVDFなどのバインダなどを適宜添加した負極合剤を、集電体を芯材として成形体(負極合剤層)に仕上げたもの、または、前記の各種合金やリチウム金属の箔を単独、もしくは集電体表面に積層したものなどを、負極として使用することができる。As the negative electrode, at least one selected from negative electrodes used in conventionally known lithium secondary batteries, that is, a carbon material capable of inserting and extracting Li ions, a lithium alloy, a metal alloyable with lithium, and a lithium metal. There is no particular limitation as long as it is a negative electrode using a seed as an active material. As the active material, more specifically, lithium, such as graphite, pyrolytic carbons, cokes, glassy carbons, sintered bodies of organic polymer compounds, mesocarbon microbeads (MCMB), carbon fibers, etc., is occluded. , One or a mixture of two or more types of releasable carbon-based materials is used. Further, elements such as Si, Sn, Ge, Bi, Sb, and In and alloys thereof, or lithium-containing oxides such as lithium metal and lithium/aluminum alloys, and Li 4 Ti 5 O 12 and Li 2 Ti 3 O 7 are also negative electrode active materials. It can be used as a substance. A negative electrode mixture obtained by appropriately adding a conductive auxiliary agent (carbon material such as carbon black) or a binder such as PVDF to these negative electrode active materials is finished into a molded body (negative electrode mixture layer) using the current collector as a core material. It is possible to use, as the negative electrode, a metal foil, a foil of the above-mentioned various alloys or a lithium metal, or a foil laminated on the surface of the current collector.
負極に集電体を用いる場合には、集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、銅箔が用いられる。この負極集電体は、高エネルギー密度の電池を得るために負極全体の厚みを薄くする場合、厚みの上限は30μmであることが好ましく、下限は5μmであることが望ましい。また、負極側のリード部は、正極側のリード部と同様にして形成すればよい。 When a current collector is used for the negative electrode, a copper or nickel foil, a punching metal, a net, an expanded metal or the like can be used as the current collector, but a copper foil is usually used. When the thickness of the entire negative electrode is reduced in order to obtain a battery having a high energy density, this negative electrode current collector preferably has an upper limit of thickness of 30 μm and a lower limit of 5 μm. The lead portion on the negative electrode side may be formed in the same manner as the lead portion on the positive electrode side.
なお、前記のような正極合剤層を有する正極や、負極合剤層を有する負極は、例えば、正極合剤をN−メチル−2−ピロリドン(NMP)などの溶媒に分散させてなる正極合剤層形成用組成物(スラリーなど)や、負極合剤をNMPなどの溶媒に分散させてなる負極合剤層形成用組成物(スラリーなど)を集電体表面に塗布し、乾燥することにより作製される。 The positive electrode having the positive electrode mixture layer or the negative electrode having the negative electrode mixture layer as described above is, for example, a positive electrode mixture obtained by dispersing the positive electrode mixture in a solvent such as N-methyl-2-pyrrolidone (NMP). By applying a composition for forming an agent layer (slurry or the like) or a composition for forming a negative electrode mixture layer (slurry or the like) obtained by dispersing a negative electrode mixture in a solvent such as NMP on the surface of a current collector and drying. Created.
電極は、前記の正極と前記の負極とを、本発明のセパレータを介して積層した積層体(積層電極体)や、更にこれを巻回した巻回体(巻回電極体)といった電極体の形態で用いることができる。 The electrode is an electrode body such as a laminated body (laminated electrode body) in which the positive electrode and the negative electrode are laminated via the separator of the present invention, or a wound body (rolled electrode body) in which the positive electrode and the negative electrode are wound. It can be used in any form.
非水電解液としては、リチウム塩を有機溶媒に溶解した溶液が用いられる。リチウム塩としては、溶媒中で解離してLi+イオンを形成し、電池として使用される電圧範囲で分解などの副反応を起こしにくいものであれば特に制限はない。例えば、LiClO4、LiPF6、LiBF4、LiAsF6、LiSbF6などの無機リチウム塩;LiCF3SO3、LiCF3CO2、Li2C2F4(SO3)2、LiN(CF3SO2)2、LiC(CF3SO2)3、LiCnF2n+1SO3(n≧2)、LiN(RfOSO2)2〔ここでRfはフルオロアルキル基〕などの有機リチウム塩;などを用いることができる。As the non-aqueous electrolytic solution, a solution in which a lithium salt is dissolved in an organic solvent is used. The lithium salt is not particularly limited as long as it dissociates in a solvent to form Li + ions and hardly causes a side reaction such as decomposition in the voltage range used as a battery. For example, inorganic lithium salts such as LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 ; LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN(CF 3 SO 2 ) 2 , LiC(CF 3 SO 2 ) 3 , LiC n F 2n+1 SO 3 (n≧2), LiN(R f OSO 2 ) 2 [where Rf is a fluoroalkyl group]; or the like; be able to.
非水電解液に用いる有機溶媒としては、前記のリチウム塩を溶解し、電池として使用される電圧範囲で分解などの副反応を起こさないものであれば特に限定されない。例えば、エチレンカーボネート(EC)、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状カーボネート;ジメチルカーボネート、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)などの鎖状カーボネート;プロピオン酸メチルなどの鎖状エステル;γ−ブチロラクトンなどの環状エステル;ジメトキシエタン、ジエチルエーテル、1,3−ジオキソラン、ジグライム、トリグライム、テトラグライムなどの鎖状エーテル;ジオキサン、テトラヒドロフラン、2−メチルテトラヒドロフランなどの環状エーテル;アセトニトリル、プロピオニトリル、メトキシプロピオニトリルなどのニトリル類;エチレングリコールサルファイトなどの亜硫酸エステル類;などが挙げられ、これらは2種以上混合して用いることもできる。なお、より良好な特性の電池とするためには、エチレンカーボネートと鎖状カーボネートの混合溶媒など、高い導電率を得ることができる組み合わせで用いることが望ましい。また、これらの非水電解液に安全性や充放電サイクル特性、高温貯蔵性といった特性を向上させる目的で、ビニレンカーボネート類、1,3−プロパンサルトン、ジフェニルジスルフィド、シクロヘキシルベンゼン、ビフェニル、フルオロベンゼン、t−ブチルベンゼンなどの添加剤を適宜加えることもできる。 The organic solvent used for the non-aqueous electrolyte is not particularly limited as long as it dissolves the above-mentioned lithium salt and does not cause a side reaction such as decomposition in the voltage range used for the battery. For example, cyclic carbonates such as ethylene carbonate (EC), propylene carbonate, butylene carbonate and vinylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate (DEC) and methyl ethyl carbonate (MEC); chain esters such as methyl propionate Cyclic ester such as γ-butyrolactone; chain ether such as dimethoxyethane, diethyl ether, 1,3-dioxolane, diglyme, triglyme, tetraglyme; cyclic ether such as dioxane, tetrahydrofuran, 2-methyltetrahydrofuran; acetonitrile, propio Examples thereof include nitriles such as nitrile and methoxypropionitrile; sulfite esters such as ethylene glycol sulfite; and the like, and two or more kinds of them can be mixed and used. In addition, in order to obtain a battery having better characteristics, it is desirable to use a combination solvent such as a mixed solvent of ethylene carbonate and chain carbonate that can obtain high conductivity. In addition, for the purpose of improving the characteristics such as safety, charge/discharge cycle characteristics, and high temperature storage characteristics of these non-aqueous electrolytes, vinylene carbonates, 1,3-propanesultone, diphenyl disulfide, cyclohexylbenzene, biphenyl, fluorobenzene. , T-butylbenzene and the like can be added as appropriate.
このリチウム塩の電解液中の濃度としては、0.5〜1.5mol/lとすることが好ましく、0.9〜1.25mol/lとすることがより好ましい。 The concentration of this lithium salt in the electrolytic solution is preferably 0.5 to 1.5 mol/l, and more preferably 0.9 to 1.25 mol/l.
なお、前記のリチウム二次電池の一例を図面に基づいて説明する。なお、図面で示すリチウム二次電池は、本発明の一例に過ぎず、本発明の電気化学素子は、これらの図面に図示するものに限定される訳ではない。図1は、リチウム二次電池の一例を示す外観斜視図であり、図2は、図1のI−I線の断面図である。 An example of the lithium secondary battery will be described with reference to the drawings. The lithium secondary battery shown in the drawings is only an example of the present invention, and the electrochemical device of the present invention is not limited to those shown in these drawings. FIG. 1 is an external perspective view showing an example of a lithium secondary battery, and FIG. 2 is a sectional view taken along the line II of FIG.
図1および図2に示すリチウム二次電池1は、巻回電極体9を角形の外装缶2内に収容した電池の例である。すなわち、リチウム二次電池1は、角形の外装缶2と蓋板3とを備えており、前記の通り、外装缶2は正極端子を兼ねている。蓋板3はアルミニウム合金などの金属で形成され、外装缶2の開口部を封口している。また、蓋板3には、PPなどの合成樹脂で形成された絶縁パッキング4を介して、ステンレス鋼などの金属で形成された端子5が設けられている。 The lithium secondary battery 1 shown in FIGS. 1 and 2 is an example of a battery in which the spirally wound electrode body 9 is housed in a rectangular outer can 2. That is, the lithium secondary battery 1 includes the prismatic outer can 2 and the cover plate 3, and as described above, the outer can 2 also serves as the positive electrode terminal. The lid plate 3 is formed of a metal such as an aluminum alloy and seals the opening of the outer can 2. Further, the lid plate 3 is provided with a terminal 5 made of metal such as stainless steel via an insulating packing 4 made of synthetic resin such as PP.
図2に示すように、リチウム二次電池1においては、正極6と、負極7と、セパレータ8とを有し、セパレータ8と正極6および負極7の少なくとも一方とが接着性樹脂(C)の層により一体化した扁平状の巻回電極体9として、外装缶2内に非水電解液と共に収納されている。ただし、図2では、煩雑化を避けるため、正極6や負極7に係る集電体や、非水電解液などは図示していない。また、セパレータ8の各層を区別して示しておらず、更に、巻回電極体9の内周側の部分は断面にしていない。
As shown in FIG. 2, the lithium secondary battery 1 has a positive electrode 6, a negative electrode 7, and a
また、外装缶2の底部にはポリテトラフルオロエチレンシートなどの合成樹脂シートで形成された絶縁体10が配置され、巻回電極体9からは正極6および負極7のそれぞれの一端に接続された正極リード体11と負極リード体12が引き出されている。正極リード体11、負極リード体12は、ニッケルなどの金属から形成されている。端子5にはPPなどの合成樹脂で形成された絶縁体13を介して、ステンレス鋼などの金属で形成されたリード板14が取り付けられている。
Further, an
蓋板3は外装缶2の開口部に挿入され、両者の接合部を溶接することによって、外装缶2の開口部が封口され、電池内部が密閉されている。 The lid plate 3 is inserted into the opening of the outer can 2, and the joint between the two is welded to seal the opening of the outer can 2 and seal the inside of the battery.
なお、図2では、正極リード体11を蓋板3に直接溶接することによって、外装缶2と蓋板3とが正極端子として機能し、負極リード体12をリード板14に溶接し、リード板14を介して負極リード体12と端子5とを導通させることによって、端子5が負極端子として機能するようになっているが、外装缶2の材質などによっては、その正負が逆となる場合もある。
In FIG. 2, by directly welding the positive
本発明のセパレータを用いた電気化学素子は、正極と負極とを、本発明のセパレータを介して巻回または積層して電極体を形成する工程と、この電極体を加熱しながら加圧して(すなわち、加熱プレスして)、セパレータと正極および/または負極とを接着して一体化する工程とを有する本発明法によって製造することができる。 An electrochemical device using the separator of the present invention has a step of winding or laminating a positive electrode and a negative electrode via the separator of the present invention to form an electrode body, and applying pressure while heating the electrode body ( That is, it can be produced by the method of the present invention, which comprises the steps of hot pressing) and adhering and integrating the separator and the positive electrode and/or the negative electrode.
電極体を加熱プレスする際の加熱温度は、結晶質の樹脂(C1)の融点未満の温度とし、また、セパレータに係る樹脂多孔質層(I)を構成する熱溶融性樹脂(A)の融点未満の温度であれば好ましいが、50℃以上95℃以下であることがより好ましい。また、加熱プレス時の圧力は、特に制限はないが0.1Pa以上であることが好ましい。更に、加熱プレスの時間は、特に制限はないが30s以上が好ましい。 The heating temperature for hot pressing the electrode body is lower than the melting point of the crystalline resin (C1), and the melting point of the heat-meltable resin (A) constituting the resin porous layer (I) of the separator. The temperature is preferably lower than 50°C, more preferably 50°C or higher and 95°C or lower. The pressure during hot pressing is not particularly limited, but is preferably 0.1 Pa or more. Further, the time of hot pressing is not particularly limited, but 30 s or more is preferable.
電極体を加熱プレスする工程を経てセパレータと正極および/または負極とが一体化された電極体は、常法に従い、外装体(電池ケース)に挿入した後、非水電解液を注入し、封止して電気化学素子とすることができる。 The electrode body in which the separator and the positive electrode and/or the negative electrode are integrated through the process of heating and pressing the electrode body is inserted into the outer casing (battery case) according to a conventional method, and then the non-aqueous electrolyte is injected and sealed. It can be turned to an electrochemical device.
なお、電極体を加熱しながら加圧する際には、電極体に直接加熱プレスを施したり、例えば電極体をアルミニウムラミネートフィルムなどの金属ラミネートフィルムで構成された外装体に挿入し、非水電解液を注入して外装体を封止した後に、外装体ごと加熱プレスを施したりすることができる。この場合の、好ましい加熱温度やプレス圧力、プレス時間は、前記の場合と同様である。 When the electrode body is pressed while being heated, the electrode body is directly subjected to a heat press, or the electrode body is inserted into an exterior body made of a metal laminate film such as an aluminum laminate film, and the non-aqueous electrolyte solution is used. After injecting and sealing the exterior body, the whole exterior body can be heated and pressed. In this case, preferable heating temperature, pressing pressure and pressing time are the same as those in the above case.
以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。 Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention.
実施例1
<正極の作製>
リチウム含有複合酸化物であるLiCo0.995Mg0.005O2(正極活物質):94質量部に、導電助剤としてカーボンブラック:3質量部を加えて混合し、この混合物にPVDF:3質量部をNMPに溶解させた溶液を加えて混合して正極合剤含有スラリーとし、70メッシュの網を通過させて粒径が大きなものを取り除いた。この正極合剤含有スラリーを、厚みが15μmのアルミニウム箔からなる正極集電体の両面に均一に塗付して乾燥し、その後、ロールプレス機により圧縮成形して総厚さを136μmにした後、切断し、アルミニウム製のリード体を溶接して、帯状の正極を作製した。Example 1
<Production of positive electrode>
LiCo 0.995 Mg 0.005 O 2 (positive electrode active material) which is a lithium-containing composite oxide: 94 parts by mass, carbon black: 3 parts by mass as a conductive additive was added and mixed, and PVDF: 3 was added to this mixture. A solution prepared by dissolving parts by mass in NMP was added and mixed to form a positive electrode mixture-containing slurry, which was passed through a net of 70 mesh to remove one having a large particle size. This positive electrode mixture-containing slurry was evenly applied to both surfaces of a positive electrode current collector made of aluminum foil having a thickness of 15 μm and dried, and then compression-molded by a roll press machine to a total thickness of 136 μm. Then, the aluminum-made lead body was cut and welded to produce a strip-shaped positive electrode.
<負極の作製>
負極活物質として、X線回折法によって測定されるd002が0.336nmの人造黒鉛を用い、結着剤としてSBRを用い、増粘剤としてCMCを用い、これらを質量比98:1:1の割合で混合し、更に水を加えて混合して負極合剤含有ペーストとした。この負極合剤含有ペーストを、厚みが10μmの銅箔からなる負極集電体の両面に均一に塗布して乾燥し、その後、ロールプレス機により圧縮成形して総厚さを138μmにした後、切断し、ニッケル製のリード体を溶接して、帯状の負極を作製した。<Production of negative electrode>
As the negative electrode active material, artificial graphite having a d 002 measured by X-ray diffractometry of 0.336 nm was used, SBR was used as a binder, CMC was used as a thickener, and these were mixed at a mass ratio of 98:1:1. And mixed with water to obtain a negative electrode mixture-containing paste. This negative electrode mixture-containing paste was uniformly applied to both surfaces of a negative electrode current collector made of copper foil having a thickness of 10 μm, dried, and then compression-molded by a roll press machine to a total thickness of 138 μm, It cut|disconnected and the lead body made from nickel was welded, and the strip|belt-shaped negative electrode was produced.
<非水電解液の調製>
EC、MECおよびDECの体積比10:10:30の混合溶媒にLiPF6を1.0mol/lの濃度で溶解させたものに、ビニレンカーボネートを、非水電解液の全質量に対して2.5質量%となるように添加して、非水電解液を調製した。<Preparation of non-aqueous electrolyte>
1. LiPF 6 was dissolved in a mixed solvent of EC, MEC, and DEC in a volume ratio of 10:10:30 at a concentration of 1.0 mol/l, and vinylene carbonate was added to the total mass of the nonaqueous electrolytic solution. A nonaqueous electrolytic solution was prepared by adding 5% by mass.
<セパレータの作製>
バインダ樹脂(B)であるSBRの水分散体(固形分比率40質量%)300gと、水4000gとを容器に入れ、均一に分散するまで室温で攪拌した。この分散液に、耐熱温度が150℃以上で電気絶縁性のフィラーであるベーマイト粉末(板状、平均粒子径1μm、アスペクト比10)4000gを4回に分けて加え、ディスパーにより2800rpmで5時間攪拌して均一なスラリーを調製した。PP層/PE層/PP層の順番で積層された微多孔膜(厚み:16μm、空孔率:40%、平均孔径:0.02μm、表層である両PP層の厚み:いずれも5μm、PE層の厚み:6μm、PE層を構成するPEの融点:135℃、PP層を構成するPPの融点:166℃)の両面上に、前記のスラリーをマイクログラビアコーターによって、乾燥後の厚みが片面あたり3.5μmになるようにそれぞれ塗布し、乾燥して耐熱多孔質層(II)を形成することで、厚みが23μmの積層物〔樹脂多孔質層(I)と耐熱多孔質層(II)との積層物〕を得た。この積層物の耐熱多孔質層(II)における前記フィラーの体積含有率は92体積%であり、耐熱多孔質層(II)の空孔率は48%であった。<Production of separator>
300 g of an aqueous dispersion of SBR (solid content ratio 40% by mass), which is the binder resin (B), and 4000 g of water were placed in a container and stirred at room temperature until uniformly dispersed. To this dispersion, 4000 g of boehmite powder (plate-like, average particle size 1 μm, aspect ratio 10), which is an electrically insulating filler having a heat resistant temperature of 150° C. or higher, was added in four portions, and stirred at 2800 rpm for 5 hours with a disper To prepare a uniform slurry. A microporous membrane in which PP layer/PE layer/PP layer are laminated in this order (thickness: 16 μm, porosity: 40%, average pore diameter: 0.02 μm, thickness of both PP layers as surface layers: 5 μm for each, PE (Thickness of layer: 6 μm, melting point of PE constituting PE layer: 135° C., melting point of PP constituting PP layer: 166° C.), and the thickness after drying the slurry with a microgravure coater on one side. Each layer having a thickness of 23 μm is formed by applying each of the coatings to a thickness of 3.5 μm and drying to form the heat-resistant porous layer (II) [resin porous layer (I) and heat-resistant porous layer (II)]. A laminate] was obtained. The volume content of the filler in the heat resistant porous layer (II) of this laminate was 92% by volume, and the porosity of the heat resistant porous layer (II) was 48%.
次に、結晶質の樹脂(C1)であるPVDFの水分散体(PVDFの濃度:25質量%、PVDFの融点100℃)と、非晶質の樹脂(C2)であるPVDFの水分散体(PVDFの濃度:25質量%、PVDFの融点なし)とを、70:30(質量比)で混合して、接着性樹脂(C)の層を形成するための塗液を調製した。この塗液を、樹脂多孔質層(I)と耐熱多孔質層(II)との積層物の両面の耐熱多孔質層(II)上にそれぞれ塗布し、80℃で乾燥して接着性樹脂(C)の層を形成することで、図3に示す層構成で、厚みが24μmのセパレータを得た。すなわち、このセパレータ8は、樹脂多孔質層(I)81の両面に耐熱多孔質層(II)82、82を有する積層物を有しており、かつこの積層物の両面に接着性樹脂(C)の層83、83を有している。なお、このセパレータに係る接着性樹脂(C)の目付けは、両面とも0.6g/m2であった。また、結晶質の樹脂(C1)の平均粒子径は、0.2μmであった。Next, an aqueous dispersion of PVDF which is a crystalline resin (C1) (concentration of PVDF: 25% by mass, melting point of PVDF is 100° C.) and an aqueous dispersion of PVDF which is an amorphous resin (C2) ( The concentration of PVDF: 25% by mass, no melting point of PVDF) was mixed at 70:30 (mass ratio) to prepare a coating liquid for forming a layer of the adhesive resin (C). This coating solution was applied on the heat-resistant porous layers (II) on both sides of the laminate of the resin porous layer (I) and the heat-resistant porous layer (II), respectively, and dried at 80° C. to obtain an adhesive resin ( By forming the layer C), a separator having a layer structure shown in FIG. 3 and a thickness of 24 μm was obtained. That is, the
すなわち、前記セパレータ8は、樹脂多孔質層(I)81の両面に耐熱多孔質層(II)82、82を有しており、更に各耐熱多孔質層(II)82、82の表面〔樹脂多孔質層(I)と接している面とは反対側の面〕には、接着性樹脂(C)の層83、83を有している。
That is, the
<リチウム二次電池の組み立て>
前記のようにして得たセパレータを前記正極と前記負極との間に介在させつつ重ね、渦巻状に巻回して巻回電極体を作製した。得られた巻回電極体を押しつぶして扁平状にし、80℃で1分間、0.5Paの圧力で加熱プレスを施した。この巻回電極体を、厚み6mm、高さ50mm、幅34mmのアルミニウム製外装缶に入れ、外装缶の上部開口端に蓋板を被せてレーザー溶接してから、蓋板に設けた電解液注入口から前記非水電解液を注入した後に、露点−30℃のドライルーム内で、以下の条件で充電した。まず、充電量が電池の設計電気容量の25%(197.5mAh)となるように、0.25CmA(197.5mA)の定電流で1時間充電し、外装缶内で発生するガスを電解液注入口から自然放出させた。その後、電解液注入口を封止して、外装缶と蓋板とから形成された電池ケースを密閉状態として、図1に示す外観で、図2に示す構造のリチウム二次電池を得た。<Assembly of lithium secondary battery>
The separator obtained as described above was superposed while being interposed between the positive electrode and the negative electrode, and spirally wound to produce a wound electrode body. The wound electrode body thus obtained was crushed into a flat shape, and heated and pressed at 80° C. for 1 minute under a pressure of 0.5 Pa. The wound electrode body was placed in an aluminum outer can having a thickness of 6 mm, a height of 50 mm and a width of 34 mm, a lid plate was placed on the upper open end of the outer can, and laser welding was performed. After injecting the non-aqueous electrolyte solution from the inlet, the battery was charged under the following conditions in a dry room with a dew point of −30° C. First, the battery was charged with a constant current of 0.25 CmA (197.5 mA) for 1 hour so that the charged amount was 25% (197.5 mAh) of the designed electric capacity of the battery, and the gas generated in the outer can was dissolved in the electrolytic solution. It was naturally released from the inlet. Then, the electrolyte solution inlet was sealed, and the battery case formed of the outer can and the lid plate was sealed to obtain a lithium secondary battery having the appearance shown in FIG. 1 and the structure shown in FIG.
なお、図1および図2では示していないが、実施例1のリチウム二次電池は、外装缶2の上部に、内圧が上昇した場合に圧力を逃がすための開裂ベントを備え、蓋板3に電解液注入口を有しており、この電解液注入口が封止材によって封止されている(後述する各実施例および比較例においても、同様である)。 Although not shown in FIGS. 1 and 2, the lithium secondary battery of Example 1 is provided with a cleavage vent on the top of the outer can 2 for releasing the pressure when the internal pressure rises, and the lid 3 has a lid. It has an electrolytic solution injection port, and this electrolytic solution injection port is sealed with a sealing material (the same applies to each Example and Comparative Example described later).
実施例2
実施例1のセパレータに係る接着性樹脂(C)の目付けを、両面とも1.5g/m2とし、厚みが25μmのセパレータとした以外は、実施例1と同様にしてリチウム二次電池を得た。Example 2
A lithium secondary battery was obtained in the same manner as in Example 1 except that the weight of the adhesive resin (C) relating to the separator of Example 1 was set to 1.5 g/m 2 on both sides and the thickness was 25 μm. It was
実施例3
実施例1のセパレータに係る接着性樹脂(C)の目付けを、両面とも0.1g/m2とし、厚みが23μmのセパレータとした以外は、実施例1と同様にしてリチウム二次電池を得た。Example 3
A lithium secondary battery was obtained in the same manner as in Example 1 except that the weight of the adhesive resin (C) relating to the separator of Example 1 was 0.1 g/m 2 on both sides and the thickness was 23 μm. It was
比較例1
実施例1のセパレータに係る接着性樹脂(C)の目付けを、両面とも2.0g/m2とし、厚みが26μmのセパレータとした以外は、実施例1と同様にしてリチウム二次電池を得た。Comparative Example 1
A lithium secondary battery was obtained in the same manner as in Example 1 except that the weight of the adhesive resin (C) relating to the separator of Example 1 was 2.0 g/m 2 on both sides and the thickness was 26 μm. It was
作製した実施例1〜3および比較例1の各リチウム二次電池について、以下の条件で化成処理を行った。なお、電池を4.2Vまで充電した場合の設計電気容量は、いずれも790mAhとなるようにした。 Each of the produced lithium secondary batteries of Examples 1 to 3 and Comparative Example 1 was subjected to chemical conversion treatment under the following conditions. The designed electric capacities when the batteries were charged to 4.2 V were 790 mAh in all cases.
前記電池を0.3CmA(237mA)で4.1Vになるまで充電してから、60℃で12時間貯蔵し、貯蔵後の電池を0.3CmA(237mA)で4.2Vになるまで充電してから、更に4.2Vの定電圧で2.5時間充電した後、1CmA(790mA)で3Vまで放電して、評価用リチウム二次電池とした。 The battery was charged at 0.3 CmA (237 mA) to 4.1 V and then stored at 60° C. for 12 hours, and the stored battery was charged at 0.3 CmA (237 mA) to 4.2 V. Then, it was further charged at a constant voltage of 4.2 V for 2.5 hours, and then discharged to 3 V at 1 CmA (790 mA) to obtain a lithium secondary battery for evaluation.
実施例1〜3および比較例1の各リチウム二次電池に使用したセパレータ、並びに実施例1〜3および比較例1の各リチウム二次電池について、下記の各評価を行った。 The following evaluations were performed on the separators used in the lithium secondary batteries of Examples 1 to 3 and Comparative Example 1 and the lithium secondary batteries of Examples 1 to 3 and Comparative Example 1.
<180°剥離試験>
各セパレータおよびリチウム二次電池に使用したものと同じ前記の電極(正極または負極)を、それぞれ長さ5cm×幅2cmのサイズに切り出し、各セパレータを電極と重ねて、片端から2cm×2cmの領域を80℃で1分間、0.5Paの圧力で加熱プレスして、試験片を作製した。これらの試験片のセパレータと電極とを加熱プレスしていない側の端部を開き、セパレータと電極とを、両者の角度が180°になるように折り曲げた。その後、引張試験機を用い、試験片の180°に開いたセパレータの片端側と電極の片端側とを把持して、引張速度10mm/minで引っ張り、セパレータと電極とを加熱プレスした領域で両者が剥離したときの強度を測定した。また、セパレータと電極との加熱プレス前の剥離強度は、前記のように切り出した各セパレータと電極とを重ね、加熱をせずにプレスした以外は、前記と同様にして測定した。<180° peel test>
The same electrode (positive electrode or negative electrode) as that used for each separator and lithium secondary battery was cut into a size of 5 cm in length and 2 cm in width, and each separator was overlapped with the electrode to form an area of 2 cm × 2 cm from one end. Was hot-pressed at 80° C. for 1 minute at a pressure of 0.5 Pa to prepare a test piece. The end of the test piece on the side where the separator and the electrode were not heated and pressed was opened, and the separator and the electrode were bent so that the angle between them was 180°. Then, using a tensile tester, one end side of the separator and one end side of the electrode opened at 180° of the test piece were grasped and pulled at a pulling speed of 10 mm/min, and the separator and the electrode were both heated and pressed in the area. The strength at the time of peeling was measured. Further, the peeling strength of the separator and the electrode before the hot pressing was measured in the same manner as above except that the separator and the electrode cut out as described above were stacked and pressed without heating.
<熱収縮試験>
実施例1〜3および比較例1の各セパレータのMD方向およびTD方向を、それぞれ5cm、10cmとした短冊状の試験片を切り取った。なお、MD方向とはセパレータの樹脂多孔質層(I)に使用した微多孔膜の製造時の機械方向であり、TD方向とは、MD方向に垂直な方向である。前記の試験片において、MD方向およびTD方向の中心で交差するように、MD方向およびTD方向のそれぞれに平行に3cmずつの直線を油性マジックでマークした。なお、これらの直線の中心は、これらの直線の交差点とした。<Heat shrinkage test>
Strip-shaped test pieces having the MD and TD directions of Examples 1 to 3 and Comparative Example 1 in the MD and TD directions of 5 cm and 10 cm were cut out. The MD direction is the machine direction during the production of the microporous membrane used for the resin porous layer (I) of the separator, and the TD direction is the direction perpendicular to the MD direction. In the above-mentioned test piece, a 3 cm straight line was marked with an oil-based marker parallel to each of the MD direction and the TD direction so as to intersect at the centers of the MD direction and the TD direction. The center of these straight lines was the intersection of these straight lines.
前記の各試験片を恒温槽に吊るし、槽内温度を5℃/分の割合で150℃まで上昇させ、その後150℃で1時間保ち、その後に試験片を恒温槽から取り出してMD方向のマークの長さを測定して下記式によって熱収縮率を算出した。
熱収縮率(%) = 100×(3−x)/3
〔なお、前記式中、xは150℃に設定した恒温槽内で1時間放置した後のセパレータのMD方向の寸法(cm)である。〕Each of the above test pieces is hung in a thermostatic chamber, the temperature inside the chamber is raised to 150°C at a rate of 5°C/minute, and then the temperature is maintained at 150°C for 1 hour. Was measured and the heat shrinkage rate was calculated by the following formula.
Heat shrinkage rate (%) = 100 x (3-x)/3
[In the above formula, x is a dimension (cm) in the MD direction of the separator after left for 1 hour in a constant temperature bath set at 150°C. ]
<負荷特性評価>
実施例1〜3および比較例1の各リチウム二次電池について、0.2Cの電流値で4.20Vになるまで定電流充電を行い、次いで4.20Vでの定電流充電を行う定電圧−定電流充電を実施した。なお、充電終了までの総充電時間は15時間とした。次に、充電後の各電池について、0.2Cの電流値で電池電圧が3Vになるまで放電を行って、放電容量を求めた(これらの容量を「0.2C放電容量」という。)。<Load characteristic evaluation>
For each of the lithium secondary batteries of Examples 1 to 3 and Comparative Example 1, constant current charging was performed at a current value of 0.2 C until 4.20 V, and then constant current charging at 4.20 V was performed. Constant current charging was carried out. The total charging time until the end of charging was 15 hours. Next, each battery after charging was discharged at a current value of 0.2 C until the battery voltage became 3 V, and the discharge capacity was obtained (these capacities are referred to as “0.2 C discharge capacity”).
次に、各電池について、前記と同じ条件で定電流−定電圧充電を行った後、2Cの電流値で電池電圧が3Vになるまで放電を行って、放電容量を求めた(これらの容量を「2C放電容量」という。) Next, each battery was subjected to constant current-constant voltage charging under the same conditions as described above, and then discharged at a current value of 2 C until the battery voltage became 3 V to obtain discharge capacities (these capacities were It is called "2C discharge capacity".)
そして、各電池について、2C放電容量を0.2C放電容量で除し、これを百分率で表して、容量維持率を求めた。なお、前記の充電および放電は、全て温度が20℃に制御された試験室内で行った。 Then, for each battery, the 2C discharge capacity was divided by the 0.2C discharge capacity, and this was expressed as a percentage to obtain the capacity retention rate. The above charging and discharging were all carried out in a test room where the temperature was controlled at 20°C.
<高温貯蔵特性>
実施例1〜3および比較例1の各リチウム二次電池(他の評価を実施していない電池)を、20℃において395mA(0.5C)で4.2Vになるまで充電し、更に4.2Vの定電圧で2.5時間充電して満充電とし、この時の電池の厚みを測定した。その後、20℃において1Cで3Vまで放電して貯蔵前の放電容量を測定した。<High temperature storage characteristics>
Each of the lithium secondary batteries of Examples 1 to 3 and Comparative Example 1 (batteries not evaluated otherwise) was charged at 395 mA (0.5 C) at 20° C. to 4.2 V, and further, 4. The battery was fully charged by charging at a constant voltage of 2 V for 2.5 hours, and the thickness of the battery at this time was measured. After that, the battery was discharged at 1° C. to 3 V at 20° C., and the discharge capacity before storage was measured.
次に、各電池を前記と同様にして充電した後、恒温槽中において80℃で5日間貯蔵した。貯蔵後の各電池を20℃まで自然冷却して厚みを測定し、貯蔵前の電池の厚みとの比較から、高温貯蔵後の電池の膨れを求めた。その後、各電池を貯蔵前と同じ条件で放電して高温貯蔵後の放電容量を測定した。そして、高温貯蔵後の放電容量を貯蔵前の放電容量で除し、この値を百分率で表して、高温貯蔵後の容量維持率を算出した。 Next, each battery was charged in the same manner as above and then stored in a constant temperature bath at 80° C. for 5 days. Each battery after storage was naturally cooled to 20° C., the thickness was measured, and the swelling of the battery after high temperature storage was determined by comparison with the thickness of the battery before storage. Then, each battery was discharged under the same conditions as before storage and the discharge capacity after high temperature storage was measured. Then, the discharge capacity after high temperature storage was divided by the discharge capacity before storage and this value was expressed as a percentage to calculate the capacity retention rate after high temperature storage.
<充放電サイクル特性>
実施例1〜3および比較例1の各リチウム二次電池(他の評価を実施していない電池)について、45℃において、0.5Cで4.2Vになるまで充電し、更に4.2Vの定電圧で2.5時間充電して満充電とし、その後、1Cで3Vまで放電する充放電サイクルを300回繰り返し、1サイクル目の放電容量と300サイクル目の放電容量を測定した。続いて、300サイクル目の放電容量を1サイクル目の放電容量で除し、この値を百分率で表して容量維持率を算出した。<Charge/discharge cycle characteristics>
Each of the lithium secondary batteries of Examples 1 to 3 and Comparative Example 1 (batteries not subjected to other evaluations) was charged at 45C at 0.5C to 4.2V, and further charged to 4.2V. The battery was charged at a constant voltage for 2.5 hours to be fully charged, and then a charging/discharging cycle of discharging to 3V at 1C was repeated 300 times, and the discharge capacity at the first cycle and the discharge capacity at the 300th cycle were measured. Subsequently, the discharge capacity at the 300th cycle was divided by the discharge capacity at the first cycle, and this value was expressed as a percentage to calculate the capacity retention rate.
<150℃加熱試験>
実施例1〜3および比較例1の各リチウム二次電池(他の評価を実施していない電池)について、0.2C放電容量測定時と同じ条件で定電流−定電圧充電を行った。充電後の各電池を恒温槽に入れ、槽内温度を5℃/分の速度で上昇させ、150℃に到達後、この温度で3時間保った。150℃で3時間保持する間の各電池の表面温度を、電池表面に接続した熱電対により測定し、その最高温度を求めた。前記の最高温度は、各実施例、比較例とも3回測定し、その平均値を求めた。<150°C heating test>
For each of the lithium secondary batteries of Examples 1 to 3 and Comparative Example 1 (batteries for which other evaluations were not performed), constant current-constant voltage charging was performed under the same conditions as when measuring the 0.2 C discharge capacity. Each battery after charging was placed in a constant temperature bath, the temperature inside the bath was increased at a rate of 5° C./min, and after reaching 150° C., the temperature was maintained for 3 hours. The surface temperature of each battery during holding at 150° C. for 3 hours was measured by a thermocouple connected to the battery surface, and the maximum temperature was obtained. The maximum temperature was measured three times in each Example and Comparative Example, and the average value was calculated.
実施例1〜3および比較例1のリチウム二次電池に使用したセパレータの構成を表1に示し、前記の各評価結果を表2および表3に示す。なお、表1に示す接着性樹脂(C)の「種類と割合」の欄における下段の「結晶質」は結晶質の樹脂(C1)を、「非晶質」は非晶質の樹脂(C2)をそれぞれ意味しており、各数値は、混合物中の各樹脂の割合(質量比)を意味している。また、表1に示す接着性樹脂(C)の粒子径は、結晶性の樹脂(C1)の平均粒子径である。更に、表1に示す接着性樹脂(C)の目付けは、セパレータの片面あたりの目付けであり、耐熱多孔質層(II)の厚みも、セパレータの片面あたりの厚みである。 The constitutions of the separators used in the lithium secondary batteries of Examples 1 to 3 and Comparative Example 1 are shown in Table 1, and the evaluation results are shown in Tables 2 and 3. In the column of "Type and ratio" of the adhesive resin (C) shown in Table 1, "crystalline" in the lower row is crystalline resin (C1), and "amorphous" is amorphous resin (C2). ) Respectively, and each numerical value means the ratio (mass ratio) of each resin in the mixture. The particle size of the adhesive resin (C) shown in Table 1 is the average particle size of the crystalline resin (C1). Further, the basis weight of the adhesive resin (C) shown in Table 1 is the basis weight per one side of the separator, and the thickness of the heat resistant porous layer (II) is also the thickness per one side of the separator.
表1および表2から明らかなように、結晶質の樹脂(C1)と非晶質の樹脂(C2)とを適正な割合で含有する混合物によって構成された接着性樹脂(C)の層を、適切な目付で樹脂多孔質層(I)の表面に形成した、実施例1〜3のリチウム二次電池に使用したセパレータは、150℃での熱収縮率を低い値とすることができた。また、前記セパレータは、電極との180°での剥離強度が、室温、すなわち加熱プレス前では、最大でも0.02N/20mmと小さく、殆ど接着性を示さないが、加熱プレス後では、いずれも0.20N/20mm以上となり、電極との十分な接着強度を確保することができた。 As is clear from Table 1 and Table 2, a layer of the adhesive resin (C) composed of a mixture containing the crystalline resin (C1) and the amorphous resin (C2) in proper proportions, The separators used for the lithium secondary batteries of Examples 1 to 3, which were formed on the surface of the resin porous layer (I) with an appropriate basis weight, could have a low heat shrinkage rate at 150°C. Further, the above-mentioned separator has a small peel strength at 180° from the electrode of 0.02 N/20 mm at maximum at room temperature, that is, before hot pressing, and shows almost no adhesiveness, but after hot pressing, any of them is used. It was 0.20 N/20 mm or more, and sufficient adhesive strength with the electrode could be secured.
一方、接着性樹脂(C)の層の目付けが大きすぎる、比較例1のリチウム二次電池に使用したセパレータでは、前記実施例のセパレータに比べて、150℃での熱収縮率が若干高い値となった。 On the other hand, in the separator used for the lithium secondary battery of Comparative Example 1 in which the basis weight of the layer of the adhesive resin (C) is too large, the heat shrinkage at 150° C. is slightly higher than that of the separator of the above Example. Became.
なお、接着性樹脂(C)の層の目付けが小さすぎる場合の実例は示していないが、接着性樹脂(C)の層の目付けが0.1g/m2未満となった場合は、加熱プレス後の剥離強度が低下して、電極との十分な接着強度を確保することができなくなる。Note that, although an actual example in which the basis weight of the adhesive resin (C) layer is too small is not shown, when the basis weight of the adhesive resin (C) layer is less than 0.1 g/m 2 , heating press is performed. The peel strength afterwards decreases, and it becomes impossible to secure sufficient adhesive strength with the electrode.
また、表2に示す通り、実施例1〜3のリチウム二次電池では、結晶質の樹脂(C1)と非晶質の樹脂(C2)とを適正な割合で含有する混合物によって構成された接着性樹脂(C)の層を、適切な目付で樹脂多孔質層(I)の表面に形成したセパレータを使用し、前記接着性樹脂(C)によってセパレータと電極とを一体化していることから、その一体化後においても、接着性樹脂(C)の層中を非水電解液が良好に流通できていると考えられ、負荷特性評価時の容量維持率が高く、優れた負荷特性を有していた。 In addition, as shown in Table 2, in the lithium secondary batteries of Examples 1 to 3, an adhesive composed of a mixture containing a crystalline resin (C1) and an amorphous resin (C2) in an appropriate ratio. Since a separator formed by forming a layer of a conductive resin (C) on the surface of a resin porous layer (I) with an appropriate basis weight and integrating the separator and the electrode by the adhesive resin (C), Even after the integration, it is considered that the non-aqueous electrolyte can satisfactorily flow through the layer of the adhesive resin (C), the capacity retention rate at the time of load characteristic evaluation is high, and the load characteristic is excellent. Was there.
更に、表3に示す通り、実施例1〜3のリチウム二次電池は、高温貯蔵後の膨れ量が小さく、容量維持率も良好で高温貯蔵特性が優れており、また、充放電サイクル特性評価時の容量維持率が高く優れた充放電サイクル特性も有していた。 Furthermore, as shown in Table 3, the lithium secondary batteries of Examples 1 to 3 have a small swollen amount after high-temperature storage, a good capacity retention rate, and excellent high-temperature storage characteristics. It also had excellent charge-discharge cycle characteristics with a high capacity retention rate.
これに対し、接着性樹脂(C)の層の目付けが大きすぎるセパレータを使用した比較例1の電池は、接着性樹脂(C)の層中の非水電解液の流通が妨げられたため、負荷特性評価時の容量維持率、高温貯蔵試験時の容量維持率、および充放電サイクル特性評価時の容量維持率が低く、負荷特性、高温貯蔵特性および充放電サイクル特性が劣っていた。 On the other hand, in the battery of Comparative Example 1 using the separator in which the adhesive resin (C) layer had a too large basis weight, the flow of the non-aqueous electrolyte in the adhesive resin (C) layer was hindered, so that the load The capacity retention rate during characteristic evaluation, the capacity retention rate during high temperature storage test, and the capacity retention rate during charge/discharge cycle characteristic evaluation were low, and the load characteristics, high temperature storage characteristics and charge/discharge cycle characteristics were inferior.
また、実例は示していないが、接着性樹脂(C)の層の目付けが0.1g/m2未満のセパレータを使用した場合は、高温貯蔵特性および充放電サイクル特性が劣ることになる。Although no actual example is shown, when a separator having a basis weight of the adhesive resin (C) of less than 0.1 g/m 2 is used, high-temperature storage characteristics and charge/discharge cycle characteristics are inferior.
比較例2
結晶質の樹脂(C1)の水分散体と、非晶質の樹脂(C2)の水分散体との質量比を、100:0として接着性樹脂(C)の層を形成するための塗液を調製した以外は、実施例1と同様にしてリチウム二次電池を得た。Comparative example 2
A coating liquid for forming a layer of the adhesive resin (C) with the mass ratio of the water dispersion of the crystalline resin (C1) and the water dispersion of the amorphous resin (C2) being 100:0. A lithium secondary battery was obtained in the same manner as in Example 1 except that was prepared.
比較例3
結晶質の樹脂(C1)の水分散体と、非晶質の樹脂(C2)の水分散体との質量比を、40:60として接着性樹脂(C)の層を形成するための塗液を調製した以外は、実施例1と同様にしてリチウム二次電池を得た。Comparative Example 3
A coating liquid for forming a layer of the adhesive resin (C) with the mass ratio of the water dispersion of the crystalline resin (C1) and the water dispersion of the amorphous resin (C2) being 40:60. A lithium secondary battery was obtained in the same manner as in Example 1 except that was prepared.
比較例2および3の各リチウム二次電池に使用したセパレータについて、前記と同様にして、180°剥離試験および熱収縮試験を行った。また、比較例2および3の各リチウム二次電池について、前記と同様にして化成処理を行った後、前記と同様にして、負荷特性評価、高温貯蔵特性評価、充放電サイクル特性評価および150℃加熱試験を行った。各評価結果を、実施例1の結果と共に表4および表5に示す。 With respect to the separators used in the lithium secondary batteries of Comparative Examples 2 and 3, the 180° peel test and the heat shrink test were performed in the same manner as described above. Further, for each of the lithium secondary batteries of Comparative Examples 2 and 3, after performing the chemical conversion treatment in the same manner as described above, in the same manner as described above, load characteristic evaluation, high temperature storage characteristic evaluation, charge/discharge cycle characteristic evaluation, and 150° C. A heating test was conducted. The evaluation results are shown in Tables 4 and 5 together with the results of Example 1.
表4から明らかなように、接着性樹脂(C)の層を結晶質の樹脂(C1)のみで構成した比較例2のリチウム二次電池に使用したセパレータ、および非晶質の樹脂(C2)の割合が多すぎる比較例3のリチウム二次電池に使用したセパレータは、いずれも、実施例1のセパレータに比べて、150℃での熱収縮率が若干高い値となった。また、比較例3のセパレータでは、加熱プレス前であっても、電極との180°での剥離強度が0.1N/20mmより大きくなり、ある程度の接着性を有しているため、電極との積層工程や巻回工程などの条件によっては、工程中で不都合を生じる可能性があることが分かった。 As is clear from Table 4, the separator used in the lithium secondary battery of Comparative Example 2 in which the layer of the adhesive resin (C) was composed only of the crystalline resin (C1), and the amorphous resin (C2) In the separators used in the lithium secondary battery of Comparative Example 3 in which the ratio was too large, the heat shrinkage rate at 150° C. was slightly higher than that of the separator of Example 1. Further, in the separator of Comparative Example 3, even before hot pressing, the peel strength at 180° from the electrode was larger than 0.1 N/20 mm, and the separator had a certain degree of adhesiveness. It has been found that there may be inconvenience during the process depending on the conditions such as the laminating process and the winding process.
更に、表5に示す通り、比較例2の電池は、実施例1の電池に比べて高温貯蔵後の膨れ量が大きく、高温貯蔵特性が劣っており、150℃加熱試験での電池の最高温度が高くなり、安全性が低下した。また、比較例3の電池は、負荷特性評価時の容量維持率、高温貯蔵試験時の容量維持率、および充放電サイクル特性評価時の容量維持率が低く、負荷特性、高温貯蔵特性および充放電サイクル特性が劣っており、更に、150℃加熱試験での電池の最高温度が高くなり、安全性が低下した。 Further, as shown in Table 5, the battery of Comparative Example 2 has a larger swollen amount after high temperature storage and is inferior in high temperature storage characteristics as compared with the battery of Example 1, and the maximum temperature of the battery in the 150° C. heating test is Became higher and the safety decreased. In addition, the battery of Comparative Example 3 has a low capacity retention rate during load characteristic evaluation, a capacity retention rate during high temperature storage test, and a low capacity retention rate during charge/discharge cycle characteristic evaluation. The cycle characteristics were poor, and the maximum temperature of the battery in the 150° C. heating test was high, and the safety was low.
実施例4
実施例1で用いたものと同じセパレータおよび電極に対し、加熱プレスの温度を表6に示す各温度に設定して、前記と同様にして180°剥離試験を行い、各温度での加熱プレス後の剥離強度を測定した。Example 4
With respect to the same separator and electrode used in Example 1, the temperature of the hot press was set to each temperature shown in Table 6, and the 180° peeling test was performed in the same manner as above, and after the hot press at each temperature. Peel strength was measured.
また、実施例1で用いたものと同じ巻回電極体を押しつぶして扁平状にし、表6に示す各温度で1分間、0.5Paの圧力で加熱プレスを施し、得られた各巻回電極体を用いて、実施例1と同様にしてリチウム二次電池を組み立てた。組み立て後のそれぞれの電池に対し、前記と同様にして、化成処理を行った後、負荷特性評価、高温貯蔵特性評価および充放電サイクル特性評価を行った。上記剥離強度の測定結果と、電池における評価結果を併せて表6に示す。 In addition, the same wound electrode body as that used in Example 1 was crushed into a flat shape and subjected to a heat press at a temperature of 0.5 Pa for 1 minute at each temperature shown in Table 6 to obtain each wound electrode body. A lithium secondary battery was assembled in the same manner as in Example 1. Each assembled battery was subjected to chemical conversion treatment in the same manner as described above, and then subjected to load characteristic evaluation, high temperature storage characteristic evaluation, and charge/discharge cycle characteristic evaluation. Table 6 shows the measurement results of the peel strength and the evaluation results of the batteries.
室温(加熱なし)でプレスした巻回電極体では、セパレータの接着力が発現しないため、高温貯蔵後の電池の膨れが大きくなり、また充放電サイクル特性が低かったが、加熱してプレスした巻回電極体では、セパレータに十分な接着力が発現して、高温貯蔵後の電池の膨れが小さくなり、充放電サイクル特性が向上した。一方、結晶質の樹脂(C1)の融点(100℃)以上の温度で加熱してプレスした巻回電極体では、負荷特性、高温貯蔵での容量維持率、充放電サイクル特性がそれぞれ低下した。 In the wound electrode body pressed at room temperature (without heating), the adhesive strength of the separator does not develop, so the battery swells after storage at high temperature and the charge/discharge cycle characteristics were poor. In the spirally wound electrode body, a sufficient adhesive force was developed in the separator, the swelling of the battery after high temperature storage was reduced, and the charge/discharge cycle characteristics were improved. On the other hand, in the wound electrode body heated and pressed at a temperature equal to or higher than the melting point (100° C.) of the crystalline resin (C1), the load characteristics, the capacity retention rate at high temperature storage, and the charge/discharge cycle characteristics were lowered.
本発明は、その趣旨を逸脱しない範囲で、前記以外の形態としても実施が可能である。本出願に開示された実施形態は一例であって、本発明は、これらの実施形態には限定されない。本発明の範囲は、前記の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれる。 The present invention can be implemented in other forms than the above without departing from the spirit of the present invention. The embodiments disclosed in the present application are examples, and the present invention is not limited to these embodiments. The scope of the present invention is interpreted by giving priority to the description of the appended claims rather than the description of the above-mentioned specification, and all modifications within the scope equivalent to the scope of the claims are defined in the claims. included.
本発明のセパレータを有する電気化学素子は、接着性樹脂(C)によってセパレータと正極および/または負極とが一体化していることから、高温貯蔵特性および充放電サイクル特性に優れており、また、負荷特性や生産性も良好である。よって、本発明のセパレータを有する電気化学素子は、こうした特性を生かして、携帯電話、ノート型パソコンなどのモバイル情報機器の駆動電源用途をはじめとして、従来から知られているリチウム二次電池などの電気化学素子が用いられている各種用途と同じ用途に幅広く適用することができる。 The electrochemical device having the separator of the present invention is excellent in high-temperature storage characteristics and charge/discharge cycle characteristics because the separator and the positive electrode and/or the negative electrode are integrated by the adhesive resin (C), and the load is high. It has good characteristics and productivity. Therefore, the electrochemical device having the separator of the present invention makes use of such characteristics, such as the use as a driving power source for mobile information devices such as mobile phones and notebook computers, and the conventionally known lithium secondary batteries and the like. It can be widely applied to the same uses as various uses in which the electrochemical device is used.
1 電気化学素子(リチウム二次電池)
2 外装缶
3 蓋板
4 絶縁パッキング
5 端子
6 正極
7 負極
8 セパレータ
9 巻回電極体
10 絶縁体
11 正極リード体
12 負極リード体
13 絶縁体
14 リード板
81 樹脂多孔質層(I)
82 耐熱多孔質層(II)
83 接着性樹脂(C)の層1 Electrochemical device (lithium secondary battery)
2 outer can 3 cover plate 4 insulating packing 5 terminal 6 positive electrode 7
82 Heat-resistant porous layer (II)
83 Layer of adhesive resin (C)
Claims (8)
少なくとも一方の表面に、接着性樹脂(C)の層を有しており、
前記接着性樹脂(C)は、ポリフッ化ビニリデン、またはフッ化ビニリデンとフッ素を含有する重合性ビニルモノマーとの共重合体であって、結晶質の樹脂(C1)と非晶質の樹脂(C2)との混合物で構成されており、
前記結晶質の樹脂(C1)は、融点が80〜170℃であり、
前記非晶質の樹脂(C2)は、融点がないか、または融点が70℃以下であり、
前記混合物中での、前記非晶質の樹脂(C2)の割合が、10質量%以上50質量%以下であり、
前記接着性樹脂(C)の層が存在する面での、前記接着性樹脂(C)の層の目付けが、0.1〜1.5g/m2であることを特徴とする電気化学素子用セパレータ。A separator for an electrochemical element, comprising a resin porous layer (I) containing a heat-meltable resin (A) having a melting point of 100 to 170° C. as a main component, and a heat resistant porous layer (II),
At least one surface has an adhesive resin (C) layer,
The adhesive resin (C) is polyvinylidene fluoride or a copolymer of vinylidene fluoride and a polymerizable vinyl monomer containing fluorine, and is made of a crystalline resin (C1) and an amorphous resin (C2). ) And a mixture of
The crystalline resin (C1) has a melting point of 80 to 170° C.,
The amorphous resin (C2) has no melting point or has a melting point of 70° C. or lower,
The ratio of the amorphous resin (C2) in the mixture is 10% by mass or more and 50% by mass or less,
For the electrochemical element, the basis weight of the layer of the adhesive resin (C) on the surface on which the layer of the adhesive resin (C) is present is 0.1 to 1.5 g/m 2 . Separator.
前記結晶質の樹脂(C1)と、前記非晶質の樹脂(C2)とを分散させた塗液を、前記樹脂多孔質層(I)または前記耐熱多孔質層(II)の表面に塗布して塗膜を形成する工程と、
前記塗膜を、前記非晶質の樹脂(C2)が流動する温度で乾燥して、前記接着性樹脂(C)の層を形成する工程とを有することを特徴とする電気化学素子用セパレータの製造方法。It is a manufacturing method of the separator for electrochemical elements in any one of Claims 1-4, Comprising:
A coating liquid in which the crystalline resin (C1) and the amorphous resin (C2) are dispersed is applied to the surface of the resin porous layer (I) or the heat resistant porous layer (II). To form a coating film,
And a step of forming the layer of the adhesive resin (C) by drying the coating film at a temperature at which the amorphous resin (C2) flows. Production method.
前記正極と前記負極とを、前記電気化学素子用セパレータを介して積層して電極体を形成する工程と、
前記電極体を、前記結晶質の樹脂(C1)の融点未満の温度に加熱しながら加圧して、前記電気化学素子用セパレータと、前記正極および/または前記負極とを接着して一体化する工程とを有することを特徴とする電気化学素子の製造方法。A method for producing an electrochemical device having a positive electrode, a negative electrode, a non-aqueous electrolytic solution, and the electrochemical device separator according to claim 1.
A step of forming the electrode body by laminating the positive electrode and the negative electrode with the electrochemical device separator interposed therebetween;
A step of applying pressure to the electrode body while heating it to a temperature lower than the melting point of the crystalline resin (C1) to bond the electrochemical element separator and the positive electrode and/or the negative electrode to be integrated. And a method for manufacturing an electrochemical device.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015182861 | 2015-09-16 | ||
JP2015182861 | 2015-09-16 | ||
PCT/JP2016/076948 WO2017047576A1 (en) | 2015-09-16 | 2016-09-13 | Separator for electrochemical elements, method for producing same, and method for manufacturing electrochemical element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2017047576A1 JPWO2017047576A1 (en) | 2018-07-05 |
JP6738339B2 true JP6738339B2 (en) | 2020-08-12 |
Family
ID=58288681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017539910A Active JP6738339B2 (en) | 2015-09-16 | 2016-09-13 | Electrochemical element separator, method for producing the same, and method for producing the electrochemical element |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6738339B2 (en) |
WO (1) | WO2017047576A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023059173A1 (en) * | 2021-10-06 | 2023-04-13 | 주식회사 엘지에너지솔루션 | Separator for secondary battery |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6487130B1 (en) * | 2017-05-17 | 2019-03-20 | 帝人株式会社 | Non-aqueous secondary battery separator, non-aqueous secondary battery, and non-aqueous secondary battery manufacturing method |
JP7164201B2 (en) * | 2017-05-22 | 2022-11-01 | 日本電気株式会社 | Electrode body and secondary battery provided with the same |
JP7010621B2 (en) * | 2017-08-02 | 2022-01-26 | 住友化学株式会社 | Synthetic resin film, separator for power storage device and power storage device |
KR102613667B1 (en) * | 2017-09-26 | 2023-12-14 | 도레이 카부시키가이샤 | Porous films, separators for secondary batteries and secondary batteries |
EP3719868A4 (en) * | 2017-11-28 | 2021-12-15 | Toray Industries, Inc. | Porous film, separator for secondary cell, and secondary cell |
KR102258828B1 (en) | 2017-12-11 | 2021-05-31 | 주식회사 엘지에너지솔루션 | Separator and electrochemical device containing the same |
KR20200102437A (en) * | 2017-12-27 | 2020-08-31 | 데이진 가부시키가이샤 | Separator for non-aqueous secondary battery and non-aqueous secondary battery |
CN110120485B (en) | 2018-02-06 | 2021-06-18 | 比亚迪股份有限公司 | Polymer diaphragm and preparation method and application thereof, and lithium ion battery and preparation method thereof |
JP6768176B2 (en) * | 2018-05-31 | 2020-10-14 | 株式会社クレハ | Resin composition for non-aqueous electrolyte secondary battery, separator for non-aqueous electrolyte secondary battery using the same, resin composition for electrode mixture layer, electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery. |
JP7289194B2 (en) | 2018-12-18 | 2023-06-09 | 住友化学株式会社 | Method for producing porous layer, laminate, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery |
US20220181744A1 (en) * | 2019-03-27 | 2022-06-09 | Asahi Kasei Kabushiki Kaisha | Separator for Power Storage Device |
JP7407065B2 (en) * | 2020-05-14 | 2023-12-28 | 宇部マクセル京都株式会社 | Battery separator and non-aqueous secondary battery using the same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012137377A1 (en) * | 2011-04-08 | 2012-10-11 | 帝人株式会社 | Nonaqueous secondary battery separator and nonaqueous secondary battery |
TWI501451B (en) * | 2011-04-08 | 2015-09-21 | Teijin Ltd | Non-aqueous secondary battery separator and non-aqueous secondary battery |
-
2016
- 2016-09-13 JP JP2017539910A patent/JP6738339B2/en active Active
- 2016-09-13 WO PCT/JP2016/076948 patent/WO2017047576A1/en active Application Filing
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023059173A1 (en) * | 2021-10-06 | 2023-04-13 | 주식회사 엘지에너지솔루션 | Separator for secondary battery |
Also Published As
Publication number | Publication date |
---|---|
WO2017047576A1 (en) | 2017-03-23 |
JPWO2017047576A1 (en) | 2018-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6738339B2 (en) | Electrochemical element separator, method for producing the same, and method for producing the electrochemical element | |
JP5937776B2 (en) | Battery separator and battery | |
JP5328034B2 (en) | Electrochemical element separator, electrochemical element and method for producing the same | |
JP5477985B2 (en) | Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery | |
JP5670626B2 (en) | Electrochemical element separator, electrochemical element and method for producing the same | |
JP5158678B2 (en) | Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery | |
JP5334281B2 (en) | Lithium secondary battery | |
JP5213158B2 (en) | Multilayer porous membrane production method, lithium ion battery separator and lithium ion battery | |
JP5650738B2 (en) | Battery separator and battery | |
JP5576740B2 (en) | Electrochemical element | |
WO2013051079A1 (en) | Heat resistant porous membrane, separator for nonaqueous cell, and nonaqueous cell | |
JP2015069957A (en) | Separator for lithium ion secondary battery and method for manufacturing the same, and lithium ion secondary battery and method for manufacturing the same | |
WO2015178351A1 (en) | Separator for nonaqueous secondary batteries, method for producing same and nonaqueous secondary battery | |
JP2008027839A (en) | Porous membrane with liner, method of manufacturing porous membrane, and method of manufacturing lithium secondary battery | |
JP2012033268A (en) | Electrochemical element | |
JP2015181110A (en) | Heat resistance microporous film, separator for lithium ion secondary batteries, and lithium ion secondary battery | |
JP2011054298A (en) | Electrochemical element | |
JP5702873B2 (en) | Electrochemical element separator, electrochemical element and method for producing the same | |
JP2017073328A (en) | Nonaqueous electrolyte secondary battery | |
JP6243666B2 (en) | Lithium ion secondary battery separator and method for producing the same, lithium ion secondary battery and method for producing the same | |
WO2012005152A1 (en) | Separator for non-aqueous battery, and non-aqueous battery | |
JP2012003938A (en) | Separator for cell and lithium secondary cell | |
JP6417270B2 (en) | Electrochemical element separator and method for producing electrochemical element | |
JP2011181493A (en) | Nonaqueous electrolyte secondary battery | |
JP7337089B2 (en) | SEPARATING MEMBRANE FOR ELECTROCHEMICAL DEVICE CONTAINING INORGANIC COATING LAYER AND METHOD FOR MANUFACTURING THE SAME |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190628 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200715 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200717 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6738339 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |