JP7407065B2 - Battery separator and non-aqueous secondary battery using the same - Google Patents

Battery separator and non-aqueous secondary battery using the same Download PDF

Info

Publication number
JP7407065B2
JP7407065B2 JP2020085418A JP2020085418A JP7407065B2 JP 7407065 B2 JP7407065 B2 JP 7407065B2 JP 2020085418 A JP2020085418 A JP 2020085418A JP 2020085418 A JP2020085418 A JP 2020085418A JP 7407065 B2 JP7407065 B2 JP 7407065B2
Authority
JP
Japan
Prior art keywords
layer
adhesive
adhesive layer
inorganic
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020085418A
Other languages
Japanese (ja)
Other versions
JP2021180134A (en
Inventor
誠 福本
憲司 田中
Original Assignee
宇部マクセル京都株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部マクセル京都株式会社 filed Critical 宇部マクセル京都株式会社
Priority to JP2020085418A priority Critical patent/JP7407065B2/en
Publication of JP2021180134A publication Critical patent/JP2021180134A/en
Application granted granted Critical
Publication of JP7407065B2 publication Critical patent/JP7407065B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Description

本願は、電極との間で高い密着強度を確保し得る電池用セパレータ、およびその電池用セパレータを用いた非水二次電池に関するものである。 The present application relates to a battery separator that can ensure high adhesion strength with electrodes, and a non-aqueous secondary battery using the battery separator.

近年、携帯電話、PDA、ノートパソコンなどのモバイル機器(携帯機器)の重要性が高まるとともに、それに搭載される電池の重要性も益々増している。特に環境への配慮から、繰り返し充電できる非水二次電池の重要性が増大している。このような非水二次電池は、現在では、前記のモバイル機器のような小型機器の電源用途だけでなく、自動車や、電動自転車、家庭用電力貯蔵システム、業務用電力貯蔵システムなどの大型機器への適用も検討されている。 In recent years, as the importance of mobile devices (portable devices) such as mobile phones, PDAs, and notebook computers has increased, the importance of the batteries installed therein has also increased. In particular, due to environmental considerations, non-aqueous secondary batteries that can be recharged repeatedly are becoming increasingly important. Currently, such non-aqueous secondary batteries are used not only as power sources for small devices such as the mobile devices mentioned above, but also for large devices such as automobiles, electric bicycles, home power storage systems, and commercial power storage systems. Application is also being considered.

非水二次電池を前記のような用途に適用するにあたっては、各種の電池特性の向上が求められるが、例えば、エネルギー密度の向上を図ると、一般に、高温環境下での使用や長期間での使用によって劣化が激しくなり、電池の耐久性の問題が生じる。また、エネルギー密度の上昇によって、電池の異常発熱などの発生を抑制する安全性の確保が難しくなる。 When applying non-aqueous secondary batteries to the above-mentioned applications, improvements in various battery characteristics are required. For example, improving energy density generally makes it difficult to use in high-temperature environments or for long periods of time. The use of batteries causes severe deterioration, leading to problems with battery durability. Furthermore, the increase in energy density makes it difficult to ensure safety by suppressing the occurrence of abnormal heat generation in batteries.

このため、例えば通常の非水二次電池のセパレータとして使用されているポリオレフィン製の微多孔膜の表面に、耐熱性に優れた微粒子を含む層を形成した積層体をセパレータとして用いることで、非水二次電池の安全性の向上を図る技術が開発されている(特許文献1など)。 For this reason, for example, by using as a separator a laminate in which a layer containing fine particles with excellent heat resistance is formed on the surface of a microporous membrane made of polyolefin, which is used as a separator in ordinary non-aqueous secondary batteries, it is possible to Techniques have been developed to improve the safety of water secondary batteries (eg, Patent Document 1).

また、前記の非水二次電池の劣化要因として、高温環境下での貯蔵や充放電を繰り返す過程で、非水電解液が分解して電池内でガスが発生したり電池内の電極自体が膨張収縮したりし、これらによって正極-負極間の距離にばらつきが生じて充放電反応の均一性が失われることが挙げられる。 In addition, as a cause of deterioration of the non-aqueous secondary batteries mentioned above, during the process of storage in high-temperature environments and repeated charging and discharging, the non-aqueous electrolyte decomposes and gas is generated within the battery, and the electrodes within the battery themselves are damaged. The battery may expand and contract, which causes variations in the distance between the positive electrode and the negative electrode, resulting in loss of uniformity in charge/discharge reactions.

一方、こうした問題の発生を抑制する技術の開発も行われている。特許文献2には、樹脂多孔質層と耐熱多孔質層とを有するセパレータの少なくとも一方の表面に、ポリフッ化ビニリデン系の結晶質の樹脂と非晶質の樹脂との混合物で構成された接着性樹脂の層を形成することにより、セパレータと電極との密着強度を高めて電池の負荷特性の低下を抑制可能となることが開示されている。 On the other hand, technologies are being developed to suppress the occurrence of these problems. Patent Document 2 discloses that at least one surface of a separator having a porous resin layer and a heat-resistant porous layer is coated with an adhesive layer made of a mixture of polyvinylidene fluoride crystalline resin and amorphous resin. It is disclosed that by forming a resin layer, it is possible to increase the adhesion strength between the separator and the electrode, thereby suppressing deterioration in the load characteristics of the battery.

特開2017-84756号公報JP2017-84756A 国際公開第2017/047576号International Publication No. 2017/047576

しかしながら、特許文献2に記載のセパレータでは、耐熱多孔質層や接着性樹脂層の形成に伴う電池の負荷特性低下については、まだ十分に対応できていない状況であり、電動自転車など特に高負荷に対応する電池が使用される用途において、電池の安全性確保と高負荷特性を両立することのできる電池用セパレータが求められている。 However, the separator described in Patent Document 2 is still not able to sufficiently deal with the deterioration of battery load characteristics due to the formation of a heat-resistant porous layer and an adhesive resin layer, and is particularly suitable for high-load applications such as electric bicycles. In applications where compatible batteries are used, there is a need for battery separators that can both ensure battery safety and high load characteristics.

本願は、上記要求に応えるためになされたものであり、電極との間で高い密着強度を確保することにより、電池の安全性確保と高負荷特性とを両立することのできる電池用セパレータを提供するものである。 The present application was made in response to the above requirements, and provides a battery separator that can ensure both battery safety and high load characteristics by ensuring high adhesion strength with electrodes. It is something to do.

本願で開示する電池用セパレータは、樹脂多孔質層と、前記樹脂多孔質層の少なくとも一方の主面に形成された無機粒子層とを含み、前記無機粒子層は、無機粒子とバインダとを含み、前記無機粒子の平均粒子径が、0.1~0.8μmであり、前記無機粒子層の前記樹脂多孔質層側とは反対側の表面に接着層が形成され、前記接着層は、接着性樹脂を含み、前記接着層の表面の85度での鏡面光沢度が、32以上である。 A battery separator disclosed in the present application includes a porous resin layer and an inorganic particle layer formed on at least one main surface of the porous resin layer, and the inorganic particle layer includes inorganic particles and a binder. , the average particle diameter of the inorganic particles is 0.1 to 0.8 μm, an adhesive layer is formed on the surface of the inorganic particle layer opposite to the resin porous layer, and the adhesive layer has an adhesive layer. The surface of the adhesive layer has a specular gloss of 32 or more at 85 degrees.

また、本願で開示する非水二次電池は、正極と、負極と、非水電解質と、本願で開示する上記電池用セパレータとを含む。 Moreover, the non-aqueous secondary battery disclosed in this application includes a positive electrode, a negative electrode, a non-aqueous electrolyte, and the battery separator disclosed in this application.

本願によれば、セパレータの表面の接着層を平坦に形成できるので、電極との間で高い密着強度を確保でき、電池の安全性確保と高負荷特性とを両立することのできる電池用セパレータを提供できる。 According to the present application, since the adhesive layer on the surface of the separator can be formed flat, high adhesion strength can be ensured between the separator and the electrode, and a separator for batteries can be provided that can both ensure battery safety and high load characteristics. Can be provided.

図1は、実施形態の電池用セパレータの一例を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a battery separator according to an embodiment. 図2Aおよび図2Bは、従来の電池用セパレータの例を示す模式断面図である。2A and 2B are schematic cross-sectional views showing examples of conventional battery separators. 図3は、実施例および比較例における光沢度と、電極との接着力との関係を示す図である。FIG. 3 is a diagram showing the relationship between glossiness and adhesive strength with electrodes in Examples and Comparative Examples. 図4は、実施例および比較例における光沢度と透気度との関係を示す図である。FIG. 4 is a diagram showing the relationship between glossiness and air permeability in Examples and Comparative Examples. 図5は、実施例および比較例における接着層の目付と光沢度との関係を示す図である。FIG. 5 is a diagram showing the relationship between the basis weight and gloss of the adhesive layer in Examples and Comparative Examples. 図6は、実施例および比較例における接着層の目付と、電極との接着力との関係を示す図である。FIG. 6 is a diagram showing the relationship between the basis weight of the adhesive layer and the adhesive force with the electrode in Examples and Comparative Examples. 図7は、実施例および比較例における接着層の目付と透気度との関係を示す図である。FIG. 7 is a diagram showing the relationship between the basis weight and air permeability of the adhesive layer in Examples and Comparative Examples.

(電池用セパレータ)
本願で開示する電池用セパレータの実施形態を説明する。本実施形態の電池用セパレータは、樹脂多孔質層と、上記樹脂多孔質層の少なくとも一方の主面に形成された無機粒子層とを備え、上記無機粒子層は、無機粒子とバインダとを含み、上記無機粒子の平均粒子径が、0.1~0.8μmであり、上記無機粒子層の上記樹脂多孔質層側とは反対側の表面に接着層が形成され、上記接着層は、接着性樹脂を含み、上記接着層の表面の85度での鏡面光沢度が、32以上である。
(Battery separator)
Embodiments of the battery separator disclosed in this application will be described. The battery separator of the present embodiment includes a resin porous layer and an inorganic particle layer formed on at least one main surface of the resin porous layer, and the inorganic particle layer includes inorganic particles and a binder. , the average particle diameter of the inorganic particles is 0.1 to 0.8 μm, an adhesive layer is formed on the surface of the inorganic particle layer opposite to the resin porous layer, and the adhesive layer has an adhesive layer. The surface of the adhesive layer has a specular gloss of 32 or more at 85 degrees.

本実施形態の電池用セパレータでは、無機粒子の平均粒子径を0.1~0.8μmの範囲に設定しているので、イオン透過性の低下を抑制しつつ無機粒子層を平坦に形成することができ、その結果、接着層の表面も平坦に形成できるため、電極との間で高い密着強度を確保できる。 In the battery separator of this embodiment, the average particle diameter of the inorganic particles is set in the range of 0.1 to 0.8 μm, so the inorganic particle layer can be formed flat while suppressing a decrease in ion permeability. As a result, the surface of the adhesive layer can be formed flat, and high adhesion strength can be ensured between the adhesive layer and the electrode.

以下、図面に基づき本実施形態の電池用セパレータを、従来の電池用セパレータと比較して説明する。図1は、本実施形態の電池用セパレータの一例を示す模式断面図である。また、図2Aおよび図2Bは、従来の電池用セパレータの例を示す模式断面図である。図1および図2は断面図であるが、図面を見やすくするために断面を示すハッチングは付していない。 Hereinafter, the battery separator of this embodiment will be explained in comparison with a conventional battery separator based on the drawings. FIG. 1 is a schematic cross-sectional view showing an example of a battery separator of this embodiment. Moreover, FIG. 2A and FIG. 2B are schematic cross-sectional views showing examples of conventional battery separators. Although FIGS. 1 and 2 are cross-sectional views, hatching indicating the cross-sections is not added to make the drawings easier to read.

図1において、本実施形態の電池用セパレータ10は、樹脂多孔質層11と、樹脂多孔質層11の上に配置された無機粒子層12と、無機粒子層12の上に配置された接着層13とを備えている。無機粒子層12は、無機粒子12aとバインダ12bとから形成されている。接着層13は、接着性樹脂粒子13aから形成されている。無機粒子12aは、平均粒子径が0.1~0.8μmに設定されているので、無機粒子層12は平坦に形成されている。このため、無機粒子層12の上に配置された接着層13も平坦に形成されている。これにより、電池用セパレータ10の接着層13を電極に接合させた場合に、接着層13の全面が電極と接することができるため、電極との間で高い密着強度を確保できる。 In FIG. 1, a battery separator 10 according to the present embodiment includes a resin porous layer 11, an inorganic particle layer 12 disposed on the resin porous layer 11, and an adhesive layer disposed on the inorganic particle layer 12. It is equipped with 13. The inorganic particle layer 12 is formed from inorganic particles 12a and a binder 12b. The adhesive layer 13 is formed from adhesive resin particles 13a. Since the average particle diameter of the inorganic particles 12a is set to 0.1 to 0.8 μm, the inorganic particle layer 12 is formed flat. Therefore, the adhesive layer 13 disposed on the inorganic particle layer 12 is also formed flat. Thereby, when the adhesive layer 13 of the battery separator 10 is bonded to the electrode, the entire surface of the adhesive layer 13 can be in contact with the electrode, so that high adhesion strength can be ensured between the battery separator 10 and the electrode.

また、図2Aにおいて、従来の電池用セパレータ20は、樹脂多孔質層21と、樹脂多孔質層21の上に配置された無機粒子層22と、無機粒子層22の上に配置された接着層23とを備えている。無機粒子層22は、無機粒子22aとバインダ22bとから形成されている。接着層23は、接着性樹脂粒子23aから形成されている。図2Aでは、無機粒子22aの平均粒子径が0.8μmを超えているため、無機粒子層22には凹凸が形成されている。このため、無機粒子層22の上に配置された接着層23も凸部と凹部が形成されている。これにより、電池用セパレータ20の接着層23を電極に接合させた場合に、接着層13の凸部のみが接着に寄与する部分23bとなり、接着層23が電極の一部としか接することができないため、電極との間で密着強度が低下すると考えられる。 In addition, in FIG. 2A, the conventional battery separator 20 includes a resin porous layer 21, an inorganic particle layer 22 disposed on the resin porous layer 21, and an adhesive layer disposed on the inorganic particle layer 22. It is equipped with 23. The inorganic particle layer 22 is formed from inorganic particles 22a and a binder 22b. The adhesive layer 23 is formed from adhesive resin particles 23a. In FIG. 2A, since the average particle diameter of the inorganic particles 22a exceeds 0.8 μm, the inorganic particle layer 22 is uneven. Therefore, the adhesive layer 23 disposed on the inorganic particle layer 22 also has convex portions and concave portions. As a result, when the adhesive layer 23 of the battery separator 20 is bonded to the electrode, only the convex portion of the adhesive layer 13 becomes the part 23b that contributes to adhesion, and the adhesive layer 23 can only come into contact with a part of the electrode. Therefore, it is thought that the adhesion strength with the electrode decreases.

図2Bは、図2Aの接着層23の表面を平坦にするために、その凹部において接着層23を厚く形成したものであるが、これにより接着層23の接着性は向上するが、透気度が上昇してしまい、電池用セパレータとしての特性が低下する。これに対して、図1の本実施形態の電池用セパレータ10では、接着層13を薄く平坦に形成できるので、透気度が上昇することはない。 In FIG. 2B, in order to flatten the surface of the adhesive layer 23 in FIG. 2A, the adhesive layer 23 is formed thicker in the concave portion. Although this improves the adhesiveness of the adhesive layer 23, the air permeability increases, and the properties as a battery separator deteriorate. On the other hand, in the battery separator 10 of this embodiment shown in FIG. 1, the adhesive layer 13 can be formed thin and flat, so the air permeability does not increase.

次に、本実施形態の電池用セパレータ(以下、単に「セパレータ」ともいう。)を構成する各層およびその関連事項について詳細に説明する。 Next, each layer constituting the battery separator (hereinafter also simply referred to as "separator") of the present embodiment and related matters will be described in detail.

<樹脂多孔質層>
本実施形態の樹脂多孔質層は、電池内が高温となった場合に、溶融してセパレータの孔を塞ぐ、いわゆるシャットダウン機能を確保するための層である。そのため、樹脂多孔質層は、融点が100~170℃、即ち、JIS K 7121の規定に準じて、示差走査熱量計(DSC)を用いて測定される融解温度が、100~170℃以下の熱溶融性樹脂を主成分としている。
<Resin porous layer>
The resin porous layer of this embodiment is a layer for ensuring a so-called shutdown function, which melts and closes the pores of the separator when the inside of the battery becomes high temperature. Therefore, the resin porous layer has a melting point of 100 to 170°C, that is, the melting temperature measured using a differential scanning calorimeter (DSC) according to the regulations of JIS K 7121 is 100 to 170°C or less. The main component is meltable resin.

上記熱溶融性樹脂としては、融点が100~170℃で、電気絶縁性を有しており、電気化学的に安定で、更に後述する非水電解液に安定な熱可塑性樹脂であれば特に制限はないが、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、エチレン-プロピレン共重合体などのポリオレフィンなどが好ましい。 The above-mentioned heat-melting resin is particularly limited as long as it is a thermoplastic resin with a melting point of 100 to 170°C, electrical insulation, electrochemical stability, and stability in the non-aqueous electrolyte described below. However, polyolefins such as polyethylene (PE), polypropylene (PP), and ethylene-propylene copolymers are preferred.

上記樹脂多孔質層としては、具体的には、従来から知られているリチウム二次電池などに使用されているポリオレフィン製の微多孔膜、即ち、無機フィラーなどを混合したポリオレフィンを用いて形成したフィルムやシートに、一軸延伸または二軸延伸を施して微細な空孔を形成したものなどを用いることができる。 Specifically, the resin porous layer is formed using a polyolefin microporous membrane used in conventionally known lithium secondary batteries, that is, a polyolefin mixed with an inorganic filler, etc. A film or sheet in which fine pores are formed by uniaxially or biaxially stretching can be used.

また、上記樹脂多孔質層は、複数の層からなる多層構造を有していてもよい。例えば、PEを主体とする層(以下、「PE層」という。)とPPを主体とする層(以下、「PP層」という。)とを積層した2層膜、PE層の両側にPP層を積層した3層膜などを使用できる。 Moreover, the resin porous layer may have a multilayer structure consisting of a plurality of layers. For example, a two-layer film consisting of a layer mainly composed of PE (hereinafter referred to as "PE layer") and a layer mainly composed of PP (hereinafter referred to as "PP layer"), a PP layer on both sides of the PE layer. A three-layer film, etc., can be used.

上記樹脂多孔質層の厚さ(樹脂多孔質層が多層構造の場合は、その総厚さ)は、薄すぎるとシャットダウン機能が低下する傾向にあり、厚すぎると電池のエネルギー密度が低下する傾向にあるため、5~30μmであることが好ましい。 If the thickness of the above resin porous layer (or the total thickness if the resin porous layer has a multilayer structure) is too thin, the shutdown function tends to decrease, and if it is too thick, the energy density of the battery tends to decrease. Therefore, it is preferably 5 to 30 μm.

<無機粒子層>
本実施形態の無機粒子層は、セパレータに耐熱性を付与する層であり、無機粒子とバインダとを含み、前述の樹脂多孔質層の少なくとも一方の主面に形成される。上記無機粒子層は、電池内が高温となった場合、前述の樹脂多孔質層が収縮しようとしても、収縮し難い無機粒子層がセパレータの骨格として作用し、セパレータ全体の熱収縮を抑制する。
<Inorganic particle layer>
The inorganic particle layer of this embodiment is a layer that imparts heat resistance to the separator, includes inorganic particles and a binder, and is formed on at least one main surface of the above-mentioned resin porous layer. In the inorganic particle layer, when the inside of the battery becomes high temperature, even if the above-mentioned resin porous layer tries to shrink, the inorganic particle layer that does not easily shrink acts as a skeleton of the separator and suppresses thermal shrinkage of the entire separator.

上記無機粒子層の厚さは、薄すぎるとセパレータ全体の熱収縮を抑える効果が小さくなる傾向にあり、厚すぎると電池のエネルギー密度が低下する傾向にあるため、1~20μmであることが好ましい。 The thickness of the inorganic particle layer is preferably 1 to 20 μm because if it is too thin, the effect of suppressing the thermal contraction of the entire separator tends to be reduced, and if it is too thick, the energy density of the battery tends to decrease. .

[無機粒子]
上記無機粒子層に使用する無機粒子は、耐熱性を有し、電気絶縁性を有しており、電気化学的に安定であれば特に制限はない。上記無機粒子の耐熱性は、耐熱温度が200℃以上であることが好ましい。ここで、無機粒子の耐熱温度が200℃以上とは、少なくとも200℃において変形などの形状変化が目視で確認されないことを意味している。無機粒子の耐熱温度は、300℃以上であることがさらに好ましい。
[Inorganic particles]
The inorganic particles used in the inorganic particle layer are not particularly limited as long as they have heat resistance, electrical insulation, and are electrochemically stable. Regarding the heat resistance of the inorganic particles, it is preferable that the heat resistance temperature is 200° C. or higher. Here, the heat resistant temperature of the inorganic particles of 200°C or higher means that no change in shape such as deformation is visually observed at least at 200°C. It is more preferable that the inorganic particles have a heat resistance temperature of 300° C. or higher.

上記無機粒子としては、例えば、酸化鉄(FeO、Fe23など)、SiO2、Al23、TiO2、BaTiO3、ZrO2などの無機酸化物;窒化アルミニウム、窒化ケイ素などの無機窒化物;フッ化カルシウム、フッ化バリウム、硫酸バリウム、炭酸カルシウムなどの難溶性のイオン結晶物質;シリコン、ダイヤモンドなどの共有結合性結晶物質;モンモリロナイトなどの粘土;などが挙げられる。ここで、上記無機酸化物は、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、マイカなどの鉱物資源由来物質またはこれらの人造物などであってもよい。上記無機粒子は、1種単独で用いてもよく、2種以上を併用してもよい。上記無機酸化物の中でも、Al23、SiO2およびベーマイトが特に好ましく用いられる。 The inorganic particles include, for example, inorganic oxides such as iron oxide (FeO, Fe 2 O 3, etc.), SiO 2 , Al 2 O 3 , TiO 2 , BaTiO 3 , ZrO 2 ; inorganic particles such as aluminum nitride, silicon nitride, etc. Examples include nitrides; poorly soluble ionic crystalline substances such as calcium fluoride, barium fluoride, barium sulfate, and calcium carbonate; covalent crystalline substances such as silicon and diamond; and clays such as montmorillonite. Here, the inorganic oxide may be a substance derived from mineral resources such as boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine, mica, or an artificial product thereof. The above inorganic particles may be used alone or in combination of two or more. Among the above inorganic oxides, Al 2 O 3 , SiO 2 and boehmite are particularly preferably used.

上記無機粒子の形状としては、例えば、球状に近い形状であってもよく、板状や針状であってもよいが、短絡(特にデンドライトによる短絡)を良好に防止するとともに、形成される無機粒子層の空孔の曲路率が大きくなりすぎず、イオン伝導性を低下させない観点からは、サイコロ状や、アスペクト比が比較的小さい(例えば、10以下)板状の粒子など、多面体形状であることが好ましい。上記無機粒子が多面体形状であることにより、無機粒子の平坦面が無機粒子層の表面に現れ、無機粒子層上に形成される接着層の接着性樹脂粒子と接触しやすくなり、接着層と無機粒子層との接着強度を高めることができる。多面体形状の無機粒子の代表的なものとしては、サイコロ状あるいは板状のAl23やベーマイトなどが挙げられ、これらを1種単独で使用してもよく、2種以上を併用してもよい。 The shape of the above-mentioned inorganic particles may be, for example, close to spherical, plate-like, or acicular. In order to prevent the tortuosity of the pores in the particle layer from becoming too large and from reducing the ionic conductivity, polyhedral shapes such as dice-like or plate-like particles with a relatively small aspect ratio (for example, 10 or less) should be used. It is preferable that there be. Because the inorganic particles have a polyhedral shape, the flat surfaces of the inorganic particles appear on the surface of the inorganic particle layer, making it easier for them to come into contact with the adhesive resin particles of the adhesive layer formed on the inorganic particle layer. The adhesive strength with the particle layer can be increased. Typical examples of polyhedral-shaped inorganic particles include dice-shaped or plate-shaped Al 2 O 3 and boehmite, which may be used alone or in combination of two or more. good.

上記無機粒子の平均粒子径は、小さすぎると、セパレータ(無機粒子層)の孔径が小さくなりすぎて、リチウムイオンなどのイオン透過性が低下する虞があり、また、無機粒子層自体の強度が低下する虞もあることから、0.1μm以上とし、0.2μm以上とすることが好ましい。一方、無機粒子の平均粒子径が大きすぎると、無機粒子層の表面の平坦性が低下するため、無機粒子の平均粒子径は、0.8μm以下とする必要があり、0.6μm以下とすることが好ましい。また、これにより、無機粒子層の上に形成される接着層の平坦性を高めることができる。 If the average particle size of the inorganic particles is too small, the pore size of the separator (inorganic particle layer) will become too small, which may reduce the permeability of ions such as lithium ions, and the strength of the inorganic particle layer itself may decrease. Since there is a possibility that the thickness may decrease, it is preferably 0.1 μm or more, and preferably 0.2 μm or more. On the other hand, if the average particle size of the inorganic particles is too large, the flatness of the surface of the inorganic particle layer will deteriorate, so the average particle size of the inorganic particles needs to be 0.8 μm or less, and should be 0.6 μm or less. It is preferable. Moreover, thereby, the flatness of the adhesive layer formed on the inorganic particle layer can be improved.

また、上記無機粒子の平均粒子径が上記範囲において、無機粒子の粒度分布における累積頻度90体積%に相当する粒子径(D90)が1μm以下であれば、粗大粒子をほとんど含まず、無機粒子層の平坦性をより高めやすいので好ましい。また、これにより、無機粒子層の上に形成される接着層の平坦性をより高めることができる。 In addition, if the average particle diameter of the inorganic particles is within the above range and the particle diameter (D90) corresponding to a cumulative frequency of 90% by volume in the particle size distribution of the inorganic particles is 1 μm or less, the inorganic particle layer contains almost no coarse particles and This is preferable because it makes it easier to improve the flatness of the surface. Moreover, thereby, the flatness of the adhesive layer formed on the inorganic particle layer can be further improved.

本明細書でいう無機粒子の平均粒子径は、例えば、レーザー回折・散乱法により粒度分布を測定するレーザー回折式粒度分布測定装置を用い、無機粒子を溶解しない媒体に分散させて測定した体積平均粒子径として規定することができる。また、無機粒子の粒度分布における累積頻度90体積%に相当する粒子径(D90)も、同様に、上記装置により測定される粒度分布において、粒子径が小さい方から累積した体積頻度が90%になるときの粒子径として規定される。 The average particle diameter of inorganic particles in this specification is, for example, the volume average measured by dispersing inorganic particles in a medium that does not dissolve them, using a laser diffraction particle size distribution measuring device that measures particle size distribution by laser diffraction/scattering method. It can be defined as the particle size. In addition, the particle diameter (D90) corresponding to a cumulative frequency of 90% by volume in the particle size distribution of inorganic particles is similarly determined by the cumulative volume frequency of 90% from the smallest particle size in the particle size distribution measured by the above device. It is defined as the particle size when

上記無機粒子は、無機粒子層の主体をなすもので、無機粒子層における無機粒子の含有量は、無機粒子層の構成成分の全量中、50質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることが更に好ましい。 The above-mentioned inorganic particles constitute the main body of the inorganic particle layer, and the content of inorganic particles in the inorganic particle layer is preferably 50% by mass or more, and 80% by mass or more based on the total amount of the constituent components of the inorganic particle layer. More preferably, it is 90% by mass or more.

[バインダ]
上記無機粒子層には、無機粒子同士の結着などのためにバインダを含有させる。無機粒子層に使用するバインダとしては、例えば、エチレン-酢酸ビニル共重合体(EVA、酢酸ビニル由来の構造単位が20~35モル%のもの)、エチレン-エチルアクリレート共重合体などのエチレン-アクリル酸共重合体、フッ素系ゴム、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、ポリビニルアルコール(PVA)、ポリN-ビニルアセトアミド(PNVA)、ポリビニルブチラール(PVB)、ポリビニルピロリドン(PVP)、アクリル樹脂、ポリウレタン、エポキシ樹脂などが挙げられるが、(メタ)アクリル酸エステル類をモノマーの主成分とし、これを重合した構造を有する(メタ)アクリル酸エステル共重合体が好ましく用いられる。本明細書において「(メタ)アクリル酸」とは、アクリル酸とメタクリル酸の少なくとも一方を意味している。
[Binder]
The inorganic particle layer contains a binder for binding the inorganic particles to each other. Examples of the binder used in the inorganic particle layer include ethylene-vinyl acetate copolymer (EVA, containing 20 to 35 mol% of structural units derived from vinyl acetate), ethylene-acrylic such as ethylene-ethyl acrylate copolymer, etc. Acid copolymer, fluorine rubber, styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), polyvinyl alcohol (PVA), polyN-vinylacetamide (PNVA), polyvinyl butyral (PVB), polyvinyl Examples include pyrrolidone (PVP), acrylic resin, polyurethane, and epoxy resin, but (meth)acrylic ester copolymers having a structure obtained by polymerizing (meth)acrylic esters as the main monomer component are preferred. used. In this specification, "(meth)acrylic acid" means at least one of acrylic acid and methacrylic acid.

上記(メタ)アクリル酸エステル共重合体の中でも、ガラス転移温度(Tg)が-20℃以下のものが好ましく、より好ましくは-25℃以下である。上記Tgが-20℃以下の(メタ)アクリル酸エステル共重合体としては、側鎖エステル基の末端が、炭素数2以上10以下のアルキル基であるものが好ましく、より具体的には、側鎖エステル基の末端の主体が、n-プロピル基、iso-プロピル基、n-ブチル基、sec-ブチル基、n-ヘキシル基である上記共重合体がより好ましい。側鎖エステル基の末端アルキル基の炭素数が少なすぎると、バインダのTgがより高くなって柔軟性が低下してしまう。また、側鎖エステル基の末端アルキル基の炭素数が多すぎると、側鎖同士が結晶化して、バインダの柔軟性が却って低下してしまう。 Among the above-mentioned (meth)acrylic acid ester copolymers, those having a glass transition temperature (Tg) of -20°C or lower are preferable, and those having a glass transition temperature (Tg) of -25°C or lower are more preferable. The above (meth)acrylic acid ester copolymer having a Tg of -20°C or less is preferably one in which the end of the side chain ester group is an alkyl group having 2 or more and 10 or less carbon atoms. The above-mentioned copolymers in which the terminal end of the chain ester group is mainly an n-propyl group, iso-propyl group, n-butyl group, sec-butyl group, or n-hexyl group are more preferable. If the number of carbon atoms in the terminal alkyl group of the side chain ester group is too small, the Tg of the binder will become higher and the flexibility will decrease. Furthermore, if the number of carbon atoms in the terminal alkyl group of the side chain ester group is too large, the side chains will crystallize together, resulting in a decrease in the flexibility of the binder.

上記バインダは、上記例示のものを1種単独で用いてもよく、2種以上を併用してもよい。 As the binder, one of the above-mentioned examples may be used alone, or two or more kinds may be used in combination.

上記無機粒子層におけるバインダの含有量は、充分な結着性を確保するため、無機粒子層の構成成分の全量中、0.5質量%以上であることが好ましく、1質量%以上であることがより好ましく、1.5質量%以上であることが特に好ましい。一方、透気度が上昇してリチウムイオンが通過し難くなるのを防ぐため、無機粒子層におけるバインダの含有量は、8質量%以下であることが好ましく、6質量%以下であることがより好ましく、4質量%以下であることが特に好ましい。 The content of the binder in the inorganic particle layer is preferably 0.5% by mass or more, and preferably 1% by mass or more based on the total amount of the constituent components of the inorganic particle layer, in order to ensure sufficient binding properties. is more preferable, and particularly preferably 1.5% by mass or more. On the other hand, in order to prevent the air permeability from increasing and making it difficult for lithium ions to pass through, the binder content in the inorganic particle layer is preferably 8% by mass or less, more preferably 6% by mass or less. The content is preferably 4% by mass or less, particularly preferably 4% by mass or less.

<接着層>
本実施形態の接着層は、セパレータに電極との接着性を付与する層であり、接着性樹脂を含んでいる。また、上記接着層は、前述の無機粒子層の樹脂多孔質層側とは反対側の表面に形成される。
<Adhesive layer>
The adhesive layer of this embodiment is a layer that provides adhesiveness to the electrodes to the separator, and contains an adhesive resin. Further, the adhesive layer is formed on the surface of the inorganic particle layer opposite to the porous resin layer side.

また、上記接着層は、前述の平坦性が高い無機粒子層の表面に形成されるため、接着層の平坦性も高めることができる。ここで、接着層の平坦性の評価基準を検討したところ、後述するように接着層の表面の鏡面光沢度が上がると、接着層の電極との接着力も上がることが判明した。このことから、接着層の接着力に大きく影響する接着層の平坦性と、接着層の表面の鏡面光沢度との間にも相関関係があると推定される。このため、本願では接着層の表面の平坦性を評価する指標として、JIS Z 8741の規定に準じて測定される85度鏡面光沢度を採用した。具体的には、本実施形態の接着層の表面の85度での鏡面光沢度を32以上とした。接着層の表面の85度での鏡面光沢度が32以上となると、接着層の表面の平坦性が高まり、接着層の接着力も上昇すると考えられる。 Moreover, since the adhesive layer is formed on the surface of the inorganic particle layer having high flatness, the flatness of the adhesive layer can also be improved. Here, we examined the evaluation criteria for the flatness of the adhesive layer and found that as the specular gloss of the surface of the adhesive layer increases, the adhesive force of the adhesive layer with the electrode also increases, as will be described later. From this, it is presumed that there is a correlation between the flatness of the adhesive layer, which greatly affects the adhesive force of the adhesive layer, and the specular gloss of the surface of the adhesive layer. Therefore, in the present application, 85 degree specular gloss, which is measured according to the provisions of JIS Z 8741, is used as an index for evaluating the surface flatness of the adhesive layer. Specifically, the specular gloss at 85 degrees of the surface of the adhesive layer of this embodiment was set to be 32 or more. When the specular gloss at 85 degrees of the surface of the adhesive layer is 32 or more, it is considered that the flatness of the surface of the adhesive layer increases and the adhesive force of the adhesive layer also increases.

上記接着層に使用する接着性樹脂としては、例えば、アクリル樹脂、ポリフッ化ビニリデンなどを用いることができる。 As the adhesive resin used for the adhesive layer, for example, acrylic resin, polyvinylidene fluoride, etc. can be used.

上記接着性樹脂は、通常、粒子状の形態で使用され、接着性樹脂粒子の平均粒子径をA(μm)とし、無機粒子の平均粒子径をB(μm)とした場合、比A/Bは、0.5以上であることが好ましく、0.6以上であることがより好ましい。これにより、無機粒子層の上に接着層を形成した際に、無機粒子層に形成された空孔内に接着性樹脂粒子が入り込んで透気度を上昇させることがなくなり、リチウムイオンの通過を阻害するのを防ぐことができる。 The above-mentioned adhesive resin is usually used in the form of particles, and when the average particle size of the adhesive resin particles is A (μm) and the average particle size of the inorganic particles is B (μm), the ratio A/B is preferably 0.5 or more, more preferably 0.6 or more. This prevents the adhesive resin particles from entering the pores formed in the inorganic particle layer and increasing the air permeability when the adhesive layer is formed on the inorganic particle layer, thereby preventing the passage of lithium ions. can be prevented from interfering.

本明細書でいう接着性樹脂粒子の平均粒子径は、例えば、前記無機粒子の平均粒子径の測定と同様に、レーザー回折・散乱法により粒度分布を測定するレーザー回折式粒度分布測定装置を用いて測定することができる。 The average particle diameter of the adhesive resin particles referred to in this specification can be measured using a laser diffraction particle size distribution measuring device that measures particle size distribution using a laser diffraction/scattering method, for example, similarly to the measurement of the average particle diameter of the inorganic particles. can be measured.

一方、接着性樹脂粒子の平均粒子径が大きくなりすぎると、粒子間のすき間が大きくなり、接着性が低下するおそれを生じるため、A/Bは、1.5以下であることが好ましく、1.2以下であることがより好ましい。 On the other hand, if the average particle diameter of the adhesive resin particles becomes too large, the gaps between the particles will become large and there is a risk that the adhesiveness will decrease, so A/B is preferably 1.5 or less, and 1. More preferably, it is .2 or less.

本願では、接着層の目付を増やしてもセパレータの透気度が上昇しにくく、より高い接着性を得ることができる一方、接着層の目付を減らしても、一定以上の接着性を確保することができるため、例えば、接着層の目付を0.5g/m2以下としてもよく、更に、0.35g/m2以下とすることも可能である。一方、良好な接着性を確保するために、接着層の目付は、0.1g/m2以上とすることが好ましく、0.2g/m2以上とすることがより好ましい。 In the present application, even if the basis weight of the adhesive layer is increased, the air permeability of the separator is difficult to increase and higher adhesion can be obtained, while even if the basis weight of the adhesive layer is decreased, adhesion above a certain level can be ensured. Therefore, for example, the basis weight of the adhesive layer may be set to 0.5 g/m 2 or less, and furthermore, it is possible to set it to 0.35 g/m 2 or less. On the other hand, in order to ensure good adhesion, the basis weight of the adhesive layer is preferably 0.1 g/m 2 or more, more preferably 0.2 g/m 2 or more.

<電池用セパレータの製造方法>
本実施形態の電池用セパレータは、例えば、無機粒子とバインダとを含む無機粒子層形成用塗料を樹脂多孔質層の上に塗布し、樹脂多孔質層の上に無機粒子層を形成し、更に、接着性樹脂を含む接着層形成用塗料を上記無機粒子層の上に塗布し、無機粒子層の上に接着層を形成する工程により作製することができる。あるいは、上記無機粒子層形成用塗料と、上記接着層形成用塗料とを、樹脂多孔質層の上に同時に重層塗布し、上記樹脂多孔質層の上に無機粒子層と、更にその上に接着層を同時に形成する工程により作製することができる。
<Method for manufacturing battery separators>
In the battery separator of this embodiment, for example, an inorganic particle layer forming paint containing inorganic particles and a binder is applied on a resin porous layer, an inorganic particle layer is formed on the resin porous layer, and the inorganic particle layer is formed on the resin porous layer. It can be produced by applying a coating for forming an adhesive layer containing an adhesive resin onto the inorganic particle layer, and forming an adhesive layer on the inorganic particle layer. Alternatively, the above paint for forming an inorganic particle layer and the above paint for forming an adhesive layer may be simultaneously coated on the porous resin layer, and the inorganic particle layer may be applied on the porous resin layer, and then the inorganic particle layer may be bonded on top of the porous resin layer. It can be manufactured by a process of forming layers simultaneously.

上記無機粒子層形成用塗料は、前述の無機粒子とバインダとを、溶媒に分散または溶解させて調製する。上記溶媒は、無機粒子などを均一に分散でき、また、バインダを均一に溶解または分散できるものであれば特に限定されないが、例えば、トルエンなどの芳香族炭化水素、テトラヒドロフランなどのフラン類、メチルエチルケトン、メチルイソブチルケトンなどのケトン類など、一般的な有機溶媒が好適に用いられる。また、これらの溶媒に、界面張力を制御する目的で、アルコール(エチレングリコール、プロピレングリコールなど)、または、モノメチルアセテートなどの各種プロピレンオキサイド系グリコールエーテルなどを界面活性剤として適宜添加してもよい。更に、バインダが水溶性である場合、エマルジョンとして使用する場合などでは、水を溶媒としてもよく、この際にもアルコール類(メチルアルコール、エチルアルコール、イソプロピルアルコール、エチレングリコールなど)を界面活性剤として適宜加えて界面張力を制御することもできる。 The above-mentioned paint for forming an inorganic particle layer is prepared by dispersing or dissolving the above-mentioned inorganic particles and a binder in a solvent. The above-mentioned solvent is not particularly limited as long as it can uniformly disperse inorganic particles, etc., and can uniformly dissolve or disperse the binder, but examples include aromatic hydrocarbons such as toluene, furans such as tetrahydrofuran, methyl ethyl ketone, Common organic solvents such as ketones such as methyl isobutyl ketone are preferably used. Further, alcohols (ethylene glycol, propylene glycol, etc.) or various propylene oxide-based glycol ethers such as monomethyl acetate may be appropriately added as a surfactant to these solvents for the purpose of controlling interfacial tension. Furthermore, if the binder is water-soluble or used as an emulsion, water may be used as a solvent, and in this case, alcohols (methyl alcohol, ethyl alcohol, isopropyl alcohol, ethylene glycol, etc.) may be used as a surfactant. In addition, interfacial tension can be controlled as appropriate.

また、無機粒子層形成用塗料には、上記以外の界面活性剤を加えることもできる。上記以外の界面活性剤としては、炭化水素系界面活性剤、フッ素系界面活性剤、シリコーン系界面活性剤などが挙げられる。界面活性剤は、1種単独で使用してもよいし、2種以上を併用してもよい。 Moreover, surfactants other than those mentioned above can also be added to the coating material for forming an inorganic particle layer. Examples of surfactants other than those mentioned above include hydrocarbon surfactants, fluorine surfactants, silicone surfactants, and the like. One type of surfactant may be used alone, or two or more types may be used in combination.

上記炭化水素系界面活性剤としては、例えば、脂肪酸塩、コール酸塩、直鎖アルキルベンゼンスルホン酸ナトリウム、ラウリル硫酸ナトリウムなどのアニオン性界面活性剤;テトラアルキルアンモニウム塩などのカチオン性界面活性剤;分子内にアニオン性部位とカチオン性部位の両者を有する両性界面活性剤;アルキルグルコシドなどのノニオン性界面活性剤;などが挙げられる。 Examples of the above-mentioned hydrocarbon surfactants include anionic surfactants such as fatty acid salts, cholates, linear sodium alkylbenzenesulfonates, and sodium lauryl sulfate; cationic surfactants such as tetraalkylammonium salts; Examples include amphoteric surfactants having both anionic sites and cationic sites; nonionic surfactants such as alkyl glucosides; and the like.

上記フッ素系界面活性剤としては、例えば、疎水基に直鎖アルキル基、パーフルオロアルケニル基などを配したもの(パーフルオロオクタンスルフォン酸、パーフルオロカルボン酸など)などが挙げられる。 Examples of the above-mentioned fluorine-based surfactants include those in which a hydrophobic group has a linear alkyl group, perfluoroalkenyl group, etc. (perfluorooctane sulfonic acid, perfluorocarboxylic acid, etc.).

上記シリコーン系界面活性剤としては、例えば、ポリジメチルシロキサン、ポリエーテル変性ポリジメチルシロキサン、ポリメチルアルキルシロキサンなどが挙げられる。 Examples of the silicone surfactant include polydimethylsiloxane, polyether-modified polydimethylsiloxane, and polymethylalkylsiloxane.

上記界面活性剤の含有量は、塗料の表面張力が前述の樹脂多孔質層の表面張力(濡れ指数)と同程度か、それよりも小さくなる含有量であることが好ましい。具体的には、界面活性剤の含有量は、溶媒100質量部に対して、0.05質量部以上とすることが好ましく、0.07質量部以上とすることがより好ましく、0.1質量部以上とすることが特に好ましい。 The content of the surfactant is preferably such that the surface tension of the coating material is comparable to or smaller than the surface tension (wetting index) of the above-mentioned resin porous layer. Specifically, the content of the surfactant is preferably 0.05 parts by mass or more, more preferably 0.07 parts by mass or more, and 0.1 parts by mass based on 100 parts by mass of the solvent. It is particularly preferable that the amount is more than 1 part.

また、無機粒子層形成用塗料には、更に、必要に応じて増粘剤などを添加することができる。上記増粘剤としては、例えば、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなどのセルロース誘導体;キサンタンガム、ウェランガム、ジェランガム、グアーガム、カラギーナンなどの天然多糖類;デキストリン、アルファー化でんぷんなどのでんぷん類;ポリエチレングリコール、ポリアクリル酸、ポリビニルアルコール、ポリビニルピロリドン、ポリN-ビニルアセトアミド、ビニルメチルエーテル-無水マレイン酸共重合体などが挙げられ、バインダとしての作用を持つものも含まれる。これらの増粘剤は、1種単独で用いてもよいし、2種以上を併用してもよい。 Furthermore, a thickener or the like may be added to the inorganic particle layer forming coating material, if necessary. Examples of the thickener include cellulose derivatives such as carboxymethyl cellulose, hydroxyethyl cellulose, and hydroxypropyl cellulose; natural polysaccharides such as xanthan gum, welan gum, gellan gum, guar gum, and carrageenan; starches such as dextrin and pregelatinized starch; polyethylene glycol , polyacrylic acid, polyvinyl alcohol, polyvinylpyrrolidone, polyN-vinylacetamide, vinyl methyl ether-maleic anhydride copolymer, etc., including those that act as a binder. These thickeners may be used alone or in combination of two or more.

上記無機粒子層形成用塗料は、その固形分(溶媒を除く成分)の含量を、例えば10~80質量%とすることが好ましい。 It is preferable that the solid content (components excluding the solvent) of the paint for forming an inorganic particle layer is, for example, 10 to 80% by mass.

上記無機粒子層形成用塗料を樹脂多孔質層に塗布した後には、通常、乾燥する。乾燥は、無機粒子層形成用塗料の溶媒を良好に除去でき、かつ無機粒子層や樹脂多孔質層を劣化させないような方法および条件を採用すればよく、例えば、20~100℃程度の温風を用いて、0.1~10分程度乾燥する方法などが挙げられる。 After the coating material for forming an inorganic particle layer is applied to the resin porous layer, it is usually dried. For drying, a method and conditions that can effectively remove the solvent of the paint for forming the inorganic particle layer and do not deteriorate the inorganic particle layer or the porous resin layer may be used, such as hot air at about 20 to 100°C. Examples include a method of drying for about 0.1 to 10 minutes.

上記樹脂多孔質層の表面への無機粒子層形成用塗料の塗布には、例えば、ブレードコーター、ロールコーター、ダイコーター、スプレーコーター、グラビアコーターなどの公知の塗布装置を用いることができる。無機粒子層が含有する無機粒子に板状粒子を用いた場合には、セパレータ中での板状粒子の配向性を高める観点からは、塗布した無機粒子層形成用塗料にシェアをかけることが好ましい。そのため、無機粒子に板状粒子を用いる場合には、上記塗布装置の中でも、ブレードコーターやダイコーターなどのように、塗布時に無機粒子層形成用塗料にシェアをかけ得る塗布装置を使用することが好ましい。 For coating the inorganic particle layer forming coating material on the surface of the resin porous layer, a known coating device such as a blade coater, roll coater, die coater, spray coater, gravure coater, etc. can be used. When plate-shaped particles are used as the inorganic particles contained in the inorganic particle layer, it is preferable to apply shear to the applied inorganic particle layer-forming paint from the viewpoint of improving the orientation of the plate-shaped particles in the separator. . Therefore, when using plate-shaped particles as inorganic particles, it is recommended to use a coating device such as a blade coater or die coater that can apply shear to the inorganic particle layer forming paint during coating, such as a blade coater or die coater. preferable.

上記接着層形成用塗料は、前述の接着性樹脂を溶媒に分散または溶解させて調製できる。具体的には、水系溶媒に接着性樹脂を分散させた水系エマルジョン液が好適に使用される。 The adhesive layer-forming paint can be prepared by dispersing or dissolving the adhesive resin described above in a solvent. Specifically, an aqueous emulsion liquid in which an adhesive resin is dispersed in an aqueous solvent is preferably used.

上記接着層形成用塗料を無機粒子層に塗布した後には、通常、乾燥する。乾燥は、接着層形成用塗料の溶媒を良好に除去でき、かつセパレータ全体を劣化させないような方法および条件を採用すればよく、例えば、20~100℃程度の温風を用いて、0.1~10分程度乾燥する方法などが挙げられる。 After applying the adhesive layer forming coating material to the inorganic particle layer, it is usually dried. For drying, a method and conditions that can effectively remove the solvent of the paint for forming the adhesive layer and do not deteriorate the separator as a whole may be used. For example, using hot air at about 20 to 100 degrees Examples include a method of drying for about 10 minutes.

<電池用セパレータの特性>
本実施形態のセパレータの厚みは、十分な強度を確保する観点から、7μm以上であることが好ましく、10μm以上であることがより好ましい。但し、セパレータが厚すぎると、電池の出力特性が低下する虞があることから、セパレータの厚みは、30μm以下であることが好ましく、20μm以下であることがより好ましい。
<Characteristics of battery separators>
The thickness of the separator of this embodiment is preferably 7 μm or more, more preferably 10 μm or more, from the viewpoint of ensuring sufficient strength. However, if the separator is too thick, the output characteristics of the battery may deteriorate, so the thickness of the separator is preferably 30 μm or less, more preferably 20 μm or less.

上記セパレータの空孔率は、セパレータが乾燥した状態で、30%以上であることが好ましく、また、70%以下であることが好ましい。セパレータの空孔率が小さすぎると、セパレータ中のイオンの移動が妨げられる虞があり、これが大きすぎると、セパレータの強度が低下する虞がある。 The porosity of the separator is preferably 30% or more, and preferably 70% or less when the separator is dry. If the porosity of the separator is too small, the movement of ions in the separator may be hindered, and if it is too large, the strength of the separator may be reduced.

上記セパレータは、JIS P 8117に規定されたガーレー値で表される透気度が、50秒/100mL以上であることが好ましく、100秒/100mL以上であることがより好ましく、また、600秒/100mL以下であることが好ましく、300秒/100mL以下であることがより好ましく、220秒/100mL以下であることが特に好ましい。ガーレー値が小さすぎると、リチウムのデンドライト結晶などが貫通しやすく、内部短絡の抑制効果が小さくなる虞があり、ガーレー値が大きすぎると、イオン伝導性が低くなりすぎて電池の内部抵抗が大きくなり、負荷特性が悪くなる虞がある。 The separator preferably has an air permeability expressed by the Gurley value specified in JIS P 8117 of 50 seconds/100 mL or more, more preferably 100 seconds/100 mL or more, and 600 seconds/100 mL or more. It is preferably 100 mL or less, more preferably 300 seconds/100 mL or less, and particularly preferably 220 seconds/100 mL or less. If the Gurley value is too small, lithium dendrite crystals may easily penetrate, reducing the effectiveness of suppressing internal short circuits. If the Gurley value is too large, the ionic conductivity will be too low and the internal resistance of the battery will increase. Therefore, the load characteristics may deteriorate.

(非水二次電池)
次に、本願で開示する非水二次電池の実施形態を説明する。本実施形態の非水二次電池は、正極と、負極と、非水電解質と、前述の本願で開示する電池用セパレータとを備えている。本実施形態の非水二次電池は、セパレータと電極との間で高い密着強度を確保できるので、電池の安全性確保と高負荷特性とを両立することができる。
(Non-aqueous secondary battery)
Next, embodiments of the non-aqueous secondary battery disclosed in this application will be described. The non-aqueous secondary battery of this embodiment includes a positive electrode, a negative electrode, a non-aqueous electrolyte, and the battery separator disclosed in the present application. Since the non-aqueous secondary battery of this embodiment can ensure high adhesion strength between the separator and the electrode, it is possible to ensure battery safety and high load characteristics at the same time.

以下、本実施形態の非水二次電池の各構成部材およびその関連事項について詳細に説明する。 Hereinafter, each component of the non-aqueous secondary battery of this embodiment and related matters will be explained in detail.

<正極>
本実施形態の正極としては、従来から知られている非水二次電池に用いられている正極、即ち、Liイオンを吸蔵放出可能な活物質を含有する正極であれば特に制限はない。例えば、正極活物質としては、LiMxMn2-x4(但し、Mは、Li、B、Mg、Ca、Sr、Ba、Ti、V、Cr、Fe、Co、Ni、Cu、Al、Sn、Sb、In、Nb、Mo、W、Y、RuおよびRhよりなる群から選択される少なくとも1種の元素であり、0.01≦x≦0.5)で表されるスピネル型リチウムマンガン複合酸化物、LixMn(1-y-x)Niyz(2-k)l(但し、Mは、Co、Mg、Al、B、Ti、V、Cr、Fe、Cu、Zn、Zr、Mo、Sn、Ca、SrおよびWよりなる群から選択される少なくとも1種の元素であり、0.8≦x≦1.2、0<y<0.5、0≦z≦0.5、k+l<1、-0.1≦k≦0.2、0≦l≦0.1)で表される層状化合物、LiCo1-xx2(但し、Mは、Al、Mg、Ti、Zr、Fe、Ni、Cu、Zn、Ga、Ge、Nb、Mo、Sn、SbおよびBaよりなる群から選択される少なくとも1種の元素であり、0≦x≦0.5)で表されるリチウムコバルト複合酸化物、LiNi1-xx2(但し、Mは、Al、Mg、Ti、Zr、Fe、Co、Cu、Zn、Ga、Ge、Nb、Mo、Sn、SbおよびBaよりなる群から選択される少なくとも1種の元素であり、0≦x≦0.5)で表されるリチウムニッケル複合酸化物、LiM1-xx2(但し、Mは、Fe、MnおよびCoよりなる群から選択される少なくとも1種の元素で、Nは、Al、Mg、Ti、Zr、Ni、Cu、Zn、Ga、Ge、Nb、Mo、Sn、SbおよびBaよりなる群から選択される少なくとも1種の元素であり、0≦x≦0.5)で表されるオリビン型複合酸化物などが挙げられ、これらのうちの1種のみを用いてもよく、2種以上を併用してもよい。
<Positive electrode>
The positive electrode of this embodiment is not particularly limited as long as it is a positive electrode used in conventionally known nonaqueous secondary batteries, that is, a positive electrode containing an active material capable of intercalating and deintercalating Li ions. For example, as a positive electrode active material, LiM x Mn 2-x O 4 (where M is Li, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Co, Ni, Cu, Al, Spinel-type lithium manganese, which is at least one element selected from the group consisting of Sn, Sb, In, Nb, Mo, W, Y, Ru, and Rh, and is represented by 0.01≦x≦0.5) Composite oxide, Li x Mn (1-yx) Ni y M z O (2-k) F l (where M is Co, Mg, Al, B, Ti, V, Cr, Fe, Cu, Zn, At least one element selected from the group consisting of Zr, Mo, Sn, Ca, Sr, and W, and 0.8≦x≦1.2, 0<y<0.5, 0≦z≦0. 5. layered compound represented by k+l<1, -0.1≦k≦0.2, 0≦l≦0.1), LiCo 1-x M x O 2 (where M is Al, Mg, At least one element selected from the group consisting of Ti, Zr, Fe, Ni, Cu, Zn, Ga, Ge, Nb, Mo, Sn, Sb and Ba, expressed as 0≦x≦0.5). Lithium cobalt composite oxide, LiNi 1-x M x O 2 (where M is Al, Mg, Ti, Zr, Fe, Co, Cu, Zn, Ga, Ge, Nb, Mo, Sn, Sb and LiM 1-x N x O 2 (where M is Fe, At least one element selected from the group consisting of Mn and Co, where N is an element selected from the group consisting of Al, Mg, Ti, Zr, Ni, Cu, Zn, Ga, Ge, Nb, Mo, Sn, Sb and Ba. At least one element selected from 0≦x≦0.5), such as an olivine-type composite oxide, etc., and only one of these may be used, or two or more of these may be used. may be used together.

上記正極には、上記正極活物質と、導電助剤やバインダとを含有する正極合剤層を、集電体の片面または両面に形成した構造のものを使用することができる。 The positive electrode may have a structure in which a positive electrode mixture layer containing the positive electrode active material, a conductive additive, and a binder is formed on one or both sides of a current collector.

正極のバインダとしては、例えば、ポリフッ化ビニリデン(PVDF)などフッ素樹脂などが、また、正極の導電助剤としては、例えば、カーボンブラックなどの炭素材料などが使用される。 As the binder for the positive electrode, for example, a fluororesin such as polyvinylidene fluoride (PVDF) is used, and as the conductive agent for the positive electrode, for example, a carbon material such as carbon black is used.

また、正極の集電体としては、アルミニウムなどの金属の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、厚みが10~30μmのアルミニウム箔が好適に用いられる。 Further, as the current collector of the positive electrode, metal foil such as aluminum, punched metal, net, expanded metal, etc. can be used, but aluminum foil having a thickness of 10 to 30 μm is usually preferably used.

正極側のリード部は、通常、正極作製時に、集電体の一部に正極合剤層を形成せずに集電体の露出部を残し、そこをリード部とすることによって設けられる。但し、リード部は必ずしも当初から集電体と一体化されたものであることは要求されず、集電体にアルミニウム製の箔などを後から接続することによって設けてもよい。 The lead part on the positive electrode side is usually provided by leaving an exposed part of the current collector without forming a positive electrode mixture layer on a part of the current collector and using that part as the lead part when producing the positive electrode. However, the lead portion is not necessarily required to be integrated with the current collector from the beginning, and may be provided by connecting an aluminum foil or the like to the current collector later.

<負極>
本実施形態の負極としては、従来から知られている非水二次電池に用いられている負極、即ち、Liイオンを吸蔵放出可能な活物質を含有する負極であれば特に制限はない。例えば、活物質として、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ(MCMB)、炭素繊維などの、リチウムを吸蔵、放出可能な炭素系材料の1種または2種以上の混合物が用いられる。また、Si、Sn、Ge、Bi、Sb、Inなどの元素を含む単体、化合物およびその合金、リチウム含有窒化物またはリチウム含有酸化物などのリチウム金属に近い低電圧で充放電できる化合物、もしくはリチウム金属やリチウム/アルミニウム合金、更にはLi4Ti512で表されるようなTi酸化物も負極活物質として用いることができる。これらの負極活物質に導電助剤(カーボンブラックなどの炭素材料など)やPVDFなどのバインダなどを適宜添加した負極合剤を、集電体を芯材として成形体(負極合剤層)に仕上げたもの、または上記の各種合金やリチウム金属の箔を単独、もしくは集電体上に負極活物質層として積層したものなどが負極として用いられる。
<Negative electrode>
The negative electrode of this embodiment is not particularly limited as long as it is a negative electrode used in conventionally known nonaqueous secondary batteries, that is, a negative electrode containing an active material capable of intercalating and deintercalating Li ions. For example, as an active material, carbon that can occlude and release lithium, such as graphite, pyrolytic carbons, cokes, glassy carbons, fired bodies of organic polymer compounds, mesocarbon microbeads (MCMB), carbon fibers, etc. One or a mixture of two or more of these materials may be used. In addition, simple substances, compounds and alloys thereof containing elements such as Si, Sn, Ge, Bi, Sb, and In, compounds that can be charged and discharged at a low voltage close to that of lithium metal, such as lithium-containing nitrides or lithium-containing oxides, or lithium Metals, lithium/aluminum alloys, and even Ti oxides such as Li 4 Ti 5 O 12 can also be used as negative electrode active materials. A negative electrode mixture is prepared by appropriately adding conductive additives (carbon materials such as carbon black, etc.) and binders such as PVDF to these negative electrode active materials, and is finished into a molded body (negative electrode mixture layer) using a current collector as a core material. The above-mentioned various alloys or lithium metal foils may be used alone or laminated as a negative electrode active material layer on a current collector, etc., as the negative electrode.

負極に集電体を用いる場合には、集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、銅箔が用いられる。この負極集電体は、高エネルギー密度の電池を得るために負極全体の厚みを薄くする場合、厚みの上限は30μmであることが好ましく、下限は5μmであることが望ましい。また、負極側のリード部は、正極側のリード部と同様にして形成すればよい。 When a current collector is used for the negative electrode, copper or nickel foil, punched metal, net, expanded metal, etc. can be used as the current collector, but copper foil is usually used. When reducing the overall thickness of the negative electrode in order to obtain a battery with high energy density, the upper limit of the thickness of this negative electrode current collector is preferably 30 μm, and the lower limit is preferably 5 μm. Further, the lead portion on the negative electrode side may be formed in the same manner as the lead portion on the positive electrode side.

<非水電解質>
本実施形態の非水電解質には、リチウム塩を有機溶媒に溶解した溶液(非水電解液)を使用することができる。
<Nonaqueous electrolyte>
As the non-aqueous electrolyte of this embodiment, a solution (non-aqueous electrolyte) in which a lithium salt is dissolved in an organic solvent can be used.

上記非水電解液のリチウム塩としては、溶媒中で解離してLi+イオンを形成し、電池として使用される電圧範囲で分解などの副反応を起こしにくいものであれば特に制限はない。例えば、LiClO4、LiPF6、LiBF4、LiAsF6、LiSbF6などの無機リチウム塩;LiCF3SO3、LiCF3CO2、Li224(SO32、LiN(CF3SO22、LiC(CF3SO23、LiCn2n+1SO3(n≧2)、LiN(RfOSO22〔ここで、Rfはフルオロアルキル基を表す。〕などの有機リチウム塩;などを用いることができる。 The lithium salt of the non-aqueous electrolyte is not particularly limited as long as it dissociates in the solvent to form Li + ions and is unlikely to cause side reactions such as decomposition within the voltage range used as a battery. For example, inorganic lithium salts such as LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 ; LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN(CF 3 SO 2 ) 2 , LiC(CF 3 SO 2 ) 3 , LiC n F 2n+1 SO 3 (n≧2), LiN(R f OSO 2 ) 2 [Here, R f represents a fluoroalkyl group. Organic lithium salts such as ] can be used.

上記非水電解液に用いる有機溶媒としては、上記リチウム塩を溶解し、電池として使用される電圧範囲で分解などの副反応を起こさないものであれば特に限定されない。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどの鎖状カーボネート;プロピオン酸メチルなどの鎖状エステル;γ-ブチロラクトンなどの環状エステル;ジメトキシエタン、ジエチルエーテル、1,3-ジオキソラン、ジグライム、トリグライム、テトラグライムなどの鎖状エーテル;ジオキサン、テトラヒドロフラン、2-メチルテトラヒドロフランなどの環状エーテル;アセトニトリル、プロピオニトリル、メトキシプロピオニトリルなどのニトリル類;エチレングリコールサルファイトなどの亜硫酸エステル類;などが挙げられ、これらは2種以上混合して用いることもできる。 The organic solvent used in the nonaqueous electrolyte is not particularly limited as long as it dissolves the lithium salt and does not cause side reactions such as decomposition within the voltage range used as a battery. For example, cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate; chain esters such as methyl propionate; cyclic esters such as γ-butyrolactone; Chain ethers such as dimethoxyethane, diethyl ether, 1,3-dioxolane, diglyme, triglyme, tetraglyme; cyclic ethers such as dioxane, tetrahydrofuran, 2-methyltetrahydrofuran; nitriles such as acetonitrile, propionitrile, methoxypropionitrile sulfite esters such as ethylene glycol sulfite; and the like, and two or more of these can also be used as a mixture.

このリチウム塩の非水電解液中の濃度としては、0.5~1.5mol/Lとすることが好ましく、0.9~1.25mol/Lとすることがより好ましい。 The concentration of this lithium salt in the nonaqueous electrolyte is preferably 0.5 to 1.5 mol/L, more preferably 0.9 to 1.25 mol/L.

また、上記非水電解液に公知のゲル化剤を加えてゲル状としたもの(ゲル状電解質)を、非水電解質として使用してもよい。 Furthermore, a gel-like electrolyte obtained by adding a known gelling agent to the non-aqueous electrolyte may be used as the non-aqueous electrolyte.

<電極体>
上記正極と上記負極とは、前述のセパレータを介して積層した積層電極体や、更にこの積層電極体を巻回した巻回電極体の形態で用いることができる。
<Electrode body>
The above-mentioned positive electrode and the above-mentioned negative electrode can be used in the form of a laminated electrode body laminated with the above-mentioned separator in between, or a wound electrode body in which this laminated electrode body is further wound.

<電池の形態>
本実施形態の非水二次電池の形態としては、スチール缶やアルミニウム缶などを外装缶として使用した筒形(角筒形や円筒形など)などが挙げられる。また、金属を蒸着したラミネートフィルムを外装体としたソフトパッケージ電池とすることもできる。
<Battery form>
Examples of the form of the non-aqueous secondary battery of this embodiment include a cylindrical shape (prismatic cylinder shape, cylindrical shape, etc.) using a steel can, an aluminum can, or the like as an outer can. In addition, a soft package battery can also be used in which the exterior body is a laminate film on which metal is vapor-deposited.

以下、実施例に基づいて本願で開示する電池用セパレータを詳細に説明する。但し、下記実施例は、本願で開示する電池用セパレータを制限するものではない。 Hereinafter, the battery separator disclosed in the present application will be described in detail based on Examples. However, the following examples do not limit the battery separator disclosed in this application.

(実施例1)
<樹脂多孔質フィルム>
樹脂多孔質フィルム(樹脂多孔質層)として、厚み4μmのポリエチレンよりなる中間層と、中間層の両側にそれぞれ積層された厚み4μmのポリプロピレンよりなる外層とからなる総厚み12μmのポリオレフィン微多孔フィルムを用いた。
(Example 1)
<Porous resin film>
As the resin porous film (resin porous layer), a polyolefin microporous film with a total thickness of 12 μm consisting of an intermediate layer made of polyethylene with a thickness of 4 μm and an outer layer made of polypropylene with a thickness of 4 μm laminated on both sides of the intermediate layer was used. Using.

<無機粒子層形成用塗料の作製>
多面体形状のベーマイト粒子(平均粒子径:0.51μm、D90:0.99μm):100質量部、アクリル酸ブチル-アクリル酸共重合体(Tg:-30℃):3質量部、カルボキシメチルセルロース:1質量部を、界面活性剤としてパーフルオロオクタンスルフォン酸を含む水に分散させ、無機粒子層形成用塗料を作製した。
<Preparation of paint for forming inorganic particle layer>
Polyhedral boehmite particles (average particle size: 0.51 μm, D90: 0.99 μm): 100 parts by mass, butyl acrylate-acrylic acid copolymer (Tg: -30°C): 3 parts by mass, carboxymethyl cellulose: 1 A mass part was dispersed in water containing perfluorooctane sulfonic acid as a surfactant to prepare a coating material for forming an inorganic particle layer.

<積層膜の作製>
上記樹脂多孔質フィルムの片面に、ダイコーターを用いて上記無機粒子層形成用塗料を塗布し、130℃で乾燥させて、厚みが約5μmの無機粒子層を形成し、積層膜を作製した。
<Preparation of laminated film>
The inorganic particle layer forming coating material was applied to one side of the resin porous film using a die coater and dried at 130° C. to form an inorganic particle layer with a thickness of about 5 μm, thereby producing a laminated film.

<セパレータの作製>
平均粒子径が0.4μmである球状のアクリル樹脂粒子が分散された水系エマルジョン液を上記積層膜の無機粒子層上に塗布し、乾燥させることにより、無機粒子層の表面に目付が0.4g/m2の接着層が形成された実施例1のセパレータを作製した。
<Preparation of separator>
An aqueous emulsion in which spherical acrylic resin particles having an average particle diameter of 0.4 μm are dispersed is applied onto the inorganic particle layer of the above-mentioned laminated film and dried, so that the surface of the inorganic particle layer has a basis weight of 0.4 g. The separator of Example 1 in which an adhesive layer of /m 2 was formed was produced.

(実施例2)
多面体形状のベーマイト粒子(平均粒子径:0.27μm、D90:0.43μm)を用いた以外は、実施例1と同様にして積層膜を作製した。この積層膜を用いた以外は、実施例1と同様にして実施例2のセパレータを作製した。
(Example 2)
A laminated film was produced in the same manner as in Example 1, except that polyhedral boehmite particles (average particle size: 0.27 μm, D90: 0.43 μm) were used. A separator of Example 2 was produced in the same manner as Example 1 except that this laminated film was used.

(比較例1)
多面体形状のベーマイト粒子(平均粒子径:0.9μm、D90:1.62μm)を用いた以外は、実施例1と同様にして積層膜を作製した。この積層膜を用いた以外は、実施例1と同様にして比較例1のセパレータを作製した。
(Comparative example 1)
A laminated film was produced in the same manner as in Example 1, except that polyhedral boehmite particles (average particle diameter: 0.9 μm, D90: 1.62 μm) were used. A separator of Comparative Example 1 was produced in the same manner as in Example 1 except that this laminated film was used.

(比較例2)
板状のベーマイト粒子(平均粒子径:1.8μm、D90:3.0μm)を用いた以外は、実施例1と同様にして積層膜を作製した。この積層膜を用いた以外は、実施例1と同様にして比較例2のセパレータを作製した。
(Comparative example 2)
A laminated film was produced in the same manner as in Example 1, except that plate-shaped boehmite particles (average particle diameter: 1.8 μm, D90: 3.0 μm) were used. A separator of Comparative Example 2 was produced in the same manner as in Example 1 except that this laminated film was used.

(比較例3)
粒状のベーマイト粒子(平均粒子径:0.08μm)を用いた以外は、実施例1と同様にして積層膜を作製した。この積層膜を用いた以外は、実施例1と同様にして比較例3のセパレータを作製した。
(Comparative example 3)
A laminated film was produced in the same manner as in Example 1, except that granular boehmite particles (average particle diameter: 0.08 μm) were used. A separator of Comparative Example 3 was produced in the same manner as in Example 1 except that this laminated film was used.

実施例1~2および比較例1~3のセパレータについて、以下の条件で鏡面光沢度(以下、単に「光沢度」ともいう。)、透気度および電極との接着力を測定した。その結果を表1、図3および図4に示す。 Regarding the separators of Examples 1 to 2 and Comparative Examples 1 to 3, specular gloss (hereinafter also simply referred to as "gloss"), air permeability, and adhesive strength with electrodes were measured under the following conditions. The results are shown in Table 1, FIG. 3, and FIG. 4.

<光沢度の測定>
BYK-Gardner社製の光沢計"マイクロ-トリ-グロス"(商品名)を使用し、測定角度85°でMD方向に10ヶ所、TD方向に10ヶ所、それぞれ光沢度を測定した。測定した合計20ヶ所の光沢度の平均値を当該セパレータの光沢度とした。
<Measurement of gloss>
Using a gloss meter "Micro-Tri-Gloss" (trade name) manufactured by BYK-Gardner, the glossiness was measured at 10 locations in the MD direction and 10 locations in the TD direction at a measurement angle of 85°. The average value of the measured glossiness at a total of 20 locations was defined as the glossiness of the separator.

<透気度の測定>
JIS P8117:2009に記載の王研式試験機法により、3ヶ所の透気度を測定した。測定した3ヶ所の透気度の平均値を当該セパレータの透気度とした。
<Measurement of air permeability>
The air permeability was measured at three locations using the Oken tester method described in JIS P8117:2009. The average value of the measured air permeability at three locations was taken as the air permeability of the separator.

<電極との接着力の測定>
先ず、次のようにして正極シートを作製した。即ち、正極活物質であるコバルト酸リチウムの粉末と、導電助剤であるアセチレンブラックと、バインダであるポリフッ化ビニリデンとを、それぞれ質量比で92:5:3の割合でN-メチルピロリドンに分散させてスラリーを作製し、そのスラリーをアルミニウム箔の片面に塗布して乾燥した後、プレスすることにより、片面に正極合剤層を有する正極シートを作製した。
<Measurement of adhesive force with electrode>
First, a positive electrode sheet was produced as follows. That is, lithium cobalt oxide powder as a positive electrode active material, acetylene black as a conductive aid, and polyvinylidene fluoride as a binder are dispersed in N-methylpyrrolidone at a mass ratio of 92:5:3. A slurry was prepared by applying the slurry to one side of an aluminum foil, dried, and then pressed to produce a positive electrode sheet having a positive electrode mixture layer on one side.

次に、MD方向11cm、TD方向2cmに切り出したセパレータの試験片と、11cm×2.5cmに切り出した正極シートとを、試験片の無機粒子層側が正極シートの正極合剤層側に対向するように重ねた状態で、予め70℃に加熱したハンドプレス機にセットした。この時、試験片と正極の重なった部分の長さが10cmになるようにした。セットした試験片に0.8tの荷重を掛けた状態で60秒間保持して試験片と正極を接着した試料を作製した。続いて、両面粘着テープ(日東電工社製、No.5605)を使って、ステンレス鋼板(SUS板)に試料を貼り付けた。この時、正極がSUS板に対向する向きとした。また、試験片(セパレータ)端部にガムテープをU字型に貼り付けて、引張試験機に取付けやすくしておいた。SUS板を引張試験機(ミネベア社製"TGE-10kN")にセットし、引張方向90°、引張速度200mm/分で24秒間ガムテープ部を引張り、電極との接着力を測定した。各試料について3回測定を行い、それらの平均値を電極との接着力とした。 Next, a separator test piece cut out to 11 cm in the MD direction and 2 cm in the TD direction and a positive electrode sheet cut out to 11 cm x 2.5 cm were placed so that the inorganic particle layer side of the test piece faced the positive electrode mixture layer side of the positive electrode sheet. The sheets were stacked like this and placed in a hand press that had been preheated to 70°C. At this time, the length of the overlapping portion of the test piece and the positive electrode was set to 10 cm. A load of 0.8 t was applied to the set test piece and held for 60 seconds to prepare a sample in which the test piece and the positive electrode were bonded together. Subsequently, the sample was attached to a stainless steel plate (SUS plate) using double-sided adhesive tape (manufactured by Nitto Denko Corporation, No. 5605). At this time, the positive electrode was oriented to face the SUS plate. In addition, gummed tape was attached to the end of the test piece (separator) in a U-shape to facilitate attachment to the tensile testing machine. The SUS plate was set in a tensile testing machine ("TGE-10kN" manufactured by Minebea Corporation), and the adhesive strength with the electrode was measured by pulling the gummed tape part for 24 seconds at a pulling direction of 90° and a pulling speed of 200 mm/min. Each sample was measured three times, and the average value thereof was taken as the adhesive strength with the electrode.

無機粒子の平均粒子径が0.1~0.8μmの範囲にある実施例1および2のセパレータでは、接着層の表面の85度での鏡面光沢度が高くなり、電極との接着力が大きくなったのに対し、無機粒子の平均粒子径が0.8μmを超えた比較例1および2のセパレータでは、接着層の表面の85度での鏡面光沢度が低くなり、電極との接着力が低下した。一方、無機粒子の平均粒子径が0.1μmよりも小さい比較例3のセパレータでは、接着層の表面の85度での鏡面光沢度が高くなったにも関わらず、電極との接着力は低下した。これは、無機粒子の比表面積が増大し、実施例と同じバインダ量では、無機粒子層の無機粒子間の接着強度を維持できなくなったためと考えられる。 In the separators of Examples 1 and 2, in which the average particle diameter of the inorganic particles is in the range of 0.1 to 0.8 μm, the surface of the adhesive layer has a high specular gloss at 85 degrees, and the adhesive force with the electrode is large. On the other hand, in the separators of Comparative Examples 1 and 2 in which the average particle diameter of the inorganic particles exceeded 0.8 μm, the specular gloss at 85 degrees on the surface of the adhesive layer was low, and the adhesive force with the electrode was low. decreased. On the other hand, in the separator of Comparative Example 3 in which the average particle diameter of the inorganic particles is smaller than 0.1 μm, the adhesion force with the electrodes decreased even though the specular gloss at 85 degrees on the surface of the adhesive layer increased. did. This is considered to be because the specific surface area of the inorganic particles increased and the adhesive strength between the inorganic particles in the inorganic particle layer could not be maintained with the same amount of binder as in the example.

また、無機粒子の平均粒子径が0.1~0.8μmの範囲にある実施例1および2のセパレータでは、接着性樹脂粒子が無機粒子の間のすき間に入り込みにくいため、透気度を低くすることができたのに対し、無機粒子の平均粒子径が0.8μmを大きく超えた比較例2のセパレータでは、接着性樹脂粒子が無機粒子の間のすき間に入り込んだり、無機粒子層の凹部に溜まったりすることにより、透気度が上昇する結果となった。また、無機粒子の平均粒子径が0.1μmよりも小さい比較例3のセパレータでは、無機粒子同士のすき間が狭くなりすぎたため、透気度が高くなった。 In addition, in the separators of Examples 1 and 2 in which the average particle diameter of the inorganic particles is in the range of 0.1 to 0.8 μm, the adhesive resin particles are difficult to enter into the gaps between the inorganic particles, so the air permeability is low. On the other hand, in the separator of Comparative Example 2 in which the average particle diameter of the inorganic particles greatly exceeded 0.8 μm, the adhesive resin particles entered the gaps between the inorganic particles and the recesses in the inorganic particle layer. This resulted in an increase in air permeability. Furthermore, in the separator of Comparative Example 3 in which the average particle diameter of the inorganic particles was smaller than 0.1 μm, the air permeability increased because the gaps between the inorganic particles became too narrow.

(実施例3)
上記接着層の目付を、0.2g/m2、0.3g/m2および0.6g/m2とした以外は、実施例2と同様にして、3種類のセパレータを作製した。
(Example 3)
Three types of separators were produced in the same manner as in Example 2, except that the adhesive layer had a basis weight of 0.2 g/m 2 , 0.3 g/m 2 and 0.6 g/m 2 .

(比較例4)
上記接着層の目付を、0.2g/m2、0.3g/m2および0.6g/m2とした以外は、比較例2と同様にして、3種類のセパレータを作製した。
(Comparative example 4)
Three types of separators were produced in the same manner as in Comparative Example 2, except that the adhesive layer had a basis weight of 0.2 g/m 2 , 0.3 g/m 2 and 0.6 g/m 2 .

実施例1~3、比較例2および比較例4のセパレータについて、接着層の目付と、接着層の表面の鏡面光沢度、電極との接着力、および透気度との関係を図5~7に示した。 For the separators of Examples 1 to 3, Comparative Example 2, and Comparative Example 4, the relationships between the basis weight of the adhesive layer, the specular gloss of the surface of the adhesive layer, the adhesive force with the electrode, and the air permeability are shown in Figures 5 to 7. It was shown to.

実施例1~3では、無機粒子層が平坦に形成されるため、接着層の表面の光沢度は大きな値となり、接着層の目付を少なくしても、電極との接着力が大きく、一方、接着層の目付を多くしても透気度を低い値に維持することができた。 In Examples 1 to 3, since the inorganic particle layer was formed flat, the surface gloss of the adhesive layer was a large value, and even if the basis weight of the adhesive layer was reduced, the adhesive force with the electrode was large. The air permeability was able to be maintained at a low value even if the adhesive layer's basis weight was increased.

これに対し、比較例2および比較例4では、無機粒子層の表面の凹凸が大きいため、接着層の目付を大きくしないと接着層の表面の光沢度を高めることができず、電極との接着力が低い値となり、一方、接着層の目付を大きくした場合には、無機粒子層の凹部に接着性樹脂粒子が多く配置されるなどにより、透気度の上昇が大きくなる。 On the other hand, in Comparative Examples 2 and 4, since the surface of the inorganic particle layer has large irregularities, the surface gloss of the adhesive layer cannot be increased unless the basis weight of the adhesive layer is increased, resulting in poor adhesion with the electrode. On the other hand, when the force becomes a low value and the basis weight of the adhesive layer is increased, more adhesive resin particles are arranged in the recesses of the inorganic particle layer, resulting in a greater increase in air permeability.

本願で開示する電池用セパレータは、セパレータの表面の接着層を平坦に形成できるので、電極との間で高い密着強度を確保でき、安全性確保と高負荷特性とを両立した非水二次電池を実現でき、各種の電子機器(特に携帯電話やノート型パソーソナルコンピュータ等のポータブル電子機器)の電源用途に、好ましく用いることができる。 The battery separator disclosed in this application can form a flat adhesive layer on the surface of the separator, so it can ensure high adhesion strength with the electrodes, making it a non-aqueous secondary battery that balances safety and high load characteristics. can be realized, and can be preferably used as a power source for various electronic devices (particularly portable electronic devices such as mobile phones and notebook personal computers).

10、20 電池用セパレータ
11、21 樹脂多孔質層
12、22 無機粒子層
12a、22a 無機粒子
12b、22b バインダ
13、23 接着層
13a、23a 接着性樹脂粒子
10, 20 Separator for battery 11, 21 Porous resin layer 12, 22 Inorganic particle layer 12a, 22a Inorganic particle 12b, 22b Binder 13, 23 Adhesive layer 13a, 23a Adhesive resin particle

Claims (6)

樹脂多孔質層と、前記樹脂多孔質層の少なくとも一方の主面に形成された無機粒子層とを含む電池用セパレータであって、
前記無機粒子層は、無機粒子とバインダとを含み、
前記無機粒子の平均粒子径が、0.1~0.6μmであり、
前記無機粒子の粒度分布における累積頻度90体積%に相当する粒子径(D90)が、0.43μm以下であり、
前記無機粒子層の前記樹脂多孔質層側とは反対側の表面に接着層が形成され、
前記接着層は、接着性樹脂を含み、
前記接着層の表面の85度での鏡面光沢度が、32以上である電池用セパレータ。
A battery separator comprising a porous resin layer and an inorganic particle layer formed on at least one main surface of the porous resin layer,
The inorganic particle layer includes inorganic particles and a binder,
The average particle diameter of the inorganic particles is 0.1 to 0.6 μm,
The particle diameter (D90) corresponding to a cumulative frequency of 90% by volume in the particle size distribution of the inorganic particles is 0.43 μm or less,
an adhesive layer is formed on the surface of the inorganic particle layer opposite to the resin porous layer,
The adhesive layer includes an adhesive resin,
A battery separator, wherein the surface of the adhesive layer has a specular gloss of 32 or more at 85 degrees.
前記接着性樹脂は、接着性樹脂粒子からなり、
前記接着性樹脂粒子の平均粒子径をA(μm)とし、前記無機粒子の平均粒子径をB(μm)とした場合、比A/Bが、0.5以上である請求項に記載の電池用セパレータ。
The adhesive resin consists of adhesive resin particles,
2. The adhesive resin particle according to claim 1 , wherein the ratio A/B is 0.5 or more, where the average particle diameter of the adhesive resin particles is A (μm) and the average particle diameter of the inorganic particles is B (μm). Battery separator.
前記接着層の目付が、0.5g/m2未満である請求項1または2に記載の電池用セパレータ。 The battery separator according to claim 1 or 2 , wherein the adhesive layer has a basis weight of less than 0.5 g/m2. JIS P 8117に規定されたガーレー値で表される透気度が、220秒/100mL以下である請求項1~のいずれかに記載の電池用セパレータ。 The battery separator according to any one of claims 1 to 3 , having an air permeability expressed by a Gurley value defined in JIS P 8117 of 220 seconds/100 mL or less. 前記接着層の目付が、0.1g/m2以上である請求項1~のいずれかに記載の電池用セパレータ。 The battery separator according to any one of claims 1 to 4 , wherein the adhesive layer has a basis weight of 0.1 g/m 2 or more. 正極と、負極と、非水電解質と、請求項1~のいずれかに記載の電池用セパレータとを含む非水二次電池。 A nonaqueous secondary battery comprising a positive electrode, a negative electrode, a nonaqueous electrolyte, and the battery separator according to any one of claims 1 to 5 .
JP2020085418A 2020-05-14 2020-05-14 Battery separator and non-aqueous secondary battery using the same Active JP7407065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020085418A JP7407065B2 (en) 2020-05-14 2020-05-14 Battery separator and non-aqueous secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020085418A JP7407065B2 (en) 2020-05-14 2020-05-14 Battery separator and non-aqueous secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2021180134A JP2021180134A (en) 2021-11-18
JP7407065B2 true JP7407065B2 (en) 2023-12-28

Family

ID=78510687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020085418A Active JP7407065B2 (en) 2020-05-14 2020-05-14 Battery separator and non-aqueous secondary battery using the same

Country Status (1)

Country Link
JP (1) JP7407065B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294216A (en) 2004-04-05 2005-10-20 Matsushita Electric Ind Co Ltd Lithium-ion secondary battery and manufacturing method thereof
JP2008210782A (en) 2007-01-29 2008-09-11 Hitachi Maxell Ltd Separator for battery, manufacturing method of separator for battery, and lithium secondary battery
WO2013073503A1 (en) 2011-11-15 2013-05-23 帝人株式会社 Separator for nonaqueous secondary batteries, method for producing same, and nonaqueous secondary battery
WO2017047576A1 (en) 2015-09-16 2017-03-23 日立マクセル株式会社 Separator for electrochemical elements, method for producing same, and method for manufacturing electrochemical element
JP2017103030A (en) 2015-11-30 2017-06-08 日本ゼオン株式会社 Functional layer for nonaqueous secondary battery and manufacturing method thereof, and nonaqueous secondary battery and manufacturing method thereof
WO2020090395A1 (en) 2018-10-31 2020-05-07 日本ゼオン株式会社 Nonaqueous secondary battery functional layer composition, nonaqueous secondary battery functional layer, nonaqueous secondary battery separator, and nonaqueous secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294216A (en) 2004-04-05 2005-10-20 Matsushita Electric Ind Co Ltd Lithium-ion secondary battery and manufacturing method thereof
JP2008210782A (en) 2007-01-29 2008-09-11 Hitachi Maxell Ltd Separator for battery, manufacturing method of separator for battery, and lithium secondary battery
WO2013073503A1 (en) 2011-11-15 2013-05-23 帝人株式会社 Separator for nonaqueous secondary batteries, method for producing same, and nonaqueous secondary battery
WO2017047576A1 (en) 2015-09-16 2017-03-23 日立マクセル株式会社 Separator for electrochemical elements, method for producing same, and method for manufacturing electrochemical element
JP2017103030A (en) 2015-11-30 2017-06-08 日本ゼオン株式会社 Functional layer for nonaqueous secondary battery and manufacturing method thereof, and nonaqueous secondary battery and manufacturing method thereof
WO2020090395A1 (en) 2018-10-31 2020-05-07 日本ゼオン株式会社 Nonaqueous secondary battery functional layer composition, nonaqueous secondary battery functional layer, nonaqueous secondary battery separator, and nonaqueous secondary battery

Also Published As

Publication number Publication date
JP2021180134A (en) 2021-11-18

Similar Documents

Publication Publication Date Title
JP5681703B2 (en) Electrochemical element separator, electrochemical element using the same, and method for producing the electrochemical element separator
JP5670626B2 (en) Electrochemical element separator, electrochemical element and method for producing the same
JP5805160B2 (en) Battery separator, battery separator manufacturing method, and lithium secondary battery
EP2573837B1 (en) Battery separator and battery
US9595745B2 (en) Nonaqueous electrolyte secondary battery
JP2013191485A (en) Nonaqueous secondary battery
EP3648197B1 (en) Electrochemical device including a flame retardant separator having an asymmetric structure
CN112467308B (en) Diaphragm, preparation method thereof and lithium ion battery
CN103597638A (en) Lithium ion secondary cell
JP2010225544A (en) Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2018147769A (en) Separator for electrochemical element and nonaqueous electrolyte battery
JP2017073328A (en) Nonaqueous electrolyte secondary battery
JP5545650B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP7270833B2 (en) High nickel electrode sheet and manufacturing method thereof
JP7313536B2 (en) High-nickel electrode sheet with reduced reactivity with moisture and method for producing the same
JP6417270B2 (en) Electrochemical element separator and method for producing electrochemical element
KR20200021664A (en) Separator for lithium secondary battery, and lithium secondary battery comprising the same
KR20210109382A (en) Electrode Assembly with Insulation Film Formed on Tab, Manufacturing Method thereof, and Lithium Secondary Battery Comprising the Same
JP7407065B2 (en) Battery separator and non-aqueous secondary battery using the same
EP3358652B1 (en) Positive electrode for lithium-ion secondary cell, and lithium-ion secondary cell
JP2016062849A (en) Separator for electrochemical device and electrochemical device using the same
KR20210015260A (en) Negative electrode and secondary battery comprising the same
KR20210083098A (en) Method for manufacturing active material for negative electrode
JP7484851B2 (en) All-solid-state battery
EP4369434A1 (en) Method for prelithiating electrode for lithium secondary battery, electrode intermediate, and lithium secondary battery including electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231218

R150 Certificate of patent or registration of utility model

Ref document number: 7407065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150