JP5997626B2 - 圧縮空気供給システムおよび方法 - Google Patents

圧縮空気供給システムおよび方法 Download PDF

Info

Publication number
JP5997626B2
JP5997626B2 JP2013024094A JP2013024094A JP5997626B2 JP 5997626 B2 JP5997626 B2 JP 5997626B2 JP 2013024094 A JP2013024094 A JP 2013024094A JP 2013024094 A JP2013024094 A JP 2013024094A JP 5997626 B2 JP5997626 B2 JP 5997626B2
Authority
JP
Japan
Prior art keywords
amount
compressor
minimum
time
compressed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013024094A
Other languages
English (en)
Other versions
JP2014152723A (ja
Inventor
伊藤 健太郎
健太郎 伊藤
幸博 山口
幸博 山口
拓志 中江
拓志 中江
佐々木 謙二
謙二 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Azbil Corp
Original Assignee
Toyota Industries Corp
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Azbil Corp filed Critical Toyota Industries Corp
Priority to JP2013024094A priority Critical patent/JP5997626B2/ja
Publication of JP2014152723A publication Critical patent/JP2014152723A/ja
Application granted granted Critical
Publication of JP5997626B2 publication Critical patent/JP5997626B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)

Description

本発明は、圧縮空気の使用量に応じて、圧縮空気を生成するコンプレッサの起動台数を制御する圧縮空気供給技術に関する。
工場内の各種ユーティリティ設備や建物設備などの負荷に対して、圧縮空気を供給する圧縮空気供給システムは、複数のコンプレッサを並列運転し、これらコンプレッサから得られた圧縮空気を集気してバッファで一時的に蓄積したあと、このバッファから各負荷へ供給するものとなっている。
このような圧縮空気供給システムでは、運転コストの削減、CO2の排出量に代表される環境負荷の低減を目的として、負荷に対する圧縮空気の供給状況、例えば空気圧や空気流量の変動に応じて、各コンプレッサの運転を切替制御するようにしたものが提案されている(例えば、特許文献1など参照)。
ここで、コンプレッサは、圧縮空気を生成するための構造や規模に応じて、一定の吐出量を吐出するのに必要とされる電力量が異なる。このため、コンプレッサを並列運転する場合、各コンプレッサの運転性能を考慮する必要がある。
したがって、上記圧縮空気供給システムでは、各コンプレッサの運転性能を考慮して予め優先順位や運用スケジュールを設定しておき、これら設定に基づいて、各コンプレッサの運転状態を、圧縮空気を吐出するロード状態、または圧縮空気を吐出しないアンロード状態へ切替制御するものとなっている。
一方、このような圧縮空気供給システムにおいて、コンプレッサの運転性能データの違いを考慮して、予め設定された供給量を得るために運転すべきコンプレッサの運転優先順位を自動的に決定する技術が提案されている(例えば、特許文献2など参照)。この技術では、圧縮空気供給システムを実際に運用する場合、時間帯(例えば1時間)ごとに必要となる最大使用量を予め設定しておき、これら時間帯ごとに、当該時間帯の最大使用量に応じて、運転すべきコンプレッサの運転優先順位を演算処理で自動的に決定している。
特許第4112869号公報 特開2012−067626号公報
このような圧縮空気供給システムで用いられるコンプレッサは、起動状態にある場合、ロード状態/アンロード状態にかかわらずモータが駆動されているため、このモータ駆動に応じて電力が消費されることになる。したがって、圧縮空気供給システムにおいて、電力消費を削減するには、各コンプレッサのうち、起動状態にしておく起動台数を最低限度に抑制する必要がある。
ここで、コンプレッサは、圧縮空気を吐出する場合、コンプレッサを停止状態から起動状態へ切替制御した後、さらに運転状態をアンロード状態からロード状態へ切替制御する必要がある。ここで、起動状態にあるコンプレッサについて、運転状態をロード状態/アンロード状態へ切り替える際については、時間的遅れはほとんどないものの、停止状態にあるコンプレッサを起動状態へ切り替えるには、通常、数分〜十数分程度の間、モータを駆動してコンプレッサを準備運転する必要がある。また、実際の設備によっては、圧縮空気の使用量が、数分間で、コンプレッサ1台分の吐出量に匹敵するくらい増大することもある。
したがって、負荷に対する圧縮空気の供給状況に応じたコンプレッサの起動制御では、良好な応答性が得られない場合があるため、圧縮空気供給システムの多くは、コンプレッサの起動台数について、管理者が、過去の圧縮空気の使用量や経験則に基づいて、時間帯ごとに起動しておくべきコンプレッサの運転台数を、予め設定しておく場合が一般的である。
しかしながら、経験則によれば、負荷側における圧縮空気の使用量に対して、供給側で不足が発生しないよう、より安全サイドで運転台数を決定するため、無駄が発生しやすいという問題点があった。また、コンプレッサの起動台数を最低限度に抑制することを目的として、時間帯を短かくした場合、運転台数の決定に必要な作業量が増大し、管理者の作業負担が大幅に増加するという問題点があった。
本発明はこのような課題を解決するためのものであり、圧縮空気の使用量が短い時間で変動する負荷であっても、コンプレッサを無駄なく適切な数だけ起動できる圧縮空気供給技術を提供することを目的としている。
このような目的を達成するために、本発明にかかる圧縮空気供給システムは、コンプレッサを並列運転して得た圧縮空気を集気しバッファで一時的に蓄積した後に負荷に供給する際、当該圧縮空気の供給圧力に応じて、前記コンプレッサを起動状態/停止状態にそれぞれ個別に切替制御するとともに、起動状態にある前記コンプレッサの運転状態をロード状態/アンロード状態にそれぞれ個別に切替制御する圧縮空気供給システムであって、各時刻における前記負荷での前記圧縮空気の予定使用量を示す予定使用量データを記憶する記憶部と、前記記憶部の前記予定使用量データから各時刻における予定使用量を読み出して、前記コンプレッサの起動所要時間以上の時間長を有する先行時間分だけ先行させることにより、各時刻における先行予測量を計算する先行予測量計算部と、前記先行予測量計算部で計算した各時刻における前記先行予測量から、前記コンプレッサから圧縮空気の供給を新たに開始することなく前記バッファで補える圧縮空気量を示す補充供給量分それぞれ減算することにより、各時刻において最低確保すべき最低確保量を計算する最低確保量計算部と、前記最低確保量計算部で計算した各時刻における前記最低確保量と前記各コンプレッサにおける前記圧縮空気の個別基準吐出量とに基づいて、各時刻について前記最低確保量を供給するために起動しておくべき前記コンプレッサの最低起動台数を計算する最低起動台数計算部と、前記コンプレッサのうち起動状態にある実起動台数と前記最低起動台数計算部で計算した前記最低起動台数とを時刻ごとに比較し、当該実起動台数が当該最低起動台数に満たない場合には、当該実起動台数が当該最低起動台数となるまで前記コンプレッサを起動するコンプレッサ制御部とを備えている。
また、本発明にかかる上記圧縮空気供給システムの一構成例は、前記記憶部が、前記コンプレッサごとに圧縮空気の吐出量とその吐出に関する運転効率との関係を示す運転性能データを記憶し、前記先行予測量計算部で計算した前記先行予測量の供給に用いる前記コンプレッサについて、前記記憶部から読み出した前記運転性能データにおける前記各コンプレッサの運転効率を考慮した運転優先順位を、時刻ごとに決定する運転優先順位決定部とをさらに備え、前記コンプレッサ制御部は、前記コンプレッサを停止状態から起動状態に切替制御する際、前記運転優先順位決定部で決定した当該時刻における運転優先順位に基づいて、停止状態にあるコンプレッサのうち優先順位の最も高いコンプレッサを起動状態に切替制御するようにしたものである。
また、本発明にかかる上記圧縮空気供給システムの一構成例は、前記最低起動台数計算部が、前記運転優先順位決定部で得られた当該時刻における前記運転優先順位に基づいて順位の高い方から順にコンプレッサを選択するとともに、選択したこれらコンプレッサの個別基準吐出量の合計値を前記最低確保量と順に比較し、当該合計値が前記最低確保量以上となったときに選択されているコンプレッサの数を前記最低起動台数とするようにしたものである。
また、本発明にかかる上記圧縮空気供給方法は、 コンプレッサを並列運転して得た圧縮空気を集気しバッファで一時的に蓄積した後に負荷に供給する際、当該圧縮空気の供給圧力に応じて、前記コンプレッサを起動状態/停止状態にそれぞれ個別に切替制御するとともに、起動状態にある前記コンプレッサの運転状態をロード状態/アンロード状態にそれぞれ個別に切替制御する圧縮空気供給システムで用いられる圧縮空気供給方法であって、記憶部が、各時刻における前記負荷での前記圧縮空気の予定使用量を示す予定使用量データを記憶する記憶ステップと、先行予測量計算部が、前記記憶部の前記予定使用量データから各時刻における予定使用量を読み出して、前記コンプレッサの起動所要時間以上の時間長を有する先行時間分だけ先行させることにより、各時刻における先行予測量を計算する先行予測量計算ステップと、最低確保量計算部が、前記先行予測量計算ステップで計算した各時刻における前記先行予測量から、前記コンプレッサから圧縮空気の供給を新たに開始することなく前記バッファで補える圧縮空気量を示す補充供給量分それぞれ減算することにより、各時刻において最低確保すべき最低確保量を計算する最低確保量計算ステップと、最低起動台数計算部が、前記最低確保量計算ステップで計算した各時刻における前記最低確保量と前記各コンプレッサにおける前記圧縮空気の個別基準吐出量とに基づいて、各時刻について前記最低確保量を供給するために起動しておくべき前記コンプレッサの最低起動台数を計算する最低起動台数計算ステップと、コンプレッサ制御部が、前記コンプレッサのうち起動状態にある実起動台数と前記最低起動台数計算ステップで計算した前記最低起動台数とを時刻ごとに比較し、当該実起動台数が当該最低起動台数に満たない場合には、当該実起動台数が当該最低起動台数となるまで前記コンプレッサを起動するコンプレッサ制御ステップとを備えている。
本発明によれば、時刻ごとに、当該時刻より先行時間だけ後の予定時刻における予定使用量から、バッファで補える圧縮空気の補充供給量分だけ減算した最低確保量に基づいて、当該最低確保量を吐出するのに必要となる、少なくとも最低起動台数分のコンプレッサが起動されることになる。
これにより、時刻における起動台数は、当該時刻より先行時間だけ後の予定時刻において必要となる起動台数以下に抑制することができる。このため、当該時刻において、コンプレッサを過剰に起動することなく、必要最低限の台数だけ起動状態とすることができる。したがって、従来のように、コンプレッサの起動台数について、管理者が、過去の圧縮空気の使用量や経験則に基づいて、時間帯ごとに起動しておくべきコンプレッサの運転台数を予め設定しておく場合と比較して、コンプレッサの起動台数を無駄なく適切な数に自動制御することができる。このため、圧縮空気供給システム全体の電力消費を削減することができ、運転コストの削減、CO2の排出量に代表される環境負荷の低減に繋がる。
また、補充供給量は、コンプレッサから圧縮空気の供給を新たに開始することになく、コンプレッサの起動所要時間の間にバッファから負荷に供給される圧縮空気の供給量からなる。したがって、ある時点で、使用予定量を超えて負荷における圧縮空気の使用量が増大し、最低起動台数分のコンプレッサからの圧縮空気の供給量を上回って、ヘッダ圧力が下限値以下となった場合でも、コンプレッサの起動所要時間分については、バッファに蓄積されている圧縮空気で補われる。このため、当該時点に新たなコンプレッサが起動開始されてから、実際に圧縮空気の供給が開始されるまでの起動所要時間の間において、負荷に供給される圧縮空気が不足することはなく、圧縮空気を安定供給することができる。
第1の実施の形態にかかる圧縮空気供給システムの構成を示すブロック図である。 予定使用量データ、先行予測量データ、および最低確保量データを示す説明図である。 予定使用量データの構成例である。 運転性能データの説明図である。 運転優先順位データの構成例である。 処理データ計算処理を示すフローチャートである。 最低起動台数制御処理を示すフローチャートである。 圧力調整用台数制御処理を示すフローチャートである。 最低起動台数計算処理を示す説明図である。 運転優先順位決定処理を示す説明図である。 運転状態入替処理を示す説明図である。
次に、本発明の実施の形態について図面を参照して説明する。
[第1の実施の形態]
まず、図1を参照して、本発明の第1の実施の形態にかかる圧縮空気供給システム1について説明する。図1は、第1の実施の形態にかかる圧縮空気供給システムの構成を示すブロック図である。
圧縮空気供給システム1は、コンプレッサ1A〜1Nを並列運転して得た圧縮空気を集気して、管路2を介してタンク3で一時的に蓄積した後、管路4およびヘッダ5を介して、圧縮空気を消費する加工機などの各負荷6に供給するシステムである。
この圧縮空気供給システム1には、主な機能部として、記憶部11、予定使用量学習部12、先行予測量計算部13、最低確保量計算部14、運転優先順位決定部15、最低起動台数計算部16、およびコンプレッサ制御部17が設けられている。
記憶部11は、半導体メモリやハードディスクなどの記憶装置からなり、圧縮空気供給システム1におけるコンプレッサ制御に用いる各種処理データやプログラムを記憶する機能を有している。
記憶部11で記憶する主な処理データとして、予定使用量データ11A、先行予測量データ11B、最低確保量データ11C、運転性能データ11D、運転優先順位データ11E、および最低起動台数データ11Fがある。
図2は、予定使用量データ、先行予測量データ、および最低確保量データを示す説明図である。図3は、予定使用量データの構成例である。
予定使用量データ11Aは、負荷6における圧縮空気の予定使用量の時刻変化を示すデータであり、予定使用量学習部12により計算されて、記憶部11に保存される。予定使用量データ11Aは、例えば図3に示すように、各時刻ごとに、当該時刻における負荷6での圧縮空気の予定使用量が登録されている。
先行予測量データ11Bは、予定使用量データ11Aを所定の先行時間ΔTだけ先行させたデータであり、先行予測量計算部13により計算されて記憶部11に保存される。先行時間ΔTは、コンプレッサ1A〜1Nを起動して準備運転し、所定気圧の圧縮空気を安定して吐出可能な状態となるまでの起動所要時間、あるいはこれ以上の時間長を有している。具体的には、コンプレッサ1A〜1Nの起動所要時間の最大値や平均値などの統計値を、先行時間ΔTとして予め設定しておけばよい。
最低確保量データ11Cは、先行予測量データ11Bを所定の補充供給量ΔQだけ減算したデータであり、最低確保量計算部14により計算されて記憶部11に保存される。補充供給量ΔQは、コンプレッサ1A〜1Nから圧縮空気の供給を新たに開始することなく、コンプレッサ1A〜1Nの起動所要時間の間に、タンク3、管路2,4、ヘッダ5など、コンプレッサ1A〜1Nから吐出された圧縮空気を一時的に蓄積する機能を有するバッファから、負荷6に供給される圧縮空気の供給量である。補充供給量ΔQについては、負荷6の圧縮空気消費特性や、コンプレッサ1A〜1Nの吐出能力、バッファの容量などの設計パラメータに基づいて、予め設定しておけばよい。
これら予定使用量データ11A、先行予測量データ11B、および最低確保量データ11Cについては、負荷6の稼働パターンに応じて、例えば週初、平日、週終、休日、特日などのパターンに分けて記憶部11に登録しておき、運用日の種別に応じたパターンを切替選択して運用してもよい。
運転性能データ11Dは、コンプレッサ1A〜1Nに関する圧縮空気の吐出量と、その吐出に関する運転効率との関係を示すデータであり、コンプレッサ1A〜1Nごとに、個別の運転性能特性が予め記憶部11に登録されている。
図4は、運転性能データの説明図である。一般に、コンプレッサは、原点を基準として、吐出量の増加に応じて運転効率が単調増加し、最大吐出量(100%)に近づくに連れて運転効率が飽和する運転性能特性を有している。ここでは、運転効率[Nm3/kWh]を用いて説明したが、運転効率として、コンプレッサの電力原単位[kWh/Nm3]やCO2排出原単位[kg−CO2/Nm3]などの他の指標を用いてもよい。
運転優先順位データ11Eは、各時刻において先行予測量データ11Bで示される先行予測量分の圧縮空気を、コンプレッサ1A〜1Nから負荷6へ供給する際、高い運転効率で供給するために優先して運転すべきコンプレッサ1A〜1Nの運転優先順位を示すデータであり、運転優先順位決定部15により計算されて、記憶部11に保存される。
最低起動台数データ11Fは、各時刻において、コンプレッサ1A〜1Nのうち、起動しておくべき最低の台数を示すデータであり、最低起動台数計算部16により計算されて、記憶部11に保存される。
予定使用量学習部12は、管路4に設けられた流量計4Aで時刻ごとに計測した圧縮空気の流量に基づいて、負荷6における圧縮空気の予定使用量の時刻変化を示す新たな予定使用量データ11Aを逐次学習し、記憶部11に保存する機能を有している。
例えば、記憶部11の予定使用量データ11Aから抽出した、ある時刻tにおける予定使用量をαとし、当該時刻tにおいて流量計4Aで新たに計測した流量をβとし、流量βに対する学習処理時の重みをz(0<z<10)とした場合、時刻tにおける新たな予定使用量γは、例えば、γ=(10−z)/10×α+z/10×βで計算される。
先行予測量計算部13は、記憶部11の予定使用量データ11Aから各時刻における予定使用量Qaを読み出して、コンプレッサ1A〜1Nの起動所要時間以上の時間長を有する先行時間ΔT分だけ先行させることにより、各時刻における先行予測量Qbを計算する機能と、これら先行予測量Qbを先行予測量データ11Bとして記憶部11に保存する機能を有している。
最低確保量計算部14は、先行予測量計算部13で計算した各時刻における先行予測量Qbから、補充供給量ΔQ分だけそれぞれ減算することにより、各時刻において最低確保すべき最低確保量Qcを計算する機能と、これら最低確保量Qcを最低確保量データ11Cとして記憶部11に保存する機能を有している。
運転優先順位決定部15は、先行予測量計算部13で計算した先行予測量Qbの供給に用いるコンプレッサ1A〜1Nについて、記憶部11から読み出した運転性能データ11Dにおける各コンプレッサ1A〜1Nの運転効率を考慮した運転優先順位を、時刻ごとに決定する機能と、これら運転優先順位を運転優先順位データ11Eとして記憶部11へ保存する機能とを有している。
図5は、運転優先順位データの構成例である。ここでは、コンプレッサ1A〜1Nごとに、当該コンプレッサの優先順位がそれぞれ登録されている。
最低起動台数計算部16は、最低確保量計算部14で計算した各時刻における最低確保量Qcと各コンプレッサ1A〜1Nにおける圧縮空気の個別基準吐出量とに基づいて、各時刻について最低確保量Qcを供給するために起動しておくべきコンプレッサ1A〜1Nの最低起動台数Nminを計算する機能と、これら最低起動台数Nminを最低起動台数データ11Fとして記憶部11へ保存する機能とを有している。
コンプレッサ制御部17は、ヘッダ5に設けられた圧力計5Aで計測された圧縮空気の気圧などの圧縮空気の供給状況に応じて、運転優先順位データ11Eの運転優先順位に基づき、コンプレッサ1A〜1Nを起動状態/停止状態にそれぞれ個別に切替制御する機能と、同じく圧縮空気の供給状況に応じて、運転優先順位データ11Eの運転優先順位に基づき、起動状態にあるコンプレッサ1A〜1Nの運転状態をロード状態/アンロード状態にそれぞれ個別に切替制御する機能とを有している。
また、コンプレッサ制御部17は、コンプレッサ1A〜1Nのうち起動状態にある実起動台数と最低起動台数計算部16で計算した最低起動台数とを時刻ごとに比較し、当該実起動台数が当該最低起動台数に満たない場合には、当該実起動台数が当該最低起動台数となるまでコンプレッサ1A〜1Nを追加起動する機能を有している。
これら機能部のうち、予定使用量学習部12、先行予測量計算部13、最低確保量計算部14、運転優先順位決定部15、最低起動台数計算部16、およびコンプレッサ制御部17は、記憶部11からプログラムを読み込んで実行するCPUにより実現される。なお、プログラムは、外部装置や記録媒体(ともに図示せず)から読み込まれて、予め記憶部11に格納される。
一般的な圧縮空気供給システムと同様に、本発明にかかる圧縮空気供給システム1のコンプレッサ制御部17では、アンロード状態からロード状態へ直ちに切替制御可能なコンプレッサがない状態で、ヘッダ5の圧力計5Aで計測された圧縮空気のヘッダ圧力Pが下限値PL以下となった場合、新たにコンプレッサを起動する、という圧力制御用台数制御が行われる。
この際、当該コンプレッサから圧縮空気の供給が開始されるのは、前述したように、コンプレッサの起動所要時間だけ経過した時点となる。このため、一般的には、図1に示したように、タンク3、管路2,4、ヘッダ5などのバッファで一時的に蓄積されている圧縮空気で負荷6への供給を補うことにより、コンプレッサ1A〜1Nの起動所要時間の間については、ヘッダ圧力Pが最低供給圧力値Pmin(Pmin<PL)以上に維持されるよう、予め設計されている。
本発明は、このように、コンプレッサ1A〜1Nから新たな圧縮空気が負荷6へ供給開始されない状況であっても、コンプレッサ1A〜1Nの起動所要時間の間に、バッファから負荷6に補充供給量ΔQだけ圧縮空気を供給する能力が存在していることに着目し、この補充供給量ΔQをコンプレッサ1A〜1Nの起動台数制御において積極的に利用するようにしたものである。
具体的には、図2に示すように、各時刻における予定使用量Qaを、コンプレッサ1A〜1Nの起動所要時間以上の時間長を有する先行時間ΔT分だけ先行させて得られた先行予測量Qbから、補充供給量ΔQ分だけそれぞれ減算することにより、各時刻において最低確保すべき最低確保量Qcを計算し、この最低確保量Qcに基づいて、コンプレッサ1A〜1Nの最低起動台数Nminを計算するようにしたものである。
[第1の実施の形態の動作]
次に、本実施の形態にかかる圧縮空気供給システム1の動作について説明する。
[処理データ計算処理]
まず、図6を参照して、圧縮空気供給システム1における処理データ計算処理について説明する。図6は、処理データ計算処理を示すフローチャートである。
圧縮空気供給システム1は、予め設定された時刻、あるいはオペレータ操作に応じて、図6の処理データ計算処理を実行する。ここでは、記憶部11に予測使用量データ11Aが予め登録されているものとする。
まず、先行予測量計算部13は、記憶部11の予定使用量データ11Aから各時刻における予定使用量Qaを取得して、コンプレッサ1A〜1Nの起動所要時間以上の時間長を有する先行時間ΔT分だけ先行させることにより、各時刻における先行予測量Qbを計算し、これら先行予測量Qbを先行予測量データ11Bとして記憶部11に保存する(ステップ100)。
続いて、最低確保量計算部14は、記憶部11の先行予測量データ11Bから各時刻における先行予測量Qbを取得して、補充供給量ΔQ分だけそれぞれ減算することにより、各時刻において最低確保すべき最低確保量Qcを計算し、これら最低確保量Qcを最低確保量データ11Cとして記憶部11に保存する(ステップ101)。
次に、運転優先順位決定部15は、記憶部11の先行予測量データ11Bから各時刻における先行予測量Qbを取得し、この先行予測量Qbの供給に用いるコンプレッサ1A〜1Nについて、記憶部11から読み出した運転性能データ11Dにおける各コンプレッサ1A〜1Nの運転効率を考慮した運転優先順位を、時刻ごとに決定し、これら運転優先順位を運転優先順位データ11Eとして記憶部11へ保存する(ステップ102)。
この後、最低起動台数計算部16は、記憶部11の最低確保量データ11Cから各時刻における最低確保量Qcを取得し、各コンプレッサ1A〜1Nにおける圧縮空気の個別基準吐出量に基づいて、各時刻について最低確保量Qcを供給するために起動しておくべきコンプレッサ1A〜1Nの最低起動台数Nminを計算し、これら最低起動台数Nminを最低起動台数データ11Fとして記憶部11へ保存し(ステップ103)、一連の処理データ計算処理を終了する。
処理データ計算処理の実行タイミングについては、例えば、予測使用量学習部12により、1日分の予測使用量データ11Aが更新された時点で実行してもよい。
また、図6では、先行予測量データ11B、最低確保量データ11C、運転性能データ11D、運転優先順位データ11E、および最低起動台数データ11Fを一括して計算する場合を例として説明したが、これら処理データを計算するタイミングについては、これに限定されるものではなく、それぞれ個別のタイミングで計算してもよい。例えば、運転優先順位データ11Eや最低起動台数データ11Fについては、各時刻に合わせて逐次計算するようにしてもよい。
[最低起動台数制御処理]
次に、図7を参照して、コンプレッサ制御部17における最低起動台数制御処理について説明する。図7は、最低起動台数制御処理を示すフローチャートである。
コンプレッサ制御部17は、コンプレッサの起動台数を制御する周期に応じて、図7の最低起動台数制御処理を実行する。ここでは、記憶部11に運転優先順位データ11Eおよび最低起動台数データ11Fが予め登録されているものとする。
コンプレッサ制御部17は、まず、記憶部11の最低起動台数データ11Fから、当該時刻における最低起動台数Nminを取得し(ステップ110)、コンプレッサ1A〜1Nのうち、現在起動中であるコンプレッサの台数を示す現在起動台数Nと比較する(ステップ111)。
ここで、N<Nminの場合(ステップ111:YES)、コンプレッサ制御部17は、記憶部11の運転優先順位データ11Eから、当該時刻における運転優先順位を取得して、停止状態にあるコンプレッサのうちから運転優先順位が最高のものを選択し(ステップ112)、選択したコンプレッサを起動状態に切替制御した後(ステップ113)、ステップ111へ戻る。
一方、ステップ111において、N≧Nminの場合(ステップ111:NO)、コンプレッサ制御部17は、一連の最低起動台数制御処理を終了する。
[圧力調整用台数制御処理]
次に、図8を参照して、コンプレッサ制御部17における圧力調整用台数制御処理について説明する。図8は、圧力調整用台数制御処理を示すフローチャートである。
コンプレッサ制御部17は、ヘッダ5でのヘッダ圧力Pを制御する周期に応じて、図8の圧力調整用台数制御処理を実行する。ここでは、記憶部11に運転優先順位データ11Eが予め登録されているものとする。
まず、コンプレッサ制御部17は、圧力計5Aからヘッダ圧力Pを取得し(ステップ120)、このヘッダ圧力Pが一定期間連続して、予め設定されている下限値PL以下の状態となったか確認する(ステップ121)。
ここで、ステップ121において、P≦PLの状態が一定期間連続していない場合(ステップ121:NO)、一連の圧力調整用台数制御処理を終了する。
一方、P≦PLの状態が一定期間連続している場合(ステップ121:YES)、コンプレッサ制御部17は、コンプレッサ1A〜1Nのうち、アンロード状態のコンプレッサがあるか確認し(ステップ122)、アンロード状態のコンプレッサがある場合には(ステップ122:YES)、記憶部11の運転優先順位データ11Eから、当該時刻における運転優先順位を取得して、アンロード状態のコンプレッサのうちから運転優先順位が最高のものを選択し(ステップ123)、選択したコンプレッサをロード状態に切替制御した後(ステップ124)、一連の圧力調整用台数制御処理を終了する。
また、ステップ122において、アンロード状態のコンプレッサがない場合(ステップ122:NO)、コンプレッサ制御部17は、記憶部11の運転優先順位データ11Eから、当該時刻における運転優先順位を取得して、停止状態のコンプレッサのうちから運転優先順位が最高のものを選択し(ステップ125)、選択したコンプレッサを起動状態に切替制御した後(ステップ126)、一連の圧力調整用台数制御処理を終了する。この場合、起動されたコンプレッサは、起動後自動的にロード状態となるよう制御される。
なお、コンプレッサをロード状態からアンロード状態へ切替制御する処理、およびコンプレッサを起動状態から停止状態へ切替制御する処理については、一般的な公知技術を用いればよい。例えば、ヘッダ圧力Pが、所定期間連続して上限値PH以上の状態となった場合、ロード状態にあるコンプレッサのうち、運転優先順位が最も低いコンプレッサを選択して、アンロード状態に切替制御すればよい。また、アンロード状態にあるコンプレッサが、所定期間連続して複数台発生した場合、アンロード状態にあるコンプレッサのうち、運転優先順位が最も低いコンプレッサを選択して、停止状態に切替制御すればよい。
[最低起動台数計算処理]
次に、図9を参照して、最低起動台数計算部16における最低起動台数計算処理について説明する。図9は、最低起動台数計算処理を示す説明図である。
最低起動台数計算部16は、前述した図6のステップ103において、各時刻について、図9の最低起動台数計算処理を実行する。
なお、この最低起動台数計算処理において使用する、コンプレッサ1A〜1Nの基準風量運転時における個別基準吐出量は、100%風量運転時における吐出量を用いてもよく、圧縮空気供給システム1の運用に合わせて100%風量運転時以外の吐出量を用いてもよい。
まず、最低起動台数計算部16は、記憶部11の最低確保量データ11Cから、時刻Tにおける最低確保量Qcを取得する(ステップ150)。なお、時刻Tにおける先行予測量をQbとし、補充供給量をΔQとした場合、Qc=Qb−ΔQの関係を有している。また、時刻Tより先行時間ΔTだけ後の時刻における予定使用量をQa(T+ΔT)とした場合、Qb=Qa(T+ΔT)の関係を有している。
次に、最低起動台数計算部16は、記憶部11の運転優先順位データ11Eから、時刻Tにおける運転優先順位を取得して、最優先に運転すべきコンプレッサとして、優先順位が「1」のコンプレッサ1Aを選択し、これまでに選択されたコンプレッサの個別基準吐出量を合計して、最低確保量Qcと比較する(ステップ151)。この場合、コンプレッサ1Aのみが選択されているため、コンプレッサ1Aの個別基準吐出量QAが合計吐出量Qsum(1)となる。
ここで、Qsum(1)<Qcであるため、最低起動台数計算部16は、運転優先順位データ11Eから次に優先して運転すべきコンプレッサとして、優先順位が「2」のコンプレッサ1Bを選択し、これまでに選択されたコンプレッサの個別基準吐出量を合計して、最低確保量Qcと比較する(ステップ152)。この場合、コンプレッサ1A,1Bが選択されているため、コンプレッサ1A,1Bの個別基準吐出量QA,QBが合計されて合計吐出量Qsum(2)となる。
ここで、Qsum(2)≧Qcであるため、最低起動台数計算部16は、さらなるコンプレッサの選択を終了して、これまでに選択したコンプレッサの台数を最低起動台数Nminとして求める。この場合、これまでに選択されたコンプレッサは、コンプレッサ1A,1Bの2台であることから、Nmin=2となる。
[運転優先順位決定処理]
次に、図10を参照して、運転優先順位決定部15における運転優先順位決定処理について説明する。図10は、運転優先順位決定処理を示す説明図である。
運転優先順位決定部15は、前述した図6のステップ102において、各時刻について、図10の最低起動台数計算処理を実行する。
なお、この最低起動台数計算処理において使用する、コンプレッサ1A〜1Nの基準風量運転時における個別基準吐出量は、100%風量運転時における吐出量を用いてもよく、圧縮空気供給システム1の運用に合わせて100%風量運転時以外の吐出量を用いてもよい。
まず、運転優先順位決定部15は、記憶部11の先行予測量データ11Bから、時刻Tにおける先行予測量Qbを取得するとともに、コンプレッサ1A〜1Nの運転性能データ11Dを取得する(ステップ160)。
次に、運転優先順位決定部15は、コンプレッサ1A〜1Nのうちから個別基準吐出量が最大のコンプレッサを選択し、これまでに選択されたコンプレッサの個別基準吐出量を合計して、最低確保量Qbと比較する(ステップ161)。ここで、コンプレッサ1Aが選択された場合、コンプレッサ1Aの個別基準吐出量QAが合計吐出量Qsum(1)となり、Qsum(1)<Qbであるため、このコンプレッサ1Aの運転優先順位を「1」とする。
続いて、運転優先順位決定部15は、Qsum(1)<Qbであるため、同様にして、コンプレッサ1A〜1Nのうちから、未選択のコンプレッサであって、個別基準吐出量が最大のコンプレッサを選択し、これまでに選択されたコンプレッサの個別基準吐出量を合計して、最低確保量Qbと比較する(ステップ162)。ここで、コンプレッサ1Bが選択された場合、コンプレッサ1A,1Bの個別基準吐出量QA,QBが合計されて合計吐出量Qsum(2)となり、Qsum(2)<Qbであるため、このコンプレッサ1Bの運転優先順位を「2」とする。
続いて、運転優先順位決定部15は、Qsum(2)<Qbであるため、同様にして、コンプレッサ1A〜1Nのうちから、未選択のコンプレッサであって、個別基準吐出量が最大のコンプレッサを選択し、これまでに選択されたコンプレッサの個別基準吐出量を合計して、最低確保量Qbと比較する(ステップ163)。ここで、コンプレッサ1Cが選択された場合、コンプレッサ1A,1B,1Cの個別基準吐出量QA,QB,QCが合計されて合計吐出量Qsum(3)となり、Qsum(3)≧Qbであるため、このコンプレッサ1Cの運転優先順位を設定しない。
続いて、運転優先順位決定部15は、直前ステップにおける合計吐出量Qsum(2)とQbとの差分QXを求め、コンプレッサ1A〜1Nのうちから、未選択のコンプレッサであって、差分QXを吐出する際に要する運転効率が最も低いコンプレッサを選択する(ステップ164)。ここで、コンプレッサ1Dが選択された場合、このコンプレッサ1Dの運転優先順位を「3」とし、一連の運転優先順位決定処理を終了する。
[第1の実施の形態の効果]
このように、本実施の形態は、最低確保量計算部14が、当該時刻Tより先行時間ΔTだけ後の時刻における予定使用量Qaから補充供給量ΔQ分だけそれぞれ減算することにより、各時刻において最低確保すべき最低確保量Qcを計算し、最低起動台数計算部16が、これら最低確保量Qcと各コンプレッサ1A〜1Nにおける圧縮空気の個別基準吐出量とに基づいて、各時刻について最低確保量Qcを供給するために起動しておくべきコンプレッサ1A〜1Nの最低起動台数Nminを計算し、コンプレッサ制御部17が、時刻ごとに、当該実起動台数Nが当該最低起動台数Nminに満たない場合には、当該実起動台数Nが当該最低起動台数Nminとなるまでコンプレッサ1A〜1Nを起動するようにしたものである。
これにより、図2に示したように、時刻ごとに、当該時刻Tより先行時間ΔTだけ後の予定時刻T’における予定使用量Qaから、タンク3などのバッファで補える圧縮空気の補充供給量ΔQ分だけ減算した最低確保量Qcに基づいて、当該最低確保量Qcを吐出するのに必要となる、少なくとも最低起動台数Nmin分のコンプレッサ1A〜1Nが起動されることになる。
したがって、時刻Tにおける起動台数は、当該時刻Tより先行時間ΔTだけ後の予定時刻T’において必要となる起動台数以下に抑制することができる。これにより、当該時刻Tにおいて、コンプレッサを過剰に起動することなく、必要最低限の台数だけ起動状態とすることができる。したがって、従来のように、コンプレッサの起動台数について、管理者が、過去の圧縮空気の使用量や経験則に基づいて、時間帯ごとに起動しておくべきコンプレッサの運転台数を予め設定しておく場合と比較して、コンプレッサの起動台数を無駄なく適切な数に自動制御することができる。このため、圧縮空気供給システム1全体の電力消費を削減することができ、運転コストの削減、CO2の排出量に代表される環境負荷の低減に繋がる。
また、補充供給量ΔQは、コンプレッサ1A〜1Nから圧縮空気の供給を新たに開始することになく、コンプレッサ1A〜1Nの起動所要時間の間にタンク3などのバッファから負荷6に供給される圧縮空気の供給量からなる。したがって、ある時点で、使用予定量Qaを超えて負荷6における圧縮空気の使用量が増大し、最低起動台数Nmin分のコンプレッサ1A〜1Nからの圧縮空気の供給量を上回って、ヘッダ圧力Pが下限値PL以下となった場合でも、コンプレッサ1A〜1Nの起動所要時間分については、バッファに蓄積されている圧縮空気で補われる。このため、当該時点に新たなコンプレッサが起動開始されてから、実際に圧縮空気の供給が開始されるまでの起動所要時間の間において、負荷6に供給される圧縮空気が不足することはなく、圧縮空気を安定供給することができる。
また、本実施の形態は、運転優先順位決定部15が、先行予測量計算部13で計算した先行予測量Qbの供給に用いるコンプレッサについて、記憶部11から読み出した運転性能データ11Dにおける各コンプレッサの運転効率を考慮した運転優先順位を、時刻ごとに決定し、コンプレッサ制御部17が、コンプレッサを停止状態から起動状態に切替制御する際、運転優先順位決定部15で決定した当該時刻における運転優先順位に基づいて、停止状態にあるコンプレッサのうち優先順位の最も高いコンプレッサを起動するようにしたものである。
通常、コンプレッサには、所定気圧の圧縮空気を安定して吐出可能な状態となるまでの起動所要時間が必要となる。また、少ない運転効率で予定使用量Qaを負荷6へ供給するには、予定使用量Qaの値と各コンプレッサの運転性能特性によって、使用するコンプレッサを選択する必要がある。
したがって、時刻Tにコンプレッサを起動する際、運転優先順位決定部15で得られた時刻Tの運転優先順位に基づいて、起動するコンプレッサを選択すれば、予定時刻T’において用いるべきコンプレッサを、予定時刻T’より先行時間ΔTだけ手前の時刻Tの時点で、正確に起動しておくことができる。このため、予定時刻T’において、予定使用量Qaの圧縮空気を、高い運転効率で負荷6に供給することができる。
また、本実施の形態は、運転優先順位決定部15が、先行予測量計算部13で計算した先行予測量Qbの供給に用いるコンプレッサについて、記憶部11から読み出した運転性能データ11Dにおける各コンプレッサの運転効率を考慮した運転優先順位を、時刻ごとに決定し、最低起動台数計算部16が、運転優先順位決定部15で得られた当該時刻における運転優先順位に基づいて順位の高い方から順にコンプレッサを選択するとともに、選択したこれらコンプレッサの個別基準吐出量の合計値を最低確保量Qcと順に比較し、当該合計値が最低確保量Qc以上となったときに選択されているコンプレッサの数を最低起動台数Nminとするようにしたものである。
したがって、時刻Tにおいて、コンプレッサ制御部17が、最低起動台数分だけコンプレッサを起動する際、運転優先順位決定部15で得られた最低確保台数Nminを用いれば、予定時刻T’において起動しておくべきコンプレッサを、予定時刻T’より先行時間ΔTだけ手前の時刻Tの時点で、時刻Tにおける運転優先順位に基づいて、高い運転効率が得られるコンプレッサを、最低確保台数Nminだけ正確に起動しておくことができる。このため、予定時刻T’において、予定使用量Qaの圧縮空気を、高い運転効率で負荷6に供給することができる。
[第2の実施の形態]
次に、本発明の第2の実施の形態にかかる圧縮空気供給システム1について説明する。
第1の実施の形態では、コンプレッサ制御部17において、コンプレッサ1A〜1Nの運転状態をロード状態/アンロード状態にそれぞれ切替制御する場合、運転優先順位データ11Eに基づき、切替制御するコンプレッサを選択する場合について説明した。この際、運転優先順位データ11Eを時刻ごとに再計算した場合、実際に起動されているコンプレッサと、新たな時刻における運転優先順位とが不一致となる場合が発生しうる。
本実施の形態において、コンプレッサ制御部17は、コンプレッサ1A〜1Nのうち起動状態にある実起動コンプレッサの運転状態と運転優先順位決定部15で決定した運転優先順位とを時刻ごとに比較し、当該実起動コンプレッサの運転状態と当該運転優先順位との不一致状態が、所定の判定期間以上継続した場合、当該運転優先順位に一致するよう実起動コンプレッサの運転状態をロード状態/アンロード状態にそれぞれ切替制御する機能を有している。
[第2の実施の形態の動作]
次に、図11を参照して、本実施の形態にかかる圧縮空気供給システム1の動作として、コンプレッサ制御部17による運転状態入替処理について説明する。図11は、運転状態入替処理を示す説明図である。ここでは、4つのコンプレッサ1A,1B,1C,1Dを制御する場合を例として説明する。
コンプレッサ制御部17は、時刻ごとに、各コンプレッサ1A〜1Nの運転優先順位と運転状態とを比較し、その不一致の有無を監視する。
時刻T0において、コンプレッサ1A,1B,1C,1Dの運転優先順位が「1」,「2」,「4」,「3」であり、このうちコンプレッサ1A,1B,1Dがロード状態にあり、コンプレッサ1Cがアンロード状態にある。したがって、これらコンプレッサ1A,1B,1C,1Dの運転優先順位と運転状態とは一致している。
続く、時刻T1に、新たな運転優先順位として「1」,「2」,「3」,「4」が決定された場合、これらコンプレッサ1A,1B,1C,1Dの運転優先順位と運転状態とは不一致となる。
その後、不一致が確認された時刻T1から、所定の判定期間以上経過した時刻T2まで、不一致状態が継続した場合、コンプレッサ制御部17は、コンプレッサ1A,1B,1C,1Dについて、運転状態の入れ替えを実行する。
まず、ロード状態にあるコンプレッサのうち、最も運転優先順位が低いコンプレッサ1Dと、アンロード状態にあるコンプレッサのうち、最も運転優先順位が高いコンプレッサ1Cとの運転優先順位を比較する。ここで、ロード状態にあるコンプレッサ1Dの運転優先順位「4」より、アンロード状態にあるコンプレッサ1Cの運転優先順位「3」が高いことから、運転優先順位が逆転している。このような場合、まず、アンロード状態にあるコンプレッサ1Cをロード状態に切替制御した後、ロード状態にあるコンプレッサ1Dをアンロード状態に切替制御する。
これにより、時刻T3において、コンプレッサ1A,1B,1C,1Dの運転優先順位が「1」,「2」,「3」,「4」であり、このうちコンプレッサ1A,1B,1Cがロード状態にあり、コンプレッサ1Dがアンロード状態にある。したがって、これらコンプレッサ1A,1B,1C,1Dの運転優先順位と運転状態とは一致している。
[第2の実施の形態の効果]
このように、本実施の形態は、コンプレッサ制御部17が、コンプレッサのうち起動状態にある実起動コンプレッサの運転状態と運転優先順位決定部15で決定した運転優先順位とを時刻ごとに比較し、当該実起動コンプレッサの運転状態と当該運転優先順位との不一致状態が判定期間以上継続した場合、当該運転優先順位に一致するよう実起動コンプレッサの運転状態をロード状態/アンロード状態にそれぞれ切替制御するようにしたものである。
したがって、運転優先順位が変化した場合でも、各コンプレッサの運転状態が自動的に切替制御されるため、常に、高い運転効率となる組合せのコンプレッサで、圧縮空気を供給することができる。このため、圧縮空気供給システム1全体の電力消費を削減することができ、運転コストの削減、CO2の排出量に代表される環境負荷の低減に繋がる。
また、当該実起動コンプレッサと当該運転優先順位との不一致状態が判定期間以上継続した場合に、切替制御するようにしたので、コンプレッサの運転状態を安定して切替制御することができる。
[実施の形態の拡張]
以上、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解しうる様々な変更をすることができる。また、各実施形態については、矛盾しない範囲で任意に組み合わせて実施することができる。
1…圧縮空気供給システム、1A,1B,…,1N…コンプレッサ、2,4…管路、3…タンク、4A…流量計、5…ヘッダ、5A…圧力計、6…負荷、11…記憶部、11A…予定使用量データ、11B…先行予測量データ、11C…最低確保量データ、11D…運転性能データ、11E…運転優先順位データ、11F…最低起動台数データ、12…予定使用量学習部、13…先行予測量計算部、14…最低確保量計算部、15…運転優先順位決定部、16…最低起動台数計算部、17…コンプレッサ制御部。

Claims (4)

  1. コンプレッサを並列運転して得た圧縮空気を集気しバッファで一時的に蓄積した後に負荷に供給する際、当該圧縮空気の供給圧力に応じて、前記コンプレッサを起動状態/停止状態にそれぞれ個別に切替制御するとともに、起動状態にある前記コンプレッサの運転状態をロード状態/アンロード状態にそれぞれ個別に切替制御する圧縮空気供給システムであって、
    各時刻における前記負荷での前記圧縮空気の予定使用量を示す予定使用量データを記憶する記憶部と、
    前記記憶部の前記予定使用量データから各時刻における予定使用量を読み出して、前記コンプレッサの起動所要時間以上の時間長を有する先行時間分だけ先行させることにより、各時刻における先行予測量を計算する先行予測量計算部と、
    前記先行予測量計算部で計算した各時刻における前記先行予測量から、前記コンプレッサから圧縮空気の供給を新たに開始することなく前記バッファで補える圧縮空気量を示す補充供給量分それぞれ減算することにより、各時刻において最低確保すべき最低確保量を計算する最低確保量計算部と、
    前記最低確保量計算部で計算した各時刻における前記最低確保量と前記各コンプレッサにおける前記圧縮空気の個別基準吐出量とに基づいて、各時刻について前記最低確保量を供給するために起動しておくべき前記コンプレッサの最低起動台数を計算する最低起動台数計算部と、
    前記コンプレッサのうち起動状態にある実起動台数と前記最低起動台数計算部で計算した前記最低起動台数とを時刻ごとに比較し、当該実起動台数が当該最低起動台数に満たない場合には、当該実起動台数が当該最低起動台数となるまで前記コンプレッサを起動するコンプレッサ制御部と
    を備えることを特徴とする圧縮空気供給システム。
  2. 請求項1に記載の圧縮空気供給システムにおいて、
    前記記憶部は、前記コンプレッサごとに圧縮空気の吐出量とその吐出に関する運転効率との関係を示す運転性能データを記憶し、
    前記先行予測量計算部で計算した前記先行予測量の供給に用いる前記コンプレッサについて、前記記憶部から読み出した前記運転性能データにおける前記各コンプレッサの運転効率を考慮した運転優先順位を、時刻ごとに決定する運転優先順位決定部とをさらに備え、
    前記コンプレッサ制御部は、前記コンプレッサを停止状態から起動状態に切替制御する際、前記運転優先順位決定部で決定した当該時刻における運転優先順位に基づいて、停止状態にあるコンプレッサのうち優先順位の最も高いコンプレッサを起動状態に切替制御する
    ことを特徴とする圧縮空気供給システム。
  3. 請求項2に記載の圧縮空気供給システムにおいて、
    前記最低起動台数計算部は、前記運転優先順位決定部で得られた当該時刻における前記運転優先順位に基づいて順位の高い方から順にコンプレッサを選択するとともに、選択したこれらコンプレッサの個別基準吐出量の合計値を前記最低確保量と順に比較し、当該合計値が前記最低確保量以上となったときに選択されているコンプレッサの数を前記最低起動台数とすることを特徴とする圧縮空気供給システム。
  4. コンプレッサを並列運転して得た圧縮空気を集気しバッファで一時的に蓄積した後に負荷に供給する際、当該圧縮空気の供給圧力に応じて、前記コンプレッサを起動状態/停止状態にそれぞれ個別に切替制御するとともに、起動状態にある前記コンプレッサの運転状態をロード状態/アンロード状態にそれぞれ個別に切替制御する圧縮空気供給システムで用いられる圧縮空気供給方法であって、
    記憶部が、各時刻における前記負荷での前記圧縮空気の予定使用量を示す予定使用量データを記憶する記憶ステップと、
    先行予測量計算部が、前記記憶部の前記予定使用量データから各時刻における予定使用量を読み出して、前記コンプレッサの起動所要時間以上の時間長を有する先行時間分だけ先行させることにより、各時刻における先行予測量を計算する先行予測量計算ステップと、
    最低確保量計算部が、前記先行予測量計算ステップで計算した各時刻における前記先行予測量から、前記コンプレッサから圧縮空気の供給を新たに開始することなく前記バッファで補える圧縮空気量を示す補充供給量分それぞれ減算することにより、各時刻において最低確保すべき最低確保量を計算する最低確保量計算ステップと、
    最低起動台数計算部が、前記最低確保量計算ステップで計算した各時刻における前記最低確保量と前記各コンプレッサにおける前記圧縮空気の個別基準吐出量とに基づいて、各時刻について前記最低確保量を供給するために起動しておくべき前記コンプレッサの最低起動台数を計算する最低起動台数計算ステップと、
    コンプレッサ制御部が、前記コンプレッサのうち起動状態にある実起動台数と前記最低起動台数計算ステップで計算した前記最低起動台数とを時刻ごとに比較し、当該実起動台数が当該最低起動台数に満たない場合には、当該実起動台数が当該最低起動台数となるまで前記コンプレッサを起動するコンプレッサ制御ステップと
    を備えることを特徴とする圧縮空気供給方法。
JP2013024094A 2013-02-12 2013-02-12 圧縮空気供給システムおよび方法 Active JP5997626B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013024094A JP5997626B2 (ja) 2013-02-12 2013-02-12 圧縮空気供給システムおよび方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013024094A JP5997626B2 (ja) 2013-02-12 2013-02-12 圧縮空気供給システムおよび方法

Publications (2)

Publication Number Publication Date
JP2014152723A JP2014152723A (ja) 2014-08-25
JP5997626B2 true JP5997626B2 (ja) 2016-09-28

Family

ID=51574819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013024094A Active JP5997626B2 (ja) 2013-02-12 2013-02-12 圧縮空気供給システムおよび方法

Country Status (1)

Country Link
JP (1) JP5997626B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10789657B2 (en) * 2017-09-18 2020-09-29 Innio Jenbacher Gmbh & Co Og System and method for compressor scheduling

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113391656B (zh) * 2021-06-07 2022-06-28 国家石油天然气管网集团有限公司西气东输分公司 一种压缩机组智能增减控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601394A (ja) * 1983-06-17 1985-01-07 Hitachi Ltd 空気圧縮機の予測投入制御回路
JPS60147586A (ja) * 1984-01-11 1985-08-03 Hitachi Ltd 圧縮機の制御方法
JPS62145990U (ja) * 1986-03-10 1987-09-14
JP4112869B2 (ja) * 2002-01-24 2008-07-02 株式会社山武 空気圧縮機運転台数制御方法および装置
JP5621457B2 (ja) * 2010-09-21 2014-11-12 株式会社デンソー コンプレッサ運転制御システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10789657B2 (en) * 2017-09-18 2020-09-29 Innio Jenbacher Gmbh & Co Og System and method for compressor scheduling

Also Published As

Publication number Publication date
JP2014152723A (ja) 2014-08-25

Similar Documents

Publication Publication Date Title
TWI452795B (zh) 於電力格柵上控制負載之耗電量之控制裝置與方法
CN104968939A (zh) 流体压缩系统及其控制装置
US9727898B2 (en) System and method for managing battery discharge during critical peak pricing intervals
JP5621457B2 (ja) コンプレッサ運転制御システム
KR20110139184A (ko) 에너지 공급 시스템
JP5227091B2 (ja) 熱源設備制御方法及び熱源設備制御システム
JP5489046B2 (ja) 熱源設備制御システム
CN104457069A (zh) 制冷系统的能量调节方法
JP5997626B2 (ja) 圧縮空気供給システムおよび方法
KR20110139183A (ko) 에너지 공급 시스템
CN112050346A (zh) 一种空调系统开机数量控制方法、装置、设备及空调系统
JP7284559B2 (ja) 蓄電池制御装置、蓄電池制御プログラム
JP5374188B2 (ja) 圧縮機台数制御システム
JP2011106333A (ja) 圧縮空気供給システムおよび方法
JP5584024B2 (ja) 空気調和機群制御装置及び空気調和システム
JP5853144B2 (ja) 電力供給制御装置およびこれを含む電力供給システム
US20220161687A1 (en) Energy system control
CN113091234A (zh) 一种制冷主机开关机选择方法及系统
JP2008157490A (ja) 冷凍機の運転制御装置および冷凍機の運転制御方法
JP7066948B2 (ja) 蓄電池制御装置、蓄電池制御プログラム
CN110849034A (zh) 热泵系统的控制方法、装置、热泵系统及存储介质
JP6946124B2 (ja) ポンプ台数制御装置
JPS5843668B2 (ja) 冷凍機の運転方法
KR20240009816A (ko) 공기압축기의 ai운전 제어장치
JPH0861248A (ja) 圧縮機の運転制御方法及び装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160826

R150 Certificate of patent or registration of utility model

Ref document number: 5997626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250