JP5995050B2 - Battery charge / discharge control device - Google Patents

Battery charge / discharge control device Download PDF

Info

Publication number
JP5995050B2
JP5995050B2 JP2012045263A JP2012045263A JP5995050B2 JP 5995050 B2 JP5995050 B2 JP 5995050B2 JP 2012045263 A JP2012045263 A JP 2012045263A JP 2012045263 A JP2012045263 A JP 2012045263A JP 5995050 B2 JP5995050 B2 JP 5995050B2
Authority
JP
Japan
Prior art keywords
concentration polarization
current value
battery
charge
discharge time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012045263A
Other languages
Japanese (ja)
Other versions
JP2013182768A (en
Inventor
宏和 小熊
宏和 小熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2012045263A priority Critical patent/JP5995050B2/en
Publication of JP2013182768A publication Critical patent/JP2013182768A/en
Application granted granted Critical
Publication of JP5995050B2 publication Critical patent/JP5995050B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、バッテリに濃度分極による電圧低下が発生するのを抑制しながら充放電を行うためのバッテリの充放電制御装置に関する。   The present invention relates to a battery charge / discharge control device for performing charge / discharge while suppressing a voltage drop due to concentration polarization in a battery.

二次バッテリを大電流でパルス充電する際に、パルス印加時に濃度分極の進行に伴って緩やかに上昇する分担電圧と、パルス印加終了時に濃度分極の解消に伴って緩やかに低下する分担電圧との少なくとも一方を読み取り、その値が所定の閾値以上になったときに、過充電による濃度分極が発生してバッテリが劣化する虞があると判定してパルス充電を終了するものが、下記特許文献1により公知である。   When the secondary battery is pulse-charged with a large current, a shared voltage that gradually increases as the concentration polarization progresses when the pulse is applied, and a shared voltage that gradually decreases as the concentration polarization disappears when the pulse application ends. When at least one of the values is read and the value becomes equal to or greater than a predetermined threshold value, it is determined that there is a possibility that the concentration polarization due to overcharging may occur and the battery is deteriorated, and the pulse charging is terminated. Is known.

特開2008−181866号公報JP 2008-181866 A

しかしながら、上記従来のものは、同一の単発パルスを印加して電圧の挙動から濃度分極の発生を判定するため、濃度分極がかなり進行した状態でないとその発生を判定することができず、パルス充電を終了するタイミングが遅れてバッテリの劣化を招く虞があるだけでなく、電気自動車やハイブリッド自動車のような複雑な入出力が行われるシステムでは正確な判定が困難になる可能性がある。   However, since the conventional one applies the same single pulse and determines the occurrence of concentration polarization from the behavior of the voltage, it cannot be determined unless the concentration polarization is in a considerably advanced state. In addition to the possibility of delaying the battery timing and causing deterioration of the battery, accurate determination may be difficult in a system that performs complex input / output such as an electric vehicle or a hybrid vehicle.

本発明は前述の事情に鑑みてなされたもので、バッテリに加わる負荷を監視し、上述した濃度分極による電圧低下を事前に防止することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to monitor a load applied to a battery and prevent a voltage drop due to the concentration polarization described above in advance.

上記目的を達成するために、請求項1に記載された発明によれば、バッテリを充放電する電流を最大電流値以下に制限する電流制御部と、前記バッテリの濃度分極を算出する濃度分極算出部と、前記濃度分極の単位時間当りの平均値である平均濃度分極を算出する平均濃度分極算出部と、前記バッテリが連続して充放電している連続充放電時間を算出する連続充放電時間算出部と、前記平均濃度分極および前記連続充放電時間に基づいて濃度分極低減の要否を判定する濃度分極低減要否判定部と、前記濃度分極低減の要否の判定に基づいて前記最大電流値を設定する最大電流値設定部とを備えることを特徴とするバッテリの充放電制御装置が提案される。   In order to achieve the above object, according to the first aspect of the present invention, a current control unit that limits a current for charging / discharging the battery to a maximum current value or less and a concentration polarization calculation for calculating the concentration polarization of the battery Unit, an average concentration polarization calculating unit that calculates an average concentration polarization that is an average value per unit time of the concentration polarization, and a continuous charge / discharge time that calculates a continuous charge / discharge time during which the battery is continuously charged / discharged A calculation unit; a concentration polarization reduction necessity determination unit that determines necessity of concentration polarization reduction based on the average concentration polarization and the continuous charge / discharge time; and the maximum current based on determination of necessity of concentration polarization reduction. A battery charge / discharge control device comprising a maximum current value setting unit for setting a value is proposed.

また請求項2に記載された発明によれば、請求項1の構成に加えて、前記最大電流値が第1の電流値であるときの前記平均濃度分極が所定値以上であり、かつ前記連続充放電時間が所定時間以上である場合に、前記濃度分極低減要否判定部は濃度分極低減が必要であると判定し、前記最大電流値設定部は前記最大電流値を前記第1の電流値よりも小さい第2の電流値に設定することを特徴とするバッテリの充放電制御装置が提案される。   According to the invention described in claim 2, in addition to the configuration of claim 1, the average concentration polarization when the maximum current value is the first current value is a predetermined value or more, and the continuous When the charge / discharge time is equal to or longer than a predetermined time, the concentration polarization reduction necessity determination unit determines that concentration polarization reduction is necessary, and the maximum current value setting unit determines the maximum current value as the first current value. A charging / discharging control device for a battery is proposed in which the second current value is set to be smaller than that.

また請求項3に記載された発明によれば、請求項2の構成に加えて、前記最大電流値設定部は前記第2の電流値を前記バッテリの温度に基づいて設定するとともに、前記バッテリの温度が高いときほど高い値に設定することを特徴とするバッテリの充放電制御装置が提案される。   According to the invention described in claim 3, in addition to the configuration of claim 2, the maximum current value setting unit sets the second current value based on the temperature of the battery, and A battery charge / discharge control device is proposed in which a higher value is set as the temperature is higher.

また請求項4に記載された発明によれば、請求項2の構成に加えて、前記最大電流値設定部は更に前記第2の電流値で充放電できる許容充放電時間を設定することを特徴とするバッテリの充放電制御装置が提案される。   According to the invention described in claim 4, in addition to the configuration of claim 2, the maximum current value setting unit further sets an allowable charge / discharge time that can be charged / discharged by the second current value. A battery charge / discharge control device is proposed.

また請求項5に記載された発明によれば、請求項4の構成に加えて、前記最大電流値設定部は、前記第2の電流値と該第2の電流値で充放電できる前記許容充放電時間との関係を示す電流値−許容充放電時間マップを備え、前記電流値−許容充放電時間マップは前記第2の電流値が大きいほど前記許容充放電時間が短くなるように設定されることを特徴とするバッテリの充放電制御装置が提案される。 According to the invention described in claim 5, in addition to the configuration according to claim 4, wherein the maximum current value setting section, the allowable charge that can be charged and discharged by the second current value and the second current value current value shows the relationship between the discharge charging time - permissible charging and discharging time with the map, the current value - permissible charging and discharging time map as the permissible charging and discharging time the larger the second current value is shortened A battery charge / discharge control device characterized by being set is proposed.

また請求項6に記載された発明によれば、請求項2の構成に加えて、前記濃度分極低減要否判定部は、前記平均濃度分極と前記連続充放電時間との関係を示す平均濃度分極−連続充放電時間マップを備え、前記平均濃度分極−連続充放電時間マップは前記連続充放電時間が長いほど許容できる前記平均濃度分極が小さくなるように設定され、前記最大電流値設定部は前記平均濃度分極−連続充放電時間マップに基づいて前記第2の電流値に設定するか否かを判定することを特徴とするバッテリの充放電制御装置が提案される。   According to the invention described in claim 6, in addition to the configuration of claim 2, the concentration polarization reduction necessity determination unit is configured to determine an average concentration polarization indicating a relationship between the average concentration polarization and the continuous charge / discharge time. -Comprising a continuous charge / discharge time map, wherein the average concentration polarization-continuous charge / discharge time map is set such that the average concentration polarization that can be tolerated becomes smaller as the continuous charge / discharge time is longer, and the maximum current value setting unit is A battery charge / discharge control device is proposed, which determines whether or not to set the second current value based on an average concentration polarization-continuous charge / discharge time map.

尚、実施の形態のタイマ25は本発明の連続充放電時間算出部に対応する。   The timer 25 of the embodiment corresponds to the continuous charge / discharge time calculation unit of the present invention.

請求項1の構成によれば、濃度分極算出部でバッテリの濃度分極を算出し、平均濃度分極算出部で濃度分極の単位時間当りの平均値である平均濃度分極を算出し、連続充放電時間算出部でバッテリが連続して充放電している連続充放電時間を算出し、濃度分極低減要否判定部で平均濃度分極および連続充放電時間に基づいて濃度分極低減の要否を判定し、最大電流値設定部で濃度分極低減の要否の判定に基づいて最大電流値を設定し、電流制御部でバッテリを充放電する電流を最大電流値以下に制限するので、バッテリが過大な電流で充放電されて濃度分極が増長する前に電流を低減し、内部抵抗の増大による電圧低下を最小限に抑えることができる。さらに、同一の単発パルスを印加して電圧の挙動から濃度分極の発生を判定するものと異なり、電気自動車やハイブリッド自動車のような複雑な入出力が行われるシステムにおいても、バッテリの濃度分極を正確に判定することができる。   According to the configuration of claim 1, the concentration polarization calculation unit calculates the concentration polarization of the battery, the average concentration polarization calculation unit calculates the average concentration polarization that is an average value per unit time of the concentration polarization, and the continuous charge / discharge time. The calculation unit calculates the continuous charge / discharge time during which the battery is continuously charged / discharged, and the concentration polarization reduction necessity determination unit determines the necessity of concentration polarization reduction based on the average concentration polarization and the continuous charge / discharge time, The maximum current value setting unit sets the maximum current value based on whether or not concentration polarization reduction is necessary, and the current control unit limits the current to charge / discharge the battery to the maximum current value or less. Current can be reduced before concentration polarization increases due to charge / discharge, and voltage drop due to increase in internal resistance can be minimized. Furthermore, unlike the case where the same single pulse is applied to determine the occurrence of concentration polarization from the voltage behavior, the concentration polarization of the battery can be accurately detected even in a system with complicated input / output such as an electric vehicle or a hybrid vehicle. Can be determined.

また請求項2の構成によれば、最大電流値が第1の電流値であるときの平均濃度分極が所定値以上であり、かつ連続充放電時間が所定時間以上である場合に、濃度分極低減要否判定部は濃度分極低減が必要であると判定するので、濃度分極低減の要否を的確に判定することができる。しかも最大電流値設定部は最大電流値を第1の電流値よりも小さい第2の電流値に設定するので、過大な電流で充放電することによる濃度分極の増長を未然に防止することができる。   According to the second aspect of the present invention, the concentration polarization is reduced when the average concentration polarization when the maximum current value is the first current value is a predetermined value or more and the continuous charge / discharge time is a predetermined time or more. Since the necessity determination unit determines that concentration polarization reduction is necessary, it can accurately determine whether concentration polarization reduction is necessary. Moreover, since the maximum current value setting unit sets the maximum current value to the second current value smaller than the first current value, it is possible to prevent the concentration polarization from increasing due to charging / discharging with an excessive current. .

また請求項3の構成によれば、最大電流値設定部は第2の電流値をバッテリの温度が高いときほど高い値に設定するので、バッテリが高温であって濃度分極が発生し難い(解消され易い)ときに第2の電流値を高い値に設定し、不要な電流制限を回避してバッテリの性能を最大限に引き出すことができる。   According to the third aspect of the present invention, the maximum current value setting unit sets the second current value to a higher value as the battery temperature is higher, so that the battery is hot and concentration polarization hardly occurs (resolves). When the second current value is set to a high value, the battery performance can be maximized by avoiding an unnecessary current limit.

また請求項4の構成によれば、最大電流値設定部は最大電流値である第2の電流値に加えて、第2の電流値で充放電できる許容充放電時間を設定するので、バッテリを充放電する電流がセンサの誤差等により一時的に第2の電流値を超えても、その度に不必要な電流制限が行われるのを防止することができる。   According to the configuration of claim 4, the maximum current value setting unit sets the allowable charge / discharge time that can be charged / discharged by the second current value in addition to the second current value that is the maximum current value. Even when the charging / discharging current temporarily exceeds the second current value due to a sensor error or the like, unnecessary current limitation can be prevented each time.

また請求項5の構成によれば、最大電流値設定部は第2の電流値と該第2の電流値で充放電できる許容充放電時間との関係を示す電流値−許容充放電時間マップを備え、そのマップは第2の電流値が大きいほど許容充放電時間が短くなるように設定されるので、濃度分極の発生傾向に応じて、例えばハイブリッド自動車のように電流値は高いが充放電時間が短い場合や、電気自動車のように電流値は低いが充放電時間が長い場合に応じて、電流値および許容充放電時間の組み合わせを柔軟に設定することができる。 According to the configuration of claim 5, the maximum current value setting unit current value shows the relationship between the allowable charging and discharging time to charging and discharging at a second current value and the second current value - allowable charge-discharge time includes a map, since the map is set such that the allowable charging and discharging time larger the second current value becomes shorter, depending on the occurrence tendency of concentration polarization, for example, a current value as a hybrid vehicle is high charge If discharge charging time is short and the current value as an electric vehicle is low but as the case long charge-discharge time can be set to a combination of the current value and the allowable charge-discharge time flexibility.

また請求項6の構成によれば、濃度分極低減要否判定部は連続充放電時間が長いほど許容できる平均濃度分極が小さくなるように設定された平均濃度分極−連続充放電時間マップを備え、このマップに基づいて最大電流値設定部が第2の電流値に設定するか否かを判定するので、平均濃度分極および連続充放電時間の二つのパラメータにより電流制限の要否を柔軟に判定することができる。   Further, according to the configuration of claim 6, the concentration polarization reduction necessity determination unit includes an average concentration polarization-continuous charge / discharge time map set so that an allowable average concentration polarization becomes smaller as the continuous charge / discharge time is longer, Based on this map, it is determined whether or not the maximum current value setting unit sets the second current value. Therefore, the necessity of current limitation is flexibly determined based on two parameters, average concentration polarization and continuous charge / discharge time. be able to.

バッテリの充放電制御装置の全体構成を示すブロック図。The block diagram which shows the whole structure of the charging / discharging control apparatus of a battery. メインルーチンのフローチャート。The flowchart of a main routine. メインルーチンのステップS1のサブルーチンのフローチャート。The flowchart of the subroutine of step S1 of the main routine. メインルーチンのステップS2のサブルーチンのフローチャート。The flowchart of the subroutine of step S2 of the main routine. メインルーチンのステップS3のサブルーチンのフローチャート。The flowchart of the subroutine of step S3 of the main routine. メインルーチンのステップS6のサブルーチンのフローチャート。The flowchart of the subroutine of step S6 of the main routine. 平均濃度分極および連続充放電時間から一過性抵抗上昇率を検索するマップ。This map searches for the transient resistance increase rate from the average concentration polarization and continuous charge / discharge time. 平均濃度分極および連続充放電時間が制御介入ラインを超えないための平均濃度分極上限値を算出する手法の説明図。Explanatory drawing of the method of calculating the average concentration polarization upper limit value for the average concentration polarization and continuous charge / discharge time not exceeding a control intervention line. 平均濃度分極上限値から第2の電流値および許容充放電時間の組み合わせを検索するマップ。The second current value and the map to find the combination of allowable charging and discharging time from the average concentration polarization limit.

以下、図1〜図9に基づいて本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1に示すように、電気自動車あるいはハイブリッド自動車は、充放電が可能なリチウムイオンバッテリ等で構成されるバッテリ11を備える。バッテリ11は図示せぬモータ・ジェネレータに接続されており、モータ・ジェネレータに電力を供給して走行用のトルクやエンジンをアシストするトルクを発生させるとともに、回生制動によりモータ・ジェネレータが発電した電力で充電される。バッテリ11の充放電を制御するバッテリECU12は、バッテリ11の温度を検出するバッテリ温度センサ13と、バッテリ11の電流を検出するバッテリ電流センサ14と、バッテリ11の電圧を検出するバッテリ電圧センサ15とからの信号に基いてバッテリ11を充放電可能な最大電流値を算出する。バッテリECU12に接続された電流制御部16は、前記最大電流値に基づいてバッテリ11の充放電を制御する。   As shown in FIG. 1, an electric vehicle or a hybrid vehicle includes a battery 11 formed of a lithium ion battery that can be charged and discharged. The battery 11 is connected to a motor / generator (not shown). The battery 11 supplies electric power to the motor / generator to generate running torque and torque for assisting the engine. At the same time, the battery 11 uses electric power generated by the motor / generator by regenerative braking. Charged. A battery ECU 12 that controls charging / discharging of the battery 11 includes a battery temperature sensor 13 that detects the temperature of the battery 11, a battery current sensor 14 that detects the current of the battery 11, and a battery voltage sensor 15 that detects the voltage of the battery 11. The maximum current value capable of charging / discharging the battery 11 is calculated based on the signal from. The current control unit 16 connected to the battery ECU 12 controls charging / discharging of the battery 11 based on the maximum current value.

バッテリECU12は、SOC算出部21と、SOC−OCVマップ22と、抵抗算出部23と、濃度分極算出部24と、タイマ25と、平均濃度分極算出部26と、濃度分極低減要否判定部27と、最大電流値設定部28とを備える。SOC:State of Charge はバッテリ11の残容量であり、OCV:Open Circuit Voltageはバッテリ11の開放電圧である。   The battery ECU 12 includes an SOC calculation unit 21, an SOC-OCV map 22, a resistance calculation unit 23, a concentration polarization calculation unit 24, a timer 25, an average concentration polarization calculation unit 26, and a concentration polarization reduction necessity determination unit 27. And a maximum current value setting unit 28. SOC: State of Charge is the remaining capacity of the battery 11, and OCV: Open Circuit Voltage is the open voltage of the battery 11.

次に、バッテリ11の充放電制御の概要を、図1のブロック図および図2〜図6のフローチャートに基づいて説明する。   Next, the outline of the charge / discharge control of the battery 11 will be described based on the block diagram of FIG. 1 and the flowcharts of FIGS.

先ず図2のメインルーチンのフローチャートのステップS1で、濃度分極算出部24によりバッテリ11の濃度分極を算出する。バッテリから電流を外部に取り出した場合、バッテリの端子電圧は起電力よりも小さくなる。この現象を分極と呼び、あるいはこの現象により発生するバッテリの端子電圧の低下量を分極と呼ぶ。濃度分極は上記分極の一種であり、例えばリチウムイオンバッテリでは、ハイレートでの充放電により電解液中のリチウムイオンの濃度が正極側で薄くなって負極側で濃くなるため、バッテリの内部抵抗が増加して端子電圧が低下することになる。   First, in step S1 of the flowchart of the main routine of FIG. 2, the concentration polarization of the battery 11 is calculated by the concentration polarization calculation unit 24. When the current is taken out from the battery, the terminal voltage of the battery becomes smaller than the electromotive force. This phenomenon is called polarization, or the amount of decrease in battery terminal voltage caused by this phenomenon is called polarization. Concentration polarization is a kind of polarization described above. For example, in a lithium ion battery, the lithium ion concentration in the electrolyte is decreased on the positive electrode side and increased on the negative electrode side due to charge / discharge at a high rate, so that the internal resistance of the battery increases. As a result, the terminal voltage decreases.

図3のフローチャートは前記ステップS1のサブルーチンを示すもので、先ずステップS11でバッテリ11のOCVを取得する。即ち、SOC算出部21がバッテリ電流センサ14で検出したバッテリ電流からSOCを算出し、このSOCおよびバッテリ温度センサ13で検出したバッテリ温度をSOC−OCVマップ22に適用することで、OCVを算出する。SOC算出部21は、バッテリ電流センサ14で検出したバッテリ電流を所定時間毎に積算して積算充電量および積算放電量を算出し、積算充電量および積算放電量を初期状態あるいは充放電開始直前のSOC(初期SOC)に加算または減算することでSOCを算出する。またSOC−OCVマップ22をバッテリ温度毎に応じて持ち替えることで、より精度の高いOCVを算出することができる。   The flowchart of FIG. 3 shows the subroutine of step S1. First, the OCV of the battery 11 is acquired in step S11. That is, the SOC calculation unit 21 calculates the SOC from the battery current detected by the battery current sensor 14, and calculates the OCV by applying the SOC and the battery temperature detected by the battery temperature sensor 13 to the SOC-OCV map 22. . The SOC calculation unit 21 calculates the accumulated charge amount and the accumulated discharge amount by integrating the battery current detected by the battery current sensor 14 every predetermined time, and calculates the accumulated charge amount and the accumulated discharge amount in the initial state or immediately before the start of charge / discharge. The SOC is calculated by adding or subtracting to the SOC (initial SOC). Further, the OCV can be calculated with higher accuracy by changing the SOC-OCV map 22 according to the battery temperature.

尚、OCVはバッテリ11が充放電を行っていないときの端子電圧に相当するため、バッテリ11が充放電を行っていない場合には、そのときの端子電圧をバッテリ電圧センサ15で検出した値をOCVとして使用することができる。   The OCV corresponds to the terminal voltage when the battery 11 is not charging / discharging. Therefore, when the battery 11 is not charging / discharging, the value detected by the battery voltage sensor 15 is the terminal voltage at that time. It can be used as OCV.

続くステップS12で抵抗算出部23によりバッテリ11の瞬間抵抗R1を取得する。即ち、バッテリ電圧センサ15で検出したバッテリ電圧の変化量と、バッテリ電流センサ14で検出したバッテリ電流の変化量とに最小二乗法等による統計処理を加えることで、バッテリの瞬間抵抗R1を算出する。続くステップS13でバッテリ11の濃度分極Vcを、Vc=OCV−V−I*R1により算出する。ここでVはバッテリ電圧センサ15で検出したバッテリ電圧であり、Iはバッテリ電流センサ14で検出したバッテリ電流である。このとき、バッテリ温度センサ13で検出したバッテリ温度を考慮すれば、より高い精度で濃度分極Vcを算出することができる。   In subsequent step S12, the instantaneous resistance R1 of the battery 11 is acquired by the resistance calculation unit 23. In other words, the battery instantaneous resistance R1 is calculated by applying statistical processing such as a least square method to the amount of change in the battery voltage detected by the battery voltage sensor 15 and the amount of change in the battery current detected by the battery current sensor 14. . In subsequent step S13, the concentration polarization Vc of the battery 11 is calculated by Vc = OCV−V−I * R1. Here, V is the battery voltage detected by the battery voltage sensor 15, and I is the battery current detected by the battery current sensor 14. At this time, if the battery temperature detected by the battery temperature sensor 13 is taken into consideration, the concentration polarization Vc can be calculated with higher accuracy.

図2のメインルーチンに戻り、ステップS2で平均濃度分極算出部26によりバッテリ11の平均濃度分極を取得する。   Returning to the main routine of FIG. 2, the average concentration polarization of the battery 11 is acquired by the average concentration polarization calculator 26 in step S <b> 2.

図4のフローチャートは前記ステップS2のサブルーチンを示すもので、先ずステップS21で濃度分極算出部24からバッテリ11の濃度分極Vcを取得する。続くステップS22で濃度分極Vcを絶対値に変換した後、ステップS23でバッテリ11の積算濃度分極∫Vc(k+1)を、∫Vc(k+1)=Vc+∫Vc(k)により算出する。即ち、前回ループの積算濃度分極∫Vc(k)に今回ループの濃度分極Vcを加算することで、今回ループの積算濃度分極∫Vc(k+1)を算出する。続くステップS24でタイマ25によりバッテリ電流が流れている連続充放電時間tを計時し、ステップS25で平均濃度分極算出部26により、平均濃度分極AVE.Vcを、AVE.Vc=[∫Vc(k+1)]/tにより算出する。前記ステップS22で濃度分極Vcを絶対値に変換する理由は、充電時と放電時とで濃度分極Vcの符号が正負に異なるため、絶対値に変換せずに積算するとゼロになって平均濃度分極AVE.Vcを正しく算出できないからである。   The flowchart of FIG. 4 shows the subroutine of step S2. First, in step S21, the concentration polarization Vc of the battery 11 is acquired from the concentration polarization calculation unit 24. In step S22, the concentration polarization Vc is converted into an absolute value, and then in step S23, the integrated concentration polarization ∫Vc (k + 1) of the battery 11 is calculated by に よ り Vc (k + 1) = Vc + ∫Vc (k). That is, by adding the concentration polarization Vc of the current loop to the integrated concentration polarization ∫Vc (k) of the previous loop, the integrated concentration polarization ∫Vc (k + 1) of the current loop is calculated. In subsequent step S24, the continuous charge / discharge time t during which the battery current is flowing is measured by the timer 25, and in step S25, the average concentration polarization calculation unit 26 calculates the average concentration polarization AVE. Vc, AVE. Vc = [∫Vc (k + 1)] / t. The reason why the concentration polarization Vc is converted to an absolute value in the step S22 is that the sign of the concentration polarization Vc is different between positive and negative at the time of charging and discharging. AVE. This is because Vc cannot be calculated correctly.

図2のメインルーチンに戻り、ステップS3で濃度分極低減要否判定部27によりバッテリ11の平均濃度分極AVE.Vcを低減する制御の要否を判定する。   Returning to the main routine of FIG. 2, in step S3, the concentration polarization reduction necessity determination unit 27 causes the average concentration polarization AVE. It is determined whether control for reducing Vc is necessary.

図5のフローチャートは前記ステップS3のサブルーチンを示すもので、先ずステップS31で平均濃度分極算出部26からバッテリ11の平均濃度分極AVE.Vcを取得する。続くステップS32でタイマ25によりバッテリ電流が流れている連続充放電時間tを計時し、ステップS33で濃度分極低減要否判定部27に記憶した平均濃度分極−連続充放電時間マップに平均濃度分極AVE.Vcおよび連続充放電時間tを適用する。平均濃度分極−連続充放電時間マップは、縦軸に平均濃度分極AVE.Vcをとり横軸に連続充放電時間tをとったもので、そこに制御介入ラインおよび入出力禁止ラインが設定される。   The flowchart of FIG. 5 shows the subroutine of step S3. First, in step S31, the average concentration polarization AVE. Obtain Vc. In subsequent step S32, the timer 25 counts the continuous charge / discharge time t during which the battery current flows, and in step S33, the average concentration polarization-AVE is stored in the average concentration polarization-continuous charge / discharge time map stored in the concentration polarization reduction necessity determination unit 27. . Vc and continuous charge / discharge time t are applied. The average concentration polarization-continuous charge / discharge time map shows the average concentration polarization AVE. Vc is taken and a horizontal charging / discharging time t is taken on the horizontal axis, and a control intervention line and an input / output inhibition line are set there.

制御介入ラインおよび入出力禁止ラインは、連続充放電時間tが増加すると平均濃度分極AVE.Vcが減少し、逆に平均濃度分極AVE.Vcが増加すると連続充放電時間tが減少するように設定されている。そして平均濃度分極AVE.Vcおよび連続充放電時間tが指示する点が制御介入ラインを原点側から反原点側に横切ると、バッテリ11に濃度分極による一過性の抵抗上昇が発生する可能性があると判定し、濃度分極の発生を抑制すべく充放電の最大電流値を抑制する。充放電の最大電流値を抑制する制御は制御介入ラインおよび入出力禁止ラインに挟まれた領域で実行され、平均濃度分極AVE.Vcおよび連続充放電時間tが指示する点が入出力禁止ラインを原点側から反原点側に横切ると、バッテリ11に一過性の抵抗上昇が既に発生していると判定してバッテリ11の充放電を禁止する。   The control intervention line and the input / output inhibition line indicate that the average concentration polarization AVE. Vc decreases, and conversely, the average concentration polarization AVE. It is set so that the continuous charge / discharge time t decreases as Vc increases. And average concentration polarization AVE. When the point indicated by Vc and the continuous charge / discharge time t crosses the control intervention line from the origin side to the non-origin side, it is determined that there may be a temporary increase in resistance due to concentration polarization in the battery 11. In order to suppress the occurrence of polarization, the maximum charge / discharge current value is suppressed. Control for suppressing the maximum charge / discharge current value is executed in a region sandwiched between the control intervention line and the input / output inhibition line, and the average concentration polarization AVE. When the point indicated by Vc and the continuous charge / discharge time t crosses the input / output inhibition line from the origin side to the non-origin side, it is determined that a temporary increase in resistance has already occurred in the battery 11 and the battery 11 is charged. Discharge is prohibited.

図2のメインルーチンに戻り、ステップS4で平均濃度分極−連続充放電時間マップにおいて平均濃度分極AVE.Vcが閾値未満であるか、あるいは連続充放電時間tが閾値未満であるとき、つまり平均濃度分極AVE.Vcおよび連続充放電時間tが指示する点が制御介入ラインよりも原点側にあれば、バッテリ11に濃度分極による一過性の抵抗上昇が発生する可能性がないと判定し、ステップS5で充放電電流を通常制御における最大値、つまりバッテリ11のSOCに応じた第1の電流値に制限する。   Returning to the main routine of FIG. 2, in step S4, the average concentration polarization AVE. When Vc is less than the threshold value or the continuous charge / discharge time t is less than the threshold value, that is, the average concentration polarization AVE. If the point indicated by Vc and the continuous charge / discharge time t is on the origin side of the control intervention line, it is determined that there is no possibility that the battery 11 will temporarily increase in resistance due to concentration polarization, and charging is performed in step S5. The discharge current is limited to the maximum value in the normal control, that is, the first current value corresponding to the SOC of the battery 11.

一方、前記ステップS4で平均濃度分極−連続充放電時間マップにおいて平均濃度分極AVE.Vcが閾値以上であり、かつ連続充放電時間tが閾値以上であるとき、つまり平均濃度分極AVE.Vcおよび連続充放電時間tが指示する点が制御介入ラインよりも反原点側にあれば、バッテリ11に濃度分極による一過性の抵抗上昇が発生する可能性があると判定し、ステップS6で濃度分極を解消するための最大電流値である第2の電流値を設定する。   On the other hand, in step S4, the average concentration polarization AVE. When Vc is equal to or greater than the threshold and the continuous charge / discharge time t is equal to or greater than the threshold, that is, the average concentration polarization AVE. If the point indicated by Vc and the continuous charge / discharge time t is on the opposite side of the control intervention line, it is determined that there may be a temporary increase in resistance due to concentration polarization in the battery 11, and in step S6 A second current value that is the maximum current value for eliminating the concentration polarization is set.

図6のフローチャートは前記ステップS6のサブルーチンを示すもので、先ずステップS61で平均濃度分極−連続充放電時間マップにより平均濃度分極AVE.Vcおよび連続充放電時間tを制御介入ラインよりも原点側に維持するための平均濃度分極上限値Vc(DOWN)を取得する。図7のマップは、縦軸に平均濃度分極AVE.Vcをとり横軸に連続充放電時間tをとったもので、平均濃度分極AVE.Vcが増加するほど、あるいは連続充放電時間tが増加するほど、濃度分極によりバッテリ11の一過性の内部抵抗が増加することを示している。図7に破線のラインで示すように、濃度分極を解消するための最大電流値の制限を実行しないと、平均濃度分極AVE.Vcおよび連続充放電時間tの増加に伴って一過性抵抗上昇率が次第に大きくなることが分かる。   The flowchart of FIG. 6 shows the subroutine of step S6. First, in step S61, the average concentration polarization AVE. An average concentration polarization upper limit value Vc (DOWN) for maintaining Vc and continuous charge / discharge time t closer to the origin side than the control intervention line is acquired. The map of FIG. 7 shows the average concentration polarization AVE. Vc is taken and the horizontal axis indicates the continuous charge / discharge time t. The average concentration polarization AVE. It shows that the transient internal resistance of the battery 11 increases due to concentration polarization as Vc increases or as the continuous charge / discharge time t increases. As shown by the broken line in FIG. 7, if the limit of the maximum current value for eliminating the concentration polarization is not executed, the average concentration polarization AVE. It can be seen that the transient resistance increase rate gradually increases as Vc and the continuous charge / discharge time t increase.

図8において、平均濃度分極AVE.Vcおよび連続充放電時間tが破線のラインに沿って変化するとき、A点で制御介入ラインを原点側から反原点側に横切ったとする。A点を通って横軸と平行に延びるラインが入出力禁止ラインと交差する点をB点とし、B点を通って縦軸と平行に延びるラインが制御介入ラインと交差する点をC点としたとき、A点からC点に向けて平均濃度分極AVE.Vcを所定の減少率で減少させれば、平均濃度分極AVE.Vcを制御介入エリアよりも原点側に維持することができる。   In FIG. 8, the average concentration polarization AVE. When Vc and continuous charge / discharge time t change along the broken line, it is assumed that the control intervention line crosses from the origin side to the non-origin side at point A. A point where a line extending in parallel with the horizontal axis through point A intersects with the input / output inhibition line is designated as B point, and a point where a line extending through point B in parallel with the vertical axis intersects with the control intervention line is designated as point C. When the average concentration polarization AVE. If Vc is decreased at a predetermined decrease rate, the average concentration polarization AVE. Vc can be maintained closer to the origin than the control intervention area.

A点の時刻をaとし、B点およびC点の時刻をbとし、C点の平均濃度分極AVE.Vcをcとし、A点およびB点の平均濃度分極AVE.Vcをdとしたとき、A点(つまり時刻a)での濃度分極はd×aで与えられ、C点(つまり時刻b)での濃度分極はc×bで与えられる。平均濃度分極AVE.VcをA点からC点に向けて変化させるための平均濃度分極の時間変化率ΔAVE.Vcは、C点の濃度分極(つまりc×b)からA点の濃度分極(つまりd×a)を減算した差分を、A点からB点までの時間b−aで除算することで算出される。   The time at point A is a, the time at points B and C is b, and the average concentration polarization AVE. Vc is c, and average concentration polarization AVE. When Vc is d, the concentration polarization at point A (ie time a) is given by d × a, and the concentration polarization at point C (ie time b) is given by c × b. Average concentration polarization AVE. Time change rate ΔAVE. Of average concentration polarization for changing Vc from point A to point C Vc is calculated by dividing the difference obtained by subtracting the concentration polarization at point A (ie, d × a) from the concentration polarization at point C (ie, c × b) by the time ba from point A to point B. The

ΔAVE.Vc={(c×b)−(d×a)}/(b−a)
上式において、例えば、a=60min、b=120min、c=60mV、d=80mVとすると、
ΔAVE.Vc={(60×120)−(80×60)}/(120−60)
=40(mV/min)
となり、この平均濃度分極の時間変化率ΔAVE.Vcを、平均濃度分極上限値Vc(DOWN)と定義する。従って、この平均濃度分極上限値Vc(DOWN)で平均濃度分極AVE.Vcを低減すれば、平均濃度分極−連続充放電時間マップにおいて平均濃度分極AVE.Vcおよび連続充放電時間tを制御介入ラインよりも原点側に維持することができる。
ΔAVE. Vc = {(c × b) − (d × a)} / (b−a)
In the above formula, for example, if a = 60 min, b = 120 min, c = 60 mV, d = 80 mV,
ΔAVE. Vc = {(60 × 120) − (80 × 60)} / (120-60)
= 40 (mV / min)
And the time change rate ΔAVE. Vc is defined as the average concentration polarization upper limit value Vc (DOWN). Therefore, the average concentration polarization AVE. With the average concentration polarization upper limit Vc (DOWN). If Vc is reduced, the average concentration polarization AVE. Vc and continuous charge / discharge time t can be maintained closer to the origin than the control intervention line.

続くステップS62でバッテリ温度センサ13によってバッテリ温度を取得し、ステップS63でバッテリ温度毎に設定された電流値−許容充放電時間マップから最大電流値および許容充放電時間を算出する。図9のマップは、縦軸に電流値をとり横軸に許容充放電時間をとったもので、そこにはバッテリ温度25°Cにおける平均濃度分極上限値Vc(DOWN)が40mのラインと、50mVのラインと、通常利用のラインとが示される。平均濃度分極上限値Vc(DOWN)が小さいということは、濃度分極を解消するために、充放電の最大電流値をより小さくし、かつ許容充放電時間をより短くする必要があるということで、そのために特性ラインが原点に接近する。またバッテリ温度が高いときは濃度分極が解消し易いため、例えば30°Cの時における40mVのラインはバッテリ温度25°Cのときよりも反原点側に移動する。 Get the battery temperature by the battery temperature sensor 13 in subsequent step S62, the current value set for each battery temperature in step S63 - calculating a maximum current value and the allowable charging and discharging time of the allowable charge and discharge time map. Map of FIG. 9, which has taken the allowable charge-discharge time on the horizontal axis represents the current value on the vertical axis, there is an average of the battery temperature 25 ° C Concentration polarization limit Vc (DOWN) is 40m line A 50 mV line and a normal use line are shown. It means that the concentration polarization limit Vc (DOWN) is small, in order to eliminate the concentration polarization, and smaller the maximum current value of the charge and discharge, and that it requires a shorter allowable charge-discharge time Therefore, the characteristic line approaches the origin. Further, since the concentration polarization is easily eliminated when the battery temperature is high, for example, the 40 mV line at 30 ° C. moves to the opposite origin side than when the battery temperature is 25 ° C.

バッテリ温度25°Cで平均濃度分極上限値Vc(DOWN)が40mVのとき、充放電の電流値が高いI1であれば許容充放電時間は短いt1になり、充放電の電流値が中程度のI2であれば許容充放電時間は中程度のt2になり、充放電の電流値が低いI3であれば許容充放電時間は長いt3になる。よって、バッテリ11に供給する最大電流値および許容充放電時間を、電流値−許容充放電時間マップにおける所定の平均濃度分極上限値Vc(DOWN)のラインを反原点側に超えないように相互に関連して制御することで、バッテリ11の濃度分極を確実に抑制して急激な電圧低下の発生を未然に防止することができる。 When the average concentration polarization limit Vc at the battery temperature 25 ° C (DOWN) is 40 mV, the allowable charge-discharge time when the current value of the charge and discharge is high I1 becomes short t1, the current value of the charging and discharging moderate if I2 permissible charging and discharging time becomes t2 moderate, allowable charge-discharge time becomes long t3 if I3 current value of charge and discharge is low. Therefore, the maximum current value and the allowable charge-discharge time supplied to the battery 11, the current value - cross lines of average given in permissive charge and discharge time map concentration polarization limit Vc (DOWN) so as not to exceed the opposite home side By controlling in relation to the above, it is possible to reliably suppress the concentration polarization of the battery 11 and prevent a sudden voltage drop.

以上のように、本実施の形態によれば、バッテリ11の濃度分極Vcの単位時間当りの平均値である平均濃度分極AVE.Vcが所定値以上であり、かつバッテリ11が連続して充放電している連続充放電時間tが所定値のときに濃度分極低減が必要であると判定し、バッテリ11を充放電する最大電流値を第1の電流値からそれよりも小さい2の電流値に低減するので、バッテリ11が過大な電流で充放電されて濃度分極が増長する前に電流を低減し、バッテリ11の内部抵抗の増大による電圧低下を最小限に抑えることができる。しかも同一の単発パルスを印加して電圧の挙動から濃度分極の発生を判定するものと異なり、電気自動車やハイブリッド自動車のような複雑な入出力が行われるシステムにおいてもバッテリ11の濃度分極を正確に判定することができる。   As described above, according to the present embodiment, the average concentration polarization AVE., Which is the average value per unit time of the concentration polarization Vc of the battery 11. It is determined that concentration polarization reduction is necessary when Vc is equal to or greater than a predetermined value and the continuous charge / discharge time t during which the battery 11 is continuously charged / discharged is a predetermined value, and the maximum current for charging / discharging the battery 11 Since the value is reduced from the first current value to a current value of 2 smaller than the first current value, the current is reduced before the battery 11 is charged / discharged with an excessive current and the concentration polarization is increased, and the internal resistance of the battery 11 is reduced. The voltage drop due to the increase can be minimized. In addition, unlike the case where the same single pulse is applied to determine the occurrence of concentration polarization from the behavior of voltage, the concentration polarization of the battery 11 is accurately determined even in a system that performs complex input / output such as an electric vehicle or a hybrid vehicle. Can be determined.

また濃度分極低減要否判定部27の平均濃度分極−連続充放電時間マップは、連続充放電時間tが長いほど許容できる平均濃度分極AVE.Vcが小さくなるように設定されるので、このマップに基づいて最大電流値設定部28が第2の電流値に設定するか否かを判定する際に、平均濃度分極AVE.Vcおよび連続充放電時間tの二つのパラメータにより電流制限の要否を柔軟に判定することができる。   Further, the average concentration polarization-continuous charge / discharge time map of the concentration polarization reduction necessity determination unit 27 indicates that the average concentration polarization AVE. Since Vc is set to be small, when determining whether or not the maximum current value setting unit 28 sets the second current value based on this map, the average concentration polarization AVE. The necessity of current limitation can be flexibly determined by two parameters, Vc and continuous charge / discharge time t.

また最大電流値設定部28は、第2の電流値をバッテリ温度が高いときほど高い値に設定するので、バッテリ11が高温であって濃度分極が解消され易いときに第2の電流値を高い値に設定し、不要な電流制限を回避してバッテリ11の性能を最大限に引き出すことができる。   Further, since the maximum current value setting unit 28 sets the second current value to a higher value as the battery temperature is higher, the second current value is increased when the battery 11 is at a high temperature and concentration polarization is easily eliminated. By setting the value, unnecessary current limitation can be avoided and the performance of the battery 11 can be maximized.

また最大電流値設定部28は、バッテリ11を充放電可能な最大電流値である第2の電流値に加えて、第2の電流値で充放電できる許容充放電時間を設定するので、バッテリ11を充放電する電流がセンサの誤差等により一時的に第2の電流値を超えても、その度に不必要な電流制限が行われるのを防止することができる。しかも最大電流値設定部28の電流値−許容充放電時間マップは、第2の電流値が大きいほど許容充放電時間が短くなるように設定されるので、例えばハイブリッド自動車のように電流値は高いが充放電時間が短い態様や、電気自動車のように電流値は低いが充放電時間が長い態様でバッテリ11を使用する場合であっても、電流値および許容充放電時間の組み合わせを柔軟に設定することができる。 The maximum current value setting unit 28 sets an allowable charge / discharge time that can be charged / discharged with the second current value in addition to the second current value that is the maximum current value with which the battery 11 can be charged / discharged. Even if the current for charging / discharging the current temporarily exceeds the second current value due to a sensor error or the like, unnecessary current limitation can be prevented each time. Moreover the current value of the maximum current value setting section 28 - permissible charging and discharging time map, so as allowable charging and discharging time is greater second current value is set to be shorter, for example, a current value as a hybrid vehicle high but or short aspects charging and discharging time, even if the current value as an electric vehicle is lesser to use battery 11 with long aspects charging and discharging time, the current value and the allowable charge-discharge time combination Can be set flexibly.

以上、本発明の実施の形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   The embodiments of the present invention have been described above, but various design changes can be made without departing from the scope of the present invention.

例えば、本発明のバッテリはリチウムイオンバッテリに限定されるものではなく、その用途も電気自動車およびハイブリッド自動車に限定されるものではない。   For example, the battery of the present invention is not limited to a lithium ion battery, and its use is not limited to an electric vehicle and a hybrid vehicle.

11 バッテリ
16 電流制御部
24 濃度分極算出部
25 タイマ(連続充放電時間算出部)
26 平均濃度分極算出部
27 濃度分極低減要否判定部
28 最大電流値設定部
11 Battery 16 Current control unit 24 Concentration polarization calculation unit 25 Timer (continuous charge / discharge time calculation unit)
26 Average concentration polarization calculation unit 27 Concentration polarization reduction necessity determination unit 28 Maximum current value setting unit

Claims (6)

バッテリ(11)を充放電する電流を最大電流値以下に制限する電流制御部(16)と、
前記バッテリ(11)の濃度分極を算出する濃度分極算出部(24)と、
前記濃度分極の単位時間当りの平均値である平均濃度分極を算出する平均濃度分極算出部(26)と、
前記バッテリ(11)が連続して充放電している連続充放電時間を算出する連続充放電時間算出部(25)と、
前記平均濃度分極および前記連続充放電時間に基づいて濃度分極低減の要否を判定する濃度分極低減要否判定部(27)と、
前記濃度分極低減の要否の判定に基づいて前記最大電流値を設定する最大電流値設定部(28)と、
を備えることを特徴とするバッテリの充放電制御装置。
A current control unit (16) for limiting a current for charging / discharging the battery (11) to a maximum current value or less;
A concentration polarization calculator (24) for calculating the concentration polarization of the battery (11);
An average concentration polarization calculating section (26) for calculating an average concentration polarization which is an average value per unit time of the concentration polarization;
A continuous charge / discharge time calculating unit (25) for calculating a continuous charge / discharge time during which the battery (11) is continuously charged / discharged;
A concentration polarization reduction necessity determination unit (27) for determining whether concentration polarization reduction is necessary based on the average concentration polarization and the continuous charge / discharge time;
A maximum current value setting unit (28) for setting the maximum current value based on the determination of whether or not concentration polarization reduction is necessary;
A charge / discharge control device for a battery, comprising:
前記最大電流値が第1の電流値であるときの前記平均濃度分極が所定値以上であり、かつ前記連続充放電時間が所定時間以上である場合に、前記濃度分極低減要否判定部(27)は濃度分極低減が必要であると判定し、前記最大電流値設定部(28)は前記最大電流値を前記第1の電流値よりも小さい第2の電流値に設定することを特徴とする、請求項1に記載のバッテリの充放電制御装置。   When the average concentration polarization when the maximum current value is the first current value is a predetermined value or more and the continuous charge / discharge time is a predetermined time or more, the concentration polarization reduction necessity determination unit (27 ) Determines that concentration polarization reduction is necessary, and the maximum current value setting unit (28) sets the maximum current value to a second current value smaller than the first current value. The charge / discharge control device for a battery according to claim 1. 前記最大電流値設定部(28)は前記第2の電流値を前記バッテリ(11)の温度に基づいて設定するとともに、前記バッテリ(11)の温度が高いときほど高い値に設定することを特徴とする、請求項2に記載のバッテリの充放電制御装置。   The maximum current value setting unit (28) sets the second current value based on the temperature of the battery (11), and sets the second current value to a higher value as the temperature of the battery (11) is higher. The charge / discharge control device for a battery according to claim 2. 前記最大電流値設定部(28)は更に前記第2の電流値で充放電できる許容充放電時間を設定することを特徴とする、請求項2に記載のバッテリの充放電制御装置。   The charge / discharge control apparatus for a battery according to claim 2, wherein the maximum current value setting unit (28) further sets an allowable charge / discharge time that can be charged / discharged with the second current value. 前記最大電流値設定部(28)は、前記第2の電流値と該第2の電流値で充放電できる前記許容充放電時間との関係を示す電流値−許容充放電時間マップを備え、前記電流値−許容充放電時間マップは前記第2の電流値が大きいほど前記許容充放電時間が短くなるように設定されることを特徴とする、請求項4に記載のバッテリの充放電制御装置。 The maximum current value setting unit (28), said second current value and the current value indicating the relationship between the allowable charging and discharging time can be charged and discharged at a current value of the second - with the allowable charge-discharge time map the current value - permissible charging and discharging time map is characterized by being configured as the permissible charging and discharging time large the second current value is reduced, the charging and discharging of the battery according to claim 4 Control device. 前記濃度分極低減要否判定部(27)は、前記平均濃度分極と前記連続充放電時間との関係を示す平均濃度分極−連続充放電時間マップを備え、前記平均濃度分極−連続充放電時間マップは前記連続充放電時間が長いほど許容できる前記平均濃度分極が小さくなるように設定され、前記最大電流値設定部(28)は前記平均濃度分極−連続充放電時間マップに基づいて前記第2の電流値に設定するか否かを判定することを特徴とする、請求項2に記載のバッテリの充放電制御装置。   The concentration polarization reduction necessity determination unit (27) includes an average concentration polarization-continuous charge / discharge time map indicating a relationship between the average concentration polarization and the continuous charge / discharge time, and the average concentration polarization-continuous charge / discharge time map. Is set so that the allowable average concentration polarization becomes smaller as the continuous charge / discharge time becomes longer, and the maximum current value setting unit (28) sets the second current based on the average concentration polarization-continuous charge / discharge time map. The battery charge / discharge control device according to claim 2, wherein it is determined whether or not the current value is set.
JP2012045263A 2012-03-01 2012-03-01 Battery charge / discharge control device Expired - Fee Related JP5995050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012045263A JP5995050B2 (en) 2012-03-01 2012-03-01 Battery charge / discharge control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012045263A JP5995050B2 (en) 2012-03-01 2012-03-01 Battery charge / discharge control device

Publications (2)

Publication Number Publication Date
JP2013182768A JP2013182768A (en) 2013-09-12
JP5995050B2 true JP5995050B2 (en) 2016-09-21

Family

ID=49273296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012045263A Expired - Fee Related JP5995050B2 (en) 2012-03-01 2012-03-01 Battery charge / discharge control device

Country Status (1)

Country Link
JP (1) JP5995050B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6020378B2 (en) * 2013-07-26 2016-11-02 株式会社Gsユアサ Deterioration state detection device for storage element, degradation state detection method, storage system, and electric vehicle
JP6198352B2 (en) * 2016-03-16 2017-09-20 本田技研工業株式会社 Secondary battery control device
WO2017183238A1 (en) * 2016-04-22 2017-10-26 ソニー株式会社 Charging-discharging control device, charging-discharging control method, battery pack, electronic instrument, electric car, electric tool and electric power storage system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3695175B2 (en) * 1998-10-16 2005-09-14 株式会社日本自動車部品総合研究所 Device for determining full charge of secondary battery for vehicle
US8193777B2 (en) * 2006-12-26 2012-06-05 Panasonic Corporation Non-aqueous electrolyte secondary battery charging method, electronic device, battery pack, and charging device

Also Published As

Publication number Publication date
JP2013182768A (en) 2013-09-12

Similar Documents

Publication Publication Date Title
US9582468B2 (en) Capacity estimating apparatus for secondary battery
JP6540781B2 (en) Power storage device
US10601230B2 (en) Electric power supply system for vehicle
JP5419832B2 (en) Battery capacity calculation device and battery capacity calculation method
JP6179407B2 (en) Battery pack equalization apparatus and method
JP5954357B2 (en) Vehicle control device
US10081268B2 (en) Management device for secondary battery
JP6295858B2 (en) Battery management device
CA2831568C (en) Method for determining remaining lifetime
WO2014111784A1 (en) Electricity storage system
WO2015178075A1 (en) Battery control device
WO2016132895A1 (en) Battery system monitoring apparatus
JP5959566B2 (en) Storage battery control device
JP4494454B2 (en) In-vehicle secondary battery internal state detection device
JP5995050B2 (en) Battery charge / discharge control device
US20160118818A1 (en) Lithium Battery System and Control Method Therefor
JP2014102076A (en) Battery system
JP2013176271A (en) Determination device for determining memory effect of battery and discharge control device of battery
JP6458441B2 (en) Battery charge state estimation apparatus and method
JPWO2013008396A1 (en) Battery pack, charging control system, and charging method
JP7196868B2 (en) battery system
WO2022224682A1 (en) Battery monitoring device
JP2013127440A (en) Power storage system
JP2019062695A (en) Control system of battery pack
JP2013218835A (en) Device for managing temperature of battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160810

R150 Certificate of patent or registration of utility model

Ref document number: 5995050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees