JP2013218835A - Device for managing temperature of battery - Google Patents

Device for managing temperature of battery Download PDF

Info

Publication number
JP2013218835A
JP2013218835A JP2012087162A JP2012087162A JP2013218835A JP 2013218835 A JP2013218835 A JP 2013218835A JP 2012087162 A JP2012087162 A JP 2012087162A JP 2012087162 A JP2012087162 A JP 2012087162A JP 2013218835 A JP2013218835 A JP 2013218835A
Authority
JP
Japan
Prior art keywords
battery
concentration polarization
charge
average
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012087162A
Other languages
Japanese (ja)
Inventor
Hirokazu Oguma
宏和 小熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2012087162A priority Critical patent/JP2013218835A/en
Publication of JP2013218835A publication Critical patent/JP2013218835A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To restrain concentration polarization of a battery without limiting a charging/discharging current.SOLUTION: Concentration polarization calculation means 24 calculates concentration polarization of a battery 11, and average concentration polarization calculation means 26 calculates average concentration polarization that is an average value per unit time of the concentration polarization. Concentration polarization reduction-needs determination means 27 determines whether or not there is a need of reducing concentration polarization. When the means 27 determines that there is a need of reducing the concentration polarization, battery temperature control means 28 warms the battery 11. Therefore, the concentration polarization can be restrained without limiting a charging/discharging current of the battery 11, so as to minimize influences of the battery 11 onto a charging/discharging characteristic.

Description

本発明は、バッテリの濃度分極を算出する濃度分極算出手段と、前記濃度分極の単位時間当りの平均値である平均濃度分極を算出する平均濃度分極算出手段と、前記平均濃度分極に基づいて前記バッテリの濃度分極の低減要否を判定する濃度分極低減要否判定手段と、前記バッテリを加温するバッテリ温度制御手段とを備えるバッテリの温度管理装置に関する。   The present invention provides a concentration polarization calculating means for calculating a concentration polarization of a battery, an average concentration polarization calculating means for calculating an average concentration polarization, which is an average value per unit time of the concentration polarization, and the above-mentioned based on the average concentration polarization. The present invention relates to a battery temperature management apparatus including a concentration polarization reduction necessity determination unit that determines whether or not a concentration polarization of a battery needs to be reduced, and a battery temperature control unit that heats the battery.

二次バッテリを大電流でパルス充電する際に、パルス印加時に濃度分極の進行に伴って緩やかに上昇する分担電圧と、パルス印加終了時に濃度分極の解消に伴って緩やかに低下する分担電圧との少なくとも一方を読み取り、その値が所定の閾値以上になったときに、過充電による濃度分極が発生してバッテリが劣化する虞があると判定してパルス充電を終了するものが、下記特許文献1により公知である。   When the secondary battery is pulse-charged with a large current, a shared voltage that gradually increases as the concentration polarization progresses when the pulse is applied, and a shared voltage that gradually decreases as the concentration polarization disappears when the pulse application ends. When at least one of the values is read and the value becomes equal to or greater than a predetermined threshold value, it is determined that there is a possibility that the concentration polarization due to overcharging may occur and the battery is deteriorated, and the pulse charging is terminated. Is known.

特開2008−181866号公報JP 2008-181866 A

しかしながら、バッテリの充電電流や放電電流を制限して濃度分極の発生を抑制する技術を電動車両に適用した場合には、バッテリからの電流でモータ・ジェネレータをモータとして機能させる場合や、モータ・ジェネレータをジェネレータとして機能させてバッテリを充電する場合に、その充放電電流が制限されるために電動車両の商品性が大きく低下してしまう可能性がある。   However, when the technology that limits the generation of concentration polarization by limiting the charging current and discharging current of the battery is applied to an electric vehicle, the motor / generator functions as a motor with the current from the battery. When the battery is charged by functioning as a generator, the charge / discharge current is limited, and the merchantability of the electric vehicle may be greatly reduced.

本発明は前述の事情に鑑みてなされたもので、充放電電流の制限によらずにバッテリの濃度分極の発生を抑制することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to suppress the occurrence of concentration polarization of a battery without being limited by the charge / discharge current.

上記目的を達成するために、請求項1に記載された発明によれば、バッテリの濃度分極を算出する濃度分極算出手段と、前記濃度分極の単位時間当りの平均値である平均濃度分極を算出する平均濃度分極算出手段と、前記平均濃度分極に基づいて前記バッテリの濃度分極の低減要否を判定する濃度分極低減要否判定手段と、前記バッテリを加温するバッテリ温度制御手段とを備えるバッテリの温度管理装置であって、前記バッテリ温度制御手段が濃度分極の低減が必要であると判定したとき、前記バッテリ温度制御手段は前記バッテリを加温することを特徴とするバッテリの温度管理装置が提案される。   To achieve the above object, according to the first aspect of the present invention, the concentration polarization calculating means for calculating the concentration polarization of the battery and the average concentration polarization which is an average value per unit time of the concentration polarization are calculated. A battery comprising: an average concentration polarization calculating means for performing determination; a concentration polarization reduction necessity determining means for determining whether or not to reduce the concentration polarization of the battery based on the average concentration polarization; and a battery temperature control means for heating the battery. When the battery temperature control means determines that the concentration polarization needs to be reduced, the battery temperature control means heats the battery. Proposed.

また請求項2に記載された発明によれば、請求項1の構成に加えて、前記バッテリの充放電の電流を制限する充放電制御手段を備え、前記平均濃度分極が第1閾値以上で該第1閾値よりも大きい第2閾値未満の場合に前記バッテリ温度制御手段は前記バッテリを加温し、前記平均濃度分極が前記第2閾値以上の場合に前記充放電制御手段は前記バッテリの充放電の電流を制限することを特徴とするバッテリの温度管理装置が提案される。   According to the invention described in claim 2, in addition to the configuration of claim 1, it further includes charge / discharge control means for limiting a charge / discharge current of the battery, and the average concentration polarization is greater than or equal to a first threshold value. The battery temperature control means warms the battery when it is less than a second threshold value that is greater than the first threshold value, and the charge / discharge control means charges or discharges the battery when the average concentration polarization is greater than or equal to the second threshold value. A battery temperature management device is proposed which is characterized in that the current of the battery is limited.

また請求項3に記載された発明によれば、請求項1の構成に加えて、前記バッテリ温度制御手段は、前記バッテリの温度が所定値以上の場合に前記加温を禁止することを特徴とするバッテリの温度管理装置が提案される。   According to a third aspect of the present invention, in addition to the configuration of the first aspect, the battery temperature control means prohibits the heating when the temperature of the battery is equal to or higher than a predetermined value. A battery temperature management device is proposed.

また請求項4に記載された発明によれば、請求項1の構成に加えて、前記バッテリの連続充放電時間を取得する連続充放電時間取得手段を備え、前記濃度分極低減要否判定手段は前記平均濃度分極および前記連続充放電時間に基づいて前記バッテリの濃度分極の低減要否を判定することを特徴とするバッテリの温度管理装置が提案される。   According to the invention described in claim 4, in addition to the configuration of claim 1, it further comprises continuous charge / discharge time acquisition means for acquiring the continuous charge / discharge time of the battery, and the concentration polarization reduction necessity determination means comprises A battery temperature management device is proposed in which it is determined whether or not the concentration polarization of the battery needs to be reduced based on the average concentration polarization and the continuous charge / discharge time.

また請求項5に記載された発明によれば、請求項4の構成に加えて、前記濃度分極低減要否判定手段は前記平均濃度分極および前記連続充放電時間の関係を示すマップに基づいて前記バッテリの濃度分極の低減要否を判定し、前記マップは前記連続充放電時間が長くなるにつれて許容できる前記平均濃度分極が小さくなるように設定されることを特徴とするバッテリの温度管理装置が提案される。   According to the invention described in claim 5, in addition to the configuration of claim 4, the concentration polarization reduction necessity determination unit is configured to perform the determination based on a map indicating a relationship between the average concentration polarization and the continuous charge / discharge time. A battery temperature management device is proposed in which it is determined whether or not the concentration polarization of the battery needs to be reduced, and the map is set such that the average concentration polarization that can be tolerated decreases as the continuous charge / discharge time increases. Is done.

尚、実施の形態のタイマ25は本発明の連続充放電時間取得手段に対応する。   The timer 25 of the embodiment corresponds to the continuous charge / discharge time acquisition means of the present invention.

請求項1の構成によれば、濃度分極算出手段がバッテリの濃度分極を算出し、平均濃度分極算出手段が濃度分極の単位時間当りの平均値である平均濃度分極を算出し、濃度分極低減要否判定手段が平均濃度分極に基づいてバッテリの濃度分極の低減要否を判定する。濃度分極低減要否判定手段が濃度分極の低減が必要であると判定すると、バッテリ温度制御手段がバッテリを加温するので、バッテリの充放電の電流を制限することなく濃度分極の発生を抑制することが可能となり、バッテリの充放電特性に与える影響を最小限に抑えることができる。   According to the configuration of the first aspect, the concentration polarization calculating means calculates the concentration polarization of the battery, the average concentration polarization calculating means calculates the average concentration polarization that is an average value per unit time of the concentration polarization, and concentration polarization reduction is required. The rejection determination means determines whether or not the concentration polarization of the battery needs to be reduced based on the average concentration polarization. If the concentration polarization reduction necessity determination means determines that the concentration polarization needs to be reduced, the battery temperature control means heats the battery, so that the occurrence of concentration polarization is suppressed without limiting the charge / discharge current of the battery. And the influence on the charge / discharge characteristics of the battery can be minimized.

また請求項2の構成によれば、平均濃度分極が第1閾値以上で該第1閾値よりも大きい第2閾値未満の場合には、バッテリ温度制御手段でバッテリを加温して濃度分極の発生を抑制することができ、バッテリを加温しても平均濃度分極が第2閾値以上になった場合には、充放電制御手段がバッテリの充放電の電流を制限することで濃度分極の更なる進行を抑制することができる。   According to the second aspect of the present invention, when the average concentration polarization is greater than or equal to the first threshold and less than the second threshold greater than the first threshold, the battery is heated by the battery temperature control means to generate concentration polarization. If the average concentration polarization exceeds the second threshold even when the battery is heated, the charge / discharge control means limits the charge / discharge current of the battery to further increase the concentration polarization. Progress can be suppressed.

また請求項3の構成によれば、バッテリ温度制御手段はバッテリの温度が所定値以上の場合に加温を禁止するので、バッテリの温度が加温によって過剰に上昇して恒久的な劣化の原因となるのを防止することができる。   According to the third aspect of the present invention, since the battery temperature control means prohibits heating when the temperature of the battery is equal to or higher than a predetermined value, the temperature of the battery is excessively increased by the heating and causes permanent deterioration. Can be prevented.

また請求項4の構成によれば、連続充放電時間取得手段でバッテリの連続充放電時間を取得し、濃度分極低減要否判定手段は平均濃度分極および連続充放電時間に基づいてバッテリの濃度分極の低減要否を判定するので、連続充放電時間が短いときに必ずしも必要のない加温が行われないようし、加温が行われる頻度を減らすことができる。   According to the configuration of claim 4, the continuous charge / discharge time of the battery is acquired by the continuous charge / discharge time acquisition means, and the concentration polarization reduction necessity determination means determines the concentration polarization of the battery based on the average concentration polarization and the continuous charge / discharge time. Therefore, when the continuous charge / discharge time is short, unnecessary heating is not necessarily performed, and the frequency of heating is reduced.

また請求項5の構成によれば、濃度分極低減要否判定手段は平均濃度分極および連続充放電時間の関係を示すマップに基づいて濃度分極の低減要否を判定するが、そのマップは連続充放電時間が長くなるにつれて許容できる平均濃度分極が小さくなるように設定されるので、連続充放電時間が長いために濃度分極が進行し易いときに、早めに濃度分極の低減が必要であると判定し、濃度分極の進行を確実に抑制することができる。   According to the fifth aspect of the present invention, the concentration polarization reduction necessity determination means determines whether or not the concentration polarization needs to be reduced based on a map indicating the relationship between the average concentration polarization and the continuous charge / discharge time. Since the allowable average concentration polarization becomes smaller as the discharge time becomes longer, it is determined that the concentration polarization needs to be reduced early when the concentration polarization tends to proceed because the continuous charge / discharge time is long. In addition, the progress of concentration polarization can be reliably suppressed.

バッテリの温度管理装置の全体構成を示すブロック図。(第1の実施の形態)The block diagram which shows the whole structure of the temperature management apparatus of a battery. (First embodiment) メインルーチンのフローチャート。(第1の実施の形態)The flowchart of a main routine. (First embodiment) メインルーチンのステップS1のサブルーチンのフローチャート。(第1の実施の形態)The flowchart of the subroutine of step S1 of the main routine. (First embodiment) メインルーチンのステップS2のサブルーチンのフローチャート。(第1の実施の形態)The flowchart of the subroutine of step S2 of the main routine. (First embodiment) メインルーチンのステップS3のサブルーチンのフローチャート。(第1の実施の形態)The flowchart of the subroutine of step S3 of the main routine. (First embodiment) バッテリの温度管理装置の全体構成を示すブロック図。(第2の実施の形態)The block diagram which shows the whole structure of the temperature management apparatus of a battery. (Second Embodiment) メインルーチンのステップS3のサブルーチンのフローチャート。(第2の実施の形態)The flowchart of the subroutine of step S3 of the main routine. (Second Embodiment) 平均濃度分極および連続充放電時間が電流制限制御介入ラインを超えないための平均濃度分極上限値を算出する手法の説明図。(第2の実施の形態)Explanatory drawing of the method of calculating the average density | concentration polarization upper limit for the average density | concentration polarization and continuous charging / discharging time not exceeding the electric current limit control intervention line. (Second Embodiment) 平均濃度分極上限値から第2の電流値および許容通電時間の組み合わせを検索するマップ。(第2の実施の形態)The map which searches the combination of the 2nd electric current value and permissible energization time from an average concentration polarization upper limit. (Second Embodiment)

第1の実施の形態First embodiment

以下、図1〜図5に基づいて本発明の第1の実施の形態を説明する。   Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.

図1に示すように、電気自動車あるいはハイブリッド自動車は、充放電が可能なリチウムイオンバッテリ等で構成されるバッテリ11を備える。バッテリ11は図示せぬモータ・ジェネレータに接続されており、モータ・ジェネレータに電力を供給して走行用のトルクやエンジンをアシストするトルクを発生させるとともに、回生制動によりモータ・ジェネレータが発電した電力で充電される。バッテリ11の充放電を制御するバッテリECU12は、バッテリ11の温度を検出するバッテリ温度センサ13と、バッテリ11の電流を検出するバッテリ電流センサ14と、バッテリ11の電圧を検出するバッテリ電圧センサ15とからの信号に基いて、バッテリ11に濃度分極による一過性の抵抗上昇が発生するのを防止すべく、バッテリ11の加温を制御する。   As shown in FIG. 1, an electric vehicle or a hybrid vehicle includes a battery 11 formed of a lithium ion battery that can be charged and discharged. The battery 11 is connected to a motor / generator (not shown). The battery 11 supplies electric power to the motor / generator to generate running torque and torque for assisting the engine. At the same time, the battery 11 uses electric power generated by the motor / generator by regenerative braking. Charged. A battery ECU 12 that controls charging / discharging of the battery 11 includes a battery temperature sensor 13 that detects the temperature of the battery 11, a battery current sensor 14 that detects the current of the battery 11, and a battery voltage sensor 15 that detects the voltage of the battery 11. Based on the signal from, the heating of the battery 11 is controlled in order to prevent the battery 11 from causing a temporary increase in resistance due to concentration polarization.

バッテリECU12は、SOC算出手段21と、SOC−OCVマップ22と、抵抗算出手段23と、濃度分極算出手段24と、タイマ25と、平均濃度分極算出手段26と、濃度分極低減要否判定手段27と、バッテリ温度制御手段28とを備える。ここで、SOC:State of Charge はバッテリ11の残容量であり、OCV:Open Circuit Voltageはバッテリ11の開放電圧である。バッテリ温度制御手段28はバッテリ11を加温して温度を高めるべく、ファン制御装置30を介してバッテリ加温用のファン31に接続されるとともに、エアコン制御装置32を介してバッテリ収納室を空調するエアコン33に接続される。   The battery ECU 12 includes an SOC calculation unit 21, an SOC-OCV map 22, a resistance calculation unit 23, a concentration polarization calculation unit 24, a timer 25, an average concentration polarization calculation unit 26, and a concentration polarization reduction necessity determination unit 27. And a battery temperature control means 28. Here, SOC: State of Charge is the remaining capacity of the battery 11, and OCV: Open Circuit Voltage is the open voltage of the battery 11. The battery temperature control means 28 is connected to the battery heating fan 31 via the fan control device 30 and heats the battery storage chamber via the air conditioner control device 32 in order to warm the battery 11 and increase the temperature. Connected to the air conditioner 33.

次に、バッテリ11の温度制御および充放電制御の概要を、図1のブロック図および図2〜図5のフローチャートに基づいて説明する。   Next, the outline of the temperature control and charge / discharge control of the battery 11 will be described based on the block diagram of FIG. 1 and the flowcharts of FIGS.

先ず、図2のメインルーチンのフローチャートのステップS1で、濃度分極算出手段24によりバッテリ11の濃度分極を算出する。バッテリから電流を外部に取り出した場合、バッテリの端子電圧は起電力よりも小さくなる。この現象を分極と呼び、あるいはこの現象により発生するバッテリの端子電圧の低下量を分極と呼ぶ。濃度分極は上記分極の一種であり、例えばリチウムイオンバッテリでは、ハイレートでの充放電により電解液中のリチウムイオンの濃度が正極側で薄くなって負極側で濃くなるため、バッテリの内部抵抗が増加して端子電圧が低下することになる。   First, the concentration polarization of the battery 11 is calculated by the concentration polarization calculating means 24 in step S1 of the flowchart of the main routine of FIG. When the current is taken out from the battery, the terminal voltage of the battery becomes smaller than the electromotive force. This phenomenon is called polarization, or the amount of decrease in battery terminal voltage caused by this phenomenon is called polarization. Concentration polarization is a kind of polarization described above. For example, in a lithium ion battery, the lithium ion concentration in the electrolyte is decreased on the positive electrode side and increased on the negative electrode side due to charge / discharge at a high rate, so that the internal resistance of the battery increases. As a result, the terminal voltage decreases.

図3のフローチャートは前記ステップS1のサブルーチンを示すもので、先ずステップS11でバッテリ11のOCVを取得する。即ち、SOC算出手段21がバッテリ電流センサ14で検出したバッテリ電流からSOCを算出し、このSOCおよびバッテリ温度センサ13で検出したバッテリ温度をSOC−OCVマップ22に適用することで、OCVを算出する。SOC算出手段21は、バッテリ電流センサ14で検出したバッテリ電流を所定時間毎に積算して積算充電量および積算放電量を算出し、積算充電量および積算放電量を初期状態あるいは充放電開始直前のSOC(初期SOC)に加算または減算することでSOCを算出する。またSOC−OCVマップ22をバッテリ温度毎に応じて持ち替えることで、より精度の高いOCVを算出することができる。   The flowchart of FIG. 3 shows the subroutine of step S1. First, the OCV of the battery 11 is acquired in step S11. That is, the SOC calculation means 21 calculates the SOC from the battery current detected by the battery current sensor 14 and calculates the OCV by applying the SOC and the battery temperature detected by the battery temperature sensor 13 to the SOC-OCV map 22. . The SOC calculation means 21 integrates the battery current detected by the battery current sensor 14 every predetermined time to calculate the integrated charge amount and the integrated discharge amount, and calculates the integrated charge amount and the integrated discharge amount in the initial state or immediately before the start of charge / discharge. The SOC is calculated by adding or subtracting to the SOC (initial SOC). Further, the OCV can be calculated with higher accuracy by changing the SOC-OCV map 22 according to the battery temperature.

尚、OCVはバッテリ11が充放電を行っていないときの端子電圧に相当するため、バッテリ11が充放電を行っていない場合には、そのときの端子電圧をバッテリ電圧センサ15で検出した値をOCVとして使用することができる。   The OCV corresponds to the terminal voltage when the battery 11 is not charging / discharging. Therefore, when the battery 11 is not charging / discharging, the value detected by the battery voltage sensor 15 is the terminal voltage at that time. It can be used as OCV.

続くステップS12で抵抗算出手段23によりバッテリ11の瞬間抵抗R1を取得する。即ち、バッテリ電圧センサ15で検出したバッテリ電圧の変化量と、バッテリ電流センサ14で検出したバッテリ電流の変化量とに最小二乗法等による統計処理を加えることで、バッテリの瞬間抵抗R1を算出する。続くステップS13でバッテリ11の濃度分極Vcを、Vc=OCV−V−I*R1により算出する。ここでVはバッテリ電圧センサ15で検出したバッテリ電圧であり、Iはバッテリ電流センサ14で検出したバッテリ電流である。このとき、バッテリ温度センサ13で検出したバッテリ温度を考慮すれば、より高い精度で濃度分極Vcを算出することができる。   In subsequent step S12, the instantaneous resistance R1 of the battery 11 is acquired by the resistance calculating means 23. In other words, the battery instantaneous resistance R1 is calculated by applying statistical processing such as a least square method to the amount of change in the battery voltage detected by the battery voltage sensor 15 and the amount of change in the battery current detected by the battery current sensor 14. . In subsequent step S13, the concentration polarization Vc of the battery 11 is calculated by Vc = OCV−V−I * R1. Here, V is the battery voltage detected by the battery voltage sensor 15, and I is the battery current detected by the battery current sensor 14. At this time, if the battery temperature detected by the battery temperature sensor 13 is taken into consideration, the concentration polarization Vc can be calculated with higher accuracy.

図2のメインルーチンに戻り、ステップS2で平均濃度分極算出手段26によりバッテリ11の平均濃度分極を取得する。   Returning to the main routine of FIG. 2, the average concentration polarization of the battery 11 is acquired by the average concentration polarization calculating means 26 in step S2.

図4のフローチャートは前記ステップS2のサブルーチンを示すもので、先ずステップS21で濃度分極算出手段24からバッテリ11の濃度分極Vcを取得する。続くステップS22で濃度分極Vcを絶対値に変換した後、ステップS23でバッテリ11の積算濃度分極∫Vc(k+1)を、∫Vc(k+1)=Vc+∫Vc(k)により算出する。即ち、前回ループの積算濃度分極∫Vc(k)に今回ループの濃度分極Vcを加算することで、今回ループの積算濃度分極∫Vc(k+1)を算出する。続くステップS24でタイマ25によりバッテリ電流が流れている連続充放電時間tを計時し、ステップS25で平均濃度分極算出手段26により、平均濃度分極AVE.Vcを、AVE.Vc=[∫Vc(k+1)]/tにより算出する。前記ステップS22で濃度分極Vcを絶対値に変換する理由は、充電時と放電時とで濃度分極Vcの符号が正負に異なるため、絶対値に変換せずに積算するとゼロになって平均濃度分極AVE.Vcを正しく算出できないからである。   The flowchart of FIG. 4 shows the subroutine of step S2. First, in step S21, the concentration polarization Vc of the battery 11 is acquired from the concentration polarization calculation means 24. In step S22, the concentration polarization Vc is converted into an absolute value, and then in step S23, the integrated concentration polarization ∫Vc (k + 1) of the battery 11 is calculated by に よ り Vc (k + 1) = Vc + ∫Vc (k). That is, by adding the concentration polarization Vc of the current loop to the integrated concentration polarization ∫Vc (k) of the previous loop, the integrated concentration polarization ∫Vc (k + 1) of the current loop is calculated. In subsequent step S24, the continuous charge / discharge time t during which the battery current is flowing is measured by the timer 25, and in step S25, the average concentration polarization AVE. Vc, AVE. Vc = [∫Vc (k + 1)] / t. The reason why the concentration polarization Vc is converted to an absolute value in the step S22 is that the sign of the concentration polarization Vc is different between positive and negative at the time of charging and discharging. AVE. This is because Vc cannot be calculated correctly.

図2のメインルーチンに戻り、ステップS3で濃度分極低減要否判定手段27によりバッテリ11の平均濃度分極AVE.Vcを低減する制御の要否を判定し、平均濃度分極AVE.Vcの低減が必要であると判定された場合は、バッテリ温度制御手段28によりバッテリ11を加温する。   Returning to the main routine of FIG. 2, the average concentration polarization AVE. The necessity of control for reducing Vc is determined, and the average concentration polarization AVE. If it is determined that Vc needs to be reduced, the battery 11 is heated by the battery temperature control means 28.

図5のフローチャートは前記ステップS3のサブルーチンを示すもので、先ずステップS31で平均濃度分極算出手段26からバッテリ11の平均濃度分極AVE.Vcを取得する。続くステップS32でタイマ25によりバッテリ11に電流が流れている連続充放電時間tを計時し、ステップS33で濃度分極低減要否判定手段27に記憶した平均濃度分極−連続充放電時間マップに平均濃度分極AVE.Vcおよび連続充放電時間tを適用する。平均濃度分極−連続充放電時間マップは、縦軸に平均濃度分極AVE.Vcをとり横軸に連続充放電時間tをとったもので、そこにバッテリ加温制御介入ラインが設定される。   The flowchart of FIG. 5 shows the subroutine of step S3. First, in step S31, the average concentration polarization AVE. Obtain Vc. In subsequent step S32, the timer 25 counts the continuous charge / discharge time t during which the current flows in the battery 11, and in step S33 the average concentration polarization-continuous charge / discharge time map stored in the concentration polarization reduction necessity determination means 27 stores the average concentration. Polarization AVE. Vc and continuous charge / discharge time t are applied. The average concentration polarization-continuous charge / discharge time map shows the average concentration polarization AVE. Vc is taken and a horizontal charge / discharge time t is taken on the horizontal axis, and a battery heating control intervention line is set there.

バッテリ加温制御介入ラインは、連続充放電時間tが増加すると平均濃度分極AVE.Vcが減少し、逆に平均濃度分極AVE.Vcが増加すると連続充放電時間tが減少するように設定されている。そして平均濃度分極AVE.Vcおよび連続充放電時間tが指示する点がバッテリ加温制御介入ラインを原点側から反原点側に横切ると、バッテリ11に濃度分極による一過性の抵抗上昇が発生する可能性があると判定し、濃度分極の発生を抑制すべくバッテリ11を加温する。   The battery heating control intervention line shows that when the continuous charge / discharge time t increases, the average concentration polarization AVE. Vc decreases, and conversely, the average concentration polarization AVE. It is set so that the continuous charge / discharge time t decreases as Vc increases. And average concentration polarization AVE. When the point indicated by Vc and the continuous charge / discharge time t crosses the battery warming control intervention line from the origin side to the non-origin side, it is determined that there is a possibility that the battery 11 may temporarily increase in resistance due to concentration polarization. Then, the battery 11 is heated to suppress the occurrence of concentration polarization.

即ち、続くステップS34で平均濃度分極AVE.Vcが第1閾値以上であり、かつ連続充放電時間が第1閾値以上であるとき、つまり平均濃度分極AVE.Vcおよび連続充放電時間がバッテリ加温制御介入ラインを反原点側に越えていれば、ステップS35でバッテリ温度センサ13によりバッテリ温度を取得し、ステップS36でバッテリ温度をバッテリ保護温度(例えば、55°C)と比較し、バッテリ保護温度未満であれば、ステップS37でバッテリ温度制御手段28によりバッテリ11を加温する。   That is, in the subsequent step S34, the average concentration polarization AVE. When Vc is equal to or greater than the first threshold and the continuous charge / discharge time is equal to or greater than the first threshold, that is, the average concentration polarization AVE. If Vc and the continuous charge / discharge time exceed the battery warming control intervention line to the opposite origin side, the battery temperature is acquired by the battery temperature sensor 13 in step S35, and the battery temperature is set to the battery protection temperature (eg, 55) in step S36. If the temperature is lower than the battery protection temperature, the battery 11 is heated by the battery temperature control means 28 in step S37.

具体的には、ファン制御装置30でファン31を駆動してバッテリ11に温風を送って加温し、あるいはエアコン制御装置32でエアコン33を制御してバッテリ収納室の温度を上げることでバッテリ11を加温する。加温によりバッテリ11の温度が上昇すると、バッテリ11の電極における電気化学反応が促進されるため、濃度分極の発生が抑制される。   Specifically, the fan control device 30 drives the fan 31 to send warm air to the battery 11 to heat it, or the air conditioner control device 32 controls the air conditioner 33 to raise the temperature of the battery storage chamber. 11 is warmed. When the temperature of the battery 11 rises due to heating, the electrochemical reaction at the electrode of the battery 11 is promoted, so that the occurrence of concentration polarization is suppressed.

以上のように、本実施の形態では、濃度分極低減要否判定手段27が濃度分極の低減が必要であると判定すると、バッテリ温度制御手段28がバッテリ11を加温するので、バッテリ11の充放電電流を制限することなく濃度分極の発生を抑制することが可能となり、バッテリ11の充放電特性に与える影響を最小限に抑えて電気自動車あるいはハイブリッド自動車の商品性を高めることができる。   As described above, in the present embodiment, when the concentration polarization reduction necessity determination unit 27 determines that the concentration polarization needs to be reduced, the battery temperature control unit 28 heats the battery 11. The occurrence of concentration polarization can be suppressed without limiting the discharge current, and the influence on the charge / discharge characteristics of the battery 11 can be suppressed to the minimum, thereby increasing the commerciality of the electric vehicle or hybrid vehicle.

またバッテリ温度制御手段28はバッテリ11の温度がバッテリ保護温度以上の場合に加温を禁止するので、バッテリ11の温度が加温によって過剰に上昇して恒久的な劣化の原因となるのを防止することができる。   Further, since the battery temperature control means 28 prohibits heating when the temperature of the battery 11 is equal to or higher than the battery protection temperature, it prevents the temperature of the battery 11 from excessively rising due to heating and causing permanent deterioration. can do.

また濃度分極低減要否判定手段27は平均濃度分極および連続充放電時間に基づいてバッテリ11の濃度分極の低減要否を判定するので、連続充放電時間が短いときに必ずしも必要のない加温が行われないようし、加温が行われる頻度を減らすことができる。このとき、濃度分極低減要否判定手段27は平均濃度分極および連続充放電時間の関係を示す平均濃度分極−連続充放電時間マップに基づいて濃度分極の低減要否を判定するが、そのマップは連続充放電時間が長くなるにつれて許容できる平均濃度分極が小さくなるように設定されるので、連続充放電時間が長いために濃度分極が進行し易いときに、早めに濃度分極の低減が必要であると判定し、濃度分極の進行を抑制することができる。   Further, since the concentration polarization reduction necessity determination means 27 determines whether or not the concentration polarization of the battery 11 needs to be reduced based on the average concentration polarization and the continuous charge / discharge time, heating that is not necessarily required when the continuous charge / discharge time is short is performed. It can be avoided and the frequency of warming can be reduced. At this time, the concentration polarization reduction necessity determining means 27 determines whether or not the concentration polarization needs to be reduced based on an average concentration polarization-continuous charge / discharge time map showing the relationship between the average concentration polarization and the continuous charge / discharge time. Since the allowable average concentration polarization becomes smaller as the continuous charge / discharge time becomes longer, it is necessary to reduce the concentration polarization earlier when the concentration polarization tends to proceed because the continuous charge / discharge time is longer. And the progress of concentration polarization can be suppressed.

第2の実施の形態Second embodiment

上述した第1の実施の形態は、濃度分極の低減が必要になった場合にバッテリ11を加温するものであるが、第2の実施の形態は、バッテリ11を加温しても濃度分極が充分に低減しない場合に、バッテリ11の充放電電流を制限することで濃度分極を低減するものである。   In the first embodiment described above, the battery 11 is heated when it is necessary to reduce the concentration polarization. However, in the second embodiment, the concentration polarization is performed even when the battery 11 is heated. Is not sufficiently reduced, the concentration polarization is reduced by limiting the charge / discharge current of the battery 11.

図6に示すように、第2の実施の形態は、濃度分極低減要否判定手段27に接続された充放電制御手段29を備えており、充放電制御手段29はバッテリ11の充電電流および放電電流を制限することで濃度分極を低減する。   As shown in FIG. 6, the second embodiment includes charge / discharge control means 29 connected to the concentration polarization reduction necessity determination means 27, and the charge / discharge control means 29 is the charge current and discharge of the battery 11. Concentration polarization is reduced by limiting the current.

図7は第2の実施の形態の濃度分極低減ルーチンのフローチャートであり、第1の実施の形態のフローチャート(図5参照)と比較すると明らかなように、第2の実施の形態はステップS33およびステップS34の内容が異なり、かつステップS38およびステップS39が付加された点で異なっている。   FIG. 7 is a flowchart of the concentration polarization reduction routine according to the second embodiment. As is clear from the flowchart of the first embodiment (see FIG. 5), the second embodiment includes steps S33 and S33. The contents of step S34 are different and are different in that step S38 and step S39 are added.

ステップS33において、濃度分極低減要否判定手段27に記憶した平均濃度分極−連続充放電時間マップは、バッテリ加温制御介入ラインの反原点側に電流制限制御介入ラインが設定され、更に電流制限制御介入ラインの反原点側に入出力禁止ラインが設定される。充放電の最大電流値を規制する制御はバッテリ加温制御介入ラインおよび電流制限制御介入ラインに挟まれた領域で実行され、平均濃度分極AVE.Vcおよび連続充放電時間tが指示する点が入出力禁止ラインを原点側から反原点側に横切ると、バッテリ11に一過性の抵抗上昇が既に発生していると判定してバッテリ11の充放電を禁止する。   In step S33, the average concentration polarization-continuous charging / discharging time map stored in the concentration polarization reduction necessity determining unit 27 has the current limit control intervention line set on the opposite side of the battery heating control intervention line, and further the current limit control. An I / O inhibition line is set on the opposite side of the intervention line. Control that regulates the maximum current value of charge / discharge is executed in a region sandwiched between the battery heating control intervention line and the current limit control intervention line, and the average concentration polarization AVE. When the point indicated by Vc and the continuous charge / discharge time t crosses the input / output inhibition line from the origin side to the non-origin side, it is determined that a temporary increase in resistance has already occurred in the battery 11 and the battery 11 is charged. Discharge is prohibited.

続くステップS34で平均濃度分極AVE.Vcが第1閾値以上で第2閾値未満あり、かつ連続充放電時間tが第1閾値以上で第2閾値未満であるとき、つまり平均濃度分極AVE.Vcおよび連続充放電時間tがバッテリ加温制御介入ラインおよび電流制限制御介入ラインの間にあれば、ステップS35でバッテリ温度センサ13によりバッテリ温度を取得し、ステップS36でバッテリ温度をバッテリ保護温度(例えば、55°C)と比較し、バッテリ保護温度未満であれば、ステップS37でバッテリ温度制御手段28によりバッテリ11を加温する。   In subsequent step S34, the average concentration polarization AVE. When Vc is greater than or equal to the first threshold and less than the second threshold, and the continuous charge / discharge time t is greater than or equal to the first threshold and less than the second threshold, that is, the average concentration polarization AVE. If Vc and continuous charge / discharge time t are between the battery warming control intervention line and the current limit control intervention line, the battery temperature is acquired by the battery temperature sensor 13 in step S35, and the battery temperature is set to the battery protection temperature ( For example, if it is less than the battery protection temperature, the battery 11 is heated by the battery temperature control means 28 in step S37.

一方、前記ステップS34で平均濃度分極AVE.Vcが第1閾値以上で第2閾値未満ないか、あるいは連続充放電時間tが第1閾値以上で第2閾値未満でないとき、ステップS38で平均濃度分極AVE.Vcが第2閾値以上あり、かつ連続充放電時間tが第2閾値以上であれば、つまり平均濃度分極AVE.Vcおよび連続充放電時間tが電流制限制御介入ラインを反原点側に超えていれば、ステップS39でバッテリ11の充放電電流の制限を実行する。即ち、通常時におけるバッテリ11の充放電電流の最大値は、バッテリ11のSOCに応じた第1の電流値に制限されるだけであるが、バッテリ11の充放電電流の制限が実行されると、バッテリ11の充放電電流の最大値は前記第1の電流値よりも小さい第2の電流値に制限される。   On the other hand, the average concentration polarization AVE. When Vc is equal to or greater than the first threshold and not less than the second threshold, or when the continuous charge / discharge time t is equal to or greater than the first threshold and not less than the second threshold, the average concentration polarization AVE. If Vc is equal to or greater than the second threshold and the continuous charge / discharge time t is equal to or greater than the second threshold, that is, the average concentration polarization AVE. If Vc and the continuous charge / discharge time t exceed the current limit control intervention line on the side opposite to the origin, the charge / discharge current of the battery 11 is limited in step S39. That is, the maximum value of the charging / discharging current of the battery 11 at normal time is only limited to the first current value according to the SOC of the battery 11, but when the charging / discharging current of the battery 11 is limited. The maximum value of the charging / discharging current of the battery 11 is limited to a second current value smaller than the first current value.

図8において、平均濃度分極AVE.Vcおよび連続充放電時間tが破線のラインに沿って変化するとき、A点で電流制限制御介入ラインを原点側から反原点側に横切ったとする。A点を通って横軸と平行に延びるラインが入出力禁止ラインと交差する点をB点とし、B点を通って縦軸と平行に延びるラインが電流制限制御介入ラインと交差する点をC点としたとき、A点からC点に向けて平均濃度分極AVE.Vcを所定の減少率で減少させれば、平均濃度分極AVE.Vcを電流制限制御介入エリアよりも原点側に維持することができる。   In FIG. 8, the average concentration polarization AVE. When Vc and continuous charge / discharge time t change along the broken line, it is assumed that the current limit control intervention line crosses from the origin side to the non-origin side at point A. A point where a line extending parallel to the horizontal axis through point A intersects with the input / output inhibition line is defined as B point, and a point extending through the point B parallel to the vertical axis intersects with the current limiting control intervention line is defined as C. Point, the average concentration polarization AVE. If Vc is decreased at a predetermined decrease rate, the average concentration polarization AVE. Vc can be maintained closer to the origin than the current limit control intervention area.

A点の時刻をaとし、B点およびC点の時刻をbとし、C点の平均濃度分極AVE.Vcをcとし、A点およびB点の平均濃度分極AVE.Vcをdとしたとき、A点(つまり時刻a)での濃度分極はd×aで与えられ、C点(つまり時刻b)での濃度分極はc×bで与えられる。平均濃度分極AVE.VcをA点からC点に向けて変化させるための平均濃度分極の時間変化率ΔAVE.Vcは、C点の濃度分極(つまりc×b)からA点の濃度分極(つまりd×a)を減算した差分を、A点からB点までの時間b−aで除算することで算出される。   The time at point A is a, the time at points B and C is b, and the average concentration polarization AVE. Vc is c, and average concentration polarization AVE. When Vc is d, the concentration polarization at point A (ie time a) is given by d × a, and the concentration polarization at point C (ie time b) is given by c × b. Average concentration polarization AVE. Time change rate ΔAVE. Of average concentration polarization for changing Vc from point A to point C Vc is calculated by dividing the difference obtained by subtracting the concentration polarization at point A (ie, d × a) from the concentration polarization at point C (ie, c × b) by the time ba from point A to point B. The

ΔAVE.Vc={(c×b)−(d×a)}/(b−a)
上式において、例えば、a=60min、b=120min、c=60mV、d=80mVとすると、
ΔAVE.Vc={(60×120)−(80×60)}/(120−60)
=40(mV/min)
となり、この平均濃度分極の時間変化率ΔAVE.Vcを、平均濃度分極上限値Vc(DOWN)と定義する。従って、この平均濃度分極上限値Vc(DOWN)で平均濃度分極AVE.Vcを低減すれば、平均濃度分極−連続充放電時間マップにおいて平均濃度分極AVE.Vcおよび連続充放電時間tを制御介入ラインよりも原点側に維持することができる。
ΔAVE. Vc = {(c × b) − (d × a)} / (b−a)
In the above formula, for example, if a = 60 min, b = 120 min, c = 60 mV, d = 80 mV,
ΔAVE. Vc = {(60 × 120) − (80 × 60)} / (120-60)
= 40 (mV / min)
And the time change rate ΔAVE. Vc is defined as the average concentration polarization upper limit value Vc (DOWN). Therefore, the average concentration polarization AVE. With the average concentration polarization upper limit Vc (DOWN). If Vc is reduced, the average concentration polarization AVE. Vc and continuous charge / discharge time t can be maintained closer to the origin than the control intervention line.

図9の電流値−許容通電時間マップは、縦軸に電流値をとり横軸に許容通電時間をとったもので、そこにはバッテリ温度25°Cにおける平均濃度分極上限値Vc(DOWN)が40mのラインと、50mVのラインと、通常利用のラインとが示される。平均濃度分極上限値Vc(DOWN)が小さいということは、濃度分極を解消するために、充放電の最大電流値をより小さくし、かつ許容通電時間をより短くする必要があるということで、そのために特性ラインが原点に接近する。またバッテリ温度が高いときは濃度分極が解消し易いため、例えば30°Cの時における40mVのラインはバッテリ温度25°Cのときよりも反原点側に移動する。   The current value-allowable energization time map of FIG. 9 is obtained by taking the current value on the vertical axis and the allowable energization time on the horizontal axis, and there is an average concentration polarization upper limit Vc (DOWN) at a battery temperature of 25 ° C. A 40 m line, a 50 mV line, and a normal use line are shown. The fact that the average concentration polarization upper limit Vc (DOWN) is small means that in order to eliminate concentration polarization, it is necessary to make the maximum current value for charging / discharging smaller and the allowable energization time shorter. The characteristic line approaches the origin. Further, since the concentration polarization is easily eliminated when the battery temperature is high, for example, the 40 mV line at 30 ° C. moves to the opposite origin side than when the battery temperature is 25 ° C.

バッテリ温度25°Cで平均濃度分極上限値Vc(DOWN)が40mVのとき、充放電の電流値が高いI1であれば許容通電時間は短いt1になり、充放電の電流値が中程度のI2であれば許容通電時間は中程度のt2になり、充放電の電流値が低いI3であれば許容通電時間は長いt3になる。よってバッテリ11に供給する最大電流値および許容通電時間を、電流値−許容充放電時間マップにおける所定の平均濃度分極上限値Vc(DOWN)のラインを反原点側に超えないように相互に関連して制御することで、バッテリ11の濃度分極を確実に抑制して急激な電圧低下の発生を未然に防止することができる。   When the average concentration polarization upper limit Vc (DOWN) is 40 mV at a battery temperature of 25 ° C., if the charge / discharge current value is high I1, the allowable energization time is t1, and the charge / discharge current value is moderate I2. If this is the case, the allowable energization time is medium t2, and if the charge / discharge current value is low I3, the allowable energization time is long t3. Therefore, the maximum current value supplied to the battery 11 and the allowable energization time are related to each other so that the predetermined average concentration polarization upper limit value Vc (DOWN) line in the current value-allowable charge / discharge time map does not exceed the anti-origin side. Thus, the concentration polarization of the battery 11 can be reliably suppressed to prevent a sudden voltage drop.

以上のように、本実施の形態によれば、バッテリ11の濃度分極Vcの単位時間当りの平均値である平均濃度分極AVE.Vcが第2閾値以上であり、かつバッテリ11が連続して充放電している連続充放電時間tが第2閾値以上であるときに濃度分極の更なる低減が必要であると判定し、バッテリ11を充放電する最大電流値を第1の電流値からそれよりも小さい2の電流値に低減するので、バッテリ11が過大な電流で充放電されて濃度分極が増長する前に電流を低減し、バッテリ11の内部抵抗の増大による電圧低下を最小限に抑えることができる。   As described above, according to the present embodiment, the average concentration polarization AVE., Which is the average value per unit time of the concentration polarization Vc of the battery 11. When Vc is equal to or greater than the second threshold and the continuous charge / discharge time t during which the battery 11 is continuously charged / discharged is equal to or greater than the second threshold, it is determined that further reduction of the concentration polarization is necessary, and the battery 11 is reduced from the first current value to a current value of 2 that is smaller than the first current value, so that the current is reduced before the battery 11 is charged / discharged with an excessive current and the concentration polarization increases. The voltage drop due to the increase in the internal resistance of the battery 11 can be minimized.

また充放電制御手段29は、第2の電流値をバッテリ温度が高いときほど高い値に設定するので、バッテリ11が高温であって濃度分極が解消され易いときに第2の電流値を高い値に設定し、不要な電流制限を回避してバッテリ11の性能を最大限に引き出すことができる。   Further, since the charge / discharge control means 29 sets the second current value to a higher value as the battery temperature is higher, the second current value is set to a higher value when the battery 11 is hot and the concentration polarization is easily eliminated. To avoid unnecessary current limitation and maximize the performance of the battery 11.

また充放電制御手段29は、バッテリ11を充放電可能な最大電流値である第2の電流値に加えて、第2の電流値で充放電できる許容充放電時間を設定するので、バッテリ11を充放電する電流がセンサの誤差等により一時的に第2の電流値を超えても、その度に不必要な電流制限が行われるのを防止することができる。しかも充放電制御手段29の電流値−許容通電時間マップは、第2の電流値が大きいほど許容充放電時間が短くなるように設定されるので、例えばハイブリッド自動車のように電流値は高いが通電時間が短い態様や、電気自動車のように電流値は低いが通電時間が長い態様でバッテリ11を使用する場合であっても、電流値および許容通電時間の組み合わせを柔軟に設定することが可能となる。   The charge / discharge control means 29 sets the allowable charge / discharge time that can be charged / discharged at the second current value in addition to the second current value that is the maximum current value that can charge / discharge the battery 11. Even when the charging / discharging current temporarily exceeds the second current value due to a sensor error or the like, unnecessary current limitation can be prevented each time. Moreover, the current value-allowable energization time map of the charge / discharge control means 29 is set so that the allowable charge / discharge time is shortened as the second current value is increased. Even when the battery 11 is used in a mode in which the time is short or in a mode in which the current value is low but the energization time is long like an electric vehicle, the combination of the current value and the allowable energization time can be set flexibly. Become.

以上、本発明の実施の形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   The embodiments of the present invention have been described above, but various design changes can be made without departing from the scope of the present invention.

例えば、本発明のバッテリはリチウムイオンバッテリに限定されるものではなく、その用途も電気自動車およびハイブリッド自動車に限定されるものではない。   For example, the battery of the present invention is not limited to a lithium ion battery, and its use is not limited to an electric vehicle and a hybrid vehicle.

11 バッテリ
24 濃度分極算出手段
25 タイマ(連続充放電時間取得手段)
26 平均濃度分極算出手段
27 濃度分極低減要否判定手段
28 バッテリ温度制御手段
29 充放電制御手段
11 Battery 24 Concentration polarization calculation means 25 Timer (continuous charge / discharge time acquisition means)
26 Average concentration polarization calculation means 27 Concentration polarization reduction necessity determination means 28 Battery temperature control means 29 Charge / discharge control means

Claims (5)

バッテリ(11)の濃度分極を算出する濃度分極算出手段(24)と、
前記濃度分極の単位時間当りの平均値である平均濃度分極を算出する平均濃度分極算出手段(26)と、
前記平均濃度分極に基づいて前記バッテリ(11)の濃度分極の低減要否を判定する濃度分極低減要否判定手段(27)と、
前記バッテリ(11)を加温するバッテリ温度制御手段(28)とを備えるバッテリの温度管理装置であって、
前記濃度分極低減要否判定手段(27)が濃度分極の低減が必要であると判定したとき、前記バッテリ温度制御手段(28)は前記バッテリ(11)を加温することを特徴とするバッテリの温度管理装置。
Concentration polarization calculating means (24) for calculating concentration polarization of the battery (11);
Average concentration polarization calculating means (26) for calculating an average concentration polarization which is an average value per unit time of the concentration polarization;
Concentration polarization reduction necessity determining means (27) for determining whether or not the concentration polarization of the battery (11) needs to be reduced based on the average concentration polarization;
A battery temperature management device comprising battery temperature control means (28) for heating the battery (11),
The battery temperature control means (28) heats the battery (11) when the concentration polarization reduction necessity determination means (27) determines that concentration polarization reduction is necessary. Temperature management device.
前記バッテリ(11)の充放電の電流を制限する充放電制御手段(29)を備え、
前記平均濃度分極が第1閾値以上で該第1閾値よりも大きい第2閾値未満の場合に前記バッテリ温度制御手段(28)は前記バッテリ(11)を加温し、前記平均濃度分極が前記第2閾値以上の場合に前記充放電制御手段(29)は前記バッテリ(11)の充放電の電流を制限することを特徴とする、請求項1に記載のバッテリの温度管理装置。
Charge / discharge control means (29) for limiting the charge / discharge current of the battery (11);
When the average concentration polarization is greater than or equal to a first threshold value and less than a second threshold value that is greater than the first threshold value, the battery temperature control means (28) heats the battery (11), and the average concentration polarization is greater than the first threshold value. The battery temperature management device according to claim 1, wherein the charge / discharge control means (29) limits a charge / discharge current of the battery (11) when the threshold value is two or more.
前記バッテリ温度制御手段(28)は、前記バッテリ(11)の温度が所定値以上の場合に前記加温を禁止することを特徴とする、請求項1に記載のバッテリの温度管理装置。   The battery temperature control device according to claim 1, wherein the battery temperature control means (28) prohibits the heating when the temperature of the battery (11) is a predetermined value or more. 前記バッテリ(11)の連続充放電時間を取得する連続充放電時間取得手段(25)を備え、
前記濃度分極低減要否判定手段(27)は前記平均濃度分極および前記連続充放電時間に基づいて前記バッテリ(11)の濃度分極の低減要否を判定することを特徴とする、請求項1に記載のバッテリの温度管理装置。
A continuous charge / discharge time acquisition means (25) for acquiring the continuous charge / discharge time of the battery (11);
The concentration polarization reduction necessity determination means (27) determines whether or not the concentration polarization of the battery (11) needs to be reduced based on the average concentration polarization and the continuous charge / discharge time. The battery temperature management device described.
前記濃度分極低減要否判定手段(27)は前記平均濃度分極および前記連続充放電時間の関係を示すマップに基づいて前記バッテリ(11)の濃度分極の低減要否を判定し、前記マップは前記連続充放電時間が長くなるにつれて許容できる前記平均濃度分極が小さくなるように設定されることを特徴とする、請求項4に記載のバッテリの温度管理装置。   The concentration polarization reduction necessity determination means (27) determines whether or not the concentration polarization of the battery (11) needs to be reduced based on a map showing the relationship between the average concentration polarization and the continuous charge / discharge time, and the map The battery temperature management device according to claim 4, wherein the average concentration polarization that can be tolerated decreases as the continuous charge / discharge time increases.
JP2012087162A 2012-04-06 2012-04-06 Device for managing temperature of battery Pending JP2013218835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012087162A JP2013218835A (en) 2012-04-06 2012-04-06 Device for managing temperature of battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012087162A JP2013218835A (en) 2012-04-06 2012-04-06 Device for managing temperature of battery

Publications (1)

Publication Number Publication Date
JP2013218835A true JP2013218835A (en) 2013-10-24

Family

ID=49590737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012087162A Pending JP2013218835A (en) 2012-04-06 2012-04-06 Device for managing temperature of battery

Country Status (1)

Country Link
JP (1) JP2013218835A (en)

Similar Documents

Publication Publication Date Title
US10081268B2 (en) Management device for secondary battery
JP4962808B2 (en) Engine automatic control device and storage battery charge control device
JP5772965B2 (en) Non-aqueous secondary battery control device and control method
US20140103859A1 (en) Electric storage system
US20190044345A1 (en) Control device and method for charging a rechargeable battery
US7982437B2 (en) Automotive power supply system and method of operating same
US11225166B2 (en) Control device and method for discharging a rechargeable battery
US11411421B2 (en) Control device and method for charging a rechargeable battery
JPWO2012101667A1 (en) Power storage system
JP5959566B2 (en) Storage battery control device
WO2019184842A1 (en) Method and apparatus for calculating soc of power battery pack, and electric vehicle
JP2014157717A (en) Battery system
JP6413763B2 (en) Charge state detection device, charge state detection method, mobile object
JP2002204538A (en) Battery control device for hybrid vehicle
JP2012034425A (en) Charging/discharging control circuit of secondary battery, battery pack, and battery power supply system
US20160118818A1 (en) Lithium Battery System and Control Method Therefor
WO2017129264A1 (en) Control device and method for charging a rechargeable battery
JP2019041497A (en) Power source management device
JP2019184440A (en) Battery controller
JP5995050B2 (en) Battery charge / discharge control device
JP2014071100A (en) Charge control device of power storage element, power storage device, and charge control method
JP2013218835A (en) Device for managing temperature of battery
JP5772615B2 (en) Power storage system
JP2013031248A (en) Battery device hysteresis reduction system
JP5288140B2 (en) Capacitor control device