JP4494454B2 - In-vehicle secondary battery internal state detection device - Google Patents

In-vehicle secondary battery internal state detection device Download PDF

Info

Publication number
JP4494454B2
JP4494454B2 JP2007301648A JP2007301648A JP4494454B2 JP 4494454 B2 JP4494454 B2 JP 4494454B2 JP 2007301648 A JP2007301648 A JP 2007301648A JP 2007301648 A JP2007301648 A JP 2007301648A JP 4494454 B2 JP4494454 B2 JP 4494454B2
Authority
JP
Japan
Prior art keywords
internal state
secondary battery
vehicle
value
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007301648A
Other languages
Japanese (ja)
Other versions
JP2009126277A (en
Inventor
覚 水野
博明 小野
征幸 外村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2007301648A priority Critical patent/JP4494454B2/en
Priority to DE102008058292.1A priority patent/DE102008058292B4/en
Priority to CN2008101911603A priority patent/CN101447688B/en
Priority to US12/275,653 priority patent/US7990111B2/en
Publication of JP2009126277A publication Critical patent/JP2009126277A/en
Application granted granted Critical
Publication of JP4494454B2 publication Critical patent/JP4494454B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

この発明は、車載二次電池の蓄電状態などの内部状態の推定における電池分極の影響を低減可能な車載二次電池の内部状態検出技術に関する。   The present invention relates to a technique for detecting an internal state of an in-vehicle secondary battery that can reduce the influence of battery polarization in estimating an internal state such as a storage state of the in-vehicle secondary battery.

車載二次電池の大容量化と車載電気負荷の大型化が進行しており、それに伴い過充電や過放電の防止のため車載二次電池の容量などの内部状態の検出精度の向上がますます重要となっている。   Increasing the capacity of in-vehicle secondary batteries and increasing the size of in-vehicle electric loads will improve the detection accuracy of internal conditions such as the capacity of in-vehicle secondary batteries to prevent overcharge and overdischarge. It is important.

特許文献1は、定電圧充電時における直前の充電電流の変化波形から類推した充電電流変化特性(以下、充電電流近似関数とも呼ぶ)に基づいて、充電電流が所定の最終値となる時点(以下、推定時点とも呼ぶ)を推定し、この最終値に達するまでの充電容量(Ah)や充電必要時間を算出する技術を開示している。
特許第3249788号
Patent Document 1 discloses a point in time when a charging current reaches a predetermined final value (hereinafter referred to as a charging current approximation function) based on a charging current variation characteristic (hereinafter also referred to as a charging current approximation function) estimated from a charging current variation waveform immediately before constant voltage charging. , Which is also referred to as an estimation time point), and a technology for calculating a charge capacity (Ah) and a required charge time until the final value is reached is disclosed.
Japanese Patent No. 3249788

しかしながら、上記した特許文献1の技術では、推定した充電電流近似関数が電池の分極状態のばらつきにより変動して実際の充電電流波形からはずれるため、実際に充電電流が所定値となる時点(実際時点とも呼ぶ)と推定時点との間のずれが大きいという欠点があった。このため、上記推定時点を基礎として求めた上記最終値に達するまでの充電容量(Ah)や充電必要時間の精度が低下するという不具合が大きかった。   However, in the technique of Patent Document 1 described above, the estimated charging current approximation function fluctuates due to variations in the polarization state of the battery and deviates from the actual charging current waveform, so that the charging current actually becomes a predetermined value (actual time point). There is a drawback that there is a large difference between the estimated time and the estimated time. For this reason, there has been a serious problem that the accuracy of the charge capacity (Ah) and the required charging time until the final value obtained on the basis of the estimated time point is lowered.

本発明は上記問題点に鑑みなされたものであり、定電圧充電時の充電電流が所定の最終値に到達する時点を高精度に推定可能な車載二次電池の内部状態検出装置を提供することをその目的としている。   The present invention has been made in view of the above-described problems, and provides an internal state detection device for an in-vehicle secondary battery capable of accurately estimating when the charging current during constant voltage charging reaches a predetermined final value. Is the purpose.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記した課題を解決する本発明は、車載交流発電機により所定の調整電圧に収束制御される車載二次電池の端子電圧及び電流を検出する検出回路部と、算出した電流に基づいて前記車載二次電池の内部状態を推定する内部状態検出回路部とを備える車載二次電池の内部状態検出装置において、前記内部状態検出回路部が、車両始動直後又は車両走行中に前記車載二次電池の所定電圧値での定電圧充電を所定時間継続し、前記定電圧充電開始後における前記車載二次電池の分極量に関連するパラメータである分極関連量Pを充電電流データの変化に基づいて求め、求めた分極関連量Pの変化率が所定しきい値未満となったかどうかを判定し、分極関連量Pの変化率が所定しきい値未満となったと判定した後の所定時間に得た複数の前記充電電流データに基づいて前記充電電流値が所定の最終値に達するまでの充電電流積算値を求め、求めた前記充電電流積算値に基づいて前記車載二次電池の内部状態を決定することをその特徴としている。   The present invention that solves the above-described problems includes a detection circuit unit that detects a terminal voltage and a current of a vehicle-mounted secondary battery that is converged and controlled to a predetermined adjustment voltage by a vehicle-mounted AC generator, and the vehicle-mounted 2D based on the calculated current. An internal state detection device for an in-vehicle secondary battery comprising an internal state detection circuit unit for estimating an internal state of the secondary battery, wherein the internal state detection circuit unit is configured to store the predetermined in-vehicle secondary battery immediately after starting the vehicle or during traveling of the vehicle. Constant voltage charging at a voltage value is continued for a predetermined time, and a polarization related amount P that is a parameter related to the polarization amount of the in-vehicle secondary battery after the start of the constant voltage charging is obtained based on a change in charging current data. It is determined whether or not the rate of change of the polarization related amount P is less than a predetermined threshold, and a plurality of the above-mentioned obtained at a predetermined time after determining that the rate of change of the polarization related amount P is less than the predetermined threshold. Charging current The charging current integrated value until the charging current value reaches a predetermined final value is obtained based on the data, and the internal state of the in-vehicle secondary battery is determined based on the obtained charging current integrated value. It is said.

すなわち、この発明は、車載二次電池の定電圧充電開始後における分極関連量Pの変化が緩慢となった段階に至ったのを確認した後、いままでの充電電流の推移から今後の充電電流の変化を推定し、この推定に基づいて車載二次電池の内部状態を検出(判定)する。このようにすれば、定電圧充電下の車載二次電池の内部状態検出に際して、車載二次電池の分極状態のばらつきの影響をほぼ排除することができるため、高精度の内部状態検出を実現することができる。なお、ここで言う内部状態検出とは、SOCやSOH又はそれらに関連する量(たとえば、満充電値からSOCやSOHの現在値を差し引いた量)などがある。   That is, the present invention confirms that the change in the polarization-related amount P after the start of constant voltage charging of the in-vehicle secondary battery has reached a slow stage, and then determines the future charging current from the transition of the charging current so far. And the internal state of the in-vehicle secondary battery is detected (determined) based on this estimation. In this way, when detecting the internal state of the in-vehicle secondary battery under constant voltage charging, it is possible to almost eliminate the influence of variations in the polarization state of the in-vehicle secondary battery, thereby realizing highly accurate internal state detection. be able to. The internal state detection referred to here includes SOC, SOH, or an amount related thereto (for example, an amount obtained by subtracting the current value of SOC or SOH from a full charge value).

好適な態様において、前記内部状態検出回路部は、エンジン始動直後の定電圧充電期間に前記各ステップを実施する。エンジン停止時にはイグニッションスイッチの遮断などによりバッテリの充放電が極めて少なく、その結果として車載二次電池の分極がほぼ0となっていると見なせるため、分極関連量Pの算出精度を向上することができ、その結果として上記内部状態決定の精度を向上することができる。   In a preferred aspect, the internal state detection circuit unit performs the steps in a constant voltage charging period immediately after engine startup. When the engine is stopped, the charge / discharge of the battery is very low due to the ignition switch being shut off, and as a result, it can be considered that the polarization of the in-vehicle secondary battery is almost zero, so that the calculation accuracy of the polarization related quantity P can be improved. As a result, the accuracy of the internal state determination can be improved.

好適な態様において、前記内部状態検出回路部は、所定値以上の充電電流が流れている車両走行中における定電圧充電期間に前記内部状態の決定処理を実行する。これにより、車載二次電池の内部状態を頻繁に検出することができる。   In a preferred aspect, the internal state detection circuit unit executes the internal state determination process during a constant voltage charging period during traveling of the vehicle in which a charging current of a predetermined value or more flows. Thereby, the internal state of a vehicle-mounted secondary battery can be detected frequently.

好適な態様において、前記内部状態検出回路部は、車両走行中において充放電電流が所定値以下の期間が所定時間持続した後に実施される前記定電圧充電期間に前記内部状態の決定処理を実行する。これにより、車載二次電池の分極が十分に解消された状態で定電圧充電を開始することができるため、上記内部状態決定の精度を向上することができる。   In a preferred aspect, the internal state detection circuit unit executes the internal state determination process during the constant voltage charging period that is performed after a period in which the charging / discharging current is equal to or less than a predetermined value during vehicle travel continues for a predetermined time. . As a result, constant voltage charging can be started in a state in which the polarization of the in-vehicle secondary battery is sufficiently eliminated, so that the accuracy of the internal state determination can be improved.

好適な態様において、前記内部状態検出回路部は、分極関連量Pの今回値をPn、その前回値をPnー1、Inを充電電流の今回値、dtを定電圧充電時の電流検出インタバル、τを所定の時定数値とする時、前記分極関連量Pを、 Pn = Pn-1 + In*dt - 1/τ*Pn-1*dtの式から求める。これにより、分極(充電分極)の量を比較的高精度に求めることができる。   In a preferred embodiment, the internal state detection circuit unit has a current value of the polarization-related quantity P as Pn, its previous value as Pn−1, In as a current value of a charging current, and dt as a current detection interval during constant voltage charging, When τ is a predetermined time constant value, the polarization-related quantity P is obtained from the formula: Pn = Pn−1 + In * dt−1 / τ * Pn−1 * dt. Thereby, the amount of polarization (charge polarization) can be obtained with relatively high accuracy.

好適な態様において、前記内部状態検出回路部は、Iを充電電流 、a、bを定数、tを定電圧充電開始からの経過時間、Kを所定の比例定数とする時、分極関連量Pの変化率が所定しきい値未満となったと判定した後の所定時間毎に得た前記充電電流Iの複数のデータに基づいて、充電電流Iの近似式(I =K+ a*exp(b*t))を導出し、前記近似式を用いて前記充電電流積算値を求める。これにより、車載二次電池の内部状態を高精度に検出することができる。   In a preferred embodiment, the internal state detection circuit unit is configured such that when I is a charging current, a and b are constants, t is an elapsed time from the start of constant voltage charging, and K is a predetermined proportional constant, Based on a plurality of data of the charging current I obtained every predetermined time after determining that the rate of change is less than a predetermined threshold, an approximate expression (I = K + a * exp (b * t )) Is derived, and the charging current integrated value is obtained using the approximate expression. Thereby, the internal state of the in-vehicle secondary battery can be detected with high accuracy.

本発明の車載二次電池の内部状態検出装置の好適な実施形態を以下に説明する。ただし、本発明は下記の実施形態に限定解釈されるべきものでなく、その他の公知技術やそれと同等機能を有する技術を組み合わせて本発明の技術思想を実施しても良いことは言うまでもない。   A preferred embodiment of the internal state detection device for an in-vehicle secondary battery of the present invention will be described below. However, the present invention should not be construed as being limited to the following embodiments, and it goes without saying that the technical idea of the present invention may be implemented by combining other known techniques and techniques having the same functions.

(装置構成)
実施形態1の車載二次電池のSOC演算装置を図1に示すブロック図を参照して説明する。
(Device configuration)
An SOC computing device for an in-vehicle secondary battery according to Embodiment 1 will be described with reference to a block diagram shown in FIG.

101は車載蓄電装置(以下、バッテリとも呼ぶ)、102は車載エンジン(図示せず)にて駆動されてバッテリ101を充電する車載発電機(本発明で言う車載交流発電機)、103はバッテリ101から給電される車載電気負荷をなす電気装置、104はバッテリ101の充放電電流を検出し、ディジタル信号形式で出力する電流センサ(本発明で言う検出回路部)、105はバッテリ101のSOCなどを演算するための電子回路装置である蓄電池状態検知装置(本発明で言う車載二次電池の内部状態検出装置)である。蓄電池状態検知装置105は、本発明で言う分極算出回路部に相当する演算処理を含んでいる。106は蓄電池状態検知装置105の入力用のバッファ部、107は蓄電池状態検知装置105の演算処理部、108は演算処理部107からSOC並びに外部から入力されたエンジン状態、車速、発電機回転数などの車両情報110に基づいて車載発電機102の発電量を演算するECUである。109は界磁コイル型の車載発電機の出力を制御する発電機制御装置であり、発電機制御装置109は、通常は従来同様、バッテリ101の電圧と所定の調整電圧との差を0とするために界磁電流のフィードバック制御を行い、バッテリ101の電圧をこの調整電圧にたもつ。また、発電機制御装置109は、必要に応じてECU108が決定した発電量に対応する発電を車載発電機102に行わせる。   101 is an in-vehicle power storage device (hereinafter also referred to as a battery), 102 is an in-vehicle generator (in-vehicle AC generator in the present invention) that is driven by an in-vehicle engine (not shown) and charges the battery 101, and 103 is a battery 101. 104 is a current sensor (detection circuit unit referred to in the present invention) that detects the charging / discharging current of the battery 101 and outputs it in the form of a digital signal, 105 is the SOC of the battery 101, etc. It is a storage battery state detection device (an internal state detection device for an in-vehicle secondary battery referred to in the present invention) that is an electronic circuit device for calculation. The storage battery state detection device 105 includes a calculation process corresponding to the polarization calculation circuit unit referred to in the present invention. 106 is an input buffer unit of the storage battery state detection device 105, 107 is an arithmetic processing unit of the storage battery state detection device 105, 108 is SOC from the arithmetic processing unit 107, engine state input from the outside, vehicle speed, generator speed, etc. This ECU calculates the power generation amount of the in-vehicle generator 102 based on the vehicle information 110 of the vehicle. Reference numeral 109 denotes a generator control device that controls the output of the field coil type on-vehicle generator. The generator control device 109 normally sets the difference between the voltage of the battery 101 and a predetermined adjustment voltage to 0 as in the conventional case. Therefore, feedback control of the field current is performed, and the voltage of the battery 101 is set to this adjustment voltage. Further, the generator control device 109 causes the in-vehicle generator 102 to generate power corresponding to the power generation amount determined by the ECU 108 as necessary.

蓄電池状態検知装置105のバッファ部106及び演算処理部107はマイコン装置によるソフトウエア演算により実現されるが、専用のハードウエア回路により構成されてよいことはもちろんである。バッファ部106は、バッテリ101の電圧Vと電流センサ104からの電流Iとのペア(データペア)を所定タイミングにてサンプリングして保持する。演算処理部107は、バッファ部106から入力される入力パラメータに基づいて後述の方法によりSOCを演算する。バッテリ101は、鉛蓄電池、ニッケル−水素電池、リチウム電池などの二次電池が採用されるが、種類は限定されない。この実施例では通常の車両用鉛蓄電池を採用した。   The buffer unit 106 and the arithmetic processing unit 107 of the storage battery state detection device 105 are realized by software calculation by a microcomputer device, but of course may be configured by a dedicated hardware circuit. The buffer unit 106 samples and holds a pair (data pair) of the voltage V of the battery 101 and the current I from the current sensor 104 at a predetermined timing. The arithmetic processing unit 107 calculates the SOC by a method described later based on the input parameter input from the buffer unit 106. The battery 101 may be a secondary battery such as a lead storage battery, a nickel-hydrogen battery, or a lithium battery, but the type is not limited. In this embodiment, an ordinary vehicle lead-acid battery is employed.

(定電圧充電制御)
次に、この実施形態の特徴をなす制御動作を図2を参照して以下に具体的に説明する。なお、図2において蓄電池状態検知装置105は、所定の短いインタバルで順次実行される多数の処理動作の一つをなす定電圧充電制御を示すサブルーチンである。この定電圧充電制御ルーチンは、エンジン始動時又は車両走行中に所定タイミングにて開始される。
(Constant voltage charging control)
Next, the control operation that characterizes this embodiment will be specifically described below with reference to FIG. In FIG. 2, the storage battery state detection device 105 is a subroutine showing constant voltage charging control that performs one of a number of processing operations that are sequentially executed at a predetermined short interval. This constant voltage charging control routine is started at a predetermined timing when the engine is started or while the vehicle is running.

まず、現在、定電圧充電制御動作を実行中かどうかを調べ(S1)、実行中であればステップS2に進み、そうでなければバッテリ101に定電圧を印加する定電圧充電制御を開始する(S3)。なお、この定電圧充電制御は、車載発電機102の発電を制御することによりバッテリ101の電圧を一定値に保つことによりなされる。   First, it is checked whether or not the constant voltage charge control operation is currently being executed (S1). If it is being executed, the process proceeds to step S2, otherwise constant voltage charge control for applying a constant voltage to the battery 101 is started ( S3). The constant voltage charging control is performed by maintaining the voltage of the battery 101 at a constant value by controlling the power generation of the in-vehicle generator 102.

ただし、ステップS1では、突然の負荷断続、又は、エンジン回転数の急変による発電機102の発電電圧の急変によるバッテリ101の端子電圧の急変があったかどうかを調べ、あった場合には、たとえ今まで定電圧充電制御を実行中であっても定電圧充電制御動作を実行中とは見なさないものとし、ステップS3に進むものとする。これは発電機102の界磁電流制御の時定数遅れを考慮したものである。なお、上記したような発電状況や負荷状況の急変が生じた場合には、図2に示す定電圧充電制御を中止し、一定時間経過した後、再度それを開始することが好適である。   However, in step S1, it is checked whether there is a sudden change in the terminal voltage of the battery 101 due to a sudden load interruption or a sudden change in the power generation voltage due to a sudden change in the engine speed. Even if the constant voltage charge control is being executed, the constant voltage charge control operation is not regarded as being executed, and the process proceeds to step S3. This is because the time constant delay of the field current control of the generator 102 is taken into consideration. In addition, when the above-mentioned sudden change of the power generation situation or the load situation occurs, it is preferable to stop the constant voltage charging control shown in FIG. 2 and start it again after a certain period of time.

ステップS2では、バッテリ101の充電電流Icvを読み込み、読み込んだ充電電流Icvから分極関連量Pとその微分値ΔPとを算出する(S3)。この実施例では、分極関連量Pは、次の式から求める。   In step S2, the charging current Icv of the battery 101 is read, and the polarization related quantity P and its differential value ΔP are calculated from the read charging current Icv (S3). In this embodiment, the polarization related amount P is obtained from the following equation.

Pn = Pn-1 + In*dt - 1/τ*Pn-1*dt (τ:時定数) なお、上式において、nは今回値を示し、n−1は前回値を示す。したがって、 Pnは分極関連量Pの今回値、 Pn-1は分極関連量Pの前回値、Inは充電電流Icvの今回値である。今回値と前回値との間の時間差は所定の一定値dtに設定されている。          Pn = Pn-1 + In * dt-1 / .tau. * Pn-1 * dt (.tau .: time constant) In the above equation, n represents the current value and n-1 represents the previous value. Therefore, Pn is the current value of the polarization related quantity P, Pn-1 is the previous value of the polarization related quantity P, and In is the current value of the charging current Icv. The time difference between the current value and the previous value is set to a predetermined constant value dt.

ただし、この式の初回の演算においては、分極関連量Pの前回値Pn-1は0とすることが好適である。また、この実施例では、簡単のために、dtはルーチン周期及び電流サンプリング周期(S2)に等しく設定している。τはバッテリ電解液の電荷拡散時定数であり、予め実験で求めた所定値とした。 分極状態量の今回値Pnは、前回のサンプリング時点から今回のサンプリング時点までに生じた分極状態量の増加量In・dtと、前回のサンプリング時点から今回のサンプリング時点までに減衰した分極状態量の減衰量Pn-1 ・dt/τとを、前回のサンプリング時点での分極状態量の前回値Pnー1から加減算して算出される。分極関連量Pの微分値ΔPは、次式により表される。   However, in the first calculation of this equation, it is preferable that the previous value Pn−1 of the polarization related amount P be 0. In this embodiment, for simplicity, dt is set equal to the routine period and the current sampling period (S2). τ is a charge diffusion time constant of the battery electrolyte, and is a predetermined value obtained in advance by experiments. The current value Pn of the polarization state quantity is an increase amount In · dt of the polarization state quantity generated from the previous sampling time to the current sampling time, and a polarization state quantity attenuated from the previous sampling time to the current sampling time. The attenuation amount Pn−1 · dt / τ is calculated by adding or subtracting from the previous value Pn−1 of the polarization state quantity at the previous sampling time. The differential value ΔP of the polarization related amount P is expressed by the following equation.

ΔP=(Pn− Pn-1) /dt= In - 1/τ*Pn-1
次に、分極関連量Pの微分値ΔPが所定の閾値未満にまで減少したかどうかを調べ(S4)、減少していなければメインルーチンに戻り、減少していれば、一定量の充電分極に安定したと判断してステップS5に進んで、ΔPが上記閾値以下になった時点から所定時間T(たとえば30秒)の間にサンプリングして記憶している各充電電流値Icv1〜Icv31を読み込み、各充電電流値Icv1〜Icv31から公知の方式(たとえば最小二乗法など)を用いて近似式(I =K+a*exp(b*t))を求め、充電電流の時間変化特性とする(S6)。なお、この近似式において、Iは充電電流、K、a、bは、定数、tは定電圧充電開始からの経過時間である。これらの定数は実験により決定される。Kは0としてもよい。
ΔP = (Pn−Pn−1) / dt = In−1 / τ * Pn−1
Next, it is checked whether or not the differential value ΔP of the polarization related amount P has decreased to less than a predetermined threshold value (S4). If not, the process returns to the main routine. The process proceeds to step S5 by determining that the current is stable, and reads the charging current values Icv1 to Icv31 that are sampled and stored during a predetermined time T (for example, 30 seconds) from when ΔP becomes equal to or less than the threshold value, An approximate expression (I = K + a * exp (b * t)) is obtained from each charging current value Icv1 to Icv31 using a known method (for example, the least squares method), and the time variation characteristic of the charging current is obtained (S6). In this approximate expression, I is a charging current, K, a, and b are constants, and t is an elapsed time from the start of constant voltage charging. These constants are determined by experiment. K may be 0.

次に、求めた近似式に、予め定めた最終充電電流値Icv(final)を代入して、その時の定電圧充電制御終了時点Tfを求め、現時点からこの定電圧充電制御終了時点Tfに達するまでの期間の充電電流Icvの総和を積算して、充電電流積算値(α=∫I・dt)とする(S7)。   Next, a predetermined final charging current value Icv (final) is substituted into the obtained approximate expression to obtain a constant voltage charge control end time Tf at that time, and from this time until this constant voltage charge control end time Tf is reached. The total sum of the charging currents Icv during the period is integrated into a charging current integrated value (α = ∫I · dt) (S7).

この実施形態では、最終充電電流値Icv(final)は、上記条件で定電圧充電制御を行った場合におけるこのバッテリのSOC90%の値における充電電流値とされ、予め実験などにより求めた値としている。これにより、SOC90%から上記充電電流積算値(α=∫I・dt)を減算することにより現在のSOCを精度良く算出することができる。また、現時点以降においてどれくらいの容量Ahを充電したらSOC90%に達するかを推定することができる(S8)。その後、定電圧充電を終了する(S10)。   In this embodiment, the final charging current value Icv (final) is a charging current value at a value of SOC 90% of this battery when the constant voltage charging control is performed under the above conditions, and is a value obtained in advance through experiments or the like. . As a result, the current SOC can be accurately calculated by subtracting the charging current integrated value (α = ∫I · dt) from SOC 90%. In addition, it is possible to estimate how much capacity Ah is charged after the current time point to reach SOC 90% (S8). Then, constant voltage charge is complete | finished (S10).

(実施例効果)
すなわち、この実施例では、バッテリの容量が低下しており所定容量(Ah)の充電によるバッテリ充電が必要なエンジン始動直後、又は、車両走行中特に好適には大電気負荷を投入し、バッテリのSOCが低下しそれを補うべく発電機102の発電が増強されてバッテリの充電が強化されているタイミングなどにおいて、バッテリの充電状態を精度良く推定するのに好適である。更に説明すると、この充電過程において定電圧充電を持続することによりもし放電分極があった場合にはそれが急速に解消され、この充電電圧に対応する一定量の充電分極状態に定電圧充電開始から所定時間後に安定化する。この実施形態では、この安定化が完成する時点を上記分極関連量Pの変化が所定値未満となったかどうかで判定する。
(Example effect)
That is, in this embodiment, the capacity of the battery is reduced and the battery needs to be charged by charging with a predetermined capacity (Ah). This is suitable for accurately estimating the state of charge of the battery, for example, at the timing when the power generation of the generator 102 is increased to compensate for the decrease in SOC and the charging of the battery is enhanced. In further explanation, if constant voltage charging is continued in this charging process, if there is discharge polarization, it is quickly eliminated, and a constant amount of charge polarization corresponding to this charging voltage is restored from the start of constant voltage charging. Stabilizes after a predetermined time. In this embodiment, the time when this stabilization is completed is determined by whether or not the change in the polarization related amount P is less than a predetermined value.

更に、この実施形態では、この一定量の充電分極状態に安定化した時点から所定インタバルで充電電流値を必要個数サンプリングし、得た各データから充電電流特性を求める。更に、求めた充電電流特性により現時点から所定のSOC値(たとえば90%)に達するまでに必要な充電電流積算値(α=∫I・dt)を算出する。これにより、現在のSOC値や、現時点から所定のSOC値に達するまでに必要な充電積算値を、分極状態のばらつきの影響を排除して精度良く推定することができる。過充電の防止などの検出にも役立つ。   Further, in this embodiment, a required number of charge current values are sampled at a predetermined interval from the time when the charge polarization state of a certain amount is stabilized, and the charge current characteristics are obtained from the obtained data. Further, a charging current integrated value (α = ∫I · dt) necessary to reach a predetermined SOC value (for example, 90%) from the present time is calculated from the obtained charging current characteristics. This makes it possible to accurately estimate the current SOC value and the integrated charge value necessary for reaching the predetermined SOC value from the present time, excluding the influence of variations in the polarization state. It is also useful for detection of overcharge prevention.

この実施形態の効果を更に具体的に説明する。   The effect of this embodiment will be described more specifically.

まず、バッテリの特性について図3を参照して説明する。図3は、満充電でないバッテリに定電圧充電を行う場合の充電電流の特性を示す。定電圧充電を開始すると、充電初期には、容量上昇にともなう電流垂下だけでなく、充電分極の生成による電流垂下があり、特に鉛蓄電池などでは、分極生成の影響が顕著に現れる。従来、定電圧充電下において充電電流の近似式を求める際、この分極生成中の分極状態のばらつきの影響についてはまったく考慮が払われていなかった。   First, the characteristics of the battery will be described with reference to FIG. FIG. 3 shows the characteristics of the charging current when constant voltage charging is performed on a battery that is not fully charged. When constant voltage charging is started, in the initial stage of charging, there is not only current droop due to capacity increase but also current droop due to generation of charge polarization, and the effect of polarization generation is particularly noticeable in lead storage batteries and the like. Conventionally, when obtaining an approximate expression of a charging current under constant voltage charging, no consideration has been given to the influence of variations in polarization state during polarization generation.

この実施形態では、定電圧充電開始から、分極状態のばらつきの影響を良好に排除可能な所定時間後に得た充電電流サンプリングデータにより、充電電流特性(近似式)を決定し、この充電電流特性に基づいてバッテリの内部状態を推定する。これにより、定電圧充電初期の分極生成中の分極状態のばらつきの影響が排除され、精度良く、定電圧充電下の充電電流特性を推定することが実現する。   In this embodiment, the charging current characteristic (approximate expression) is determined based on the charging current sampling data obtained after a predetermined time when the influence of the variation in polarization state can be satisfactorily eliminated from the start of constant voltage charging. Based on this, the internal state of the battery is estimated. This eliminates the influence of variations in polarization state during polarization generation in the initial stage of constant voltage charging, and realizes accurate estimation of charging current characteristics under constant voltage charging.

(実験結果)
車両用鉛蓄電池で、定電圧充電により充電容量を推定した実験結果を図4に示す。図4は、定電圧充電を開始し、充電電流値から求めた分極関連量(分極指数)の微分値が、0以下になった点から、30sec間の電流値を記憶し、前記電流値から、近似式 I(t) = A*exp(B*t)を求めた。近似式で求めた電流値が所定値5Aになるまでの積算容量を求めると6.4Ahであり、実測の充電容量6.5Ahにほぼ等しく、高精度に充電容量が推定できることがわかる。
(Experimental result)
FIG. 4 shows the experimental results of estimating the charging capacity by constant voltage charging in a vehicle lead-acid battery. FIG. 4 shows a case where the constant voltage charging is started, and the current value for 30 seconds is stored from the point that the differential value of the polarization related quantity (polarization index) obtained from the charging current value becomes 0 or less. The approximate expression I (t) = A * exp (B * t) was obtained. The accumulated capacity until the current value obtained by the approximate expression reaches the predetermined value 5A is 6.4 Ah, which is almost equal to the actually measured charge capacity 6.5 Ah, and it can be seen that the charge capacity can be estimated with high accuracy.

同一の車両用鉛電池において、この実施形態で求めた充電電流特性(B)と、分極を考慮しない公知の技術で求めた充電電流特性(A)と、実測した充電電流特性(C)とを、図5に示す。なお、この公知の技術では、定電圧充電を所定時間T継続し、この間の充電電流と相対時間から、近似式を求めている。この場合には、実測電流に比べ、精度良く近似できていない。これに対し、この実施形態では、分極指数の変化分ΔP<0の点から、所定期間Tpの充電電流と相対時間から、近似式を求めており、実測した充電電流特性(C)に対して近似精度が大幅に向上していることが分かった。   In the same vehicle lead battery, the charging current characteristic (B) obtained in this embodiment, the charging current characteristic (A) obtained by a known technique not considering polarization, and the measured charging current characteristic (C) As shown in FIG. In this known technique, constant voltage charging is continued for a predetermined time T, and an approximate expression is obtained from the charging current and relative time during this period. In this case, it cannot be approximated more accurately than the actually measured current. On the other hand, in this embodiment, an approximate expression is obtained from the charging current and the relative time in the predetermined period Tp from the point of change ΔP <0 in the polarization index, and the measured charging current characteristic (C) is obtained. It was found that the approximation accuracy was greatly improved.

(定電圧充電開始前の分極量の低減について)
車載二次電池の分極量(充電分極量)とみなすとことができる分極関連量Pの今回値を算出する上記式(Pn = Pn-1 + In*dt - 1/τ*Pn-1*dt)では、分極関連量Pの前回値Pn-1の決定が必要である。ただし、初回と2回目の電流データを用いた最初の分極関連量Pの今回値Pn(= Pn-1 + In*dt - 1/τ*Pn-1*dt)又はその微分値(Pn ー Pn-1)/dt= In - 1/τ*Pn-1)では、分極関連量の前回値Pn-1が未だ算出されていない。しかし、それまでの充放電電流が略一定の所定値又は非常に小さければ、分極関連量の前回値Pn−1は一定値又は0と見なすことができる。
(Reduction of polarization before starting constant voltage charging)
The above formula (Pn = Pn-1 + In * dt-1 / τ * Pn-1 * dt) for calculating the current value of the polarization-related amount P that can be regarded as the polarization amount (charge polarization amount) of the in-vehicle secondary battery ) Requires determination of the previous value Pn-1 of the polarization-related quantity P. However, the current value Pn (= Pn-1 + In * dt-1 / τ * Pn-1 * dt) of the first polarization-related quantity P using the first and second current data or the differential value (Pn-Pn -1) / dt = In-1 / τ * Pn-1), the previous value Pn-1 of the polarization-related quantity has not yet been calculated. However, if the current charge / discharge current is a substantially constant predetermined value or very small, the previous value Pn−1 of the polarization-related amount can be regarded as a constant value or zero.

そこで、エンジン始動直後においては、エンジン始動時に消費した電池の放電電流積算値はほぼ一定とみなすことができ、かつ、それまでは、長期間の放置により車載二次電池の分極は解消されているとみなすことができる。したがって、エンジン始動直後のための車載二次電池の放電直後には、毎回一定量の放電分極が生じているとみなすことができ、この値は、予め調べた所定値とすることができる。しかも、エンジン始動直後には、必ず車載二次電池はその満充電状態から所定量だけ放電を行っており、そのその後、定電圧充電を行うと、少なくとも所定量の充電電流積算値が得られるはずである。これが、エンジン始動直後の定電圧充電の利点である。   Therefore, immediately after the engine is started, the discharge current integrated value of the battery consumed at the time of starting the engine can be regarded as almost constant, and until then, the polarization of the in-vehicle secondary battery is eliminated by leaving it for a long time. Can be considered. Therefore, it can be considered that a certain amount of discharge polarization occurs every time immediately after the on-vehicle secondary battery is discharged immediately after the engine is started, and this value can be a predetermined value examined in advance. Moreover, immediately after the engine is started, the in-vehicle secondary battery always discharges a predetermined amount from its fully charged state, and after that, if constant voltage charging is performed, at least a predetermined amount of charge current integrated value should be obtained. It is. This is an advantage of constant voltage charging immediately after the engine is started.

その他、エンジン始動のための放電時にも分極量の今回値(放電分極量)の算出を上記式を利用して行うことができる。このようにして算出した放電分極量の定電圧充電開始時点における分極関連量の今回値とすることができる。したがって、2回目の充電電流データを得た時に行う定電圧充電下での分極関連量の前回値Pn−1として、上記分極関連量(放電分極量)の今回値を用いてもよい。   In addition, the current value of the polarization amount (discharge polarization amount) can also be calculated using the above equation during discharge for starting the engine. The current value of the polarization-related amount at the start of constant voltage charging of the discharge polarization amount calculated in this way can be used. Therefore, the current value of the polarization related amount (discharge polarization amount) may be used as the previous value Pn−1 of the polarization related amount under constant voltage charging performed when the second charge current data is obtained.

次に、車両走行中においては、車載二次電池のSOCは種々の値となる。しかし、負荷の増大や発電量の減少により車載二次電池が一定期間放電状態となった後には車載二次電池にはかならずこの低下したSOCの補充のための充電動作が生じるはずである。そこで、所定期間の放電傾向が持続した後で、上記定電圧充電を開始することが好適である。   Next, when the vehicle is traveling, the SOC of the in-vehicle secondary battery takes various values. However, after the in-vehicle secondary battery is in a discharged state for a certain period due to an increase in load or a decrease in the amount of power generation, the in-vehicle secondary battery must be charged for replenishing the lowered SOC. Therefore, it is preferable to start the constant voltage charging after the discharge tendency for a predetermined period has continued.

また、上記した所定期間の放電傾向が持続すると、車載二次電池には所定量の放電分極量が生じる。そこで、好ましくは所定期間の放電傾向が持続した後、この時に生じた放電分極が解消するために充放電電流が所定期間小さな値を持続した後、上記定電圧充電を開始することが好ましい。   Moreover, if the above-mentioned discharge tendency for a predetermined period continues, a predetermined amount of discharge polarization occurs in the in-vehicle secondary battery. Therefore, it is preferable to start the constant voltage charging after the discharge tendency for a predetermined period has continued and after the charge / discharge current has maintained a small value for a predetermined period in order to eliminate the discharge polarization generated at this time.

また、上記所定期間の放電傾向が持続する以前に充放電電流が小さく分極が解消されたとみなせる期間が持続していた場合には、上記所定期間の放電傾向が開始した時点の分極を0としてこの所定期間の放電傾向による放電分極量を上記式で求め(符号は逆となる)、それを定電圧充電開始時点の分極関連量、すなわち、定電圧充電開始後の2回目の充電電流採取時における分極関連量Pの前回値Pn−1としてもよい。   Also, if the charge / discharge current is small and the polarization can be considered to have been eliminated before the discharge tendency of the predetermined period continues, the polarization at the start of the discharge tendency of the predetermined period is set to 0. The amount of discharge polarization due to the discharge tendency for a predetermined period is obtained by the above formula (the sign is reversed), and this is the polarization related amount at the start of constant voltage charge, that is, at the time of the second charge current sampling after the start of constant voltage charge The previous value Pn−1 of the polarization related amount P may be used.

更に、上記定電圧充電を通常の発電機の調整電圧Vrefよりも少し高い調整電圧値Vref+ΔVで行うものとする。この場合には、車両走行中において定電圧充電開始直前の所定期間に充放電電電流が所定値以下であれば分極が解消されていると見なせるため、定電圧充電開始後の2回目の充電電流採取時おける分極関連量Pの前回値Pn−1を0とすることができる。また、上記定電圧充電を通常の発電機の調整電圧Vrefよりも少し高い調整電圧値Vref+ΔVで行う場合には、かならずこの充電電圧差ΔVに相当する充電電流が定電圧充電時に流れるため好都合である。   Furthermore, the constant voltage charging is performed with an adjustment voltage value Vref + ΔV that is slightly higher than the adjustment voltage Vref of a normal generator. In this case, if the charge / discharge current is equal to or less than a predetermined value during a predetermined period immediately before the start of constant voltage charging while the vehicle is traveling, it can be considered that polarization has been eliminated. The previous value Pn−1 of the polarization-related amount P at the time of collection can be set to zero. In addition, when the constant voltage charging is performed at an adjustment voltage value Vref + ΔV that is slightly higher than the adjustment voltage Vref of a normal generator, it is advantageous that a charging current corresponding to the charging voltage difference ΔV always flows during constant voltage charging. .

(変形態様)
上記実施形態では、近似式を用いて定電圧充電制御における充電電流特性を推定したが、充電電流Icv1〜Icv31の絶対値と所定時間内(たとえば30sec)における充電電流の減少分dIcvと積算容量との関係を予め記憶したテーブルまたは方程式を用いて導出してもよい。
(Modification)
In the above embodiment, the charging current characteristic in the constant voltage charging control is estimated using the approximate expression. However, the absolute value of the charging currents Icv1 to Icv31, the decrease dIcv of the charging current within a predetermined time (for example, 30 seconds), the integrated capacity, The relationship may be derived using a pre-stored table or equation.

実施形態1の車載二次電池の制御装置を示すブロック図である。1 is a block diagram illustrating a control device for an in-vehicle secondary battery according to Embodiment 1. FIG. 実施形態1における定電圧充電制御を示すフローチャートである。3 is a flowchart illustrating constant voltage charging control according to the first embodiment. 定電圧充電時の充電電流特性の典型例を示す特性図である。It is a characteristic view which shows the typical example of the charging current characteristic at the time of constant voltage charge. この実施形態の定電圧充電により得た充電電流、分極指数及びその微分値の特性を示す特性図である。It is a characteristic view which shows the characteristic of the charging current obtained by the constant voltage charge of this embodiment, a polarization index, and its differential value. 実施形態及び従来の充電電流特性と、実測した充電電流特性とを示す特性図である。It is a characteristic view which shows embodiment and the conventional charging current characteristic, and the measured charging current characteristic.

符号の説明Explanation of symbols

101 バッテリ
102 車載発電機(発電機)
104 電流センサ
105 蓄電池状態検知装置(内部状態検出回路部)
106 バッファ部
107 演算処理部
109 発電機制御装置
101 Battery 102 On-vehicle generator (generator)
104 Current sensor 105 Storage battery state detection device (internal state detection circuit unit)
106 Buffer 107 Operation Processing Unit 109 Generator Control Device

Claims (6)

車載交流発電機により所定の調整電圧に収束制御される車載二次電池の端子電圧及び電流を検出する検出回路部と、算出した電流に基づいて前記車載二次電池の内部状態を推定する内部状態検出回路部とを備える車載二次電池の内部状態検出装置において、
前記内部状態検出回路部は、
車両始動直後又は車両走行中に前記車載二次電池の所定電圧値での定電圧充電を所定時間継続し、
前記定電圧充電開始後における前記車載二次電池の分極量に関連するパラメータである分極関連量Pを少なくとも充電電流データの変化に基づいて求め、
求めた分極関連量Pの変化率が所定しきい値未満となったかどうかを判定し、
分極関連量Pの変化率が所定しきい値未満となったと判定した後の所定時間に得た複数の前記充電電流データに基づいて前記充電電流値が所定の最終値に達するまでの充電電流積算値を求め、
求めた前記充電電流積算値に基づいて前記車載二次電池の内部状態を決定することを特徴とする車載二次電池の内部状態検出装置。
A detection circuit unit that detects the terminal voltage and current of the in-vehicle secondary battery that is converged and controlled to a predetermined adjustment voltage by the in-vehicle AC generator, and an internal state that estimates the internal state of the in-vehicle secondary battery based on the calculated current In the in-vehicle secondary battery internal state detection device comprising a detection circuit unit,
The internal state detection circuit unit is
Continue constant voltage charging at a predetermined voltage value of the in-vehicle secondary battery for a predetermined time immediately after starting the vehicle or during vehicle traveling,
Obtaining a polarization-related amount P that is a parameter related to the polarization amount of the in-vehicle secondary battery after the start of the constant voltage charging based on at least a change in charging current data,
It is determined whether or not the rate of change of the obtained polarization related quantity P is less than a predetermined threshold
Charge current integration until the charge current value reaches a predetermined final value based on a plurality of the charge current data obtained in a predetermined time after determining that the rate of change of the polarization related amount P is less than the predetermined threshold value Find the value
An internal state detection device for an in-vehicle secondary battery, wherein the internal state of the in-vehicle secondary battery is determined based on the obtained charging current integrated value.
請求項1記載の車載二次電池の内部状態検出装置において、
前記内部状態検出回路部は、
エンジン始動直後の定電圧充電期間に前記内部状態の決定を実行する車載二次電池の内部状態検出装置。
In the in-vehicle secondary battery internal state detection device according to claim 1,
The internal state detection circuit unit is
A device for detecting an internal state of a vehicle-mounted secondary battery that executes the determination of the internal state during a constant voltage charging period immediately after engine startup.
請求項1記載の車載二次電池の内部状態検出装置において、
前記内部状態検出回路部は、
所定値以上の充電電流が流れている車両走行中における定電圧充電期間に前記前記内部状態の決定を実行する車載二次電池の内部状態検出装置。
In the in-vehicle secondary battery internal state detection device according to claim 1,
The internal state detection circuit unit is
A device for detecting an internal state of an in-vehicle secondary battery, wherein the internal state is determined during a constant voltage charging period during traveling of a vehicle in which a charging current of a predetermined value or more flows.
請求項1記載の車載二次電池の内部状態検出装置において、
前記内部状態検出回路部は、
車両走行中において充放電電流が所定値以下の期間が所定時間持続した後に実施される前記定電圧充電期間に前記各ステップを実施する車載二次電池の内部状態検出装置。
In the in-vehicle secondary battery internal state detection device according to claim 1,
The internal state detection circuit unit is
A device for detecting an internal state of a vehicle-mounted secondary battery that performs the above steps during the constant voltage charging period that is performed after a period in which the charging / discharging current is equal to or less than a predetermined value during traveling of the vehicle.
請求項1記載の車載二次電池の内部状態検出装置において、
前記内部状態検出回路部は、分極関連量Pの今回値をPn、その前回値をPnー1、Inを充電電流の今回値、dtを定電圧充電時の電流検出インタバル、τを所定の時定数値とする時、前記分極関連量Pを、 Pn = Pn-1 + In*dt - 1/τ*Pn-1*dtの式から求める車載二次電池の内部状態検出装置。
In the in-vehicle secondary battery internal state detection device according to claim 1,
The internal state detection circuit unit has a current value of polarization related amount P as Pn, a previous value as Pn−1, In as a current value of charging current, dt as a current detection interval during constant voltage charging, and τ as a predetermined time. A device for detecting an internal state of an in-vehicle secondary battery, wherein the polarization-related amount P is obtained from an expression of Pn = Pn-1 + In * dt-1 / τ * Pn-1 * dt when a constant value is used.
請求項1記載の車載二次電池の内部状態検出装置において、
前記内部状態検出回路部は、Iを充電電流 、a、bを定数、tを定電圧充電開始からの経過時間、Kを所定の比例定数とする時、分極関連量Pの変化率が所定しきい値未満となったと判定した後の所定時間毎に得た前記充電電流Iの複数のデータに基づいて充電電流Iの近似式(I =K+ a*exp(b*t))を導出し、前記近似式を用いて前記充電電流積算値を求める車載二次電池の内部状態検出装置。
In the in-vehicle secondary battery internal state detection device according to claim 1,
The internal state detection circuit unit has a predetermined rate of change of the polarization-related quantity P when I is a charging current, a and b are constants, t is an elapsed time from the start of constant voltage charging, and K is a predetermined proportional constant. An approximate expression (I = K + a * exp (b * t)) of the charging current I is derived based on a plurality of data of the charging current I obtained every predetermined time after determining that the threshold value is less than the threshold value, An internal state detection device for an in-vehicle secondary battery that obtains the charge current integrated value using the approximate expression.
JP2007301648A 2007-11-21 2007-11-21 In-vehicle secondary battery internal state detection device Active JP4494454B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007301648A JP4494454B2 (en) 2007-11-21 2007-11-21 In-vehicle secondary battery internal state detection device
DE102008058292.1A DE102008058292B4 (en) 2007-11-21 2008-11-20 Method and device for detecting the internal electrical condition of a vehicle secondary battery
CN2008101911603A CN101447688B (en) 2007-11-21 2008-11-21 Method and apparatus for detecting internal electric state of in-vehicle secondary battery
US12/275,653 US7990111B2 (en) 2007-11-21 2008-11-21 Method and apparatus for detecting internal electric state of in-vehicle secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007301648A JP4494454B2 (en) 2007-11-21 2007-11-21 In-vehicle secondary battery internal state detection device

Publications (2)

Publication Number Publication Date
JP2009126277A JP2009126277A (en) 2009-06-11
JP4494454B2 true JP4494454B2 (en) 2010-06-30

Family

ID=40743157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007301648A Active JP4494454B2 (en) 2007-11-21 2007-11-21 In-vehicle secondary battery internal state detection device

Country Status (2)

Country Link
JP (1) JP4494454B2 (en)
CN (1) CN101447688B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5081722B2 (en) * 2008-05-26 2012-11-28 株式会社日本自動車部品総合研究所 Charge control device for secondary battery
JP4962808B2 (en) * 2009-02-24 2012-06-27 株式会社デンソー Engine automatic control device and storage battery charge control device
WO2014141989A1 (en) * 2013-03-11 2014-09-18 株式会社豊田自動織機 Voltage equalizer and voltage equalization method
CN105467321B (en) * 2014-05-29 2019-03-26 比亚迪股份有限公司 The calculation method and battery system of the charging remaining time of battery
CN107728094B (en) * 2017-10-23 2020-09-29 宁德时代新能源科技股份有限公司 Current calibration coefficient measuring device and method, and current detecting device and method
CN108896911B (en) * 2018-04-26 2021-04-30 广东小天才科技有限公司 Charging abnormity detection method and device for electronic equipment
CN113410530B (en) * 2021-06-11 2022-06-28 清华大学深圳国际研究生院 Lithium ion battery rapid charging method considering battery polarization degree
CN113853002A (en) * 2021-10-19 2021-12-28 深圳壹账通智能科技有限公司 State switching method and device of Wi-Fi switch, terminal equipment and medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10154533A (en) * 1996-11-21 1998-06-09 Sony Corp Battery measuring method and electronic equipment
JP2000324702A (en) * 1999-05-10 2000-11-24 Denso Corp Method and apparatus for detecting discharge capacity of battery and controller for car battery
JP2004101188A (en) * 2002-09-04 2004-04-02 Sanyo Electric Co Ltd Method for detecting full-charge capacity of battery
JP2007121030A (en) * 2005-10-26 2007-05-17 Denso Corp Internal status detection system for vehicular electric storage device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4332321B2 (en) * 2001-05-29 2009-09-16 キヤノン株式会社 Internal information detection method of secondary battery, internal information detection device, internal information detection program, and medium containing the program
JP3872388B2 (en) * 2002-07-22 2007-01-24 株式会社日本自動車部品総合研究所 CHARGE STATE DETECTION DEVICE, ITS PROGRAM, CHARGE STATE DETECTION METHOD, CHARGE / DISCHARGE CONTROL DEVICE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10154533A (en) * 1996-11-21 1998-06-09 Sony Corp Battery measuring method and electronic equipment
JP2000324702A (en) * 1999-05-10 2000-11-24 Denso Corp Method and apparatus for detecting discharge capacity of battery and controller for car battery
JP2004101188A (en) * 2002-09-04 2004-04-02 Sanyo Electric Co Ltd Method for detecting full-charge capacity of battery
JP2007121030A (en) * 2005-10-26 2007-05-17 Denso Corp Internal status detection system for vehicular electric storage device

Also Published As

Publication number Publication date
CN101447688B (en) 2012-08-15
JP2009126277A (en) 2009-06-11
CN101447688A (en) 2009-06-03

Similar Documents

Publication Publication Date Title
JP4494454B2 (en) In-vehicle secondary battery internal state detection device
KR101486470B1 (en) Apparatus and method for estimating battery state
KR100845960B1 (en) Apparatus for detecting charged state of secondary battery
JP4962808B2 (en) Engine automatic control device and storage battery charge control device
US9582468B2 (en) Capacity estimating apparatus for secondary battery
JP3960241B2 (en) Secondary battery remaining capacity estimation device, secondary battery remaining capacity estimation method, and computer-readable recording medium storing a program for causing a computer to execute processing by the secondary battery remaining capacity estimation method
RU2336536C2 (en) Device and method for calculation of full capacitance of secondary battery
US10601230B2 (en) Electric power supply system for vehicle
US7990111B2 (en) Method and apparatus for detecting internal electric state of in-vehicle secondary battery
EP2058891B1 (en) Charging control device for a storage battery
US20090271132A1 (en) Method for estimating state of charge of a rechargeable battery
JP2005106747A (en) Method and apparatus for estimating remaining amount of secondary battery
KR20080088617A (en) Charged state estimation device and charged state estimation method of secondary battery
KR100341754B1 (en) Controlling method for battery charge of electric vehicle
US20090248334A1 (en) Method for estimating the charge of a motor vehicle battery
JP2004254491A (en) Vehicular power generation system
JP4564999B2 (en) In-vehicle secondary battery internal state detection device
JP5379820B2 (en) Secondary battery temperature estimation device and secondary battery temperature estimation method
JP2009232659A (en) Charge-discharge control method and charge-discharge control device of battery
KR20100078842A (en) Battery management system for estimating battery state of charge and method thereof
JP7116205B2 (en) Battery control system
JP2016024148A (en) Method of estimating state of secondary battery
JP3966810B2 (en) Storage battery full charge determination device, remaining capacity estimation device, full charge determination method, and remaining capacity estimation method
JP5764584B2 (en) Charge control apparatus and method
US20230020597A1 (en) Method, device, program, and recording medium for estimating internal temperature of secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100325

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100407

R150 Certificate of patent or registration of utility model

Ref document number: 4494454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250