WO2022224682A1 - Battery monitoring device - Google Patents

Battery monitoring device Download PDF

Info

Publication number
WO2022224682A1
WO2022224682A1 PCT/JP2022/013587 JP2022013587W WO2022224682A1 WO 2022224682 A1 WO2022224682 A1 WO 2022224682A1 JP 2022013587 W JP2022013587 W JP 2022013587W WO 2022224682 A1 WO2022224682 A1 WO 2022224682A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
cell
variation
battery
impedance
Prior art date
Application number
PCT/JP2022/013587
Other languages
French (fr)
Japanese (ja)
Inventor
大祐 倉知
正規 内山
裕基 堀
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2022224682A1 publication Critical patent/WO2022224682A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a battery monitoring device that monitors a battery pack having a series connection of multiple cell batteries.
  • Patent Document 1 Some battery monitoring devices calculate the amount of stored electricity based on the voltage of the cell battery.
  • some cell batteries include a plateau region where voltage changes are small with respect to changes in the amount of charge. In that plateau region, it is even more difficult to calculate the amount of charge based on the cell battery voltage. If it is difficult to calculate the amount of electricity stored in the cell batteries, naturally it is also difficult to calculate the variation in the amount of electricity stored among the cell batteries.
  • the present disclosure has been made in view of the above circumstances, and is intended to enable calculation of variations in the amount of charge between cell batteries even in situations where it is difficult to calculate the amount of charge based on the voltage of the cell battery.
  • the main purpose is to
  • the battery monitoring device of the present disclosure monitors a battery pack having a series connection of multiple cell batteries.
  • the battery monitoring device has an impedance detection section, a charged amount identification section, and a variation calculation section.
  • the impedance detection unit detects the impedance of the plurality of cell batteries when the amount of electricity stored in the battery pack changes over time.
  • the stored electricity amount specifying unit specifies that the stored electricity amount of the cell battery has reached a specific stored electricity amount based on the detected change in the tendency of impedance change.
  • the variation calculation unit calculates the variation in the charged amount between the cell batteries based on the difference in the specified timing at which the charged amount reaches the specified charged amount between the cell batteries. do.
  • the present disclosure provides the following effects.
  • the amount of stored electricity in the pack changes, such as when the battery pack is being charged or when electric power is used
  • the trend of impedance change changes when the amount of stored electricity in each cell battery reaches a specific amount of stored electricity. Therefore, in the present disclosure, it is specified that the charged amount of the cell battery has reached the specified charged amount based on the change in the change trend. Based on the difference in the specific timing, the variation in the amount of charge between the cell batteries is calculated. Therefore, even in a situation where it is difficult to calculate the amount of stored electricity based on the voltage of the cell batteries, the variation in the amount of stored electricity between the cell batteries can be calculated based on the impedance of the cell batteries.
  • FIG. 1 is a circuit diagram showing the battery monitoring device of the first embodiment and its periphery;
  • FIG. 2 is a graph showing the waveform of battery current when AC voltage is applied to the battery pack;
  • FIG. 3 is a graph showing the transition of each value as the amount of electricity stored in the cell battery increases.
  • FIG. 4 is a graph showing the transition of each value with the passage of charging time
  • FIG. 5 is a flowchart showing control during charging
  • FIG. 6 is a graph showing the transition of each value during charging
  • FIG. 7 is a graph showing the transition of each value with the passage of discharge time in the second embodiment
  • FIG. 8 is a flow chart showing control when power is used
  • FIG. 9 is a flowchart showing control during charging in the third embodiment
  • FIG. 10 is a flow chart showing control when power is used.
  • FIG. 1 is a circuit diagram showing a battery monitoring device 96 and its surroundings according to this embodiment.
  • An electric vehicle 90 is equipped with a load 91 such as a driving motor and onboard equipment, a battery pack 93 that supplies power to the load 91 , and a battery monitoring device 96 that monitors the battery pack 93 .
  • the electric vehicle 90 may be one without an engine, or may be a plug-in hybrid vehicle or the like with an engine.
  • “electrically connected” is simply referred to as "connected”.
  • the battery pack 93 has a series connection of cell batteries B.
  • Each cell battery B is an LFP battery (lithium iron phosphate battery).
  • Battery pack 93 is connected to load 91 .
  • the external power supply 80 is connected to the battery pack 93 .
  • the external power supply 80 performs CC charging (constant current charging) until just before the battery pack 93 is fully charged, and switches to CV charging (constant voltage charging) just before that.
  • the current flowing through the battery pack 93 is hereinafter referred to as "battery current I”. Therefore, the battery current I is also the current flowing through each cell battery B.
  • the time-integrated value of the battery current I is referred to as "integrated current value ⁇ Idt”.
  • the voltage of the cell battery B is called “cell voltage V”
  • the electric charge (Ah: ampere hour) stored in the cell battery B is called “cell storage amount Q”.
  • the cell storage amount Q of the cell battery B with the smallest cell storage amount Q is referred to as "minimum cell storage amount Qmin”.
  • the value obtained by subtracting the minimum cell storage amount Qmin from the cell storage amount Q (Q-Qmin) is called "variation amount ⁇ Q”.
  • cell storage capacity Qf the cell storage amount Q at full charge
  • cell SOC the ratio (Q/Qf) of the cell storage amount Q to the cell storage capacity Qf
  • SOC is an abbreviation for "State Of Charge”.
  • the initial (when new) cell storage capacity Qf is called “initial cell storage capacity Qfo”
  • the ratio of the current cell storage capacity Qf to the initial cell storage capacity Qfo (Qf/Qfo) is called “cell SOH”.
  • SOH is an abbreviation for "State Of Health”.
  • the charge stored in the battery pack 93 is referred to as “pack storage amount ⁇ Q”
  • the pack storage amount ⁇ Q when fully charged is referred to as “pack storage capacity ⁇ Qf”
  • the initial (new) pack storage capacity ⁇ Qf is referred to as “initial pack storage capacity ⁇ Qfo”.
  • the ratio of the current pack storage capacity ⁇ Qf to the initial pack storage capacity ⁇ Qfo ( ⁇ Qf/ ⁇ Qfo) is called “pack SOH”.
  • the impedance of the cell battery B with respect to alternating current is referred to as "cell impedance Z".
  • the cell impedance Z depends on the resistance, capacitance component, inductor component, etc. existing inside the cell battery B.
  • FIG. A time-differentiated value of the cell impedance Z is called an “impedance change Zd”
  • a time-differentiated value of the impedance change Zd is called an "impedance twice differentiated Zdd”.
  • the impedance second derivative Zdd indicates a change in the tendency of the cell impedance Z to change.
  • the battery monitoring device 96 has a current sensor 10, a voltage sensor 20 and a BMU 30.
  • BMU is an abbreviation for "Battery Management Unit”.
  • the current sensor 10 measures the battery current I by measuring the current in the wiring to the battery pack 93 .
  • the voltage sensor 20 is connected between both terminals of the battery pack 93 and between each two cell batteries B adjacent in series in the battery pack 93 . That is, the voltage sensor 20 is connected to both terminals of each cell battery B.
  • the voltage sensor 20 has a multiplexer and the like, and is configured to be able to measure the voltage of each cell battery B.
  • the BMU 30 is an ECU (electronic control unit) having a CPU, a ROM, a RAM, etc. Based on the battery current I measured by the current sensor 10 and the cell voltage V measured by the voltage sensor 20, the battery pack Monitor 93.
  • FIG. 3(a) is a graph showing the relationship between the cell charge amount Q (horizontal axis) and the cell voltage V (vertical axis).
  • each cell battery B is an LFP battery. Due to its characteristics, each cell battery B has a plateau region where the change in the cell voltage V (vertical axis) with respect to the change in the cell storage amount Q (horizontal axis) is smaller than a predetermined reference.
  • the time when the cell charge amount Q is within the plateau region is referred to as the “plateau time”
  • the time when the cell charge amount Q is outside the plateau range is referred to as the “non-plateau time”.
  • the plateau region it is difficult to calculate the cell charge amount Q (horizontal axis) based on the cell voltage V (vertical axis). Therefore, it is also difficult to calculate the amount of variation ⁇ Q.
  • the amount of variation ⁇ Q is calculated based on the cell impedance Z during the plateau region.
  • the mechanism will be explained below.
  • the heat generated in the cell battery B will be referred to as “cell heat generation”
  • the temperature of the cell battery B will be referred to as “cell temperature T”
  • the cell voltage V differentiated by the cell temperature T will be referred to as “heat generation coefficient dV/dT.” .
  • the cell heat generation is the sum of the Joule heat generated by the battery current I and the reaction heat shown below.
  • the reaction heat is the product (T ⁇ I ⁇ dV/dT) of the cell temperature T, the battery current I, and the heat generation coefficient dV/dT. Therefore, the greater the heat generation coefficient dV/dT, the greater the cell heat generation.
  • FIG. 3(b) is a graph showing the relationship between the cell charge amount Q (horizontal axis) and the heat generation coefficient dV/dT (vertical axis).
  • the heat generation coefficient dV/dT increases and the cell heat generation increases.
  • the storage amount that is the lower limit of the high heat generation section (QL to QU) will be referred to as “section lower limit amount QL”
  • the storage amount that will be the upper limit of the high heat generation section (QL to QU) will be referred to as "section upper limit amount QU”. .
  • the higher the cell temperature T the smaller the cell impedance Z. Therefore, when the cell charge amount Q is within the high heat generation section (QL to QU), the cell heat generation increases, the cell temperature T increases, and the cell impedance Z decreases significantly.
  • FIG. 4(a) is a graph showing changes in cell impedance Z during charging of the battery pack 93
  • FIG. 4(b) is a graph showing changes in cell storage amount Q during charging.
  • the cell storage amount Q remains in the high heat generation section ( QL to QU)
  • the cell heat generation is small and the cell temperature T rises slowly. Therefore, the decrease in the cell impedance Z shown in FIG. 4(a) is moderate.
  • the error in the cell storage amount Q can be calculated from the timing when the cell storage amount Q reaches the section lower limit amount QL and the section upper limit amount QU. can be reset at any time. That is, the cell charge amount Q can be specified even in the plateau region or the like. Then, the variation amount ⁇ Q can be calculated based on the specific timing difference between the cell batteries B. FIG.
  • the acceleration timing tP and the suppression timing tS are collectively referred to as “specific timing (tP, tS), and the section lower limit amount QL and section upper limit amount QU are collectively referred to as “specific storage amount (QL, QU).” It says.
  • the battery monitoring device 96 further has an AC application circuit 40 , and has an impedance detection section 31 , a charged amount identification section 32 and a variation calculation section 33 in the BMU 30 .
  • each cell battery B has graphite in the negative electrode and an olivine structure in the positive electrode.
  • the olivine structure is a crystal structure having a hexagonal close-packed oxygen skeleton.
  • the reason why the cell battery B has graphite in the negative electrode is that the heat generation coefficient dV/dT becomes significantly large when the cell storage amount Q is within the high heat generation section (QL to QU).
  • the reason why the positive electrode has an olivine structure is that the change in the heat generation coefficient dV/dT at the positive electrode is suppressed. In other words, it is possible to suppress superimposition of the change in the heat generation coefficient dV/dT at the positive electrode as noise on the change in the heat generation coefficient dV/dT at the negative electrode.
  • One terminal of the AC applying circuit 40 is connected to the positive terminal of the battery pack 93 and the other terminal of the AC applying circuit 40 is connected to the negative terminal of the battery pack 93 .
  • the AC application circuit 40 applies an AC voltage to the battery pack 93 during CC charging (constant current charging) of the battery pack 93 .
  • FIG. 2 is a graph showing the waveform of battery current I during CC charging.
  • the AC current is superimposed on the CC current (constant current) that is the charging current.
  • the reason why the AC voltage is applied during the CC charging is that the charging current is constant during the CC charging, so that there is no concern that AC noise due to changes in the charging current will be superimposed on the AC current.
  • the impedance detection unit 31 shown in FIG. 1 detects each cell impedance Z based on each cell voltage V and battery current I when AC voltage is applied by the AC application circuit 40 during CC charging of the battery pack 93. Calculate. Specifically, for example, a value (AC resistance) obtained by dividing the effective value of the AC component in the cell voltage V by the effective value of the AC component in the battery current I is calculated as the cell impedance Z.
  • the stored electricity amount identifying unit 32 identifies that the cell stored electricity amount Q has reached a specific stored electricity amount (QL, QU) at a specific timing (tP, tS). Note that in the present embodiment, at least the section upper limit amount QU, which is one of the specific storage amounts (QL, QU), is included in the plateau region.
  • the stored electricity amount identification unit 32 identifies the timing at which the decrease in the detected cell impedance Z is accelerated more than a predetermined standard during CC charging, excluding the start and end times, as the acceleration timing tP. do. More specifically, the acceleration timing tP is determined on condition that the impedance second derivative Zdd has fallen below the negative acceleration determination value ZddP during CC charging excluding the start and end times. At the acceleration timing tP, it is specified that the cell charged amount Q has reached the section lower limit amount QL.
  • the stored electricity amount specifying unit 32 specifies the timing at which the decrease in the calculated cell impedance Z is rapidly suppressed by a predetermined reference or more during CC charging, excluding the start and end times, as the suppression timing tS. More specifically, it is determined that it is the suppression timing tS on condition that the impedance second derivative Zdd exceeds the positive suppression determination value ZddS during CC charging except at the start and end. At the suppression timing tS, it is specified that the cell charged amount Q has reached the section upper limit amount QU.
  • the variation calculation unit 33 calculates, for each cell battery B, the integrated current value ⁇ Idt after the specific timing (tP, tS) as the variation amount ⁇ Q. Therefore, specifically, after the promotion timing tP, the integrated current value ⁇ Idt after the promotion timing tP is calculated as the variation amount ⁇ Q, and after the suppression timing tS, the integrated current value ⁇ after the suppression timing tS is calculated. Idt is calculated as the amount of variation ⁇ Q. As described above, the variation calculation unit 33 calculates the variation amount ⁇ Q based on the difference in the specific timings (tP, tS) between the cell batteries B. FIG.
  • the BMU 30 calculates the cell storage amount Q based on the cell voltage V. Then, the amount of variation ⁇ Q is calculated based on the amount of charge Q of those cells. Since the computation method itself may be a known one, detailed description thereof will be omitted.
  • the BMU 30 further has an equalization necessity determination section 36 , a failure determination section 37 , and an equalization amount calculation section 38 as a configuration for its utilization.
  • the equalization necessity determination unit 36 performs an equalization necessity determination for each cell battery B as to whether or not equalization is necessary. In the equalization necessity determination, it is determined that equalization is necessary on the condition that the variation amount ⁇ Q is larger than a predetermined equalization determination variation amount ⁇ QE.
  • the equalization necessity determining unit 36 sets the equalization determination variation amount ⁇ QE to be larger when the variation in cell SOH between the cell batteries B is larger than when the variation is smaller than a predetermined reference. Further, at this time, the equalization necessity determination unit 36 sets the equalization determination variation amount ⁇ QE smaller when the pack SOH is smaller than when the pack SOH is larger than the predetermined reference.
  • the failure determination unit 37 performs failure determination as to whether or not the battery pack 93 has failed. In the failure determination, failure is determined on the condition that the variation amount ⁇ Q is larger than a predetermined failure determination variation amount ⁇ QX.
  • the failure determination unit 37 sets the failure determination variation amount ⁇ QX larger when the variation in cell SOH between the cell batteries B is larger than when the variation is smaller than a predetermined reference. Further, at this time, the failure determination unit 37 sets the failure determination variation amount ⁇ QX smaller when the pack SOH is smaller than when the pack SOH is larger than the predetermined reference.
  • the equalization amount calculation unit 38 calculates the equalization amount for each cell battery B based on the variation amount ⁇ Q. Specifically, for example, the amount of variation ⁇ Q itself may be set as the equalization amount, or the amount of variation ⁇ Q multiplied by a predetermined value less than 1 may be used as the equalization amount, or the amount of variation ⁇ Q may be set to a predetermined value. may be used as the equalization amount.
  • the battery monitoring device 96 equalizes the cell power storage amount Q based on the calculated equalization amount. That is, each cell battery B is discharged by the calculated equalization amount. Since the discharge method itself may be a known method, detailed description thereof is omitted.
  • FIG. 5 is a flowchart showing control by the battery monitoring device 96 during CC charging of the battery pack 93 . This flow is performed for each cell battery B, and is repeatedly performed at predetermined intervals.
  • the impedance detection unit 31 detects the cell impedance Z.
  • the stored electricity amount specifying unit 32 determines whether or not the decrease in the cell impedance Z is rapidly accelerated beyond a predetermined standard. If it is determined that the acceleration is rapid (S102: YES), the process proceeds to S103, specifies that the cell charged amount Q has reached the section lower limit amount QL, and then proceeds to S106. At this time, it is preferable to update the calculated value of the cell power storage amount Q itself to the interval lower limit amount QL, but it does not have to be updated. On the other hand, if it is not determined in S102 that the speed is rapidly accelerated (S102: NO), the process proceeds to S104.
  • the stored electricity amount specifying unit 32 determines whether or not the decrease in the cell impedance Z is rapidly suppressed by a predetermined standard or more. If it is determined that it is rapidly suppressed (S104: YES), the process proceeds to S105, specifies that the cell charged amount Q has reached the section upper limit amount QU, and then proceeds to S106. At this time, it is preferable to update the calculated value of the cell power storage amount Q itself to the interval upper limit amount QU, but it does not have to be updated. On the other hand, if it is not determined in S104 that it is being suppressed rapidly (S104: NO), the process proceeds to S106.
  • the variation calculation unit 33 determines whether or not it has been specified that the cell storage amount Q of each cell battery B has reached the specific storage amount (QL, QU). That is, either specifying that the cell storage amount Q of each cell battery B has reached the section lower limit amount QL or specifying that the cell storage amount Q of each cell battery B has reached the section upper limit amount QU is performed. Determine whether or not it has been achieved. If it is determined that the cell storage amount Q of any of the cell batteries B has not reached the specified storage amount (QL, QU) (S106: NO), the flow ends. On the other hand, if it is determined that the cell storage amount Q has reached the specific storage amount (QL, QU) for each cell battery B (S106: YES), the process proceeds to S107.
  • the integrated current value ⁇ Idt after the specific timing (tP, tS) is calculated as the amount of variation ⁇ Q.
  • the equalization necessity determining unit 36 determines whether the variation amount ⁇ Q is larger than the equalization determination variation amount ⁇ QE. If it is determined that it is smaller than the equalization determination variation amount ⁇ QE (S108: NO), the flow proceeds to S109, determines that equalization is unnecessary, and then terminates the flow. On the other hand, when it is determined in S108 that the variation amount ⁇ Q is larger than the equalization determination variation amount ⁇ QE (S108: YES), the process proceeds to S110.
  • the failure determination unit 37 determines whether or not the variation amount ⁇ Q is smaller than the failure determination variation amount ⁇ QX. If it is determined to be larger than the failure determination variation amount ⁇ QX (S110: NO), the process proceeds to S112, determines that there is a failure, and then terminates the flow. On the other hand, when it is determined in S110 that the variation amount ⁇ Q is smaller than the failure determination variation amount ⁇ QX (S110: YES), the process proceeds to S111.
  • the equalization amount calculation unit 38 calculates the equalization amount based on the variation amount ⁇ Q, and the BMU 30 performs equalization based on the equalization amount, and then the flow ends.
  • FIG. 6 is a graph showing transition of each value during CC charging of the battery pack 93 .
  • the predetermined timings (t1 to t4) are referred to as “first timing t1", “second timing t2", “third timing t3”, and “fourth timing t4" in chronological order.
  • the calculated variation amount ⁇ Q increases as shown in FIG. 6(e). This is because the integrated current value ⁇ Idt after the suppression timing tS(B) increases from the suppression timing tS(B). Then, the increase in the variation amount ⁇ Q stops when the suppression timing tS(Bmin) of the minimum voltage cell battery Bmin is specified. Thereby, the amount of variation ⁇ Q is specified.
  • the impedance detector 31 calculates each cell impedance Z when the battery pack 93 is charged.
  • the stored electricity amount identifying unit 32 identifies that the cell stored electricity amount Q has reached the specific stored electricity amount (QL, QU) based on the second impedance differential Zdd, which is the change in the tendency of change in the cell impedance Z.
  • FIG. Variation calculator 33 calculates variation amount ⁇ Q based on the difference in specific timing (tP, tS) between cell batteries B. FIG. Therefore, even in a situation where it is difficult to calculate the cell charge amount Q based on the cell voltage V, such as in the plateau region, the variation amount ⁇ Q can be calculated based on the difference between the specific timings (tP, tS).
  • the equalization necessity determination unit 36 Based on the calculated variation amount ⁇ Q, the equalization necessity determination unit 36 performs equalization necessity determination, the failure determination unit 37 performs failure determination, and the equalization amount calculation unit 38 determines the equalization amount. Calculate. Therefore, even in the plateau region or the like, it is possible to perform equalization necessity determination, failure determination, and equalization amount calculation without any problem.
  • the variation calculation unit 33 calculates the variation amount ⁇ Q based on the integrated current value ⁇ Idt after the specific timing (tP, tS). Therefore, the variation amount ⁇ Q can be calculated with higher accuracy than when the variation amount ⁇ Q is calculated simply based on the elapsed time after the specific timing.
  • the AC application circuit 40 applies AC voltage to the battery pack 93 . Therefore, the AC resistance of the cell battery B can be measured as the cell impedance Z. Furthermore, the AC application circuit 40 applies an AC voltage to the battery pack 93 during CC charging. Therefore, there is no concern that AC noise due to changes in the charging current will be superimposed on the AC current due to the AC voltage. Therefore, the impedance detector 31 can detect the cell impedance Z with high accuracy. Therefore, the acceleration timing tP and the suppression timing tS can be specified with high accuracy, and the variation amount ⁇ Q can be calculated with high accuracy.
  • the variation calculation unit 33 not only calculates the variation amount ⁇ Q based on the cell impedance Z in the plateau region during CC charging, but also in the non-plateau region and when the OCV can be measured.
  • the amount of variation ⁇ Q is calculated based on. Therefore, the amount of variation ⁇ Q can be calculated not only during CC charging, but also in the non-plateau region and when the OCV can be measured.
  • cell battery B has graphite in the negative electrode.
  • the graphite remarkably increases the heat generation coefficient dV/dT when the cell charge amount Q is within the high heat generation section (QL to QU). Therefore, when the cell storage amount Q enters the high heat generation section (QL to QU), the decrease in the cell impedance Z is accelerated, and when the cell storage amount Q exits the high heat generation section (QL to QU), the cell impedance Z suppression of the decrease in Therefore, in this respect as well, the promotion timing tP and the suppression timing tS can be specified with high accuracy, and the variation amount ⁇ Q can be calculated with high accuracy.
  • cell battery B has an olivine structure in the positive electrode.
  • the olivine structure suppresses the change in the heat generation coefficient dV/dT at the positive electrode.
  • the promotion timing tP and the suppression timing tS can be specified with high accuracy, and the variation amount ⁇ Q can be calculated with high accuracy.
  • the equalization necessity determination unit 36 sets the equalization determination variation amount ⁇ QE larger when the cell SOH variation is larger than when the variation is smaller than the predetermined reference. This is because, if the variation in the cell SOH is large, even if the variation in the cell SOC is not so large, the variation in the cell charged amount Q, that is, the variation amount ⁇ Q becomes large. In such a situation, if equalization is performed simply based on the fact that the variation amount ⁇ Q is greater than the equalization determination variation amount ⁇ QE, even if the variation in the cell power storage amount Q is reduced, the variation in the cell SOC will conversely increase. There may be adverse effects such as increasing the size. In this respect, the equalization necessity determination unit 36 sets the equalization determination variation amount ⁇ QE larger when the variation in the cell SOH is large, so that it is difficult to determine that equalization is necessary. , can suppress such adverse effects.
  • the failure determination unit 37 sets the failure determination variation amount ⁇ QX larger when the variation in the cell SOH is larger than when the variation is smaller than the predetermined reference. This is because, as described above, if the variation in the cell SOH is large, the variation amount ⁇ Q, which is the variation in the storage amount Q of the cell, becomes large even if the variation in the cell SOC is not so large. In such a situation, if a failure is determined simply based on the fact that the amount of variation ⁇ Q is larger than the amount of variation ⁇ QX in failure determination, there is a problem that a failure is determined even if the variation in the cell SOC is not so large. It can happen. In this respect, the failure determination unit 37 sets the failure determination variation amount ⁇ QX larger when the variation in the cell SOH is large, so that it is difficult to determine that there is a failure. can be suppressed.
  • the equalization necessity determination unit 36 sets the equalization determination variation amount ⁇ QE to be smaller when the pack SOH is smaller than when the pack SOH is larger than the predetermined reference. This is because when the battery pack 93 deteriorates and the pack SOH ( ⁇ Qf/ ⁇ Qfo) becomes smaller, the pack power storage capacity ⁇ Qf becomes smaller, and the variation amount ⁇ Q, which is the variation in the cell power storage amount Q, tends to become smaller. As a result, the amount of variation ⁇ Q becomes less likely to exceed the amount of variation ⁇ QE for determination of equalization, which may cause a problem such as making it difficult to determine that equalization is necessary. In this respect, the equalization necessity determination unit 36 sets the equalization determination variation amount ⁇ QE smaller when the pack SOH is small in this way, so that it is easier to determine that equalization is necessary. It is possible to prevent such adverse effects.
  • the failure determination unit 37 sets the failure determination variation amount ⁇ QX smaller when the pack SOH is smaller than when the pack SOH is larger than the predetermined reference. This is because, as described above, when the battery pack 93 deteriorates and the pack SOH ( ⁇ Qf/ ⁇ Qfo) becomes smaller, the pack storage capacity ⁇ Qf becomes smaller, and thus the variation amount ⁇ Q, which is the variation in the cell storage amount Q, tends to become smaller. Become. As a result, the amount of variation ⁇ Q is less likely to exceed the amount of variation ⁇ QX for failure determination, and a problem may occur such that it is difficult to determine that there is a failure. In this respect, the failure determination unit 37 sets the failure determination variation amount ⁇ QX smaller when the pack SOH is small as described above. .
  • the amount of variation ⁇ Q is calculated based on the cell impedance Z not only during CC charging but also during power use (discharging). The mechanism will be explained below.
  • FIG. 7(a) is a graph showing the transition of the cell impedance Z when the battery pack 93 is using electric power
  • FIG. 7(b) is a graph showing the transition of the cell storage amount Q when the electric power is being used.
  • the cell storage amount Q when the use of electric power is started from the state where the cell battery B is substantially fully charged, the cell storage amount Q remains high until the cell storage amount Q decreases to the section upper limit amount QU. Since it is outside the heat generation section (QL-QU), the cell heat generation is small. Therefore, the decrease in the cell impedance Z shown in FIG. 7(a) is moderate.
  • the cell storage amount Q has reached the section lower limit amount QL at the acceleration timing tP, whereas during power use, the cell storage amount Q has reached the section upper limit amount QU at the acceleration timing tP. It is different in that it can be specified that it has become.
  • the cell storage amount Q reaches the section upper limit amount QU at the suppression timing tS, whereas during power use, the cell storage amount Q reaches the section lower limit amount QL at the suppression timing tS. It is different in that it can be identified as
  • the error in the cell storage amount Q can be reset at the timing when the cell storage amount Q decreases to the section upper limit amount QU and the timing when it decreases to the section lower limit amount QL. That is, the cell charge amount Q can be specified even in the plateau region or the like. Then, the variation amount ⁇ Q can be calculated based on the specific timing difference between the cell batteries B. FIG.
  • FIG. 1 which is the same as in the first embodiment, the configuration for calculating the amount of variation ⁇ Q when using electric power will be described.
  • the AC application circuit 40 applies AC voltage to the battery pack 93 not only during CC charging but also during power usage.
  • the impedance detector 31 calculates the cell impedance Z for each cell battery B based on the cell voltage V and the battery current I when an AC voltage is applied while power is being used.
  • the stored electricity amount specifying unit 32 specifies the timing at which the decrease in the detected cell impedance Z is accelerated abruptly by a predetermined standard or more in a state where the power usage is stable by a predetermined standard or more as the promotion timing tP. More specifically, it is determined that it is the promotion timing tP on the condition that the impedance second derivative Zdd has fallen below the negative acceleration determination value ZddP in a state where the power consumption is stable at a predetermined reference or more. At the acceleration timing tP, it is specified that the cell charged amount Q has reached the section upper limit amount QU.
  • the stored electricity amount specifying unit 32 specifies the timing at which the decrease in the detected cell impedance Z is rapidly suppressed by a predetermined standard or more in a state where the power usage is stable by a predetermined standard or more as the suppression timing tS. . More specifically, it is determined that it is the suppression timing tS on the condition that the impedance second derivative Zdd exceeds the positive suppression determination value ZddS in a state where the power consumption is stable at a predetermined reference or more. At the suppression timing tS, it is specified that the cell charged amount Q has reached the section lower limit amount QL.
  • FIG. 8 is a flowchart showing control by the battery monitoring device 96 when the power of the battery pack 93 is used. This flow is performed for each cell battery B, and is repeatedly performed at predetermined intervals. In this flow, compared with the flow for CC charging shown in FIG. However, it is different in that it specifies that the interval lower limit amount QL has been reached instead of the interval upper limit amount QU.
  • the cell impedance Z is calculated.
  • S202 if it is determined that the decrease in cell impedance Z has been accelerated more rapidly than a predetermined standard (S202: YES), proceed to S203 to specify that the cell charged amount Q has reached the section upper limit amount QU. , the process proceeds to S206. On the other hand, if it is not determined in S202 that the speed is rapidly accelerated (S202: NO), the process proceeds to S204.
  • S204 If it is determined in S204 that the decrease in the cell impedance Z is rapidly suppressed by a predetermined criterion or more (S204: YES), the process proceeds to S205, where it is specified that the cell charged amount Q has reached the section lower limit amount QL. , S206. On the other hand, if it is determined not to be abruptly suppressed in S204 (S204: NO), the process proceeds to S206.
  • S206 to S212 are the same as S106 to S112 in the CC charging flow shown in FIG.
  • the amount of variation ⁇ Q can be calculated based on the cell impedance Z not only during charging but also during power usage.
  • FIG. 9 is a flowchart showing control of the battery monitoring device 96 during CC charging of the battery pack 93 .
  • the flowchart of FIG. 9 differs from the flowchart of FIG. 5 only in S106. That is, in S106 of the first and second embodiments, the process proceeds to S107 on the condition that the cell storage amount Q of each cell battery B has reached the specific storage amount (QL, QU). On the other hand, in S106 of the present embodiment, even if there is a cell battery B that cannot be specified that the cell storage amount Q has reached the specific storage amount (QL, QU), if the predetermined time has passed, the process proceeds to the next step S107. .
  • a cell battery B that can be specified that the cell storage amount Q has reached the specified storage amount (QL, QU) will be referred to as an "identifiable cell battery B", and the cell storage amount Q will be the specified storage amount (QL, QU ), the cell battery B that cannot be specified is referred to as an “unspecified cell battery B”.
  • the amount of variation ⁇ Q of the one with the largest amount of variation ⁇ Q is referred to as the “maximum identifiable amount of variation ⁇ Q”.
  • the variation amount ⁇ Q of the unidentifiable cell battery B is determined to be equal to or greater than the identifiable maximum variation amount ⁇ Q. This is because, for the unidentifiable cell battery B, it is considered that the cell storage amount Q had already exceeded the specific storage amount (QL, QU) at the start of CC charging. Specifically, in this case, for example, the variation amount ⁇ Q of the unidentifiable cell battery B is set to be the same as the maximum identifiable variation amount ⁇ Q. According to this, in the equalization in S111, the equalization amount of the unidentifiable cell battery B is set to be the same as the equalization amount of the cell battery B related to the maximum identifiable variation amount ⁇ Q.
  • FIG. 10 is a flowchart showing control of the battery monitoring device 96 when the power of the battery pack 93 is used.
  • the flowchart of FIG. 10 differs from the flowchart of FIG. 8 only in S206. That is, in S206 of the second embodiment, the process proceeds to the next S207 on the condition that the cell storage amount Q of each cell battery B has been identified as the specific storage amount (QL, QU). On the other hand, in S206 of the present embodiment, even if there is a cell battery B that cannot be specified that the cell storage amount Q has reached the specific storage amount (QL, QU), if the predetermined time has passed, the process proceeds to the next step S207. .
  • the variation amount ⁇ Q of the unidentifiable cell battery B is determined to be zero or less. This is because, for the unidentifiable cell battery B, it is conceivable that the cell storage amount Q had already fallen below the specific storage amount (QL, QU) at the start of power use. Therefore, it is considered that the cell storage amount Q of the unidentifiable cell battery B is equal to or less than the calculated minimum cell storage amount Qmin. Specifically, in this case, for example, the variation amount ⁇ Q of the unidentifiable cell battery B is set to zero. Accordingly, in the equalization necessity determination in S209, it is determined that the unidentifiable cell battery B does not require equalization (S210).
  • the variation amount ⁇ Q can be calculated.
  • the cell battery B is an LFP battery, but instead of this, it may be a battery with a plateau region or a battery without a plateau region. That is, even if the cell battery B does not have a plateau region, the OCV cannot be obtained during charging or while power is being used. difficult to calculate. Therefore, even if the cell battery B does not have a plateau region, the variation amount ⁇ Q can be calculated based on the cell impedance Z when it is difficult to calculate the cell storage amount Q based on the cell voltage V. plays.
  • the region in which the change in the cell voltage V with respect to the change in the cell storage amount Q is smaller than a predetermined reference is defined as the "plateau region,” and the state in which the cell storage amount Q is within the plateau region is defined as the “plateau region.” in the plateau region.”
  • the time when the cell voltage V is within a predetermined range or the time when the cell charge amount Q is within a predetermined range may be defined as the "plateau region time”.
  • the cell impedance Z may be differentiated by the current integrated value ⁇ Idt to be the “impedance change Zd”, and the impedance change Zd may be further differentiated by the current integrated value ⁇ Idt to be the “impedance twice differentiated Zdd”.
  • the acceleration timing tP and the suppression timing tS can be determined with high accuracy even under a situation where the current is not constant.
  • the stored charge (Ah: ampere-hour) stored in the cell battery B is defined as the "cell storage amount Q".
  • the stored energy (Wh: Watt-hour) stored in the cell battery B may be used as the "cell storage amount”.
  • the variation calculation unit 33 uses the integrated power value (Wh) to calculate the variation amount in terms of energy (Wh ) should be calculated.
  • the power integrated value is a time integrated value of the product of the cell voltage V and the battery current I.
  • the cell impedance Z may be differentiated by the integrated power value as "impedance change Zd", and the impedance change Zd may be further differentiated by the integrated power value as "impedance twice differential Zdd". According to this aspect, it is possible to specify the promotion timing tP and the suppression timing tS with high accuracy even in a situation where the electric power is not constant.
  • the battery monitoring device 96 has the equalization necessity determination unit 36, the failure determination unit 37, and the equalization amount calculation unit .
  • battery monitor 96 may have only any two of these three, only any one, or none. good too.
  • equalization is performed by discharging each cell battery B based on the minimum cell storage amount Qmin.
  • the equalization may be performed by charging the cell battery B having a relatively low cell storage amount Q with the electric power of the cell battery B having a relatively high cell storage amount Q.
  • the variation calculator 33 calculates the variation amount ⁇ Q based on the integrated current value ⁇ Idt after the specific timing (tP, tS).
  • the variation amount ⁇ Q may be calculated simply based on the time t after the specific timing (tP, tS).
  • the battery monitoring device 96 has the AC application circuit 40. Instead of this, for example, by turning on and off the discharge switch for each cell battery B, a specific current change for each cell battery B may be generated. Then, the impedance (AC resistance) of the cell battery B at that time may be detected as the cell impedance Z.
  • the impedance of the cell battery B with respect to alternating current is defined as "cell impedance Z".
  • the impedance of the cell battery B with respect to direct current may be defined as "cell impedance Z”.
  • the external power supply 80 performs CC charging and CV charging, and the AC applying circuit 40 applies AC voltage to the battery pack 93 during CC charging.
  • the external power supply 80 may be configured to perform CP charging (constant power charging) and CV charging, and the AC application circuit 40 may be configured to apply an AC voltage to the battery pack 93 during CP charging.
  • the amount of variation ⁇ Q is also calculated based on the cell voltage V. calculating. Instead of this, the amount of variation ⁇ Q may be calculated based only on the cell impedance Z.
  • the calculation of the variation amount ⁇ Q based on the cell impedance Z is performed only during CC charging, and in the second embodiment, it is performed both during CC charging and during power use. Instead of these, the calculation of the amount of variation ⁇ Q based on the cell impedance Z may be performed only while power is being used. Further, in the third embodiment, the calculation of the amount of variation ⁇ Q based on the cell impedance Z is performed both during CC charging and during power use. Alternatively, it may be performed only during CC charging or during power use.
  • the equalization determination variation amount ⁇ QE and the failure determination variation amount ⁇ QX are set larger when the cell SOH variation is large.
  • the equalization determination variation amount ⁇ QE and the failure determination variation amount ⁇ QX may be set to be the same.
  • the equalization determination variation amount ⁇ QE and the failure determination variation amount ⁇ QX are set smaller.
  • the equalization determination variation amount ⁇ QE and the failure determination variation amount ⁇ QX may be set to be the same.

Abstract

A battery monitoring device (96) monitors a battery pack (93) that includes a serially connected body of a plurality of cell batteries (B). An impedance detection unit (31) of the battery monitoring device detects the impedance (Z) of the plurality of cell batteries when a pack storage amount changes, i.e., when the storage amount of the battery pack changes over time. A storage amount identification unit (32) of the battery monitoring device identifies that the storage amount (Q) of a cell battery has reached a specific storage amount (QL, QU) on the basis of the change (Zdd) in the change trend (Zd) of the detected impedance. A variation computation unit (33) of the battery monitoring device computes the variation (ΔQ) in the storage amount between cell batteries on the basis of the differences, among the cell batteries, in the identification timings (tP, tS) at which the storage amount was identified to have reached the specific storage amount.

Description

電池監視装置battery monitor 関連出願の相互参照Cross-reference to related applications
 本出願は、2021年4月21日に出願された日本出願番号2021-071858号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2021-071858 filed on April 21, 2021, and the contents thereof are incorporated herein.
 本開示は、複数のセル電池の直列接続体を有する電池パックを監視する電池監視装置に関する。 The present disclosure relates to a battery monitoring device that monitors a battery pack having a series connection of multiple cell batteries.
 電池監視装置の中には、セル電池の電圧に基づいて蓄電量等を演算するものがある。そのような技術を示す文献としては、次の特許文献1がある。 Some battery monitoring devices calculate the amount of stored electricity based on the voltage of the cell battery. As a document showing such a technique, there is the following Patent Document 1.
特開2018-125977号公報JP 2018-125977 A
 電池パックの充電中や電力使用中においては、セル電池の内部抵抗に電流が流れるため、セル電池の真の電圧、すなわちOCV(開回路電圧)を検出することができない。そのため、電池パックの充電中や電力使用中においては、セル電池の電圧に基づいて蓄電量を演算するのが難しい。  While charging the battery pack or using power, current flows through the internal resistance of the cell battery, so the true voltage of the cell battery, that is, the OCV (open circuit voltage) cannot be detected. Therefore, when the battery pack is being charged or power is being used, it is difficult to calculate the amount of stored electricity based on the voltage of the cell battery.
 さらにセル電池の中には、蓄電量変化に対する電圧変化が小さいプラトー領域を含むものがある。そのプラトー領域においては、セル電池の電圧に基づいて蓄電量を演算するのがさらに難しい。そして、セル電池の蓄電量を演算するのが難しい場合には、当然、セル電池どうしの間での蓄電量のバラツキを演算するのも難しい。 Furthermore, some cell batteries include a plateau region where voltage changes are small with respect to changes in the amount of charge. In that plateau region, it is even more difficult to calculate the amount of charge based on the cell battery voltage. If it is difficult to calculate the amount of electricity stored in the cell batteries, naturally it is also difficult to calculate the variation in the amount of electricity stored among the cell batteries.
 本開示は、上記事情に鑑みてなされたものであり、セル電池の電圧に基づいて蓄電量を演算するのが難しい状況下においても、セル電池どうしの間での蓄電量のバラツキを演算できるようにすることを、主たる目的とする。 The present disclosure has been made in view of the above circumstances, and is intended to enable calculation of variations in the amount of charge between cell batteries even in situations where it is difficult to calculate the amount of charge based on the voltage of the cell battery. The main purpose is to
 本開示の電池監視装置は、複数のセル電池の直列接続体を有する電池パックを監視する。前記電池監視装置は、インピーダンス検出部と蓄電量特定部とバラツキ演算部とを有する。 The battery monitoring device of the present disclosure monitors a battery pack having a series connection of multiple cell batteries. The battery monitoring device has an impedance detection section, a charged amount identification section, and a variation calculation section.
 前記インピーダンス検出部は、前記電池パックの蓄電量が時間経過に伴い変化するパック蓄電量変化時において、複数の前記セル電池のインピーダンスを検出する。前記蓄電量特定部は、検出されている前記インピーダンスの変化傾向の変化に基づいて、前記セル電池の蓄電量が特定蓄電量になったと特定する。前記バラツキ演算部は、前記セル電池どうしの間での、蓄電量が前記特定蓄電量になったと特定された特定タイミングの違いに基づいて、前記セル電池どうしの間での蓄電量のバラツキを演算する。 The impedance detection unit detects the impedance of the plurality of cell batteries when the amount of electricity stored in the battery pack changes over time. The stored electricity amount specifying unit specifies that the stored electricity amount of the cell battery has reached a specific stored electricity amount based on the detected change in the tendency of impedance change. The variation calculation unit calculates the variation in the charged amount between the cell batteries based on the difference in the specified timing at which the charged amount reaches the specified charged amount between the cell batteries. do.
 本開示では、以下の効果が得られる。電池パックの充電時や電力使用時等のパック蓄電量変化時には、各セル電池において、蓄電量が特定蓄電量になった時にインピーダンスの変化傾向が変化する。そこで、本開示では、当該変化傾向の変化に基づいてセル電池の蓄電量が特定蓄電量になったと特定する。その特定タイミングの違いに基づいて、セル電池どうしの間での蓄電量のバラツキを演算する。そのため、セル電池の電圧に基づいて蓄電量を演算するのが難しい状況下においても、セル電池のインピーダンスに基づいて、セル電池どうしの間での蓄電量のバラツキを演算できる。 The present disclosure provides the following effects. When the amount of stored electricity in the pack changes, such as when the battery pack is being charged or when electric power is used, the trend of impedance change changes when the amount of stored electricity in each cell battery reaches a specific amount of stored electricity. Therefore, in the present disclosure, it is specified that the charged amount of the cell battery has reached the specified charged amount based on the change in the change trend. Based on the difference in the specific timing, the variation in the amount of charge between the cell batteries is calculated. Therefore, even in a situation where it is difficult to calculate the amount of stored electricity based on the voltage of the cell batteries, the variation in the amount of stored electricity between the cell batteries can be calculated based on the impedance of the cell batteries.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態の電池監視装置及びその周辺を示す回路図であり、 図2は、電池パックに交流電圧が印加された時の電池電流の波形を示すグラフであり、 図3は、セル電池の蓄電量の増加に伴う各値の推移を示すグラフであり、 図4は、充電時間の経過に伴う各値の推移を示すグラフであり、 図5は、充電時における制御を示すフローチャートであり、 図6は、充電時における各値の推移を示すグラフであり、 図7は、第2実施形態において、放電時間の経過に伴う各値の推移を示すグラフであり、 図8は、電力使用時における制御を示すフローチャートであり、 図9は、第3実施形態において、充電時における制御を示すフローチャートであり、 図10は、電力使用時における制御を示すフローチャートである。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a circuit diagram showing the battery monitoring device of the first embodiment and its periphery; FIG. 2 is a graph showing the waveform of battery current when AC voltage is applied to the battery pack; FIG. 3 is a graph showing the transition of each value as the amount of electricity stored in the cell battery increases. FIG. 4 is a graph showing the transition of each value with the passage of charging time, FIG. 5 is a flowchart showing control during charging, FIG. 6 is a graph showing the transition of each value during charging, FIG. 7 is a graph showing the transition of each value with the passage of discharge time in the second embodiment, FIG. 8 is a flow chart showing control when power is used, FIG. 9 is a flowchart showing control during charging in the third embodiment, FIG. 10 is a flow chart showing control when power is used.
 以下に本開示の実施形態について図面を参照しつつ説明する。ただし、本開示は以下の実施形態に限定されるものではなく、開示の趣旨を逸脱しない範囲で適宜変更して実施できる。 The embodiments of the present disclosure will be described below with reference to the drawings. However, the present disclosure is not limited to the following embodiments, and can be implemented with appropriate modifications within the scope of the disclosure.
 [第1実施形態]
 図1は、本実施形態の電池監視装置96及びその周辺を示す回路図である。電動車両90には、走行用モータや車載機器等の負荷91と、負荷91に給電する電池パック93と、電池パック93を監視する電池監視装置96とが搭載されている。電動車両90は、エンジンを備ないものであってもよいし、エンジンを備えるプラグインハイブリッド車等であってもよい。以下では、「電気的に接続」されていることを、単に「接続」されているという。
[First embodiment]
FIG. 1 is a circuit diagram showing a battery monitoring device 96 and its surroundings according to this embodiment. An electric vehicle 90 is equipped with a load 91 such as a driving motor and onboard equipment, a battery pack 93 that supplies power to the load 91 , and a battery monitoring device 96 that monitors the battery pack 93 . The electric vehicle 90 may be one without an engine, or may be a plug-in hybrid vehicle or the like with an engine. Hereinafter, "electrically connected" is simply referred to as "connected".
 電池パック93は、セル電池Bの直列接続体を有する。各セル電池Bは、LFPバッテリー(リン酸鉄リチウムイオン電池)である。電池パック93は負荷91に接続されている。そして、電池パック93を充電する充電時には、電池パック93に外部電源80が接続される。外部電源80は、電池パック93が満充電になる直前までCC充電(定電流充電)を行い、当該直前にCV充電(定電圧充電)に切り替える。 The battery pack 93 has a series connection of cell batteries B. Each cell battery B is an LFP battery (lithium iron phosphate battery). Battery pack 93 is connected to load 91 . When the battery pack 93 is charged, the external power supply 80 is connected to the battery pack 93 . The external power supply 80 performs CC charging (constant current charging) until just before the battery pack 93 is fully charged, and switches to CV charging (constant voltage charging) just before that.
 以下では、電池パック93に流れる電流を「電池電流I」という。よって、電池電流Iは、各セル電池Bに流れる電流でもある。また以下では、電池電流Iを時間積分したものを「電流積算値∫Idt」いう。そして、セル電池Bの電圧を「セル電圧V」といい、セル電池Bに蓄えられている電荷(Ah:アンペアアワー)を「セル蓄電量Q」という。そして、セル蓄電量Qが最小のセル電池Bの当該セル蓄電量Qを「最小セル蓄電量Qmin」という。そして、セル蓄電量Qから最小セル蓄電量Qminを減じたもの(Q-Qmin)を「バラツキ量ΔQ」という。 The current flowing through the battery pack 93 is hereinafter referred to as "battery current I". Therefore, the battery current I is also the current flowing through each cell battery B. As shown in FIG. In the following description, the time-integrated value of the battery current I is referred to as "integrated current value∫Idt". The voltage of the cell battery B is called "cell voltage V", and the electric charge (Ah: ampere hour) stored in the cell battery B is called "cell storage amount Q". The cell storage amount Q of the cell battery B with the smallest cell storage amount Q is referred to as "minimum cell storage amount Qmin". Then, the value obtained by subtracting the minimum cell storage amount Qmin from the cell storage amount Q (Q-Qmin) is called "variation amount ΔQ".
 また以下では、満充電時のセル蓄電量Qを「セル蓄電容量Qf」といい、セル蓄電容量Qfに対するセル蓄電量Qの割合(Q/Qf)を「セルSOC」という。なお、SOCは、「State Of Charge」の略である。そして、初期(新品時)のセル蓄電容量Qfを「初期セル蓄電容量Qfo」といい、初期セル蓄電容量Qfoに対する現在のセル蓄電容量Qfの割合(Qf/Qfo)を「セルSOH」という。なお、SOHは、「State Of Health」の略である。 Also, hereinafter, the cell storage amount Q at full charge is referred to as "cell storage capacity Qf", and the ratio (Q/Qf) of the cell storage amount Q to the cell storage capacity Qf is referred to as "cell SOC". Note that SOC is an abbreviation for "State Of Charge". The initial (when new) cell storage capacity Qf is called "initial cell storage capacity Qfo", and the ratio of the current cell storage capacity Qf to the initial cell storage capacity Qfo (Qf/Qfo) is called "cell SOH". Note that SOH is an abbreviation for "State Of Health".
 また以下では、電池パック93に蓄えられている電荷を「パック蓄電量ΣQ」といい、満充電時のパック蓄電量ΣQを「パック蓄電容量ΣQf」といい、初期(新品時)のパック蓄電容量ΣQfを「初期パック蓄電容量ΣQfo」という。そして、初期パック蓄電容量ΣQfoに対する現在のパック蓄電容量ΣQfの割合(ΣQf/ΣQfo)を「パックSOH」という。 Also, hereinafter, the charge stored in the battery pack 93 is referred to as "pack storage amount ΣQ", the pack storage amount ΣQ when fully charged is referred to as "pack storage capacity ΣQf", and the initial (new) pack storage capacity ΣQf is referred to as “initial pack storage capacity ΣQfo”. The ratio of the current pack storage capacity ΣQf to the initial pack storage capacity ΣQfo (ΣQf/ΣQfo) is called “pack SOH”.
 また以下では、交流に対するセル電池Bのインピーダンスを「セルインピーダンスZ」という。そのセルインピーダンスZは、セル電池Bの内部に存在する抵抗や容量成分やインダクタ成分等による。そして、セルインピーダンスZを時間微分したものを「インピーダンス変化Zd」といい、そのインピーダンス変化Zdをさらに時間微分したものを「インピーダンス2回微分Zdd」という。つまり、インピーダンス2回微分Zddは、セルインピーダンスZの変化傾向の変化を示すものである。 Also, hereinafter, the impedance of the cell battery B with respect to alternating current is referred to as "cell impedance Z". The cell impedance Z depends on the resistance, capacitance component, inductor component, etc. existing inside the cell battery B. FIG. A time-differentiated value of the cell impedance Z is called an "impedance change Zd", and a time-differentiated value of the impedance change Zd is called an "impedance twice differentiated Zdd". In other words, the impedance second derivative Zdd indicates a change in the tendency of the cell impedance Z to change.
 電池監視装置96は、電流センサ10と電圧センサ20とBMU30とを有する。なお、BMUは、「Battery Management Unit」の略である。電流センサ10は、電池パック93に対する配線の電流を計測することにより、電池電流Iを計測する。電圧センサ20は、電池パック93の両端子と、電池パック93内において直列に隣り合う各2つのセル電池Bどうしの間とに接続されている。つまり、電圧センサ20は、各セル電池Bの両端子に接続されている。電圧センサ20は、マルチプレクサ等を有しており、各セル電池Bの電圧を計測可能に構成されている。 The battery monitoring device 96 has a current sensor 10, a voltage sensor 20 and a BMU 30. BMU is an abbreviation for "Battery Management Unit". The current sensor 10 measures the battery current I by measuring the current in the wiring to the battery pack 93 . The voltage sensor 20 is connected between both terminals of the battery pack 93 and between each two cell batteries B adjacent in series in the battery pack 93 . That is, the voltage sensor 20 is connected to both terminals of each cell battery B. As shown in FIG. The voltage sensor 20 has a multiplexer and the like, and is configured to be able to measure the voltage of each cell battery B. FIG.
 BMU30は、CPU、ROM、RAM等を有するECU(電子制御ユニット)であって、電流センサ10により計測された電池電流Iと、電圧センサ20により計測されたセル電圧Vとに基づいて、電池パック93を監視する。 The BMU 30 is an ECU (electronic control unit) having a CPU, a ROM, a RAM, etc. Based on the battery current I measured by the current sensor 10 and the cell voltage V measured by the voltage sensor 20, the battery pack Monitor 93.
 次に、図3、図4を参照しつつ、本実施形態で解決すべき課題とその解決手段の概要とについて説明する。 Next, with reference to FIGS. 3 and 4, the problems to be solved by this embodiment and the outline of the means for solving them will be described.
 図3(a)は、セル蓄電量Q(横軸)とセル電圧V(縦軸)との関係を示すグラフである。前述の通り、各セル電池Bは、LFPバッテリーである。その特性上、各セル電池Bには、セル蓄電量Q(横軸)の変化に対するセル電圧V(縦軸)の変化が所定基準よりも小さいプラトー領域が存在する。以下では、セル蓄電量Qがプラトー領域内である時を「プラトー領域時」といい、セル蓄電量Qがプラトー領域外である時を「非プラトー領域時」という。プラトー領域時には、セル電圧V(縦軸)に基づいてセル蓄電量Q(横軸)を演算することが難しい。そのため、バラツキ量ΔQを演算するのも難しい。 FIG. 3(a) is a graph showing the relationship between the cell charge amount Q (horizontal axis) and the cell voltage V (vertical axis). As described above, each cell battery B is an LFP battery. Due to its characteristics, each cell battery B has a plateau region where the change in the cell voltage V (vertical axis) with respect to the change in the cell storage amount Q (horizontal axis) is smaller than a predetermined reference. Hereinafter, the time when the cell charge amount Q is within the plateau region is referred to as the "plateau time", and the time when the cell charge amount Q is outside the plateau range is referred to as the "non-plateau time". During the plateau region, it is difficult to calculate the cell charge amount Q (horizontal axis) based on the cell voltage V (vertical axis). Therefore, it is also difficult to calculate the amount of variation ΔQ.
 そこで、本実施形態では、プラトー領域時には、セルインピーダンスZに基づいてバラツキ量ΔQを演算する。そのメカニズムについて以下に説明する。以下では、セル電池Bでの発熱を「セル発熱」といい、セル電池Bの温度を「セル温度T」といい、セル電圧Vをセル温度Tで微分したもの「発熱係数dV/dT」という。 Therefore, in this embodiment, the amount of variation ΔQ is calculated based on the cell impedance Z during the plateau region. The mechanism will be explained below. Hereinafter, the heat generated in the cell battery B will be referred to as "cell heat generation," the temperature of the cell battery B will be referred to as "cell temperature T," and the cell voltage V differentiated by the cell temperature T will be referred to as "heat generation coefficient dV/dT." .
 セル発熱は、電池電流Iにより発生するジュール発熱と、次に示す反応熱との和になる。その反応熱は、セル温度Tと電池電流Iと発熱係数dV/dTとの積(T×I×dV/dT)である。そのことから、発熱係数dV/dTが大きいほど、セル発熱が大きくなる。 The cell heat generation is the sum of the Joule heat generated by the battery current I and the reaction heat shown below. The reaction heat is the product (T×I×dV/dT) of the cell temperature T, the battery current I, and the heat generation coefficient dV/dT. Therefore, the greater the heat generation coefficient dV/dT, the greater the cell heat generation.
 図3(b)は、セル蓄電量Q(横軸)と発熱係数dV/dT(縦軸)との関係を示すグラフである。セル蓄電量Qが所定の高発熱区間(QL~QU)内の時に、発熱係数dV/dTが大きくなり、セル発熱が大きくなる。以下では、その高発熱区間(QL~QU)の下限となる蓄電量を「区間下限量QL」といい、高発熱区間(QL~QU)の上限となる蓄電量を「区間上限量QU」という。 FIG. 3(b) is a graph showing the relationship between the cell charge amount Q (horizontal axis) and the heat generation coefficient dV/dT (vertical axis). When the cell charge amount Q is within a predetermined high heat generation section (QL to QU), the heat generation coefficient dV/dT increases and the cell heat generation increases. Hereinafter, the storage amount that is the lower limit of the high heat generation section (QL to QU) will be referred to as "section lower limit amount QL", and the storage amount that will be the upper limit of the high heat generation section (QL to QU) will be referred to as "section upper limit amount QU". .
 そして、LFPバッテリーであるセル電池Bでは、セル温度Tが高いほどセルインピーダンスZが小さくなる。そのため、セル蓄電量Qが高発熱区間(QL~QU)内の時は、セル発熱が大きくなりセル温度Tの上昇が大きくなることなり、セルインピーダンスZの減少が大きくなる。 Then, in the cell battery B, which is an LFP battery, the higher the cell temperature T, the smaller the cell impedance Z. Therefore, when the cell charge amount Q is within the high heat generation section (QL to QU), the cell heat generation increases, the cell temperature T increases, and the cell impedance Z decreases significantly.
 図4(a)は、電池パック93の充電時におけるセルインピーダンスZの推移を示すグラフであり、図4(b)は、充電時におけるセル蓄電量Qの推移を示すグラフである。図4(b)に示すように、セル電池Bが略空の状態から充電を開始した場合、セル蓄電量Qが区間下限量QLに達するまでの間は、セル蓄電量Qが高発熱区間(QL~QU)外であるので、セル発熱は小さくセル温度Tの上昇は緩やかである。そのため、図4(a)に示すセルインピーダンスZの減少は緩やかである。 FIG. 4(a) is a graph showing changes in cell impedance Z during charging of the battery pack 93, and FIG. 4(b) is a graph showing changes in cell storage amount Q during charging. As shown in FIG. 4(b), when charging is started from a state in which the cell battery B is substantially empty, the cell storage amount Q remains in the high heat generation section ( QL to QU), the cell heat generation is small and the cell temperature T rises slowly. Therefore, the decrease in the cell impedance Z shown in FIG. 4(a) is moderate.
 その後、図4(b)に示すように、セル蓄電量Qが区間下限量QLに達すると、セル蓄電量Qが高発熱区間(QL~QU)に入ることにより、図3(b)に示す発熱係数dV/dTが急増してセル発熱が急増する。それにより、セル温度Tの上昇が急激に促進されて、図4(a)に示すセルインピーダンスZの減少が急激に促進される。以下では、このようにセルインピーダンスZの減少が急激に促進されるタイミングを「促進タイミングtP」という。その促進タイミングtPで、セル蓄電量Qが図4(b)に示す区間下限量QLになったと特定できる。 After that, as shown in FIG. 4(b), when the cell power storage amount Q reaches the section lower limit amount QL, the cell power storage amount Q enters the high heat generation section (QL to QU), and as shown in FIG. 3(b) The heat generation coefficient dV/dT increases rapidly, and the cell heat generation increases rapidly. As a result, the increase in cell temperature T is rapidly accelerated, and the decrease in cell impedance Z shown in FIG. 4(a) is rapidly accelerated. Hereinafter, the timing at which the decrease in cell impedance Z is rapidly accelerated is referred to as "acceleration timing tP". At the acceleration timing tP, it can be specified that the cell charged amount Q has reached the interval lower limit amount QL shown in FIG. 4(b).
 その後、図4(b)に示すように、充電によりセル蓄電量Qが区間上限量QUに達すると、セル蓄電量Qが高発熱区間(QL~QU)から脱することにより、図3(b)に示す発熱係数dV/dTが急減する。それにより、セル発熱が急減して、セル温度Tの上昇が急激に抑制されることにより、図4(a)に示すセルインピーダンスZの減少が急激に抑制される。以下では、このようにセルインピーダンスZの減少が急激に抑制されるタイミングを「抑制タイミングtS」という。その抑制タイミングtSで、セル蓄電量Qが図4(b)に示す区間上限量QUになったと特定できる。 After that, as shown in FIG. 4(b), when the cell storage amount Q reaches the section upper limit amount QU due to charging, the cell storage amount Q escapes from the high heat generation section (QL to QU), ) rapidly decreases. As a result, the cell heat generation is rapidly reduced, and the increase in the cell temperature T is rapidly suppressed, thereby rapidly suppressing the decrease in the cell impedance Z shown in FIG. 4(a). Hereinafter, the timing at which the decrease in cell impedance Z is suddenly suppressed is referred to as "suppression timing tS". At the suppression timing tS, it can be specified that the cell charged amount Q has reached the section upper limit amount QU shown in FIG. 4(b).
 そのため、セル蓄電量Qを例えば電流積算値∫Idt等に基づいて演算する場合、セル蓄電量Qの誤差を、セル蓄電量Qが区間下限量QLに達したタイミングと、区間上限量QUに達したタイミングとでリセットすることができる。つまり、プラトー領域時等においても、セル蓄電量Qを特定することができる。そして、セル電池Bどうしの間での、それらの特定のタイミングの違いに基づいて、バラツキ量ΔQを演算できる。 Therefore, when the cell storage amount Q is calculated based on, for example, the integrated current value ∫Idt, the error in the cell storage amount Q can be calculated from the timing when the cell storage amount Q reaches the section lower limit amount QL and the section upper limit amount QU. can be reset at any time. That is, the cell charge amount Q can be specified even in the plateau region or the like. Then, the variation amount ΔQ can be calculated based on the specific timing difference between the cell batteries B. FIG.
 以下では、促進タイミングtPと抑制タイミングtSとを、まとめて「特定タイミング(tP,tS)といい、区間下限量QLと区間上限量QUとを、まとめて「特定蓄電量(QL,QU)」という。 Hereinafter, the acceleration timing tP and the suppression timing tS are collectively referred to as "specific timing (tP, tS), and the section lower limit amount QL and section upper limit amount QU are collectively referred to as "specific storage amount (QL, QU)." It says.
 次に、再び図1を参照しつつ、以上に示したセルインピーダンスZに基づくバラツキ量ΔQの演算のための構成について説明する。当該構成として、電池監視装置96は、さらに交流印加回路40を有すると共に、BMU30内に、インピーダンス検出部31と蓄電量特定部32とバラツキ演算部33とを有する。そしてさらに、各セル電池Bが、負極に黒鉛を有すると共に、正極にオリビン構造を有する。なお、オリビン構造は、六方密充填酸素骨格を持つ結晶構造である。 Next, referring to FIG. 1 again, the configuration for calculating the variation amount ΔQ based on the cell impedance Z described above will be described. As the configuration, the battery monitoring device 96 further has an AC application circuit 40 , and has an impedance detection section 31 , a charged amount identification section 32 and a variation calculation section 33 in the BMU 30 . Further, each cell battery B has graphite in the negative electrode and an olivine structure in the positive electrode. The olivine structure is a crystal structure having a hexagonal close-packed oxygen skeleton.
 セル電池Bが負極に黒鉛を有するのは、セル蓄電量Qが高発熱区間(QL~QU)内の時に、発熱係数dV/dTが顕著に大きくなるからである。他方、正極にオリビン構造を有するのは、正極での発熱係数dV/dTの変化が抑制されるからである。つまり、負極での発熱係数dV/dTの変化に対して、正極での発熱係数dV/dTの変化がノイズとして重畳するのを抑制できるからである。 The reason why the cell battery B has graphite in the negative electrode is that the heat generation coefficient dV/dT becomes significantly large when the cell storage amount Q is within the high heat generation section (QL to QU). On the other hand, the reason why the positive electrode has an olivine structure is that the change in the heat generation coefficient dV/dT at the positive electrode is suppressed. In other words, it is possible to suppress superimposition of the change in the heat generation coefficient dV/dT at the positive electrode as noise on the change in the heat generation coefficient dV/dT at the negative electrode.
 交流印加回路40の一方の端子は、電池パック93の正極端子に接続され、交流印加回路40の他方の端子は、電池パック93の負極端子に接続されている。そして、交流印加回路40は、電池パック93のCC充電(定電流充電)中に電池パック93に対して交流電圧を印加する。 One terminal of the AC applying circuit 40 is connected to the positive terminal of the battery pack 93 and the other terminal of the AC applying circuit 40 is connected to the negative terminal of the battery pack 93 . The AC application circuit 40 applies an AC voltage to the battery pack 93 during CC charging (constant current charging) of the battery pack 93 .
 図2は、CC充電中における電池電流Iの波形を示すグラフである。CC充電中に電池パック93に対して交流電圧が印加されると、充電電流であるCC電流(定電流)に交流電流が重畳される。なお、このようにCC充電中に交流電圧を印加するのは、CC充電中なら充電電流が一定なので、充電電流の変化による交流ノイズが、交流電流に重畳する心配がないからである。 FIG. 2 is a graph showing the waveform of battery current I during CC charging. When an AC voltage is applied to the battery pack 93 during CC charging, the AC current is superimposed on the CC current (constant current) that is the charging current. The reason why the AC voltage is applied during the CC charging is that the charging current is constant during the CC charging, so that there is no concern that AC noise due to changes in the charging current will be superimposed on the AC current.
 図1に示すインピーダンス検出部31は、電池パック93のCC充電中において交流印加回路40により交流電圧が印加されているときの、各セル電圧V及び電池電流Iに基づいて、各セルインピーダンスZを演算する。具体的には、例えば、セル電圧Vにおける交流成分の実効値を、電池電流Iにおける交流成分の実効値で割った値(交流抵抗)を、セルインピーダンスZとして演算する。 The impedance detection unit 31 shown in FIG. 1 detects each cell impedance Z based on each cell voltage V and battery current I when AC voltage is applied by the AC application circuit 40 during CC charging of the battery pack 93. Calculate. Specifically, for example, a value (AC resistance) obtained by dividing the effective value of the AC component in the cell voltage V by the effective value of the AC component in the battery current I is calculated as the cell impedance Z.
 蓄電量特定部32は、セル蓄電量Qについて、特定タイミング(tP,tS)で特定蓄電量(QL,QU)になったと特定する。なお、本実施形態では、少なくとも特定蓄電量(QL,QU)の一方である区間上限量QUが、プラトー領域に含まれている。 The stored electricity amount identifying unit 32 identifies that the cell stored electricity amount Q has reached a specific stored electricity amount (QL, QU) at a specific timing (tP, tS). Note that in the present embodiment, at least the section upper limit amount QU, which is one of the specific storage amounts (QL, QU), is included in the plateau region.
 具体的には、蓄電量特定部32は、開始時及び終了時を除くCC充電中において、検出されているセルインピーダンスZの減少が所定基準以上急激に促進されるタイミングを、促進タイミングtPと特定する。より具体的には、開始時及び終了時を除くCC充電中において、インピーダンス2回微分Zddが、負の促進判定値ZddPを下回ったことを条件に、促進タイミングtPであると判定する。その促進タイミングtPで、セル蓄電量Qが区間下限量QLになったと特定する。 Specifically, the stored electricity amount identification unit 32 identifies the timing at which the decrease in the detected cell impedance Z is accelerated more than a predetermined standard during CC charging, excluding the start and end times, as the acceleration timing tP. do. More specifically, the acceleration timing tP is determined on condition that the impedance second derivative Zdd has fallen below the negative acceleration determination value ZddP during CC charging excluding the start and end times. At the acceleration timing tP, it is specified that the cell charged amount Q has reached the section lower limit amount QL.
 また、蓄電量特定部32は、開始時及び終了時を除くCC充電中において、演算されているセルインピーダンスZの減少が所定基準以上急激に抑制されるタイミングを、抑制タイミングtSと特定する。より具体的には、開始時及び終了時を除くCC充電中において、インピーダンス2回微分Zddが、正の抑制判定値ZddSを上回ったことを条件に、抑制タイミングtSであると判定する。その抑制タイミングtSで、セル蓄電量Qが区間上限量QUになったと特定する。 In addition, the stored electricity amount specifying unit 32 specifies the timing at which the decrease in the calculated cell impedance Z is rapidly suppressed by a predetermined reference or more during CC charging, excluding the start and end times, as the suppression timing tS. More specifically, it is determined that it is the suppression timing tS on condition that the impedance second derivative Zdd exceeds the positive suppression determination value ZddS during CC charging except at the start and end. At the suppression timing tS, it is specified that the cell charged amount Q has reached the section upper limit amount QU.
 バラツキ演算部33は、各セル電池Bについて、特定タイミング(tP,tS)以降における電流積算値∫Idtをバラツキ量ΔQとして演算する。よって、具体的には、促進タイミングtP以降においては、その促進タイミングtP以降における電流積算値∫Idtをバラツキ量ΔQとして演算し、抑制タイミングtS以降においては、その抑制タイミングtS以降における電流積算値∫Idtをバラツキ量ΔQとして演算する。以上により、バラツキ演算部33は、セル電池Bどうしの間での特定タイミング(tP,tS)の違いに基づいて、バラツキ量ΔQを演算する。 The variation calculation unit 33 calculates, for each cell battery B, the integrated current value ∫Idt after the specific timing (tP, tS) as the variation amount ΔQ. Therefore, specifically, after the promotion timing tP, the integrated current value ∫Idt after the promotion timing tP is calculated as the variation amount ΔQ, and after the suppression timing tS, the integrated current value ∫ after the suppression timing tS is calculated. Idt is calculated as the amount of variation ΔQ. As described above, the variation calculation unit 33 calculates the variation amount ΔQ based on the difference in the specific timings (tP, tS) between the cell batteries B. FIG.
 なお、以上には、セルインピーダンスZに基づくバラツキ量ΔQの演算について説明したが、非プラトー領域時且つOCVを計測可能な状況下では、BMU30は、セル電圧Vに基づいてセル蓄電量Qを演算して、それらのセル蓄電量Qに基づいてバラツキ量ΔQを演算する。その演算手法自体については、公知のものでよいため、詳細な説明は省略する。 Although the calculation of the amount of variation ΔQ based on the cell impedance Z has been described above, in a non-plateau region and under conditions where the OCV can be measured, the BMU 30 calculates the cell storage amount Q based on the cell voltage V. Then, the amount of variation ΔQ is calculated based on the amount of charge Q of those cells. Since the computation method itself may be a known one, detailed description thereof will be omitted.
 なお、本実施形態では、セルインピーダンスZに基づいてバラツキ量ΔQを演算する際には、セル電圧Vに基づくバラツキ量ΔQの演算を無効にする。ただし、これに代えて、セルインピーダンスZに基づくバラツキ量ΔQの演算及びセル電圧Vに基づくバラツキ量ΔQの演算の両方を、試みるようにしてもよい。 Note that in this embodiment, when calculating the amount of variation ΔQ based on the cell impedance Z, the calculation of the amount of variation ΔQ based on the cell voltage V is disabled. However, instead of this, both calculation of the amount of variation ΔQ based on the cell impedance Z and calculation of the amount of variation ΔQ based on the cell voltage V may be attempted.
 次に、以上により演算されたバラツキ量ΔQの活用について説明する。その活用のための構成として、BMU30は、さらに均等化要否判定部36と、故障判定部37と、均等化量演算部38とを有する。 Next, the utilization of the variation amount ΔQ calculated as above will be explained. The BMU 30 further has an equalization necessity determination section 36 , a failure determination section 37 , and an equalization amount calculation section 38 as a configuration for its utilization.
 均等化要否判定部36は、各セル電池Bに対して、均等化が必要か否かの均等化要否判定を実施する。その均等化要否判定では、バラツキ量ΔQが所定の均等化判定バラツキ量ΔQEよりも大きいことを条件に均等化要と判定する。 The equalization necessity determination unit 36 performs an equalization necessity determination for each cell battery B as to whether or not equalization is necessary. In the equalization necessity determination, it is determined that equalization is necessary on the condition that the variation amount ΔQ is larger than a predetermined equalization determination variation amount ΔQE.
 このとき、均等化要否判定部36は、セル電池Bどうしの間でのセルSOHのバラツキが所定基準よりも小さい場合に比べて大きい場合の方が、均等化判定バラツキ量ΔQEを大きく設定する。さらにこのとき、均等化要否判定部36は、パックSOHが所定基準よりも大きい場合に比べて小さい場合の方が、均等化判定バラツキ量ΔQEを小さく設定する。これらの理由については後述する。 At this time, the equalization necessity determining unit 36 sets the equalization determination variation amount ΔQE to be larger when the variation in cell SOH between the cell batteries B is larger than when the variation is smaller than a predetermined reference. . Further, at this time, the equalization necessity determination unit 36 sets the equalization determination variation amount ΔQE smaller when the pack SOH is smaller than when the pack SOH is larger than the predetermined reference. These reasons will be described later.
 故障判定部37は、電池パック93が故障しているか否かの故障判定を実施する。その故障判定では、バラツキ量ΔQが所定の故障判定バラツキ量ΔQXよりも大きいことを条件に故障と判定する。 The failure determination unit 37 performs failure determination as to whether or not the battery pack 93 has failed. In the failure determination, failure is determined on the condition that the variation amount ΔQ is larger than a predetermined failure determination variation amount ΔQX.
 このとき、故障判定部37は、セル電池Bどうしの間でのセルSOHのバラツキが所定基準よりも小さい場合に比べて大きい場合の方が、故障判定バラツキ量ΔQXを大きく設定する。さらにこのとき、故障判定部37は、パックSOHが所定基準よりも大きい場合に比べて小さい場合の方が、故障判定バラツキ量ΔQXを小さく設定する。これらの理由についても後述する。 At this time, the failure determination unit 37 sets the failure determination variation amount ΔQX larger when the variation in cell SOH between the cell batteries B is larger than when the variation is smaller than a predetermined reference. Further, at this time, the failure determination unit 37 sets the failure determination variation amount ΔQX smaller when the pack SOH is smaller than when the pack SOH is larger than the predetermined reference. These reasons are also mentioned later.
 均等化量演算部38は、各セル電池Bについて、バラツキ量ΔQに基づいて均等化量を演算する。具体的には、例えばバラツキ量ΔQ自体を均等化量として設定してもよいし、バラツキ量ΔQに1未満の所定値を乗じたものを均等化量としてもよいし、バラツキ量ΔQから所定値を減じたものを均等化量としてもよい。 The equalization amount calculation unit 38 calculates the equalization amount for each cell battery B based on the variation amount ΔQ. Specifically, for example, the amount of variation ΔQ itself may be set as the equalization amount, or the amount of variation ΔQ multiplied by a predetermined value less than 1 may be used as the equalization amount, or the amount of variation ΔQ may be set to a predetermined value. may be used as the equalization amount.
 そして、電池監視装置96は、演算された均等化量に基づいて、セル蓄電量Qの均等化を行う。つまり、各セル電池Bについて、それぞれ演算された均等化量だけ放電する。その放電手法自体については、公知のものでよいため、詳細な説明は省略する。 Then, the battery monitoring device 96 equalizes the cell power storage amount Q based on the calculated equalization amount. That is, each cell battery B is discharged by the calculated equalization amount. Since the discharge method itself may be a known method, detailed description thereof is omitted.
 図5は、電池パック93のCC充電時における電池監視装置96による制御を示すフローチャートである。このフローはセル電池B毎に実施され、且つ所定周期毎に繰り返し実施される。 FIG. 5 is a flowchart showing control by the battery monitoring device 96 during CC charging of the battery pack 93 . This flow is performed for each cell battery B, and is repeatedly performed at predetermined intervals.
 まず、S101において、インピーダンス検出部31により、セルインピーダンスZを検出する。次くS102において、蓄電量特定部32により、セルインピーダンスZの減少が所定基準以上、急激に促進されているか否かを判定する。急激に促進されていると判定した場合(S102:YES)、S103に進み、セル蓄電量Qが区間下限量QLになったと特定してから、S106に進む。なお、このとき、セル蓄電量Qの演算値自体についても、区間下限量QLに更新することが好ましいが、更新しなくてもよい。他方、S102で急激に促進されていると判定しない場合(S102:NO)、S104に進む。 First, in S101, the impedance detection unit 31 detects the cell impedance Z. Next, in S102, the stored electricity amount specifying unit 32 determines whether or not the decrease in the cell impedance Z is rapidly accelerated beyond a predetermined standard. If it is determined that the acceleration is rapid (S102: YES), the process proceeds to S103, specifies that the cell charged amount Q has reached the section lower limit amount QL, and then proceeds to S106. At this time, it is preferable to update the calculated value of the cell power storage amount Q itself to the interval lower limit amount QL, but it does not have to be updated. On the other hand, if it is not determined in S102 that the speed is rapidly accelerated (S102: NO), the process proceeds to S104.
 そのS104では、蓄電量特定部32により、セルインピーダンスZの減少が所定基準以上、急激に抑制されているか否かを判定する。急激に抑制されていると判定した場合(S104:YES)、S105に進み、セル蓄電量Qが区間上限量QUになったと特定してから、S106に進む。なお、このとき、セル蓄電量Qの演算値自体についても、区間上限量QUに更新することが好ましいが、更新しなくてもよい。他方、S104で急激に抑制されていると判定しない場合(S104:NO)、そのままS106に進む。 In S104, the stored electricity amount specifying unit 32 determines whether or not the decrease in the cell impedance Z is rapidly suppressed by a predetermined standard or more. If it is determined that it is rapidly suppressed (S104: YES), the process proceeds to S105, specifies that the cell charged amount Q has reached the section upper limit amount QU, and then proceeds to S106. At this time, it is preferable to update the calculated value of the cell power storage amount Q itself to the interval upper limit amount QU, but it does not have to be updated. On the other hand, if it is not determined in S104 that it is being suppressed rapidly (S104: NO), the process proceeds to S106.
 S106では、バラツキ演算部33により、各セル電池Bのセル蓄電量Qについて特定蓄電量(QL,QU)になったと特定できたか否か判定する。つまり、各セル電池Bのセル蓄電量Qについて区間下限量QLになったと特定すること、及び各セル電池Bのセル蓄電量Qについて区間上限量QUになったと特定することのうちのいずれかを達成できたか否か判定する。いずれかのセル電池Bについて、セル蓄電量Qが特定蓄電量(QL,QU)になったと特定できていないと判定した場合(S106:NO)、フローを終了する。他方、各セル電池Bについて、セル蓄電量Qが特定蓄電量(QL,QU)になったと特定できたと判定した場合(S106:YES)、S107に進む。 In S106, the variation calculation unit 33 determines whether or not it has been specified that the cell storage amount Q of each cell battery B has reached the specific storage amount (QL, QU). That is, either specifying that the cell storage amount Q of each cell battery B has reached the section lower limit amount QL or specifying that the cell storage amount Q of each cell battery B has reached the section upper limit amount QU is performed. Determine whether or not it has been achieved. If it is determined that the cell storage amount Q of any of the cell batteries B has not reached the specified storage amount (QL, QU) (S106: NO), the flow ends. On the other hand, if it is determined that the cell storage amount Q has reached the specific storage amount (QL, QU) for each cell battery B (S106: YES), the process proceeds to S107.
 そのS107では、特定タイミング(tP,tS)以降における電流積算値∫Idtを、バラツキ量ΔQとして演算する。 In S107, the integrated current value ∫Idt after the specific timing (tP, tS) is calculated as the amount of variation ΔQ.
 続くS108では、均等化要否判定部36により、バラツキ量ΔQが均等化判定バラツキ量ΔQEよりも大きいか否か判定する。均等化判定バラツキ量ΔQEよりも小さいと判定した場合(S108:NO)、S109に進み、均等化不要と判定してから、フローを終了する。他方、S108で、バラツキ量ΔQが均等化判定バラツキ量ΔQEよりも大きいと判定した場合(S108:YES)、S110に進む。 In the following S108, the equalization necessity determining unit 36 determines whether the variation amount ΔQ is larger than the equalization determination variation amount ΔQE. If it is determined that it is smaller than the equalization determination variation amount ΔQE (S108: NO), the flow proceeds to S109, determines that equalization is unnecessary, and then terminates the flow. On the other hand, when it is determined in S108 that the variation amount ΔQ is larger than the equalization determination variation amount ΔQE (S108: YES), the process proceeds to S110.
 そのS110では、故障判定部37により、バラツキ量ΔQが故障判定バラツキ量ΔQXよりも小さいか否か判定する。故障判定バラツキ量ΔQXよりも大きいと判定した場合(S110:NO)、S112に進み、故障と判定してから、フローを終了する。他方、S110で、バラツキ量ΔQが故障判定バラツキ量ΔQXよりも小さいと判定した場合(S110:YES)、S111に進む。 At S110, the failure determination unit 37 determines whether or not the variation amount ΔQ is smaller than the failure determination variation amount ΔQX. If it is determined to be larger than the failure determination variation amount ΔQX (S110: NO), the process proceeds to S112, determines that there is a failure, and then terminates the flow. On the other hand, when it is determined in S110 that the variation amount ΔQ is smaller than the failure determination variation amount ΔQX (S110: YES), the process proceeds to S111.
 そのS111では、均等化量演算部38により、バラツキ量ΔQに基づいて均等化量を演算すると共に、BMU30により、その均等化量に基づいて均等化を実施してから、フローを終了する。 In S111, the equalization amount calculation unit 38 calculates the equalization amount based on the variation amount ΔQ, and the BMU 30 performs equalization based on the equalization amount, and then the flow ends.
 図6は、電池パック93のCC充電時における各値の推移をグラフである。以下では、所定のタイミング(t1~t4)を、時系列順に「第1タイミングt1」「第2タイミングt2」「第3タイミングt3」「第4タイミングt4」という。 FIG. 6 is a graph showing transition of each value during CC charging of the battery pack 93 . Hereinafter, the predetermined timings (t1 to t4) are referred to as "first timing t1", "second timing t2", "third timing t3", and "fourth timing t4" in chronological order.
 ここでは、図6(a)に示すように、第1タイミングt1から第3タイミングt3までCC充電が実施されたものとする。そして、そのCC充電により、各セル蓄電量Qが、プラトー領域外から図6(b)に示すプラトー領域内になり、且つ、図6(c)に示す高発熱区間(QL~QU)内から高発熱区間(QL~QU)外になるまで、電池パック93が充電されたものとする。 Here, as shown in FIG. 6(a), it is assumed that CC charging is performed from the first timing t1 to the third timing t3. Then, due to the CC charging, the charge amount Q of each cell changes from outside the plateau region to within the plateau region shown in FIG. It is assumed that the battery pack 93 is charged until it is out of the high heat generation section (QL to QU).
 このとき、図6(b)に示すように、充電開始時である第1タイミングt1以降、しばらくの間、セル蓄電量Qがプラトー領域外であるため、時間tの経過に伴いセル電圧Vが大きくなる。しかし、第2タイミングt2で、セル蓄電量Qがプラトー領域に差し掛かると、それ以降はセル電圧Vが略横ばいになる。 At this time, as shown in FIG. 6B, after the first timing t1 at the start of charging, the cell storage amount Q is outside the plateau region for a while, so the cell voltage V decreases with the passage of time t. growing. However, when the cell charged amount Q approaches the plateau region at the second timing t2, the cell voltage V becomes substantially flat thereafter.
 また、図6(c)に示すように、充電開始時である第1タイミングt1以降、しばらくの間、セル蓄電量Qが高発熱区間(QL~QU)内であるため、セル発熱が顕著になることにより、セルインピーダンスZが減少が顕著になる。しかし、所定のタイミング(tS(B))でセル蓄電量Qが区間上限量QUに達すると、セル蓄電量Qが高発熱区間(QL~QU)から脱することにより、セル発熱が急減し、セルインピーダンスZの減少が急激に抑制される。このとき、図6(d)に示すように、インピーダンス2回微分Zddが一瞬大きくなり、抑制判定値ZddSを上回ることにより、抑制タイミングtS(B)であると判定される。 Further, as shown in FIG. 6(c), after the first timing t1 at the start of charging, for a while, the cell charge amount Q is within the high heat generation section (QL to QU), so the cell heat generation becomes noticeable. As a result, the cell impedance Z decreases significantly. However, when the cell storage amount Q reaches the section upper limit amount QU at a predetermined timing (tS(B)), the cell storage amount Q leaves the high heat generation section (QL to QU), and the cell heat generation rapidly decreases. Decrease in cell impedance Z is abruptly suppressed. At this time, as shown in FIG. 6(d), the impedance second derivative Zdd increases momentarily and exceeds the suppression determination value ZddS, so that it is determined to be the suppression timing tS(B).
 この抑制タイミングtS(B)から、図6(e)に示すように、演算されるバラツキ量ΔQが増加していく。この抑制タイミングtS(B)から、当該抑制タイミングtS(B)以降の電流積算値∫Idtが増加していくからである。そして、このバラツキ量ΔQの増加は、最小電圧セル電池Bminの抑制タイミングtS(Bmin)が特定された時点で止まる。これにより、バラツキ量ΔQが特定される。 From this suppression timing tS(B), the calculated variation amount ΔQ increases as shown in FIG. 6(e). This is because the integrated current value ∫Idt after the suppression timing tS(B) increases from the suppression timing tS(B). Then, the increase in the variation amount ΔQ stops when the suppression timing tS(Bmin) of the minimum voltage cell battery Bmin is specified. Thereby, the amount of variation ΔQ is specified.
 このとき、図6(e)に示すように、バラツキ量ΔQが、均等化判定バラツキ量ΔQEよりも大きく、且つ故障判定バラツキ量ΔQXよりも小さいと、その後の第4タイミングt4で、図6(a)に示すように、均等化が開始される。これにより、図6(e)に示すように、バラツキ量ΔQが減少していく。 At this time, as shown in FIG. 6(e), if the variation amount ΔQ is larger than the equalization determination variation amount ΔQE and smaller than the failure determination variation amount ΔQX, at the subsequent fourth timing t4, FIG. Equalization is initiated, as shown in a). As a result, as shown in FIG. 6(e), the amount of variation ΔQ decreases.
 以下に本実施形態の効果をまとめる。 The effects of this embodiment are summarized below.
 電池パック93の充電時には、電池パック93の充電時には、セル蓄電量Qが特定蓄電量(QL,QU)になった時にインピーダンスの変化傾向が変化する。そこで、インピーダンス検出部31は、電池パック93の充電時に各セルインピーダンスZを演算する。蓄電量特定部32は、それらのセルインピーダンスZの変化傾向の変化であるインピーダンス2回微分Zddに基づいて、セル蓄電量Qが特定蓄電量(QL,QU)になったと特定する。バラツキ演算部33は、セル電池Bどうしの間でのそれらの特定タイミング(tP,tS)の違いに基づいて、バラツキ量ΔQを演算する。そのため、プラトー領域時等、セル電圧Vに基づいてセル蓄電量Qを演算するのが難しい状況下においても、特定タイミング(tP,tS)の違いに基づいて、バラツキ量ΔQを演算できる。 When the battery pack 93 is charged, the impedance change tendency changes when the cell storage amount Q reaches the specific storage amount (QL, QU). Therefore, the impedance detector 31 calculates each cell impedance Z when the battery pack 93 is charged. The stored electricity amount identifying unit 32 identifies that the cell stored electricity amount Q has reached the specific stored electricity amount (QL, QU) based on the second impedance differential Zdd, which is the change in the tendency of change in the cell impedance Z. FIG. Variation calculator 33 calculates variation amount ΔQ based on the difference in specific timing (tP, tS) between cell batteries B. FIG. Therefore, even in a situation where it is difficult to calculate the cell charge amount Q based on the cell voltage V, such as in the plateau region, the variation amount ΔQ can be calculated based on the difference between the specific timings (tP, tS).
 その演算されたバラツキ量ΔQに基づいて、均等化要否判定部36が均等化要否判定を実施し、故障判定部37が故障判定を実施し、均等化量演算部38が均等化量を演算する。そのため、プラトー領域時等であっても、問題なく均等化要否判定や故障判定や均等化量演算を実施できる。 Based on the calculated variation amount ΔQ, the equalization necessity determination unit 36 performs equalization necessity determination, the failure determination unit 37 performs failure determination, and the equalization amount calculation unit 38 determines the equalization amount. Calculate. Therefore, even in the plateau region or the like, it is possible to perform equalization necessity determination, failure determination, and equalization amount calculation without any problem.
 また、バラツキ演算部33は、特定タイミング(tP,tS)以降における電流積算値∫Idtに基づいてバラツキ量ΔQを演算する。そのため、単に特定タイミング以降の経過時間に基づいてバラツキ量ΔQを演算する場合に比べて、精度よくバラツキ量ΔQを演算できる。 Further, the variation calculation unit 33 calculates the variation amount ΔQ based on the integrated current value ∫Idt after the specific timing (tP, tS). Therefore, the variation amount ΔQ can be calculated with higher accuracy than when the variation amount ΔQ is calculated simply based on the elapsed time after the specific timing.
 また、交流印加回路40は、電池パック93に交流電圧を印加する。そのため、セル電池Bが有する交流抵抗を、セルインピーダンスZとして計測できる。さらに、交流印加回路40は、CC充電中に交流電圧を電池パック93に印加する。そのため、その交流電圧による交流電流に、充電電流の変化による交流ノイズが重畳する心配がない。そのため、インピーダンス検出部31は、精度良くセルインピーダンスZを検出できる。そのため、精度良く促進タイミングtPや抑制タイミングtSを特定して、精度よくバラツキ量ΔQを演算できる。 Also, the AC application circuit 40 applies AC voltage to the battery pack 93 . Therefore, the AC resistance of the cell battery B can be measured as the cell impedance Z. Furthermore, the AC application circuit 40 applies an AC voltage to the battery pack 93 during CC charging. Therefore, there is no concern that AC noise due to changes in the charging current will be superimposed on the AC current due to the AC voltage. Therefore, the impedance detector 31 can detect the cell impedance Z with high accuracy. Therefore, the acceleration timing tP and the suppression timing tS can be specified with high accuracy, and the variation amount ΔQ can be calculated with high accuracy.
 また、バラツキ演算部33は、CC充電時におけるプラトー領域時等に、セルインピーダンスZに基づいてバラツキ量ΔQを演算するだけでなく、非プラトー領域時且つOCVを計測可能な時にも、セル電圧Vに基づいてバラツキ量ΔQを演算する。そのため、CC充電中のみならず、非プラトー領域時且つOCVを計測可能な時においても、バラツキ量ΔQを演算できる。 Further, the variation calculation unit 33 not only calculates the variation amount ΔQ based on the cell impedance Z in the plateau region during CC charging, but also in the non-plateau region and when the OCV can be measured. The amount of variation ΔQ is calculated based on. Therefore, the amount of variation ΔQ can be calculated not only during CC charging, but also in the non-plateau region and when the OCV can be measured.
 また、セル電池Bは、負極に黒鉛を有する。その黒鉛により、セル蓄電量Qが高発熱区間(QL~QU)内になった時の発熱係数dV/dTが顕著に大きくなる。そのため、セル蓄電量Qが高発熱区間(QL~QU)に入った時のセルインピーダンスZの減少の促進や、セル蓄電量Qが高発熱区間(QL~QU)から脱した時のセルインピーダンスZの減少の抑制が顕著になる。そのため、この点でも、精度良く促進タイミングtPや抑制タイミングtSを特定して、精度よくバラツキ量ΔQを演算できる。 In addition, cell battery B has graphite in the negative electrode. The graphite remarkably increases the heat generation coefficient dV/dT when the cell charge amount Q is within the high heat generation section (QL to QU). Therefore, when the cell storage amount Q enters the high heat generation section (QL to QU), the decrease in the cell impedance Z is accelerated, and when the cell storage amount Q exits the high heat generation section (QL to QU), the cell impedance Z suppression of the decrease in Therefore, in this respect as well, the promotion timing tP and the suppression timing tS can be specified with high accuracy, and the variation amount ΔQ can be calculated with high accuracy.
 しかも、セル電池Bは、正極にオリビン構造を有する。そのオリビン構造により、正極での発熱係数dV/dTの変化が抑制される。それにより、負極での発熱係数dV/dTの変化に対して、正極での発熱係数dV/dTの変化がノイズとして重畳するのを抑制できる。そのため、この点でも、精度良く促進タイミングtPや抑制タイミングtSを特定して、精度よくバラツキ量ΔQを演算できる。 Moreover, cell battery B has an olivine structure in the positive electrode. The olivine structure suppresses the change in the heat generation coefficient dV/dT at the positive electrode. As a result, it is possible to suppress superimposition of the change in the heat generation coefficient dV/dT at the positive electrode as noise on the change in the heat generation coefficient dV/dT at the negative electrode. Therefore, in this respect as well, the promotion timing tP and the suppression timing tS can be specified with high accuracy, and the variation amount ΔQ can be calculated with high accuracy.
 また、均等化要否判定部36は、セルSOHのバラツキが所定基準よりも小さい場合に比べて大きい場合の方が、均等化判定バラツキ量ΔQEを大きく設定する。なぜなら、セルSOHのバラツキが大きければ、セルSOCのバラツキがさほど大きくなくても、セル蓄電量Qのバラツキ、つまりバラツキ量ΔQは大きくなってしまう。このような状況で、単にバラツキ量ΔQが均等化判定バラツキ量ΔQEよりも大きいことに基づいて、均等化を実施すれば、セル蓄電量Qのバラツキは収まっても、逆にセルSOCのバラツキが大きくなるといった弊害が起こり得る。その点、均等化要否判定部36は、このようにセルSOHのバラツキが大きい場合の方が、均等化判定バラツキ量ΔQEを大きく設定するので、その分だけ均等化要と判定され難くして、このような弊害を抑制できる。 In addition, the equalization necessity determination unit 36 sets the equalization determination variation amount ΔQE larger when the cell SOH variation is larger than when the variation is smaller than the predetermined reference. This is because, if the variation in the cell SOH is large, even if the variation in the cell SOC is not so large, the variation in the cell charged amount Q, that is, the variation amount ΔQ becomes large. In such a situation, if equalization is performed simply based on the fact that the variation amount ΔQ is greater than the equalization determination variation amount ΔQE, even if the variation in the cell power storage amount Q is reduced, the variation in the cell SOC will conversely increase. There may be adverse effects such as increasing the size. In this respect, the equalization necessity determination unit 36 sets the equalization determination variation amount ΔQE larger when the variation in the cell SOH is large, so that it is difficult to determine that equalization is necessary. , can suppress such adverse effects.
 また、故障判定部37は、セルSOHのバラツキが所定基準よりも小さい場合に比べて大きい場合の方が、故障判定バラツキ量ΔQXを大きく設定する。なぜなら、前述の通り、セルSOHのバラツキが大きければ、セルSOCのバラツキがさほど大きくなくても、セル蓄電量Qのバラツキであるバラツキ量ΔQは大きくなってしまう。このような状況で、単にバラツキ量ΔQが故障判定バラツキ量ΔQXよりも大きいことに基づいて、故障と判定すれば、セルSOCのバラツキがさほど大きくなくても、故障と判定してしまうといった弊害が起こり得る。その点、故障判定部37は、このようにセルSOHのバラツキが大きい場合の方が、故障判定バラツキ量ΔQXを大きく設定するので、その分だけ故障と判定され難くして、このような弊害を抑制できる。 In addition, the failure determination unit 37 sets the failure determination variation amount ΔQX larger when the variation in the cell SOH is larger than when the variation is smaller than the predetermined reference. This is because, as described above, if the variation in the cell SOH is large, the variation amount ΔQ, which is the variation in the storage amount Q of the cell, becomes large even if the variation in the cell SOC is not so large. In such a situation, if a failure is determined simply based on the fact that the amount of variation ΔQ is larger than the amount of variation ΔQX in failure determination, there is a problem that a failure is determined even if the variation in the cell SOC is not so large. It can happen. In this respect, the failure determination unit 37 sets the failure determination variation amount ΔQX larger when the variation in the cell SOH is large, so that it is difficult to determine that there is a failure. can be suppressed.
 また、均等化要否判定部36は、パックSOHが所定基準よりも大きい場合に比べて小さい場合の方が、均等化判定バラツキ量ΔQEを小さく設定する。なぜなら、電池パック93が劣化してパックSOH(ΣQf/ΣQfo)が小さくなれば、パック蓄電容量ΣQfが小さくなることにより、セル蓄電量Qのバラツキであるバラツキ量ΔQも小さくなり易くなる。そのため、バラツキ量ΔQが均等化判定バラツキ量ΔQEを超え難くなり、均等化要と判定され難くなるといった弊害が起こり得る。その点、均等化要否判定部36は、このようにパックSOHが小さい場合の方が、均等化判定バラツキ量ΔQEを小さく設定するので、その分だけ均等化要と判定され易くして、このような弊害を抑制できる。 In addition, the equalization necessity determination unit 36 sets the equalization determination variation amount ΔQE to be smaller when the pack SOH is smaller than when the pack SOH is larger than the predetermined reference. This is because when the battery pack 93 deteriorates and the pack SOH (ΣQf/ΣQfo) becomes smaller, the pack power storage capacity ΣQf becomes smaller, and the variation amount ΔQ, which is the variation in the cell power storage amount Q, tends to become smaller. As a result, the amount of variation ΔQ becomes less likely to exceed the amount of variation ΔQE for determination of equalization, which may cause a problem such as making it difficult to determine that equalization is necessary. In this respect, the equalization necessity determination unit 36 sets the equalization determination variation amount ΔQE smaller when the pack SOH is small in this way, so that it is easier to determine that equalization is necessary. It is possible to prevent such adverse effects.
 さらに、故障判定部37は、パックSOHが所定基準よりも大きい場合に比べて小さい場合の方が、故障判定バラツキ量ΔQXを小さく設定する。なぜなら、前述の通り、電池パック93が劣化してパックSOH(ΣQf/ΣQfo)が小さくなれば、パック蓄電容量ΣQfが小さくなることにより、セル蓄電量Qのバラツキであるバラツキ量ΔQも小さくなり易くなる。そのため、バラツキ量ΔQが故障判定バラツキ量ΔQXを超え難くなり、故障と判定され難くなるといった弊害が起こり得る。その点、故障判定部37は、このようにパックSOHが小さい場合の方が、故障判定バラツキ量ΔQXを小さく設定するので、その分だけ故障と判定され易くして、このような弊害を抑制できる。 Furthermore, the failure determination unit 37 sets the failure determination variation amount ΔQX smaller when the pack SOH is smaller than when the pack SOH is larger than the predetermined reference. This is because, as described above, when the battery pack 93 deteriorates and the pack SOH (ΣQf/ΣQfo) becomes smaller, the pack storage capacity ΣQf becomes smaller, and thus the variation amount ΔQ, which is the variation in the cell storage amount Q, tends to become smaller. Become. As a result, the amount of variation ΔQ is less likely to exceed the amount of variation ΔQX for failure determination, and a problem may occur such that it is difficult to determine that there is a failure. In this respect, the failure determination unit 37 sets the failure determination variation amount ΔQX smaller when the pack SOH is small as described above. .
 [第2実施形態]
 次に第2実施形態について説明する。以下の実施形態においては、それ以前の実施形態のものと同一の又は対応する部材等について同一の符号を付する。本実施形態については、第1実施形態をベースにこれと異なる点を中心に説明し、第1実施形態と同一又は類似の部分については、適宜説明を省略する。
[Second embodiment]
Next, a second embodiment will be described. In the following embodiments, the same reference numerals are given to members that are the same as or correspond to those of the previous embodiments. The present embodiment will be described based on the first embodiment, focusing on the differences, and the description of the same or similar parts as those of the first embodiment will be omitted as appropriate.
 本実施形態では、CC充電時のみならず電力使用時(放電時)にも、セルインピーダンスZに基づいてバラツキ量ΔQを演算する。そのメカニズムについて以下に説明する。 In this embodiment, the amount of variation ΔQ is calculated based on the cell impedance Z not only during CC charging but also during power use (discharging). The mechanism will be explained below.
 図7(a)は、電池パック93の電力使用時におけるセルインピーダンスZの推移を示すグラフであり、図7(b)は、電力使用時におけるセル蓄電量Qの推移を示すグラフである。図7(b)に示すように、セル電池Bが略満充電の状態から電力使用を開始した場合、セル蓄電量Qが区間上限量QUに減少するまでの間は、セル蓄電量Qが高発熱区間(QL~QU)外であるので、セル発熱は小さい。そのため、図7(a)に示すセルインピーダンスZの減少は緩やかである。 FIG. 7(a) is a graph showing the transition of the cell impedance Z when the battery pack 93 is using electric power, and FIG. 7(b) is a graph showing the transition of the cell storage amount Q when the electric power is being used. As shown in FIG. 7(b), when the use of electric power is started from the state where the cell battery B is substantially fully charged, the cell storage amount Q remains high until the cell storage amount Q decreases to the section upper limit amount QU. Since it is outside the heat generation section (QL-QU), the cell heat generation is small. Therefore, the decrease in the cell impedance Z shown in FIG. 7(a) is moderate.
 その後、図7(b)に示すように、電力使用によりセル蓄電量Qが区間上限量QUにまで減少すると、セル蓄電量Qが高発熱区間(QL~QU)に入ることにより、発熱係数dV/dTが急増してセル発熱が急増する。それにより、セル温度Tの上昇が急激に促進されて、図7(a)に示すセルインピーダンスZの減少が急激に促進される。その促進タイミングtPで、セル蓄電量Qが図7(b)に示す区間上限量QUになったと特定できる。よって、前述の充電時には、促進タイミングtPで、セル蓄電量Qが区間下限量QLになったと特定できるのに対して、電力使用時には、促進タイミングtPで、セル蓄電量Qが区間上限量QUになったと特定できる点で相違している。 After that, as shown in FIG. 7B, when the cell storage amount Q decreases to the section upper limit amount QU due to the use of electric power, the cell storage amount Q enters the high heat generation section (QL to QU), and the heat generation coefficient dV /dT increases rapidly, and the cell heat generation increases rapidly. As a result, the increase in cell temperature T is rapidly accelerated, and the decrease in cell impedance Z shown in FIG. 7(a) is rapidly accelerated. At the acceleration timing tP, it can be specified that the cell charged amount Q has reached the section upper limit amount QU shown in FIG. 7(b). Therefore, during the above-described charging, it can be determined that the cell storage amount Q has reached the section lower limit amount QL at the acceleration timing tP, whereas during power use, the cell storage amount Q has reached the section upper limit amount QU at the acceleration timing tP. It is different in that it can be specified that it has become.
 その後、図7(b)に示すように、電力使用によりセル蓄電量Qが区間下限量QLにまで減少すると、セル蓄電量Qが高発熱区間(QL~QU)から脱することにより、発熱係数dV/dTが急減してセル発熱が急減する。それにより、セル温度Tの上昇が急激に抑制されて、図7(a)に示すセルインピーダンスZの減少が急激に抑制される。その抑制タイミングtSで、セル蓄電量Qが図7(b)に示す区間下限量QLになったと特定できる。よって、前述の充電時には、抑制タイミングtSで、セル蓄電量Qが区間上限量QUになったと特定できるのに対して、電力使用時には、抑制タイミングtSで、セル蓄電量Qが区間下限量QLなったと特定できる点で相違している。 After that, as shown in FIG. 7(b), when the cell storage amount Q decreases to the section lower limit amount QL due to the use of electric power, the cell storage amount Q exits the high heat generation section (QL to QU), and the heat generation coefficient dV/dT drops sharply and cell heat generation drops sharply. As a result, the increase in cell temperature T is abruptly suppressed, and the decrease in cell impedance Z shown in FIG. 7(a) is abruptly suppressed. At the suppression timing tS, it can be specified that the cell charged amount Q has reached the interval lower limit amount QL shown in FIG. 7(b). Therefore, during the above-described charging, it can be specified that the cell storage amount Q reaches the section upper limit amount QU at the suppression timing tS, whereas during power use, the cell storage amount Q reaches the section lower limit amount QL at the suppression timing tS. It is different in that it can be identified as
 そのため、セル蓄電量Qの誤差を、セル蓄電量Qが区間上限量QUにまで減少したタイミングと、区間下限量QLにまで減少したタイミングとでリセットすることができる。つまり、プラトー領域時等においても、セル蓄電量Qを特定することができる。そして、セル電池Bどうしの間での、それらの特定のタイミングの違いに基づいて、バラツキ量ΔQを演算することができる。 Therefore, the error in the cell storage amount Q can be reset at the timing when the cell storage amount Q decreases to the section upper limit amount QU and the timing when it decreases to the section lower limit amount QL. That is, the cell charge amount Q can be specified even in the plateau region or the like. Then, the variation amount ΔQ can be calculated based on the specific timing difference between the cell batteries B. FIG.
 次に、第1実施形態と同じ図1を参照しつつ、電力使用時におけるバラツキ量ΔQの演算のための構成について説明する。 Next, referring to FIG. 1, which is the same as in the first embodiment, the configuration for calculating the amount of variation ΔQ when using electric power will be described.
 交流印加回路40は、CC充電中のみならず電力使用中にも、電池パック93に対して交流電圧を印加する。インピーダンス検出部31は、各セル電池Bについて、その電力使用中における交流電圧が印加されているときの、セル電圧V及び電池電流Iに基づいて、セルインピーダンスZを演算する。 The AC application circuit 40 applies AC voltage to the battery pack 93 not only during CC charging but also during power usage. The impedance detector 31 calculates the cell impedance Z for each cell battery B based on the cell voltage V and the battery current I when an AC voltage is applied while power is being used.
 蓄電量特定部32は、電力使用量が所定基準以上安定している状態において、検出されているセルインピーダンスZの減少が所定基準以上急激に促進されるタイミングを、促進タイミングtPと特定する。より具体的には、電力使用量が所定基準以上安定している状態において、インピーダンス2回微分Zddが、負の促進判定値ZddPを下回ったことを条件に、促進タイミングtPであると判定する。その促進タイミングtPに、セル蓄電量Qが区間上限量QUになったと特定する。 The stored electricity amount specifying unit 32 specifies the timing at which the decrease in the detected cell impedance Z is accelerated abruptly by a predetermined standard or more in a state where the power usage is stable by a predetermined standard or more as the promotion timing tP. More specifically, it is determined that it is the promotion timing tP on the condition that the impedance second derivative Zdd has fallen below the negative acceleration determination value ZddP in a state where the power consumption is stable at a predetermined reference or more. At the acceleration timing tP, it is specified that the cell charged amount Q has reached the section upper limit amount QU.
 また、蓄電量特定部32は、電力使用量が所定基準以上安定している状態において、検出されているセルインピーダンスZの減少が所定基準以上急激に抑制されるタイミングを、抑制タイミングtSと特定する。より具体的には、電力使用量が所定基準以上安定している状態において、インピーダンス2回微分Zddが、正の抑制判定値ZddSを上回ったことを条件に、抑制タイミングtSであると判定する。その抑制タイミングtSに、セル蓄電量Qが区間下限量QLになったと特定する。 In addition, the stored electricity amount specifying unit 32 specifies the timing at which the decrease in the detected cell impedance Z is rapidly suppressed by a predetermined standard or more in a state where the power usage is stable by a predetermined standard or more as the suppression timing tS. . More specifically, it is determined that it is the suppression timing tS on the condition that the impedance second derivative Zdd exceeds the positive suppression determination value ZddS in a state where the power consumption is stable at a predetermined reference or more. At the suppression timing tS, it is specified that the cell charged amount Q has reached the section lower limit amount QL.
 図8は、電池パック93の電力使用時における電池監視装置96による制御を示すフローチャートである。このフローはセル電池B毎に実施され、且つ所定周期毎に繰り返し実施される。このフローは、図5に示すCC充電時のフローと比較して、S203で、セル蓄電量Qが、区間下限量QLではなく区間上限量QUになったと特定し、S205で、セル蓄電量Qが、区間上限量QUではなく区間下限量QLになったと特定する点で相違している。 FIG. 8 is a flowchart showing control by the battery monitoring device 96 when the power of the battery pack 93 is used. This flow is performed for each cell battery B, and is repeatedly performed at predetermined intervals. In this flow, compared with the flow for CC charging shown in FIG. However, it is different in that it specifies that the interval lower limit amount QL has been reached instead of the interval upper limit amount QU.
 具体的には、まず、S201において、セルインピーダンスZを演算する。次くS202において、セルインピーダンスZの減少が所定基準以上、急激に促進されていると判定した場合(S202:YES)、S203に進み、セル蓄電量Qが区間上限量QUになったと特定してから、S206に進む。他方、S202で急激に促進されていると判定しない場合(S202:NO)、S204に進む。 Specifically, first, in S201, the cell impedance Z is calculated. Next, in S202, if it is determined that the decrease in cell impedance Z has been accelerated more rapidly than a predetermined standard (S202: YES), proceed to S203 to specify that the cell charged amount Q has reached the section upper limit amount QU. , the process proceeds to S206. On the other hand, if it is not determined in S202 that the speed is rapidly accelerated (S202: NO), the process proceeds to S204.
 そのS204で、セルインピーダンスZの減少が所定基準以上、急激に抑制されていると判定した場合(S204:YES)、S205に進み、セル蓄電量Qが区間下限量QLになったと特定してから、S206に進む。他方、S204で急激に抑制されていると判定しない場合(S204:NO)、そのままS206に進む。S206~S212については、図5に示すCC充電時のフローのS106~S112と同様である。 If it is determined in S204 that the decrease in the cell impedance Z is rapidly suppressed by a predetermined criterion or more (S204: YES), the process proceeds to S205, where it is specified that the cell charged amount Q has reached the section lower limit amount QL. , S206. On the other hand, if it is determined not to be abruptly suppressed in S204 (S204: NO), the process proceeds to S206. S206 to S212 are the same as S106 to S112 in the CC charging flow shown in FIG.
 本実施形態によれば、充電中のみならず電力使用中においても、セルインピーダンスZに基づいてバラツキ量ΔQを演算できる。 According to this embodiment, the amount of variation ΔQ can be calculated based on the cell impedance Z not only during charging but also during power usage.
 [第3実施形態]
 次に第3実施形態について説明する。本実施形態については、第2実施形態をベースにこれと異なる点を中心に説明し、第2実施形態と同一又は類似の部分については、説明を適宜省略する。
[Third embodiment]
Next, a third embodiment will be described. This embodiment will be described based on the second embodiment, focusing on the points that differ from it, and the description of the same or similar parts as those of the second embodiment will be omitted as appropriate.
 図9は、電池パック93のCC充電時における電池監視装置96の制御を示すフローチャートである。この図9のフローチャートは、図5のフローチャートと比較して、S106のみが相違している。すなわち、第1,第2実施形態のS106では、各セル電池Bについてセル蓄電量Qが特定蓄電量(QL,QU)になったと特定できたことを条件に、次のS107に進んでいる。それに対して、本実施形態のS106では、セル蓄電量Qが特定蓄電量(QL,QU)になったと特定できないセル電池Bがあっても、所定時間経過した場合には、次のS107に進む。 FIG. 9 is a flowchart showing control of the battery monitoring device 96 during CC charging of the battery pack 93 . The flowchart of FIG. 9 differs from the flowchart of FIG. 5 only in S106. That is, in S106 of the first and second embodiments, the process proceeds to S107 on the condition that the cell storage amount Q of each cell battery B has reached the specific storage amount (QL, QU). On the other hand, in S106 of the present embodiment, even if there is a cell battery B that cannot be specified that the cell storage amount Q has reached the specific storage amount (QL, QU), if the predetermined time has passed, the process proceeds to the next step S107. .
 以下では、セル蓄電量Qが特定蓄電量(QL,QU)になったと特定できたセル電池Bを、「特定可能なセル電池B」といい、セル蓄電量Qが特定蓄電量(QL,QU)になったと特定できなかったセル電池Bを「特定不能なセル電池B」という。そして、特定可能なセル電池Bの中でバラツキ量ΔQが最大のものの当該バラツキ量ΔQを「特定可能な最大のバラツキ量ΔQ」という。 Hereinafter, a cell battery B that can be specified that the cell storage amount Q has reached the specified storage amount (QL, QU) will be referred to as an "identifiable cell battery B", and the cell storage amount Q will be the specified storage amount (QL, QU ), the cell battery B that cannot be specified is referred to as an “unspecified cell battery B”. Among the identifiable cell batteries B, the amount of variation ΔQ of the one with the largest amount of variation ΔQ is referred to as the “maximum identifiable amount of variation ΔQ”.
 S107でのバラツキ量ΔQの演算では、特定不能なセル電池Bのバラツキ量ΔQを、特定可能な最大のバラツキ量ΔQ以上と判定する。なぜなら、特定不能なセル電池Bについては、CC充電の開始時点で既に、セル蓄電量Qが特定蓄電量(QL,QU)を超えていたと考えられるからである。具体的にはこの場合、例えば特定不能なセル電池Bのバラツキ量ΔQについては、特定可能な最大のバラツキ量ΔQと同じに設定する。それによれば、S111での均等化において、特定不能なセル電池Bの均等化量は、特定可能な最大のバラツキ量ΔQに係るセル電池Bの均等化量と同じに設定される。 In the calculation of the variation amount ΔQ in S107, the variation amount ΔQ of the unidentifiable cell battery B is determined to be equal to or greater than the identifiable maximum variation amount ΔQ. This is because, for the unidentifiable cell battery B, it is considered that the cell storage amount Q had already exceeded the specific storage amount (QL, QU) at the start of CC charging. Specifically, in this case, for example, the variation amount ΔQ of the unidentifiable cell battery B is set to be the same as the maximum identifiable variation amount ΔQ. According to this, in the equalization in S111, the equalization amount of the unidentifiable cell battery B is set to be the same as the equalization amount of the cell battery B related to the maximum identifiable variation amount ΔQ.
 図10は、電池パック93の電力使用時における電池監視装置96の制御を示すフローチャートである。この図10のフローチャートは、図8のフローチャートと比較して、S206のみが相違している。すなわち、第2実施形態のS206では、各セル電池Bについてセル蓄電量Qが特定蓄電量(QL,QU)になったと特定できたことを条件に、次のS207に進んでいる。それに対して、本実施形態のS206では、セル蓄電量Qが特定蓄電量(QL,QU)になったと特定できないセル電池Bがあっても、所定時間経過した場合には、次のS207に進む。 FIG. 10 is a flowchart showing control of the battery monitoring device 96 when the power of the battery pack 93 is used. The flowchart of FIG. 10 differs from the flowchart of FIG. 8 only in S206. That is, in S206 of the second embodiment, the process proceeds to the next S207 on the condition that the cell storage amount Q of each cell battery B has been identified as the specific storage amount (QL, QU). On the other hand, in S206 of the present embodiment, even if there is a cell battery B that cannot be specified that the cell storage amount Q has reached the specific storage amount (QL, QU), if the predetermined time has passed, the process proceeds to the next step S207. .
 そのS207でのバラツキ量ΔQの演算では、特定不能なセル電池Bのバラツキ量ΔQを、ゼロ以下と判定する。なぜなら、特定不能なセル電池Bについては、電力使用の開始時点で既に、セル蓄電量Qが特定蓄電量(QL,QU)を切っていたと考えられる。そのため、特定不能なセル電池Bについては、セル蓄電量Qが、演算される最小セル蓄電量Qmin以下であると考えられるからである。具体的にはこの場合、例えば特定不能なセル電池Bのバラツキ量ΔQについては、ゼロと設定する。それによれば、S209での均等化要否判定において、特定不能なセル電池Bは、均等化不要(S210)と判定されることになる。 In the calculation of the variation amount ΔQ in S207, the variation amount ΔQ of the unidentifiable cell battery B is determined to be zero or less. This is because, for the unidentifiable cell battery B, it is conceivable that the cell storage amount Q had already fallen below the specific storage amount (QL, QU) at the start of power use. Therefore, it is considered that the cell storage amount Q of the unidentifiable cell battery B is equal to or less than the calculated minimum cell storage amount Qmin. Specifically, in this case, for example, the variation amount ΔQ of the unidentifiable cell battery B is set to zero. Accordingly, in the equalization necessity determination in S209, it is determined that the unidentifiable cell battery B does not require equalization (S210).
 以上の通り、本実施形態によれば、セル蓄電量Qが特定蓄電量(QL,QU)になったと特定できないセル電池Bがあった場合においても、バラツキ量ΔQを演算できる。 As described above, according to the present embodiment, even when there is a cell battery B for which it cannot be specified that the cell storage amount Q has reached the specific storage amount (QL, QU), the variation amount ΔQ can be calculated.
 [他の実施形態]
 以上に示した実施形態は、例えば次のように変更して実施できる。
[Other embodiments]
For example, the embodiment shown above can be modified as follows.
 第1~第3実施形態では、セル電池BがLFPバッテリーであるが、これに代えて、その他の、プラトー領域を有するバッテリーにしてもよいし、プラトー領域を有しないバッテリーにしてもよい。すなわち、セル電池Bがプラトー領域を有しない場合であっても、充電中や電力使用中はOCVを取得できないので、プラトー領域時ほどではないにしろ、セル電圧Vに基づいてセル蓄電量Qを演算するのが難しい。よって、セル電池Bがプラトー領域を有しない場合であっても、セル電圧Vに基づいてセル蓄電量Qを演算するのが難しい際に、セルインピーダンスZに基づいてバラツキ量ΔQを演算できるといった効果は奏する。 In the first to third embodiments, the cell battery B is an LFP battery, but instead of this, it may be a battery with a plateau region or a battery without a plateau region. That is, even if the cell battery B does not have a plateau region, the OCV cannot be obtained during charging or while power is being used. difficult to calculate. Therefore, even if the cell battery B does not have a plateau region, the variation amount ΔQ can be calculated based on the cell impedance Z when it is difficult to calculate the cell storage amount Q based on the cell voltage V. plays.
 第1~第3実施形態では、セル蓄電量Qの変化に対するセル電圧Vの変化が所定基準以上小さい領域を「プラトー領域」とし、セル蓄電量Qがプラトー領域内の蓄電量である時を「プラトー領域時」としている。これに代えて、セル電圧Vが所定範囲内にあるときや、セル蓄電量Qが所定範囲内にあるときを、「プラトー領域時」としてもよい。 In the first to third embodiments, the region in which the change in the cell voltage V with respect to the change in the cell storage amount Q is smaller than a predetermined reference is defined as the "plateau region," and the state in which the cell storage amount Q is within the plateau region is defined as the "plateau region." in the plateau region." Alternatively, the time when the cell voltage V is within a predetermined range or the time when the cell charge amount Q is within a predetermined range may be defined as the "plateau region time".
 第1~第3実施形態では、セルインピーダンスZを時間微分したものを「インピーダンス変化Zd」とし、そのインピーダンス変化Zdをさらに時間微分したのもを「インピーダンス2回微分Zdd」としている。これに代えて、セルインピーダンスZを電流積算値∫Idtで微分したものを「インピーダンス変化Zd」とし、そのインピーダンス変化Zdをさらに電流積算値∫Idtで微分を「インピーダンス2回微分Zdd」としてもよい。この態様によれば、電流が一定でない状況下においても、精度良く促進タイミングtPや抑制タイミングtSを判定できる。 In the first to third embodiments, "impedance change Zd" is obtained by differentiating the cell impedance Z with time, and "impedance twice differentiated Zdd" is obtained by further differentiating the impedance change Zd with time. Alternatively, the cell impedance Z may be differentiated by the current integrated value ∫Idt to be the “impedance change Zd”, and the impedance change Zd may be further differentiated by the current integrated value ∫Idt to be the “impedance twice differentiated Zdd”. . According to this aspect, the acceleration timing tP and the suppression timing tS can be determined with high accuracy even under a situation where the current is not constant.
 第1~第3実施形態では、セル電池Bに蓄えられている蓄電荷(Ah:アンペアアワー)を「セル蓄電量Q」としている。これに代えて、セル電池Bに蓄えられている蓄電エネルギー(Wh:ワットアワー)を「セル蓄電量」としてもよい。その場合には、バラツキ演算部33は、電流積算値∫Idtを用いて電荷換算のバラツキ量ΔQ(Ah)を演算する代わりに、電力積算値(Wh)を用いてエネルギー換算のバラツキ量(Wh)を演算するようにすればよい。なお、電力積算値は、セル電圧Vと電池電流Iとの積の時間積分値である。 In the first to third embodiments, the stored charge (Ah: ampere-hour) stored in the cell battery B is defined as the "cell storage amount Q". Alternatively, the stored energy (Wh: Watt-hour) stored in the cell battery B may be used as the "cell storage amount". In that case, the variation calculation unit 33 uses the integrated power value (Wh) to calculate the variation amount in terms of energy (Wh ) should be calculated. The power integrated value is a time integrated value of the product of the cell voltage V and the battery current I.
 また、この場合において、セルインピーダンスZを電力積算値で微分したものを「インピーダンス変化Zd」とし、そのインピーダンス変化Zdをさらに電力積算値で微分したものを「インピーダンス2回微分Zdd」としてもよい。この態様によれば、電力が一定でない状況下においても、精度良く促進タイミングtPや抑制タイミングtSを特定できる。 In this case, the cell impedance Z may be differentiated by the integrated power value as "impedance change Zd", and the impedance change Zd may be further differentiated by the integrated power value as "impedance twice differential Zdd". According to this aspect, it is possible to specify the promotion timing tP and the suppression timing tS with high accuracy even in a situation where the electric power is not constant.
 第1~第3実施形態では、電池監視装置96は、均等化要否判定部36と故障判定部37と均等化量演算部38とを有する。これに代えて、電池監視装置96は、これら3つのうちのいずれか2つのみを有していてもよし、いずれか1つのみを有していてもよいし、いずれも有していなくてもよい。 In the first to third embodiments, the battery monitoring device 96 has the equalization necessity determination unit 36, the failure determination unit 37, and the equalization amount calculation unit . Alternatively, battery monitor 96 may have only any two of these three, only any one, or none. good too.
 第1~第3実施形態では、各セル電池Bを最小セル蓄電量Qminを基準に放電することにより均等化を実施している。これに代えて、相対的にセル蓄電量Qが高いセル電池Bの電力により、相対的にセル蓄電量Qが低いセル電池Bを充電することにより均等化を実施してもよい。 In the first to third embodiments, equalization is performed by discharging each cell battery B based on the minimum cell storage amount Qmin. Alternatively, the equalization may be performed by charging the cell battery B having a relatively low cell storage amount Q with the electric power of the cell battery B having a relatively high cell storage amount Q. FIG.
 第1~第3実施形態では、バラツキ演算部33は、特定タイミング(tP,tS)以降における電流積算値∫Idtに基づいて、バラツキ量ΔQを演算している。これに代えて、例えばCC充電中において、単に特定タイミング(tP,tS)以降における時間tに基づいて、バラツキ量ΔQを演算してもよい。 In the first to third embodiments, the variation calculator 33 calculates the variation amount ΔQ based on the integrated current value ∫Idt after the specific timing (tP, tS). Alternatively, for example, during CC charging, the variation amount ΔQ may be calculated simply based on the time t after the specific timing (tP, tS).
 第1~第3実施形態では、電池監視装置96は、交流印加回路40を有する。これに代えて、例えば、セル電池Bごとに放電スイッチをON、OFFすることにより、セル電池Bごとに特定の電流変化を発生させるようにしてもよい。そして、そのときのセル電池Bのインピーダンス(交流抵抗)をセルインピーダンスZとして検出するようにしてもよい。 In the first to third embodiments, the battery monitoring device 96 has the AC application circuit 40. Instead of this, for example, by turning on and off the discharge switch for each cell battery B, a specific current change for each cell battery B may be generated. Then, the impedance (AC resistance) of the cell battery B at that time may be detected as the cell impedance Z.
 第1~第3実施形態では、交流に対するセル電池Bのインピーダンスを「セルインピーダンスZ」としている。これに代えて、直流に対するセル電池Bのインピーダンスを「セルインピーダンスZ」としてもよい。 In the first to third embodiments, the impedance of the cell battery B with respect to alternating current is defined as "cell impedance Z". Alternatively, the impedance of the cell battery B with respect to direct current may be defined as "cell impedance Z".
 第1、第2実施形態では、外部電源80は、CC充電とCV充電とを実施するものであり、交流印加回路40は、CC充電中に交流電圧を電池パック93に印加する。これに代えて、例えば外部電源80を、CP充電(定電力充電)とCV充電とを実施するものにして、交流印加回路40を、CP充電中に交流電圧を電池パック93に印加するものにしてもよい。 In the first and second embodiments, the external power supply 80 performs CC charging and CV charging, and the AC applying circuit 40 applies AC voltage to the battery pack 93 during CC charging. Alternatively, for example, the external power supply 80 may be configured to perform CP charging (constant power charging) and CV charging, and the AC application circuit 40 may be configured to apply an AC voltage to the battery pack 93 during CP charging. may
 第1~第3実施形態では、セルインピーダンスZに基づいてバラツキ量ΔQを演算しているのに加え、非プラトー領域時且つOCVを計測可能な時には、セル電圧Vにも基づいてバラツキ量ΔQを演算している。これに代えて、セルインピーダンスZにのみ基づいてバラツキ量ΔQを演算するようにしてもよい。 In the first to third embodiments, in addition to calculating the amount of variation ΔQ based on the cell impedance Z, when the OCV is measurable in the non-plateau region, the amount of variation ΔQ is also calculated based on the cell voltage V. calculating. Instead of this, the amount of variation ΔQ may be calculated based only on the cell impedance Z.
 第1実施形態では、セルインピーダンスZに基づくバラツキ量ΔQの演算を、CC充電中にのみ実施し、第2実施形態では、CC充電中と電力使用中との両方に実施している。これらに代えて、セルインピーダンスZに基づくバラツキ量ΔQの演算を、電力使用中にのみ実施するようにしてもよい。また、第3実施形態においては、セルインピーダンスZに基づくバラツキ量ΔQの演算を、CC充電中と電力使用中との両方に実施している。これに代えて、CC充電中にのみや電力使用中にのみ実施するようにしてもよい。 In the first embodiment, the calculation of the variation amount ΔQ based on the cell impedance Z is performed only during CC charging, and in the second embodiment, it is performed both during CC charging and during power use. Instead of these, the calculation of the amount of variation ΔQ based on the cell impedance Z may be performed only while power is being used. Further, in the third embodiment, the calculation of the amount of variation ΔQ based on the cell impedance Z is performed both during CC charging and during power use. Alternatively, it may be performed only during CC charging or during power use.
 第1~第3実施形態では、セルSOHのバラツキが大きい場合の方が、均等化判定バラツキ量ΔQEや故障判定バラツキ量ΔQXを大きく設定している。これに代えて、セルSOHのバラツキが違っても、均等化判定バラツキ量ΔQEや故障判定バラツキ量ΔQXを同じに設定するようにしてもよい。 In the first to third embodiments, the equalization determination variation amount ΔQE and the failure determination variation amount ΔQX are set larger when the cell SOH variation is large. Alternatively, even if the cells SOH have different variations, the equalization determination variation amount ΔQE and the failure determination variation amount ΔQX may be set to be the same.
 第1~第3実施形態では、パックSOHが小さい場合の方が、均等化判定バラツキ量ΔQEや故障判定バラツキ量ΔQXを小さく設定している。これに代えて、パックSOHが違っても、均等化判定バラツキ量ΔQEや故障判定バラツキ量ΔQXを同じに設定するようにしてもよい。 In the first to third embodiments, when the pack SOH is small, the equalization determination variation amount ΔQE and the failure determination variation amount ΔQX are set smaller. Alternatively, even if the pack SOH is different, the equalization determination variation amount ΔQE and the failure determination variation amount ΔQX may be set to be the same.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described with reference to examples, it is understood that the present disclosure is not limited to those examples or structures. The present disclosure also includes various modifications and modifications within the equivalent range. In addition, various combinations and configurations, as well as other combinations and configurations, including single elements, more, or less, are within the scope and spirit of this disclosure.

Claims (15)

  1.  複数のセル電池(B)の直列接続体を有する電池パック(93)を監視する電池監視装置(96)において、
     前記電池パックの蓄電量が時間経過に伴い変化するパック蓄電量変化時において、複数の前記セル電池のインピーダンス(Z)を検出するインピーダンス検出部(31)と、
     検出されている前記セル電池のインピーダンスの変化傾向(Zd)の変化(Zdd)に基づいて、前記セル電池の蓄電量(Q)が特定蓄電量(QL,QU)になったと特定する蓄電量特定部(32)と、
     前記セル電池どうしの間での、蓄電量が前記特定蓄電量になったと特定された特定タイミング(tP,tS)の違いに基づいて、前記セル電池どうしの間での蓄電量(Q)のバラツキ(ΔQ)を演算するバラツキ演算部(33)と、
     を有する電池監視装置。
    In a battery monitoring device (96) that monitors a battery pack (93) having a series connection of a plurality of cell batteries (B),
    an impedance detection unit (31) for detecting the impedance (Z) of the plurality of cell batteries when the amount of stored electricity in the battery pack changes with the passage of time;
    Based on the detected change (Zdd) of the change tendency (Zd) of the impedance of the cell battery, a storage amount specifying that the storage amount (Q) of the cell battery has reached a specific storage amount (QL, QU) a part (32);
    Variation in the charged amount (Q) between the cell batteries based on the difference in specific timing (tP, tS) at which the charged amount reaches the specified charged amount between the cell batteries. a variation calculator (33) for calculating (ΔQ);
    a battery monitor.
  2.  演算された前記バラツキに基づいて、前記バラツキを小さくするための均等化を実施するか否か判定する均等化要否判定部(36)を有する、請求項1に記載の電池監視装置。 The battery monitoring device according to claim 1, comprising an equalization necessity determination unit (36) that determines whether or not to perform equalization for reducing the variation based on the calculated variation.
  3.  演算された前記バラツキに基づいて、前記電池パックが故障しているか否かを判定する故障判定部(37)を有する、請求項1又は2に記載の電池監視装置。 The battery monitoring device according to claim 1 or 2, comprising a failure determination unit (37) that determines whether or not the battery pack has failed based on the calculated variation.
  4.  演算された前記バラツキに基づいて、前記バラツキを小さくするための均等化において前記バラツキを小さくする量である均等化量を、演算する均等化量演算部(38)を有する、請求項1~3のいずれか1項に記載の電池監視装置。 Claims 1 to 3, comprising an equalization amount calculation unit (38) for calculating an equalization amount, which is an amount by which the variation is reduced in the equalization for reducing the variation, based on the calculated variation. The battery monitoring device according to any one of 1.
  5.  前記バラツキ演算部は、特定タイミング以降における前記セル電池の電流(I)又は電力の積算値(∫Idt)に基づいて、前記バラツキを演算する、請求項1~4のいずれか1項に記載の電池監視装置。 The variation calculation unit according to any one of claims 1 to 4, wherein the variation calculation unit calculates the variation based on an integrated value (∫Idt) of current (I) or power of the cell battery after a specific timing. Battery monitor.
  6.  前記インピーダンスは、交流抵抗を含み、
     前記電池パックに交流電圧を印加する交流印加回路(40)を有し、
     前記インピーダンス検出部は、前記電池パックに前記交流電圧が印加されているときの前記セル電池のインピーダンスを検出する、請求項1~5のいずれか1項に記載の電池監視装置。
    The impedance includes AC resistance,
    Having an AC application circuit (40) for applying an AC voltage to the battery pack,
    The battery monitoring device according to any one of claims 1 to 5, wherein said impedance detector detects the impedance of said cell battery when said AC voltage is applied to said battery pack.
  7.  前記セル電池の蓄電量の変化に対する前記セル電池の電圧の変化が所定基準よりも小さいプラトー領域時に、前記蓄電量特定部により、前記インピーダンスの変化傾向の変化に基づいて前記セル電池の蓄電量が前記特定蓄電量になったと特定して、前記バラツキ演算部により前記バラツキを演算し、
     前記プラトー領域時以外の時に、前記セル電池の電圧に基づいて前記セル電池の蓄電量を演算して前記バラツキを演算する、請求項1~6のいずれか1項に記載の電池監視装置。
    When the change in the voltage of the cell battery with respect to the change in the charge amount of the cell battery is in a plateau region smaller than a predetermined reference, the charge amount specifying unit determines the charge amount of the cell battery based on the change in the impedance change tendency. Identifying that the specific storage amount has been reached, calculating the variation by the variation calculation unit,
    The battery monitoring device according to any one of claims 1 to 6, wherein the variation is calculated by calculating the charge amount of the cell battery based on the voltage of the cell battery at a time other than the plateau region.
  8.  前記セル電池は、負極に黒鉛を有する、請求項1~7のいずれか1項に記載の電池監視装置。 The battery monitoring device according to any one of claims 1 to 7, wherein the cell battery has graphite in the negative electrode.
  9.  前記セル電池は、正極にオリビン構造を有する、請求項1~8のいずれか1項に記載の電池監視装置。 The battery monitoring device according to any one of claims 1 to 8, wherein the cell battery has an olivine structure on the positive electrode.
  10.  前記バラツキの大きさを示すバラツキ量(ΔQ)が均等化判定バラツキ量(ΔQE)よりも大きいことを条件に、前記バラツキを小さくするための均等化を実施すると判定する均等化要否判定部(36)を有し、
     初期の蓄電容量に対する現在の蓄電容量の割合をSOHとして、
     均等化要否判定部は、前記セル電池どうしの間での前記セル電池の前記SOHのバラツキが所定基準よりも小さい場合に比べて大きい場合の方が、前記均等化判定バラツキ量を大きく設定する、
     請求項1~9のいずれか1項に記載の電池監視装置。
    Equalization necessity determination unit ( 36),
    Let SOH be the ratio of the current storage capacity to the initial storage capacity,
    The equalization necessity determination unit sets the equalization determination variation amount to be larger when the variation in the SOH of the cell batteries among the cell batteries is greater than when the variation is smaller than a predetermined reference. ,
    The battery monitoring device according to any one of claims 1-9.
  11.  前記バラツキの大きさを示すバラツキ量(ΔQ)が故障判定バラツキ量(ΔQX)よりも大きいことを条件に、前記電池パックが故障していると判定する故障判定部(37)を有し、
     初期の蓄電容量に対する現在の蓄電容量の割合をSOHとして、
     故障判定部は、前記セル電池どうしの間での前記セル電池の前記SOHのバラツキが所定基準よりも小さい場合に比べて大きい場合の方が、前記故障判定バラツキ量を大きく設定する、
     請求項1~10のいずれか1項に記載の電池監視装置。
    a failure judgment unit (37) for judging that the battery pack is out of order on condition that a variation amount (ΔQ) indicating the magnitude of the variation is larger than a failure determination variation amount (ΔQX);
    Let SOH be the ratio of the current storage capacity to the initial storage capacity,
    The failure determination unit sets the failure determination variation amount to be larger when the variation in the SOH of the cell batteries among the cell batteries is larger than when the variation is smaller than a predetermined standard.
    The battery monitoring device according to any one of claims 1-10.
  12.  前記バラツキの大きさを示すバラツキ量(ΔQ)が均等化判定バラツキ量(ΔQE)よりも大きいことを条件に、前記バラツキを小さくするための均等化を実施すると判定する均等化要否判定部(36)を有し、
     初期の蓄電容量に対する現在の蓄電容量の割合をSOHとして、
     均等化要否判定部は、前記電池パックのSOHが所定基準よりも大きい場合に比べて小さい場合の方が、前記均等化判定バラツキ量を小さく設定する、
     請求項1~11のいずれか1項に記載の電池監視装置。
    Equalization necessity determination unit ( 36),
    Let SOH be the ratio of the current storage capacity to the initial storage capacity,
    The equalization necessity determination unit sets the equalization determination variation amount to be smaller when the SOH of the battery pack is smaller than when the SOH is greater than a predetermined reference,
    The battery monitoring device according to any one of claims 1-11.
  13.  前記バラツキの大きさを示すバラツキ量(ΔQ)が故障判定バラツキ量(ΔQX)よりも大きいことを条件に、前記電池パックが故障していると判定する故障判定部(37)を有し、
     初期の蓄電容量に対する現在の蓄電容量の割合をSOHとして、
     故障判定部は、前記電池パックのSOHが所定基準よりも大きい場合に比べて小さい場合の方が、前記故障判定バラツキ量を小さく設定する、
     請求項1~12のいずれか1項に記載の電池監視装置。
    a failure judgment unit (37) for judging that the battery pack is out of order on condition that a variation amount (ΔQ) indicating the magnitude of the variation is larger than a failure determination variation amount (ΔQX);
    Let SOH be the ratio of the current storage capacity to the initial storage capacity,
    The failure determination unit sets the failure determination variation amount to be smaller when the SOH of the battery pack is smaller than when the SOH is greater than a predetermined reference.
    The battery monitoring device according to any one of claims 1-12.
  14.  各前記セル電池について、当該セル電池の蓄電量から蓄電量が最小の前記セル電池の蓄電量を減じたものを、当該セル電池のバラツキ量(ΔQ)として、
     前記バラツキ演算部は、前記電池パックの充電時において、蓄電量が前記特定蓄電量になったと特定されない前記セル電池があった場合、当該セル電池の前記バラツキ量を、演算された前記バラツキ量が最大の前記セル電池の前記バラツキ量以上に演算する、請求項1~13のいずれか1項に記載の電池監視装置。
    For each cell battery, the amount of charge of the cell battery with the smallest amount of charge is subtracted from the amount of charge of the cell battery, and the amount of variation (ΔQ) of the cell battery is
    When the battery pack is charged and there is a cell battery that is not identified as having a storage amount equal to the specific storage amount, the variation calculation unit calculates the variation amount of the cell battery according to the calculated variation amount. 14. The battery monitoring device according to any one of claims 1 to 13, wherein the calculation is performed to be equal to or greater than the maximum variation of the cell battery.
  15.  各前記セル電池について、当該セル電池の蓄電量から蓄電量が最小の前記セル電池の蓄電量を減じたものを、当該セル電池のバラツキ量(ΔQ)として、
     前記バラツキ演算部は、前記電池パックの放電時において、蓄電量が前記特定蓄電量になったと特定されない前記セル電池があった場合、当該セル電池の前記バラツキ量をゼロ以下に演算する、請求項1~14のいずれか1項に記載の電池監視装置。
    For each cell battery, the amount of charge of the cell battery with the smallest amount of charge is subtracted from the amount of charge of the cell battery, and the amount of variation (ΔQ) of the cell battery is
    The variation calculation unit calculates the variation amount of the cell battery to be zero or less if there is a cell battery that is not identified as having a storage amount of the specific storage amount when the battery pack is discharged. 15. The battery monitoring device according to any one of 1 to 14.
PCT/JP2022/013587 2021-04-21 2022-03-23 Battery monitoring device WO2022224682A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-071858 2021-04-21
JP2021071858A JP2022166577A (en) 2021-04-21 2021-04-21 Battery monitoring device

Publications (1)

Publication Number Publication Date
WO2022224682A1 true WO2022224682A1 (en) 2022-10-27

Family

ID=83722287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013587 WO2022224682A1 (en) 2021-04-21 2022-03-23 Battery monitoring device

Country Status (2)

Country Link
JP (1) JP2022166577A (en)
WO (1) WO2022224682A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185823A (en) * 1997-10-13 1999-07-09 Toyota Motor Corp Charged state detection method of set battery, detection device and charging and discharging control device of set battery
JP2018151194A (en) * 2017-03-10 2018-09-27 トヨタ自動車株式会社 Battery state estimation device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185823A (en) * 1997-10-13 1999-07-09 Toyota Motor Corp Charged state detection method of set battery, detection device and charging and discharging control device of set battery
JP2018151194A (en) * 2017-03-10 2018-09-27 トヨタ自動車株式会社 Battery state estimation device

Also Published As

Publication number Publication date
JP2022166577A (en) 2022-11-02

Similar Documents

Publication Publication Date Title
US9634498B2 (en) Electrical storage system and equalizing method
JP6217996B2 (en) Charge / discharge system for storage element
JP5439126B2 (en) Status detector for power supply
US8427109B2 (en) Battery state of charge reset
US7554295B2 (en) Determination of IR-free voltage in hybrid vehicle applications
US20180074129A1 (en) Battery control device and electric motor vehicle system
EP2728368B1 (en) Condition estimation device and method for battery
US20060091863A1 (en) Battery state of charge voltage hysteresis estimator
KR20100085791A (en) The control and management equipment of battery stack, and method there of
JP2015073429A (en) Method for detecting cell state-of-charge and state-of-discharge divergence of series string of batteries or capacitors
JP5738784B2 (en) Power storage system
JP5397013B2 (en) Battery control device
WO2016009756A1 (en) Battery state detection device, secondary battery system, program product, and battery state detection method
WO2012137456A1 (en) Method for determining remaining lifetime
JP2010019595A (en) Residual capacity calculating apparatus of storage device
WO2017217092A1 (en) Management device and electricity storage system
JP4129109B2 (en) Charge control apparatus and method
JP5959566B2 (en) Storage battery control device
JP5911407B2 (en) Battery soundness calculation device and soundness calculation method
WO2005093446A1 (en) Method and equipment for estimating residual capacity of storage battery
WO2022224681A1 (en) Battery monitoring device and electric vehicle having same installed therein
JP7174327B2 (en) Method for determining state of secondary battery
WO2022224682A1 (en) Battery monitoring device
WO2020085097A1 (en) Battery control device
JP2020061823A (en) Secondary battery control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22791459

Country of ref document: EP

Kind code of ref document: A1