WO2022224681A1 - Battery monitoring device and electric vehicle having same installed therein - Google Patents

Battery monitoring device and electric vehicle having same installed therein Download PDF

Info

Publication number
WO2022224681A1
WO2022224681A1 PCT/JP2022/013586 JP2022013586W WO2022224681A1 WO 2022224681 A1 WO2022224681 A1 WO 2022224681A1 JP 2022013586 W JP2022013586 W JP 2022013586W WO 2022224681 A1 WO2022224681 A1 WO 2022224681A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
storage amount
battery
amount
pack
Prior art date
Application number
PCT/JP2022/013586
Other languages
French (fr)
Japanese (ja)
Inventor
正規 内山
大祐 倉知
裕基 堀
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2022224681A1 publication Critical patent/WO2022224681A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a battery monitoring device that monitors a battery pack having a series connection of multiple cell batteries.
  • Patent Document 1 Some battery monitoring devices calculate the amount of charge in the cell battery based on the voltage of the cell battery.
  • some cell batteries include a plateau region where voltage changes are small with respect to changes in the amount of charge. In that plateau region, it is more difficult to calculate the amount of charge in the cell based on the voltage of the cell. If it is difficult to calculate the amount of electricity stored in a cell battery, it is of course difficult to calculate the amount of electricity stored in a battery pack having a plurality of such cell batteries.
  • the present disclosure has been made in view of the above circumstances, and it is an object of the present invention to enable calculation of the amount of charge in a battery pack even under circumstances in which it is difficult to calculate the amount of charge in a cell battery based on the voltage of the cell battery. is the main purpose.
  • the battery monitoring device of the present disclosure monitors a battery pack having a series connection of multiple cell batteries.
  • the battery monitoring device has an impedance detection section, a cell storage amount calculation section, and a pack storage amount calculation section.
  • the impedance detection unit detects the impedance of the plurality of cell batteries when the amount of electricity stored in the battery pack changes over time.
  • the cell storage amount calculation unit calculates the storage amount of the cell battery based on the detected change in the change tendency of the impedance.
  • the pack power storage amount calculation unit calculates the power storage amount of the battery pack based on the calculated power storage amount of the cell battery.
  • the following effects can be obtained.
  • the power storage amount of the battery cell is calculated based on the change in the change tendency.
  • the amount of electricity stored in the battery pack is calculated. Therefore, even in situations where it is difficult to calculate the amount of power stored in the cell battery based on the voltage of the cell battery, the amount of power stored in the cell battery can be calculated based on the impedance of the cell battery to calculate the amount of power stored in the battery pack. be able to.
  • FIG. 1 is a circuit diagram showing the battery monitoring device of the first embodiment and its periphery;
  • FIG. 2 is a graph showing the waveform of battery current when AC voltage is applied to the battery pack;
  • FIG. 3 is a graph showing the transition of each value as the amount of electricity stored in the cell battery increases.
  • FIG. 4 is a graph showing the transition of each value with the passage of charging time,
  • FIG. 5 is a flowchart showing control by the battery monitoring device,
  • FIG. 6 is a graph showing the transition of each value before and after charging, FIG.
  • FIG. 7 is a graph showing the transition of each value from the time of charging to the time of starting the vehicle, and before and after that.
  • FIG. 8 is a graph showing the transition of each value with the passage of discharge time in the second embodiment,
  • FIG. 9 is a flow chart showing control by the battery monitoring device.
  • FIG. 1 is a circuit diagram showing a battery monitoring device 96 and its surroundings according to this embodiment.
  • An electric vehicle 90 is equipped with a load 91 such as a running motor and onboard electrical equipment, a battery pack 93 that supplies power to the load 91 , and a battery monitoring device 96 that monitors the battery pack 93 .
  • the electric vehicle 90 may be one without an engine, or may be a plug-in hybrid vehicle or the like with an engine.
  • “electrically connected” is simply referred to as "connected”.
  • the battery pack 93 has a series connection of cell batteries B.
  • Each cell battery B is an LFP battery (lithium iron phosphate battery).
  • Battery pack 93 is connected to load 91 .
  • the external power supply 80 is connected to the battery pack 93 .
  • the external power supply 80 performs CC charging (constant current charging) until just before the battery pack 93 is fully charged, and switches to CV charging (constant voltage charging) just before that.
  • the current flowing through the battery pack 93 is hereinafter referred to as "battery current I”. Therefore, the battery current I is also the current flowing through each cell battery B.
  • the time-integrated value of the battery current I is referred to as “integrated current value ⁇ Idt”.
  • the voltage of the cell battery B is called “cell voltage V”
  • the electric charge (Ah: ampere hour) stored in the cell battery B is called “cell storage amount Q”.
  • the cell storage amount Q of the cell battery B with the smallest cell storage amount Q is referred to as "minimum cell storage amount Qmin”.
  • the dischargeable charge (Ah) stored in the battery pack 93 is referred to as "pack storage amount ⁇ Q”.
  • the pack charge amount ⁇ Q corresponds to the minimum cell charge amount Qmin.
  • the pack power storage amount ⁇ Q at the time of full charge is referred to as “pack power storage capacity ⁇ Qf”.
  • the impedance of the cell battery B with respect to alternating current is referred to as "cell impedance Z".
  • the cell impedance Z depends on the resistance, capacitance component, inductor component, etc. existing inside the cell battery B.
  • FIG. A time-differentiated value of the cell impedance Z is called an “impedance change Zd”
  • a time-differentiated value of the impedance change Zd is called an "impedance twice differentiated Zdd”.
  • the impedance second derivative Zdd indicates a change in the tendency of the cell impedance Z to change.
  • the battery monitoring device 96 has a current sensor 10, a voltage sensor 20 and a BMU 30.
  • BMU is an abbreviation for "Battery Management Unit”.
  • the current sensor 10 measures the battery current I by measuring the current in the wiring to the battery pack 93 .
  • the voltage sensor 20 is connected between both terminals of the battery pack 93 and between each two cell batteries B adjacent in series in the battery pack 93 . That is, the voltage sensor 20 is connected to both terminals of each cell battery B.
  • the voltage sensor 20 has a multiplexer and the like, and is configured to be able to measure the voltage of each cell battery B.
  • the BMU 30 is an ECU (electronic control unit) having a CPU, a ROM, a RAM, etc. Based on the battery current I measured by the current sensor 10 and the cell voltage V measured by the voltage sensor 20, the battery pack Monitor 93.
  • FIG. 3(a) is a graph showing the relationship between the cell charge amount Q (horizontal axis) and the cell voltage V (vertical axis).
  • each cell battery B is an LFP battery. Due to its characteristics, each cell battery B has a plateau region where the change in the cell voltage V (vertical axis) with respect to the change in the cell storage amount Q (horizontal axis) is smaller than a predetermined reference.
  • the time when the cell charge amount Q is within the plateau region is referred to as the “plateau time”
  • the time when the cell charge amount Q is outside the plateau range is referred to as the “non-plateau time”.
  • the plateau region it is difficult to calculate the cell charge amount Q (horizontal axis) based on the cell voltage V (vertical axis). Therefore, naturally, it is also difficult to calculate the pack charge amount ⁇ Q based on these cell charge amounts Q.
  • the cell storage amount Q is calculated based on the cell impedance Z, and the pack storage amount ⁇ Q is calculated based on the cell storage amount Q.
  • the mechanism will be explained below.
  • the heat generated in the cell battery B will be referred to as “cell heat generation”
  • the temperature of the cell battery B will be referred to as “cell temperature T”
  • the differentiation of the cell voltage V with respect to the cell temperature T will be referred to as “heat generation coefficient dV/dT”. It says.
  • the cell heat generation is the sum of the Joule heat generated by the battery current I and the reaction heat shown below.
  • the reaction heat is the product (T ⁇ I ⁇ dV/dT) of the cell temperature T, the battery current I, and the heat generation coefficient dV/dT. Therefore, the greater the heat generation coefficient dV/dT, the greater the cell heat generation.
  • FIG. 3(b) is a graph showing the relationship between the cell charge amount Q (horizontal axis) and the heat generation coefficient dV/dT (vertical axis).
  • the heat generation coefficient dV/dT increases and the cell heat generation increases.
  • the storage amount that is the lower limit of the high heat generation section (QL to QU) will be referred to as “section lower limit amount QL”
  • the storage amount that will be the upper limit of the high heat generation section (QL to QU) will be referred to as "section upper limit amount QU”. .
  • the higher the cell temperature T the smaller the cell impedance Z. Therefore, when the cell charge amount Q is within the high heat generation section (QL to QU), the cell heat generation increases, the cell temperature T increases, and the cell impedance Z decreases significantly.
  • FIG. 4(a) is a graph showing changes in cell impedance Z during charging of the battery pack 93
  • FIG. 4(b) is a graph showing changes in cell storage amount Q during charging.
  • the cell storage amount Q remains in the high heat generation section ( QL to QU)
  • the cell heat generation is small and the cell temperature T rises slowly. Therefore, the decrease in the cell impedance Z shown in FIG. 4(a) is moderate.
  • the cell power storage amount Q when the cell power storage amount Q reaches the section lower limit amount QL, the cell power storage amount Q enters the high heat generation section (QL to QU), and as shown in FIG. 3(b)
  • the heat generation coefficient dV/dT increases rapidly, and the cell heat generation increases rapidly.
  • the increase in cell temperature T is rapidly accelerated, and the decrease in cell impedance Z shown in FIG. 4(a) is rapidly accelerated.
  • acceleration timing tP the timing at which the decrease in cell impedance Z is rapidly accelerated.
  • the cell charge amount Q at the acceleration timing tP can be identified as the interval lower limit amount QL shown in FIG. 4(b).
  • the cell storage amount Q when the cell storage amount Q reaches the section upper limit amount QU due to charging, the cell storage amount Q escapes from the high heat generation section (QL to QU), ) rapidly decreases. As a result, the cell heat generation is rapidly reduced, and the increase in the cell temperature T is rapidly suppressed, thereby rapidly suppressing the decrease in the cell impedance Z shown in FIG. 4(a).
  • the timing at which the decrease in cell impedance Z is suddenly suppressed is referred to as "suppression timing tS".
  • the cell charge amount Q at the suppression timing tS can be identified as the interval upper limit amount QU shown in FIG. 4(b).
  • the error in the cell storage amount Q can be calculated from the timing when the cell storage amount Q reaches the section lower limit amount QL and the section upper limit amount QU. can be reset at any time. That is, the cell charge amount Q can be calculated even in the plateau region or the like. Based on these cell storage amounts Q, the pack storage amount ⁇ Q can be calculated.
  • the battery monitoring device 96 further includes an AC application circuit 40, and an impedance detection unit 31, a base charge amount specifying unit 32, a cell charge amount calculation unit 33, and a pack charge amount calculation unit 34 in the BMU 30.
  • each cell battery B has graphite in the negative electrode and an olivine structure in the positive electrode.
  • the olivine structure is a crystal structure having a hexagonal close-packed oxygen skeleton.
  • the reason why the cell battery B has graphite in the negative electrode is that the heat generation coefficient dV/dT becomes significantly large when the cell storage amount Q is within the high heat generation section (QL to QU).
  • the reason why the positive electrode has an olivine structure is that the change in the heat generation coefficient dV/dT at the positive electrode is suppressed. In other words, it is possible to suppress superimposition of the change in the heat generation coefficient dV/dT at the positive electrode as noise on the change in the heat generation coefficient dV/dT at the negative electrode.
  • One terminal of the AC applying circuit 40 is connected to the positive terminal of the battery pack 93 and the other terminal of the AC applying circuit 40 is connected to the negative terminal of the battery pack 93 .
  • the AC application circuit 40 applies an AC voltage to the battery pack 93 during CC charging (constant current charging) of the battery pack 93 .
  • FIG. 2 is a graph showing the waveform of battery current I during CC charging.
  • the AC current is superimposed on the CC current (constant current) that is the charging current.
  • the reason why the AC voltage is applied during the CC charging is that the charging current is constant during the CC charging, so that there is no concern that AC noise due to changes in the charging current will be superimposed on the AC current.
  • the impedance detection unit 31 shown in FIG. 1 detects each cell impedance Z based on each cell voltage V and battery current I when AC voltage is applied by the AC application circuit 40 during CC charging of the battery pack 93. Calculate. Specifically, for example, a value (AC resistance) obtained by dividing the effective value of the AC component in the cell voltage V by the effective value of the AC component in the battery current I is calculated as the cell impedance Z.
  • the base storage amount specifying unit 32 specifies (updates) the base storage amount Qb, which is the basis for calculating the cell storage amount Q, to the section lower limit amount QL at the promotion timing tP, and also specifies (updates) the interval lower limit amount QL at the suppression timing tS. to identify (update) the interval upper limit quantity QU.
  • the interval lower limit amount QL and the interval upper limit amount QU are preferably obtained in advance by experiments, simulations, or the like. In this embodiment, at least the interval upper limit QU is included in the plateau region.
  • the base charged amount specifying unit 32 designates the timing at which the decrease in the calculated cell impedance Z is rapidly accelerated by a predetermined reference or more during CC charging excluding the start and end times as the acceleration timing tP. Identify. More specifically, the acceleration timing tP is determined on condition that the impedance second derivative Zdd has fallen below the negative acceleration determination value ZddP during CC charging excluding the start and end times. At the acceleration timing tP, as described above, the base charge amount Qb is updated to the interval lower limit amount QL.
  • the base storage amount specifying unit 32 specifies the timing at which the decrease in the calculated cell impedance Z is rapidly suppressed by a predetermined reference or more during CC charging, excluding the start and end of charging, as the suppression timing tS. . More specifically, it is determined that it is the suppression timing tS on condition that the impedance second derivative Zdd exceeds the positive suppression determination value ZddS during CC charging except at the start and end.
  • the base storage amount Qb is updated to the section upper limit amount QU.
  • the BMU 30 calculates the cell storage amount Q based on the cell voltage V in a non-plateau region and under conditions where the OCV (open circuit voltage) can be measured. Note that the method itself for calculating the cell charge amount Q based on such cell voltage V may be a known method, and therefore detailed description thereof will be omitted.
  • the base power storage amount specifying unit 32 updates the base power storage amount Qb to the calculated cell power storage amount Q.
  • the timing at which the cell voltage V is measured in this way will be referred to as “voltage measurement timing tV”
  • the cell storage amount Q calculated based on the cell voltage V will be referred to as “the storage amount Qv based on the cell voltage V”.
  • the base storage amount specifying unit 32 updates the base storage amount Qb to the storage amount Qv based on the cell voltage V at the voltage measurement timing tV.
  • the cell storage amount calculation unit 33 calculates the sum (Qb+ ⁇ Idt) of the base storage amount Qb and the current integrated value ⁇ Idt as the current cell storage amount Q.
  • the cell storage amount calculator 33 resets the integrated current value ⁇ Idt to zero when the base storage amount Qb is updated. Therefore, the cell storage amount calculator 33 calculates the current cell storage amount Q by adding the current integrated value ⁇ Idt after the timing at which the base storage amount Qb is updated to the base storage amount Qb.
  • the cell storage amount calculation unit 33 adds the current integrated value ⁇ Idt after the acceleration timing tP to the interval lower limit amount QL, thereby Compute the quantity Q. Then, after the suppression timing tS during CC charging, the current cell storage amount Q is calculated by adding the current integrated value ⁇ Idt after the suppression timing tS to the section upper limit amount QU. After the voltage measurement timing tV, the current cell storage amount Q is calculated by adding the current integrated value ⁇ Idt after the voltage measurement timing tV to the storage amount Qv based on the cell voltage V.
  • the pack power storage amount calculation unit 34 calculates the minimum cell power storage amount Qmin, which is the minimum value of the calculated cell power storage amounts Q, as the pack power storage amount ⁇ Q.
  • BMU 30 further has a remaining charge time calculation unit 36 , a power failure determination unit 37 , and a battery failure determination unit 38 , and electric vehicle 90 further has a cruising range calculation unit 97 as a configuration for utilization thereof.
  • the remaining charge time calculation unit 36 calculates the remaining charge time, which is the time required to charge the battery pack 93 until the pack storage amount ⁇ Q reaches the pack storage capacity ⁇ Qf. . Therefore, the larger the difference ( ⁇ Qf ⁇ Q) between the pack power storage capacity ⁇ Qf and the pack power storage amount ⁇ Q, the larger the remaining charging time is estimated.
  • the electricity shortage determination unit 37 determines whether or not there is a shortage of electric power using the calculated pack power storage amount ⁇ Q. Specifically, it is determined that the electric power is insufficient, for example, on the condition that the pack charged amount ⁇ Q is smaller than a predetermined value.
  • the battery failure determination unit 38 determines whether or not the battery pack 93 has failed using the calculated pack charge amount ⁇ Q. Specifically, for example, on the condition that the pack charged amount ⁇ Q is smaller than a predetermined lower limit threshold, an overdischarge failure is determined, and on the condition that the pack charged amount ⁇ Q is larger than a predetermined upper threshold, an overcharge failure is determined. I judge.
  • the cruising range calculation unit 97 calculates the cruising range as the distance that the electric vehicle 90 can travel, using the calculated pack power storage amount ⁇ Q. Therefore, the larger the pack power storage amount ⁇ Q, the larger the estimated cruising range. Specifically, the cruising range may be calculated from the pack power storage amount ⁇ Q and the power consumption at that time, or may be calculated using the power consumption as a predetermined value.
  • FIG. 5 is a flowchart showing control by the battery monitoring device 96. FIG. This flow is repeated, for example, at predetermined intervals.
  • Whether or not it is in the non-plateau region may be determined, for example, based on whether the cell voltage V or the cell storage amount Q (calculated value) is within a predetermined range, or the most recent cell storage amount Q ( The determination may be made based on whether the time change of the cell voltage V with respect to the time change of the calculated value) is smaller than a predetermined value.
  • Whether or not the OCV can be measured can be determined, for example, based on whether or not a predetermined time or more has elapsed since the end of charging or the end of discharging.
  • S101 If it is determined in S101 that the vehicle is in the plateau region or that the OCV cannot be measured (S101: NO), proceed to S102 to determine whether CC charging is in progress. Whether or not CC charging is being performed can be determined, for example, based on whether or not the remaining charging time is equal to or longer than a predetermined value.
  • S102 YES
  • the process proceeds to S201. The flow from S201 to S403 described later is performed for each cell battery B.
  • the cell impedance Z is detected by the impedance detection unit 31.
  • the base charged amount specifying unit 32 determines whether or not the decrease in the cell impedance Z is rapidly accelerated beyond a predetermined standard. If it is determined that the acceleration is rapidly accelerated (S202: YES), the process proceeds to S203, updates the base charge amount Qb to the interval lower limit amount QL, and then proceeds to S401.
  • retroactive S203 if it is not determined that the decrease in cell impedance Z has rapidly accelerated beyond the predetermined standard (S202: NO), proceed to S204.
  • the base charged amount specifying unit 32 determines whether or not the decrease in the cell impedance Z is rapidly suppressed by a predetermined standard or more. If it is determined that it is rapidly suppressed (S204: YES), the process proceeds to S205, updates the base charged amount Qb to the section upper limit amount QU, and then proceeds to S401.
  • the process proceeds to S402, and the cell storage amount calculation unit 33 updates the integrated current value ⁇ Idt. do. Specifically, by adding the time integrated value of the battery current I from S401 in the previous flow to S401 in the current flow to the previous integrated current value ⁇ Idt, the current integrated value ⁇ Update Idt. Then, the process proceeds to S403.
  • retroactive S101 if it is determined that it is in the non-plateau region and the OCV can be measured, the process proceeds to S301.
  • the flow from S301 to S403 described later is performed for each cell battery B.
  • the cell voltage V is measured by the voltage sensor 20 .
  • the BMU 30 calculates the amount of stored electricity Qv based on the cell voltage V.
  • the base charged amount specifying unit 32 updates the base charged amount Qb to the charged amount Qv based on the cell voltage V, and the process proceeds to S401.
  • the cell power storage amount calculator 33 resets the integrated current value ⁇ Idt to zero, and then proceeds to S403.
  • the cell storage amount calculator 33 calculates the sum of the base storage amount Qb and the integrated current value ⁇ Idt (Qb+ ⁇ Idt) as the cell storage amount Q.
  • the pack power storage amount calculation unit 34 calculates the minimum cell power storage amount Qmin, which is the minimum value of the cell power storage amounts Q calculated in S403, as the pack power storage amount ⁇ Q. proceed to
  • the remaining charging time calculation unit 36 calculates the remaining charging time.
  • the power failure determination unit 37 determines whether or not the power is insufficient.
  • the battery failure determination unit 38 determines whether or not there is a battery failure.
  • the cruising distance calculation unit 97 calculates the cruising distance. The flow ends when these S501 to S504 are completed.
  • FIG. 6 is a time chart showing changes in values before and after CC charging.
  • FIG. 6A a case is shown in which the battery pack 93 is CC-charged between a predetermined first timing t1 and a second timing t2.
  • This CC charging is performed until the cell storage amount Q is greater than or equal to the section lower limit amount QL and less than or equal to the section upper limit amount QU, that is, from the state of the high heat generation section (QL to QU) to the cell storage amount Q becoming larger than the section upper limit amount QU. shall be implemented.
  • the cell charge amount Q is within the high heat generation section (QL to QU) and the heat generation coefficient dV/ Due to the large dT, the cell impedance Z is significantly reduced.
  • the cell charge amount Q reaches the section upper limit amount QU at a predetermined timing (tS(B))
  • the cell charge amount Q exits the high heat generation section (QL to QU), and the heat generation coefficient dV/dT changes.
  • the decrease in cell impedance Z is rapidly suppressed.
  • the impedance second derivative Zdd suddenly increases for a moment and exceeds the positive suppression determination value ZddS.
  • the base storage amount Qb is updated to the interval upper limit amount QU, and the integrated current value ⁇ Idt is reset as shown in FIG. 6(d).
  • FIG. 7 is a time chart showing transition of each value during CC charging, subsequent running of the electric vehicle 90, subsequent activation of the electric vehicle 90, and before and after these times.
  • CC charging is performed between the first timing t1 and the second timing t2 as described above.
  • the electric vehicle 90 travels from the second timing t2 to the subsequent third timing t3, and the electric vehicle 90 stops from the third timing t3 to the subsequent fourth timing t4.
  • the electric vehicle 90 starts up between the fourth timing t4 and the subsequent fifth timing t5, and the electric vehicle 90 runs again between the fifth timing t5 and the subsequent sixth timing t6. do.
  • the battery current I flows in the discharge direction (negative direction in the graph) while the vehicle is running (t2 to t3). Due to the discharge, the cell storage amount Q decreases as shown from the second timing t2 to the third timing t3 in FIG. 7(d). Along with the decrease, the divergence between the calculated value (solid line) and the true value (broken line) of the cell storage amount Q gradually increases.
  • the reliability of the cell voltage V is low for a while even after the third timing t3 when the vehicle ends running. This is because polarization occurs in the cell battery B due to the use (discharge) of electric power, but the polarization does not subside until some time has passed from the third timing t3 at which the vehicle ends running.
  • FIG. 7(c) it is assumed that the polarization subsides and the reliability of the cell voltage V recovers by the fourth timing t4 at which the electric vehicle 90 starts to start.
  • the BMU 30 calculates the storage amount Qv based on the cell voltage V, which is the OCV, at the fourth timing t4 at startup. Then, the base storage amount specifying unit 32 updates the base storage amount Qb to the storage amount Qv based on the cell voltage V. FIG. Then, the cell storage amount calculator 33 resets the integrated current value ⁇ Idt to zero.
  • the impedance detector 31 detects the cell impedance Z when the battery pack 93 is charged.
  • the cell storage amount calculation unit 33 calculates the cell storage amount Q based on the second impedance differential Zdd, which is the change in the change tendency of the cell impedance Z.
  • the pack storage amount calculation unit 34 calculates the pack storage amount ⁇ Q.
  • the cell storage amount Q can be calculated based on the cell impedance Z,
  • the pack storage amount ⁇ Q can be calculated based on the cell storage amount Q of .
  • the cell storage amount calculation unit 33 calculates the cell storage amount Q based on the base storage amount Qb and the integrated current value ⁇ Idt after the timing at which the base storage amount Qb is specified. Therefore, the cell storage amount Q can be calculated with higher accuracy than when the cell storage amount Q is calculated simply based on the base storage amount Qb and the elapsed time from the timing at which the base storage amount Qb is specified. Therefore, the pack charged amount ⁇ Q can be calculated with high accuracy.
  • the charge stored in the battery pack 93 can be discharged only until the minimum cell storage amount Qmin reaches the dischargeable lower limit storage amount near zero.
  • the pack power storage amount calculator 34 calculates the minimum cell power storage amount Qmin as the pack power storage amount ⁇ Q. Therefore, the charge (Ah) that can be discharged by the battery pack 93 can be calculated as the pack storage amount ⁇ Q.
  • the AC application circuit 40 applies AC voltage to the battery pack 93 .
  • the impedance detection unit 31 detects the impedance of the cell battery B when the AC voltage is applied to the battery pack 93 . Therefore, the AC resistance of the cell battery B can be measured as the cell impedance Z.
  • the AC application circuit 40 applies AC voltage to the battery pack 93 during CC charging. Therefore, there is no concern that AC noise due to changes in the charging current will be superimposed on the AC current due to the AC voltage. Therefore, the impedance detector 31 can detect the cell impedance Z with high accuracy. Therefore, the acceleration timing tP and the suppression timing tS can be specified with high accuracy. Therefore, in this respect as well, the cell storage amount Q can be calculated with high accuracy, and the pack storage amount ⁇ Q can be calculated with high accuracy.
  • the cell storage amount calculation unit 33 not only calculates the cell storage amount Q based on the cell impedance Z in the plateau region during CC charging, but also in the non-plateau region and when the OCV can be measured. A charged amount Qv based on the cell voltage V is calculated. Therefore, the pack charge amount ⁇ Q can be calculated not only during CC charging, but also in the non-plateau region and when the OCV can be measured.
  • cell battery B has graphite in the negative electrode.
  • the graphite remarkably increases the heat generation coefficient dV/dT when the cell charge amount Q is within the high heat generation section (QL to QU). Therefore, when the cell storage amount Q enters the high heat generation section (QL to QU), the decrease in the cell impedance Z is accelerated, and when the cell storage amount Q exits the high heat generation section (QL to QU), the cell impedance Z suppression of the decrease in Therefore, in this respect as well, the acceleration timing tP and the suppression timing tS can be specified with high accuracy, and the pack charged amount ⁇ Q can be calculated with high accuracy.
  • cell battery B has an olivine structure in the positive electrode.
  • the olivine structure suppresses the change in the heat generation coefficient dV/dT at the positive electrode.
  • the acceleration timing tP and the suppression timing tS can be specified with high accuracy, and the pack charged amount ⁇ Q can be calculated with high accuracy.
  • the remaining charge time calculation unit 36 calculates the remaining charge time
  • the power shortage determination unit 37 determines whether or not the power is insufficient.
  • a failure determination unit 38 determines whether or not the battery pack 93 has failed, and a cruising distance calculation unit 97 calculates a cruising distance. Therefore, even in the plateau region or the like, it is possible to calculate the remaining charging time, determine the lack of electricity, determine the failure of the battery pack 93, and calculate the cruising range without any problem.
  • the cell storage amount Q is calculated based on the cell impedance Z
  • the pack storage amount ⁇ Q is calculated based on the cell storage amount Q. Calculate. The mechanism will be explained below.
  • FIG. 8(a) is a graph showing changes in the cell impedance Z when the battery pack 93 is using power
  • FIG. 8(b) is a graph showing changes in the cell storage amount Q when using power.
  • the cell storage amount Q when the use of electric power is started from the state where the cell battery B is substantially fully charged, the cell storage amount Q remains high until the cell storage amount Q decreases to the section upper limit amount QU. Since it is outside the heat generation section (QL-QU), the cell heat generation is small. Therefore, the decrease in the cell impedance Z shown in FIG. 8(a) is moderate.
  • the cell storage amount Q decreases to the section upper limit amount QU due to the use of electric power
  • the cell storage amount Q enters the high heat generation section (QL to QU), and the heat generation coefficient dV /dT increases rapidly, and the cell heat generation increases rapidly.
  • the increase in cell temperature T is rapidly accelerated, and the decrease in cell impedance Z shown in FIG. 8(a) is rapidly accelerated.
  • the cell charged amount Q at the promotion timing tP can be identified as the section upper limit amount QU shown in FIG. 8(b).
  • the cell storage amount Q at the promotion timing tP can be specified as the interval lower limit amount QL, whereas during power use, the cell storage amount Q at the acceleration timing tP can be specified as the interval upper limit amount QU. They are different in an identifiable way.
  • the cell storage amount Q decreases to the section lower limit amount QL due to the use of electric power
  • the cell storage amount Q exits the high heat generation section (QL to QU)
  • the heat generation coefficient dV/dT drops sharply and cell heat generation drops sharply.
  • the cell charge amount Q at the suppression timing tS can be identified as the interval lower limit amount QL shown in FIG. 8(b).
  • the cell storage amount Q at the suppression timing tS can be specified as the section upper limit amount QU, whereas during power use, the cell storage amount Q at the suppression timing tS can be specified as the section lower limit amount QL. They are different in an identifiable way.
  • the error in the cell storage amount Q can be reset at the timing when the cell storage amount Q decreases to the section upper limit amount QU and the timing when it decreases to the section lower limit amount QL. That is, the cell charge amount Q can be calculated even in the plateau region or the like. Based on these cell storage amounts Q, the pack storage amount ⁇ Q can be calculated.
  • FIG. 1 which is the same as the first embodiment, the configuration for calculating the pack charge amount ⁇ Q based on the cell impedance Z when electric power is used will be described.
  • the AC application circuit 40 applies AC voltage to the battery pack 93 not only during CC charging but also during power usage.
  • the impedance detection unit 31 calculates each cell impedance Z based on each cell voltage V and battery current I when the AC voltage is applied while the power is being used.
  • the base power storage amount specifying unit 32 specifies the timing at which the decrease in the detected cell impedance Z is accelerated abruptly by a predetermined standard or more in a state where the power usage is stable by a predetermined standard or more, as the acceleration timing tP. More specifically, it is determined that it is the promotion timing tP on the condition that the impedance second derivative Zdd has fallen below the negative acceleration determination value ZddP in a state where the power consumption is stable at a predetermined reference or more. At the promotion timing tP, the base storage amount Qb is updated to the section upper limit amount QU.
  • the base storage amount specifying unit 32 specifies the timing at which the decrease in the detected cell impedance Z is rapidly suppressed by a predetermined standard or more in a state where the power usage is stable by a predetermined standard or more as the suppression timing tS. do. More specifically, it is determined that it is the suppression timing tS on the condition that the impedance second derivative Zdd exceeds the positive suppression determination value ZddS in a state where the power consumption is stable at a predetermined reference or more. At the suppression timing tS, the base storage amount Qb is updated to the section lower limit amount QL.
  • FIG. 9 is a flowchart showing control by the battery monitoring device 96.
  • FIG. This flow is repeated, for example, at predetermined intervals.
  • This flow differs from the float in FIG. 5 of the first embodiment in that it has S103, S211, S212, and S214.
  • S101: NO when it is determined in S101 that it is in the plateau region or when it is determined that the OCV cannot be measured (S101: NO), if it is determined in S102 that CC charging is not being performed (S102: NO), S103 proceed to At S103, it is determined whether power is being used. Specifically, for example, it is determined that power is being used on condition that the battery current I is equal to or greater than a predetermined value in the discharging direction. If it is determined in S103 that power is not being used (S103: NO), the process proceeds to S402 to update the integrated current value ⁇ Idt. On the other hand, if it is determined in S103 that power is being used, the process proceeds to S211.
  • the impedance detection unit 31 calculates the cell impedance Z.
  • the base charged amount specifying unit 32 determines whether or not the decrease in the cell impedance Z is rapidly accelerated beyond a predetermined standard. If it is determined that the acceleration is rapidly accelerated (S212: YES), the process proceeds to S205, updates the base charge amount Qb to the section upper limit amount QU, and then proceeds to S401.
  • retroactive S212 if it is not determined that the decrease in cell impedance Z has rapidly accelerated beyond the predetermined standard (S212: NO), proceed to S214.
  • the base charged amount specifying unit 32 determines whether or not the decrease in the cell impedance Z is rapidly suppressed by a predetermined standard or more. If it is determined that it is rapidly suppressed (S214: YES), the process proceeds to S203, updates the base charge amount Qb to the section lower limit amount QL, and then proceeds to S401.
  • the cell storage amount Q is calculated based on the cell impedance Z
  • the pack storage amount ⁇ Q is calculated based on the cell storage amount Q.
  • the cell battery B is an LFP battery, but instead of this, it may be a battery with a plateau region or a battery without a plateau region. That is, even if the cell battery B does not have a plateau region, the OCV cannot be obtained during charging or while power is being used. difficult to calculate. Therefore, even if the cell battery B does not have a plateau region, it is possible to calculate the pack charge amount ⁇ Q based on the cell impedance Z when it is difficult to calculate the cell charge amount Q based on the cell voltage V. It works.
  • the region in which the change in the cell voltage V with respect to the change in the cell storage amount Q is smaller than a predetermined reference is defined as the "plateau region,” and the state in which the cell storage amount Q is within the plateau region is defined as the “plateau region.” in the plateau region.”
  • the time when the cell voltage V is within a predetermined range or the time when the cell charge amount Q is within a predetermined range may be defined as the "plateau region time”.
  • impedance change Zd is obtained by differentiating the cell impedance Z with time
  • impedance second differentiation Zdd is obtained by further differentiating the impedance change Zd with time
  • the cell impedance Z may be differentiated by the current integrated value ⁇ Idt to be the “impedance change Zd”
  • the impedance change Zd may be further differentiated by the current integrated value ⁇ Idt to be the “impedance twice differentiated Zdd”.
  • the stored charge (Ah: ampere hour) stored in the cell battery B is defined as the "cell storage amount Q".
  • the stored energy (Wh: Watt-hour) stored in the cell battery B may be used as the "cell storage amount”.
  • the cell storage amount calculation unit 33 calculates the base storage amount in terms of energy (Wh) and the integrated power (Wh) may be used to calculate the cell storage amount (Wh) in terms of energy.
  • the integrated power value is the time integral value ( ⁇ VIdt) of the product of the cell voltage V and the battery current I.
  • the cell impedance Z differentiated by the integrated power value is defined as “impedance change Zd”
  • the impedance change Zd further differentiated by the power integrated value is defined as “impedance change Zd”. 2nd derivative Zdd”.
  • the cell storage amount Q is calculated based on the base storage amount Qb and the current integrated value ⁇ Idt.
  • the cell storage amount Q may be calculated simply based on the base storage amount Qb and the elapsed time from the timing at which the base storage amount Qb was updated.
  • the cell storage amount Q is calculated as the sum of the base storage amount Qb and the integrated current value ⁇ Idt.
  • the cell storage amount Q may be calculated by performing a predetermined correction on the sum of the base storage amount Qb and the integrated current value ⁇ Idt.
  • the pack power storage amount calculation unit 34 calculates the minimum cell power storage amount Qmin as the pack power storage amount ⁇ Q.
  • the average value of the cell charged amounts Q may be calculated as the pack charged amount ⁇ Q.
  • the stored energy is the stored amount as described above, instead of the value obtained by multiplying the minimum cell stored amount (Wh) by the number of cells, the value obtained by adding each cell stored amount (Wh) is used as the pack stored amount. It may be calculated as an amount (Wh).
  • the battery monitoring device 96 has the AC application circuit 40. Instead of this, for example, by turning on and off the discharge switch for each cell battery B, a specific current change for each cell battery B may be generated. Then, the impedance (AC resistance) of the cell battery B at that time may be detected as the cell impedance Z.
  • the impedance of the cell battery B with respect to alternating current is "cell impedance Z".
  • the impedance of the cell battery B with respect to direct current may be defined as “cell impedance Z”.
  • the external power supply 80 performs CC charging and CV charging, and the AC applying circuit 40 applies AC voltage to the battery pack 93 during CC charging.
  • the external power supply 80 may be configured to perform CP charging (constant power charging) and CV charging, and the AC application circuit 40 may be configured to apply an AC voltage to the battery pack 93 during CP charging.
  • the pack charge amount ⁇ Q in addition to calculating the pack charge amount ⁇ Q based on the cell impedance Z, when the OCV is measurable in the non-plateau region, the pack charge amount is also calculated based on the cell voltage V. ⁇ Q is calculated. Alternatively, the pack charge amount ⁇ Q may be calculated based on the cell impedance Z only.
  • the pack storage amount ⁇ Q based on the cell impedance Z is calculated both during CC charging and during power use. Alternatively, it may be performed only during CC charging or during power use.
  • the electric vehicle 90 referred to in the first and second embodiments may be a hybrid vehicle having an engine, as described above.
  • the electric vehicle 90 determines the necessity of engine combustion based on the pack power storage amount ⁇ Q, such as determining that engine combustion is necessary, on the condition that the calculated pack power storage amount ⁇ Q is smaller than a predetermined threshold value. You may have the engine combustion necessity determination part which determines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

A battery monitoring device (96) monitors a battery pack (93) which has a series-connected body comprising a plurality of battery cells (B). An impedance detection unit (31) of the battery monitoring device detects the impedance (Z) of the plurality of battery cells at the pack power storage amount change time at which the power storage amount (Q) in the battery pack changes over time. A cell power storage amount calculation unit (33) of the battery monitoring device calculates the power storage amount (Q) of the battery cells on the basis of a change (Zdd) in the change trend (Zd) of the detected impedance. A pack power storage amount calculation unit (34) of the battery monitoring device calculates the battery pack power storage amount (ΣQ) on the basis of the calculated power storage amount in the battery cells.

Description

電池監視装置及びそれが搭載された電動車両Battery monitoring device and electric vehicle equipped with it 関連出願の相互参照Cross-reference to related applications
 本出願は、2021年4月21日に出願された日本出願番号2021-071859号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2021-071859 filed on April 21, 2021, and the contents thereof are incorporated herein.
 本開示は、複数のセル電池の直列接続体を有する電池パックを監視する電池監視装置に関する。 The present disclosure relates to a battery monitoring device that monitors a battery pack having a series connection of multiple cell batteries.
 電池監視装置の中には、セル電池の電圧に基づいてセル電池の蓄電量等を演算するものがある。そのような技術を示す文献としては、次の特許文献1がある。 Some battery monitoring devices calculate the amount of charge in the cell battery based on the voltage of the cell battery. As a document showing such a technique, there is the following Patent Document 1.
特開2013-44734号公報JP 2013-44734 A
 電池パックの充電中や電力使用中においては、セル電池の内部抵抗に電流が流れるため、セル電池の真の電圧、すなわちOCV(開回路電圧)を検出することができない。そのため、電池パックの充電中や電力使用中においては、セル電池の電圧に基づいてセル電池の蓄電量を演算するのが難しい。  While charging the battery pack or using power, current flows through the internal resistance of the cell battery, so the true voltage of the cell battery, that is, the OCV (open circuit voltage) cannot be detected. Therefore, when the battery pack is being charged or power is being used, it is difficult to calculate the amount of charge in the cell battery based on the voltage of the cell battery.
 さらにセル電池の中には、蓄電量変化に対する電圧変化が小さいプラトー領域を含むものがある。そのプラトー領域においては、セル電池の電圧に基づいてセル電池の蓄電量を演算するのがさらに難しい。そして、セル電池の蓄電量を演算するのが難しい場合には、当然、そのセル電池を複数有する電池パックの蓄電量を演算するのも難しい。 Furthermore, some cell batteries include a plateau region where voltage changes are small with respect to changes in the amount of charge. In that plateau region, it is more difficult to calculate the amount of charge in the cell based on the voltage of the cell. If it is difficult to calculate the amount of electricity stored in a cell battery, it is of course difficult to calculate the amount of electricity stored in a battery pack having a plurality of such cell batteries.
 本開示は、上記事情に鑑みてなされたものであり、セル電池の電圧に基づいてセル電池の蓄電量を演算するのが難しい状況下においても、電池パックの蓄電量を演算できるようにすることを、主たる目的とする。 The present disclosure has been made in view of the above circumstances, and it is an object of the present invention to enable calculation of the amount of charge in a battery pack even under circumstances in which it is difficult to calculate the amount of charge in a cell battery based on the voltage of the cell battery. is the main purpose.
 本開示の電池監視装置は、複数のセル電池の直列接続体を有する電池パックを監視する。前記電池監視装置は、インピーダンス検出部とセル蓄電量演算部とパック蓄電量演算部とを有する。 The battery monitoring device of the present disclosure monitors a battery pack having a series connection of multiple cell batteries. The battery monitoring device has an impedance detection section, a cell storage amount calculation section, and a pack storage amount calculation section.
 前記インピーダンス検出部は、前記電池パックの蓄電量が時間経過に伴い変化するパック蓄電量変化時において、複数の前記セル電池のインピーダンスを検出する。前記セル蓄電量演算部は、検出されている前記インピーダンスの変化傾向の変化に基づいて、前記セル電池の蓄電量を演算する。前記パック蓄電量演算部は、演算された前記セル電池の蓄電量に基づいて、前記電池パックの蓄電量を演算する。 The impedance detection unit detects the impedance of the plurality of cell batteries when the amount of electricity stored in the battery pack changes over time. The cell storage amount calculation unit calculates the storage amount of the cell battery based on the detected change in the change tendency of the impedance. The pack power storage amount calculation unit calculates the power storage amount of the battery pack based on the calculated power storage amount of the cell battery.
 本開示によれば、以下の効果が得られる。電池パックの充電時や電力使用時等のパック蓄電量変化時には、各セル電池において、その時々の蓄電量に応じてインピーダンスの変化傾向が変化する。そこで、本開示では、当該変化傾向の変化に基づいて電池セルの蓄電量を演算する。そのセル電池の蓄電量に基づいて、電池パックの蓄電量を演算する。そのため、セル電池の電圧に基づいてセル電池の蓄電量を演算するのが難しい状況下においても、セル電池のインピーダンスに基づいてセル電池の蓄電量を演算して、電池パックの蓄電量を演算することができる。 According to the present disclosure, the following effects can be obtained. When the amount of electricity stored in the pack changes, such as when the battery pack is being charged or when electricity is being used, the tendency of the impedance changes in each cell battery according to the amount of electricity stored at that time. Therefore, in the present disclosure, the power storage amount of the battery cell is calculated based on the change in the change tendency. Based on the amount of electricity stored in the cell battery, the amount of electricity stored in the battery pack is calculated. Therefore, even in situations where it is difficult to calculate the amount of power stored in the cell battery based on the voltage of the cell battery, the amount of power stored in the cell battery can be calculated based on the impedance of the cell battery to calculate the amount of power stored in the battery pack. be able to.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態の電池監視装置及びその周辺を示す回路図であり、 図2は、電池パックに交流電圧が印加された時の電池電流の波形を示すグラフであり、 図3は、セル電池の蓄電量の増加に伴う各値の推移を示すグラフであり、 図4は、充電時間の経過に伴う各値の推移を示すグラフであり、 図5は、電池監視装置による制御を示すフローチャートであり、 図6は、充電時及びその前後の各値の推移を示すグラフであり、 図7は、充電時から車両起動時まで並びにその前後の各値の推移を示すグラフであり、 図8は、第2実施形態において、放電時間の経過に伴う各値の推移を示すグラフであり、 図9は、電池監視装置による制御を示すフローチャートである。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a circuit diagram showing the battery monitoring device of the first embodiment and its periphery; FIG. 2 is a graph showing the waveform of battery current when AC voltage is applied to the battery pack; FIG. 3 is a graph showing the transition of each value as the amount of electricity stored in the cell battery increases. FIG. 4 is a graph showing the transition of each value with the passage of charging time, FIG. 5 is a flowchart showing control by the battery monitoring device, FIG. 6 is a graph showing the transition of each value before and after charging, FIG. 7 is a graph showing the transition of each value from the time of charging to the time of starting the vehicle, and before and after that. FIG. 8 is a graph showing the transition of each value with the passage of discharge time in the second embodiment, FIG. 9 is a flow chart showing control by the battery monitoring device.
 以下に本開示の実施形態について図面を参照しつつ説明する。ただし、本開示は以下の実施形態に限定されるものではなく、開示の趣旨を逸脱しない範囲で適宜変更して実施できる。 The embodiments of the present disclosure will be described below with reference to the drawings. However, the present disclosure is not limited to the following embodiments, and can be implemented with appropriate modifications within the scope of the disclosure.
 [第1実施形態]
 図1は、本実施形態の電池監視装置96及びその周辺を示す回路図である。電動車両90には、走行用モータや車載電気機器等の負荷91と、負荷91に給電する電池パック93と、電池パック93を監視する電池監視装置96とが搭載されている。電動車両90は、エンジンを備ないものであってもよいし、エンジンを備えるプラグインハイブリッド車等であってもよい。以下では、「電気的に接続」されていることを、単に「接続」されているという。
[First embodiment]
FIG. 1 is a circuit diagram showing a battery monitoring device 96 and its surroundings according to this embodiment. An electric vehicle 90 is equipped with a load 91 such as a running motor and onboard electrical equipment, a battery pack 93 that supplies power to the load 91 , and a battery monitoring device 96 that monitors the battery pack 93 . The electric vehicle 90 may be one without an engine, or may be a plug-in hybrid vehicle or the like with an engine. Hereinafter, "electrically connected" is simply referred to as "connected".
 電池パック93は、セル電池Bの直列接続体を有する。各セル電池Bは、LFPバッテリー(リン酸鉄リチウムイオン電池)である。電池パック93は負荷91に接続されている。そして、電池パック93を充電する充電時には、電池パック93に外部電源80が接続される。外部電源80は、電池パック93が満充電になる直前までCC充電(定電流充電)を行い、当該直前にCV充電(定電圧充電)に切り替える。 The battery pack 93 has a series connection of cell batteries B. Each cell battery B is an LFP battery (lithium iron phosphate battery). Battery pack 93 is connected to load 91 . When the battery pack 93 is charged, the external power supply 80 is connected to the battery pack 93 . The external power supply 80 performs CC charging (constant current charging) until just before the battery pack 93 is fully charged, and switches to CV charging (constant voltage charging) just before that.
 以下では、電池パック93に流れる電流を「電池電流I」という。よって、電池電流Iは、各セル電池Bに流れる電流でもある。また以下では、電池電流Iを時間積分したものを「電流積算値∫Idt」という。そして、セル電池Bの電圧を「セル電圧V」といい、セル電池Bに蓄えられている電荷(Ah:アンペアアワー)を「セル蓄電量Q」という。そして、セル蓄電量Qが最小のセル電池Bの当該セル蓄電量Qを「最小セル蓄電量Qmin」という。 The current flowing through the battery pack 93 is hereinafter referred to as "battery current I". Therefore, the battery current I is also the current flowing through each cell battery B. As shown in FIG. In the following description, the time-integrated value of the battery current I is referred to as "integrated current value∫Idt". The voltage of the cell battery B is called "cell voltage V", and the electric charge (Ah: ampere hour) stored in the cell battery B is called "cell storage amount Q". The cell storage amount Q of the cell battery B with the smallest cell storage amount Q is referred to as "minimum cell storage amount Qmin".
 また以下では、電池パック93に蓄えられている放電可能な電荷(Ah)を「パック蓄電量ΣQ」という。そのパック蓄電量ΣQは、最小セル蓄電量Qminに相当する。また以下では、満充電時におけるパック蓄電量ΣQを、「パック蓄電容量ΣQf」という。 Also, hereinafter, the dischargeable charge (Ah) stored in the battery pack 93 is referred to as "pack storage amount ΣQ". The pack charge amount ΣQ corresponds to the minimum cell charge amount Qmin. Further, hereinafter, the pack power storage amount ΣQ at the time of full charge is referred to as “pack power storage capacity ΣQf”.
 また以下では、交流に対するセル電池Bのインピーダンスを「セルインピーダンスZ」という。そのセルインピーダンスZは、セル電池Bの内部に存在する抵抗や容量成分やインダクタ成分等による。そして、セルインピーダンスZを時間微分したものを「インピーダンス変化Zd」といい、そのインピーダンス変化Zdをさらに時間微分したものを「インピーダンス2回微分Zdd」という。つまり、インピーダンス2回微分Zddは、セルインピーダンスZの変化傾向の変化を示すものである。 Also, hereinafter, the impedance of the cell battery B with respect to alternating current is referred to as "cell impedance Z". The cell impedance Z depends on the resistance, capacitance component, inductor component, etc. existing inside the cell battery B. FIG. A time-differentiated value of the cell impedance Z is called an "impedance change Zd", and a time-differentiated value of the impedance change Zd is called an "impedance twice differentiated Zdd". In other words, the impedance second derivative Zdd indicates a change in the tendency of the cell impedance Z to change.
 電池監視装置96は、電流センサ10と電圧センサ20とBMU30とを有する。なお、BMUは、「Battery Management Unit」の略である。電流センサ10は、電池パック93に対する配線の電流を計測することにより、電池電流Iを計測する。電圧センサ20は、電池パック93の両端子と、電池パック93内において直列に隣り合う各2つのセル電池Bどうしの間とに接続されている。つまり、電圧センサ20は、各セル電池Bの両端子に接続されている。電圧センサ20は、マルチプレクサ等を有しており、各セル電池Bの電圧を計測可能に構成されている。 The battery monitoring device 96 has a current sensor 10, a voltage sensor 20 and a BMU 30. BMU is an abbreviation for "Battery Management Unit". The current sensor 10 measures the battery current I by measuring the current in the wiring to the battery pack 93 . The voltage sensor 20 is connected between both terminals of the battery pack 93 and between each two cell batteries B adjacent in series in the battery pack 93 . That is, the voltage sensor 20 is connected to both terminals of each cell battery B. As shown in FIG. The voltage sensor 20 has a multiplexer and the like, and is configured to be able to measure the voltage of each cell battery B. FIG.
 BMU30は、CPU、ROM、RAM等を有するECU(電子制御ユニット)であって、電流センサ10により計測された電池電流Iと、電圧センサ20により計測されたセル電圧Vとに基づいて、電池パック93を監視する。 The BMU 30 is an ECU (electronic control unit) having a CPU, a ROM, a RAM, etc. Based on the battery current I measured by the current sensor 10 and the cell voltage V measured by the voltage sensor 20, the battery pack Monitor 93.
 次に、図3、図4を参照しつつ、本実施形態で解決すべき課題とその解決手段の概要とについて説明する。
図3(a)は、セル蓄電量Q(横軸)とセル電圧V(縦軸)との関係を示すグラフである。前述の通り、各セル電池Bは、LFPバッテリーである。その特性上、各セル電池Bには、セル蓄電量Q(横軸)の変化に対するセル電圧V(縦軸)の変化が所定基準よりも小さいプラトー領域が存在する。以下では、セル蓄電量Qがプラトー領域内である時を「プラトー領域時」といい、セル蓄電量Qがプラトー領域外である時を「非プラトー領域時」という。プラトー領域時には、セル電圧V(縦軸)に基づいてセル蓄電量Q(横軸)を演算することが難しい。よって、当然、それらのセル蓄電量Qに基づいて、パック蓄電量ΣQを演算することも難しい。
Next, with reference to FIGS. 3 and 4, the problem to be solved by this embodiment and the outline of the means for solving the problem will be described.
FIG. 3(a) is a graph showing the relationship between the cell charge amount Q (horizontal axis) and the cell voltage V (vertical axis). As described above, each cell battery B is an LFP battery. Due to its characteristics, each cell battery B has a plateau region where the change in the cell voltage V (vertical axis) with respect to the change in the cell storage amount Q (horizontal axis) is smaller than a predetermined reference. Hereinafter, the time when the cell charge amount Q is within the plateau region is referred to as the "plateau time", and the time when the cell charge amount Q is outside the plateau range is referred to as the "non-plateau time". During the plateau region, it is difficult to calculate the cell charge amount Q (horizontal axis) based on the cell voltage V (vertical axis). Therefore, naturally, it is also difficult to calculate the pack charge amount ΣQ based on these cell charge amounts Q.
 そこで、本実施形態では、プラトー領域時には、セルインピーダンスZに基づいてセル蓄電量Qを演算して、それらのセル蓄電量Qに基づいてパック蓄電量ΣQを演算する。そのメカニズムについて以下に説明する。以下では、セル電池Bでの発熱を「セル発熱」といい、セル電池Bの温度を「セル温度T」といい、セル電圧Vをセル温度Tで微分したものを「発熱係数dV/dT」という。 Therefore, in the present embodiment, in the plateau region, the cell storage amount Q is calculated based on the cell impedance Z, and the pack storage amount ΣQ is calculated based on the cell storage amount Q. The mechanism will be explained below. Hereinafter, the heat generated in the cell battery B will be referred to as "cell heat generation", the temperature of the cell battery B will be referred to as "cell temperature T", and the differentiation of the cell voltage V with respect to the cell temperature T will be referred to as "heat generation coefficient dV/dT". It says.
 セル発熱は、電池電流Iにより発生するジュール発熱と、次に示す反応熱との和になる。その反応熱は、セル温度Tと電池電流Iと発熱係数dV/dTとの積(T×I×dV/dT)である。そのことから、発熱係数dV/dTが大きいほど、セル発熱が大きくなる。 The cell heat generation is the sum of the Joule heat generated by the battery current I and the reaction heat shown below. The reaction heat is the product (T×I×dV/dT) of the cell temperature T, the battery current I, and the heat generation coefficient dV/dT. Therefore, the greater the heat generation coefficient dV/dT, the greater the cell heat generation.
 図3(b)は、セル蓄電量Q(横軸)と発熱係数dV/dT(縦軸)との関係を示すグラフである。セル蓄電量Qが所定の高発熱区間(QL~QU)内の時に、発熱係数dV/dTが大きくなり、セル発熱が大きくなる。以下では、その高発熱区間(QL~QU)の下限となる蓄電量を「区間下限量QL」といい、高発熱区間(QL~QU)の上限となる蓄電量を「区間上限量QU」という。 FIG. 3(b) is a graph showing the relationship between the cell charge amount Q (horizontal axis) and the heat generation coefficient dV/dT (vertical axis). When the cell charge amount Q is within a predetermined high heat generation section (QL to QU), the heat generation coefficient dV/dT increases and the cell heat generation increases. Hereinafter, the storage amount that is the lower limit of the high heat generation section (QL to QU) will be referred to as "section lower limit amount QL", and the storage amount that will be the upper limit of the high heat generation section (QL to QU) will be referred to as "section upper limit amount QU". .
 そして、LFPバッテリーであるセル電池Bでは、セル温度Tが高いほどセルインピーダンスZが小さくなる。そのため、セル蓄電量Qが高発熱区間(QL~QU)内の時は、セル発熱が大きくなりセル温度Tの上昇が大きくなることなり、セルインピーダンスZの減少が大きくなる。 Then, in the cell battery B, which is an LFP battery, the higher the cell temperature T, the smaller the cell impedance Z. Therefore, when the cell charge amount Q is within the high heat generation section (QL to QU), the cell heat generation increases, the cell temperature T increases, and the cell impedance Z decreases significantly.
 図4(a)は、電池パック93の充電時におけるセルインピーダンスZの推移を示すグラフであり、図4(b)は、充電時におけるセル蓄電量Qの推移を示すグラフである。図4(b)に示すように、セル電池Bが略空の状態から充電を開始した場合、セル蓄電量Qが区間下限量QLに達するまでの間は、セル蓄電量Qが高発熱区間(QL~QU)外であるので、セル発熱は小さくセル温度Tの上昇は緩やかである。そのため、図4(a)に示すセルインピーダンスZの減少は緩やかである。 FIG. 4(a) is a graph showing changes in cell impedance Z during charging of the battery pack 93, and FIG. 4(b) is a graph showing changes in cell storage amount Q during charging. As shown in FIG. 4(b), when charging is started from a state in which the cell battery B is substantially empty, the cell storage amount Q remains in the high heat generation section ( QL to QU), the cell heat generation is small and the cell temperature T rises slowly. Therefore, the decrease in the cell impedance Z shown in FIG. 4(a) is moderate.
 その後、図4(b)に示すように、セル蓄電量Qが区間下限量QLに達すると、セル蓄電量Qが高発熱区間(QL~QU)に入ることにより、図3(b)に示す発熱係数dV/dTが急増してセル発熱が急増する。それにより、セル温度Tの上昇が急激に促進されて、図4(a)に示すセルインピーダンスZの減少が急激に促進される。以下では、このようにセルインピーダンスZの減少が急激に促進されるタイミングを「促進タイミングtP」という。その促進タイミングtPでのセル蓄電量Qを、図4(b)に示す区間下限量QLに特定できる。 After that, as shown in FIG. 4(b), when the cell power storage amount Q reaches the section lower limit amount QL, the cell power storage amount Q enters the high heat generation section (QL to QU), and as shown in FIG. 3(b) The heat generation coefficient dV/dT increases rapidly, and the cell heat generation increases rapidly. As a result, the increase in cell temperature T is rapidly accelerated, and the decrease in cell impedance Z shown in FIG. 4(a) is rapidly accelerated. Hereinafter, the timing at which the decrease in cell impedance Z is rapidly accelerated is referred to as "acceleration timing tP". The cell charge amount Q at the acceleration timing tP can be identified as the interval lower limit amount QL shown in FIG. 4(b).
 その後、図4(b)に示すように、充電によりセル蓄電量Qが区間上限量QUに達すると、セル蓄電量Qが高発熱区間(QL~QU)から脱することにより、図3(b)に示す発熱係数dV/dTが急減する。それにより、セル発熱が急減して、セル温度Tの上昇が急激に抑制されることにより、図4(a)に示すセルインピーダンスZの減少が急激に抑制される。以下では、このようにセルインピーダンスZの減少が急激に抑制されるタイミングを「抑制タイミングtS」という。その抑制タイミングtSでのセル蓄電量Qを、図4(b)に示す区間上限量QUに特定できる。 After that, as shown in FIG. 4(b), when the cell storage amount Q reaches the section upper limit amount QU due to charging, the cell storage amount Q escapes from the high heat generation section (QL to QU), ) rapidly decreases. As a result, the cell heat generation is rapidly reduced, and the increase in the cell temperature T is rapidly suppressed, thereby rapidly suppressing the decrease in the cell impedance Z shown in FIG. 4(a). Hereinafter, the timing at which the decrease in cell impedance Z is suddenly suppressed is referred to as "suppression timing tS". The cell charge amount Q at the suppression timing tS can be identified as the interval upper limit amount QU shown in FIG. 4(b).
 そのため、セル蓄電量Qを例えば電流積算値∫Idt等に基づいて演算する場合、セル蓄電量Qの誤差を、セル蓄電量Qが区間下限量QLに達したタイミングと、区間上限量QUに達したタイミングとでリセットすることができる。つまり、プラトー領域時等においても、セル蓄電量Qを演算することができる。それらのセル蓄電量Qに基づいて、パック蓄電量ΣQを演算することができる。 Therefore, when the cell storage amount Q is calculated based on, for example, the integrated current value ∫Idt, the error in the cell storage amount Q can be calculated from the timing when the cell storage amount Q reaches the section lower limit amount QL and the section upper limit amount QU. can be reset at any time. That is, the cell charge amount Q can be calculated even in the plateau region or the like. Based on these cell storage amounts Q, the pack storage amount ΣQ can be calculated.
 次に、再び図1を参照しつつ、以上に示したセルインピーダンスZに基づくパック蓄電量ΣQの演算のための構成について説明する。当該構成として、電池監視装置96は、さらに交流印加回路40を有すると共に、BMU30内に、インピーダンス検出部31とベース蓄電量特定部32とセル蓄電量演算部33とパック蓄電量演算部34とを有する。そしてさらに、各セル電池Bが、負極に黒鉛を有すると共に、正極にオリビン構造を有する。なお、オリビン構造とは、六方密充填酸素骨格を持つ結晶構造である。 Next, referring to FIG. 1 again, the configuration for calculating the pack charge amount ΣQ based on the cell impedance Z described above will be described. As the configuration, the battery monitoring device 96 further includes an AC application circuit 40, and an impedance detection unit 31, a base charge amount specifying unit 32, a cell charge amount calculation unit 33, and a pack charge amount calculation unit 34 in the BMU 30. have. Further, each cell battery B has graphite in the negative electrode and an olivine structure in the positive electrode. The olivine structure is a crystal structure having a hexagonal close-packed oxygen skeleton.
 セル電池Bが負極に黒鉛を有するのは、セル蓄電量Qが高発熱区間(QL~QU)内の時に、発熱係数dV/dTが顕著に大きくなるからである。他方、正極にオリビン構造を有するのは、正極での発熱係数dV/dTの変化が抑制されるからである。つまり、負極での発熱係数dV/dTの変化に対して、正極での発熱係数dV/dTの変化がノイズとして重畳するのを抑制できるからである。 The reason why the cell battery B has graphite in the negative electrode is that the heat generation coefficient dV/dT becomes significantly large when the cell storage amount Q is within the high heat generation section (QL to QU). On the other hand, the reason why the positive electrode has an olivine structure is that the change in the heat generation coefficient dV/dT at the positive electrode is suppressed. In other words, it is possible to suppress superimposition of the change in the heat generation coefficient dV/dT at the positive electrode as noise on the change in the heat generation coefficient dV/dT at the negative electrode.
 交流印加回路40の一方の端子は、電池パック93の正極端子に接続され、交流印加回路40の他方の端子は、電池パック93の負極端子に接続されている。そして、交流印加回路40は、電池パック93のCC充電(定電流充電)中に電池パック93に対して交流電圧を印加する。 One terminal of the AC applying circuit 40 is connected to the positive terminal of the battery pack 93 and the other terminal of the AC applying circuit 40 is connected to the negative terminal of the battery pack 93 . The AC application circuit 40 applies an AC voltage to the battery pack 93 during CC charging (constant current charging) of the battery pack 93 .
 図2は、CC充電中における電池電流Iの波形を示すグラフである。CC充電中に電池パック93に対して交流電圧が印加されると、充電電流であるCC電流(定電流)に交流電流が重畳される。なお、このようにCC充電中に交流電圧を印加するのは、CC充電中なら充電電流が一定なので、充電電流の変化による交流ノイズが、交流電流に重畳する心配がないからである。 FIG. 2 is a graph showing the waveform of battery current I during CC charging. When an AC voltage is applied to the battery pack 93 during CC charging, the AC current is superimposed on the CC current (constant current) that is the charging current. The reason why the AC voltage is applied during the CC charging is that the charging current is constant during the CC charging, so that there is no concern that AC noise due to changes in the charging current will be superimposed on the AC current.
 図1に示すインピーダンス検出部31は、電池パック93のCC充電中において交流印加回路40により交流電圧が印加されているときの、各セル電圧V及び電池電流Iに基づいて、各セルインピーダンスZを演算する。具体的には、例えば、セル電圧Vにおける交流成分の実効値を、電池電流Iにおける交流成分の実効値で割った値(交流抵抗)を、セルインピーダンスZとして演算する。 The impedance detection unit 31 shown in FIG. 1 detects each cell impedance Z based on each cell voltage V and battery current I when AC voltage is applied by the AC application circuit 40 during CC charging of the battery pack 93. Calculate. Specifically, for example, a value (AC resistance) obtained by dividing the effective value of the AC component in the cell voltage V by the effective value of the AC component in the battery current I is calculated as the cell impedance Z.
 ベース蓄電量特定部32は、CC充電時において、セル蓄電量Qを演算する際のベースとなるベース蓄電量Qbを、促進タイミングtPで区間下限量QLに特定(更新)すると共に、抑制タイミングtSで区間上限量QUに特定(更新)する。それらの区間下限量QLや区間上限量QUは、予め実験やシミュレーション等により求めておくとよい。なお、本実施形態では、少なくとも区間上限量QUがプラトー領域に含まれている。 During CC charging, the base storage amount specifying unit 32 specifies (updates) the base storage amount Qb, which is the basis for calculating the cell storage amount Q, to the section lower limit amount QL at the promotion timing tP, and also specifies (updates) the interval lower limit amount QL at the suppression timing tS. to identify (update) the interval upper limit quantity QU. The interval lower limit amount QL and the interval upper limit amount QU are preferably obtained in advance by experiments, simulations, or the like. In this embodiment, at least the interval upper limit QU is included in the plateau region.
 具体的には、ベース蓄電量特定部32は、開始時及び終了時を除くCC充電中において、演算されているセルインピーダンスZの減少が所定基準以上急激に促進されるタイミングを、促進タイミングtPと特定する。より具体的には、開始時及び終了時を除くCC充電中において、インピーダンス2回微分Zddが、負の促進判定値ZddPを下回ったことを条件に、促進タイミングtPであると判定する。その促進タイミングtPで、前述の通り、ベース蓄電量Qbを区間下限量QLに更新する。 Specifically, the base charged amount specifying unit 32 designates the timing at which the decrease in the calculated cell impedance Z is rapidly accelerated by a predetermined reference or more during CC charging excluding the start and end times as the acceleration timing tP. Identify. More specifically, the acceleration timing tP is determined on condition that the impedance second derivative Zdd has fallen below the negative acceleration determination value ZddP during CC charging excluding the start and end times. At the acceleration timing tP, as described above, the base charge amount Qb is updated to the interval lower limit amount QL.
 また、ベース蓄電量特定部32は、充電開始時及び終了時を除くCC充電中において、演算されているセルインピーダンスZの減少が所定基準以上急激に抑制されるタイミングを、抑制タイミングtSと特定する。より具体的には、開始時及び終了時を除くCC充電中において、インピーダンス2回微分Zddが、正の抑制判定値ZddSを上回ったことを条件に、抑制タイミングtSであると判定する。その抑制タイミングtSで、前述の通り、ベース蓄電量Qbを区間上限量QUに更新する。 In addition, the base storage amount specifying unit 32 specifies the timing at which the decrease in the calculated cell impedance Z is rapidly suppressed by a predetermined reference or more during CC charging, excluding the start and end of charging, as the suppression timing tS. . More specifically, it is determined that it is the suppression timing tS on condition that the impedance second derivative Zdd exceeds the positive suppression determination value ZddS during CC charging except at the start and end. At the suppression timing tS, as described above, the base storage amount Qb is updated to the section upper limit amount QU.
 また、BMU30は、非プラトー領域時且つOCV(開回路電圧)を計測可能な状況下では、セル電圧Vに基づいてセル蓄電量Qが演算する。なお、このようなセル電圧Vに基づくセル蓄電量Qの演算手法自体については、公知のものでよいため、その詳細な説明は省略する。 In addition, the BMU 30 calculates the cell storage amount Q based on the cell voltage V in a non-plateau region and under conditions where the OCV (open circuit voltage) can be measured. Note that the method itself for calculating the cell charge amount Q based on such cell voltage V may be a known method, and therefore detailed description thereof will be omitted.
 そして、このように、セル電圧Vに基づいてセル蓄電量Qが演算された際には、ベース蓄電量特定部32は、ベース蓄電量Qbを、当該演算されたセル蓄電量Qに更新する。以下では、このようにセル電圧Vが計測されるタイミングを「電圧計測タイミングtV」といい、そのセル電圧Vに基づいて演算されるセル蓄電量Qを「セル電圧Vに基づく蓄電量Qv」という。よって、ベース蓄電量特定部32は、電圧計測タイミングtVで、ベース蓄電量Qbを、セル電圧Vに基づく蓄電量Qvに更新する。 Then, when the cell power storage amount Q is calculated based on the cell voltage V in this way, the base power storage amount specifying unit 32 updates the base power storage amount Qb to the calculated cell power storage amount Q. Hereinafter, the timing at which the cell voltage V is measured in this way will be referred to as "voltage measurement timing tV", and the cell storage amount Q calculated based on the cell voltage V will be referred to as "the storage amount Qv based on the cell voltage V". . Therefore, the base storage amount specifying unit 32 updates the base storage amount Qb to the storage amount Qv based on the cell voltage V at the voltage measurement timing tV.
 セル蓄電量演算部33は、ベース蓄電量Qbと電流積算値∫Idtとの和(Qb+∫Idt)を、現在のセル蓄電量Qとして演算する。ここで、セル蓄電量演算部33は、ベース蓄電量Qbが更新されれば、電流積算値∫Idtをゼロにリセットする。そのため、セル蓄電量演算部33は、ベース蓄電量Qbに、ベース蓄電量Qbを更新したタイミング以降における電流積算値∫Idtを足し合わせることにより、現在のセル蓄電量Qを演算することになる。 The cell storage amount calculation unit 33 calculates the sum (Qb+∫Idt) of the base storage amount Qb and the current integrated value ∫Idt as the current cell storage amount Q. Here, the cell storage amount calculator 33 resets the integrated current value ∫Idt to zero when the base storage amount Qb is updated. Therefore, the cell storage amount calculator 33 calculates the current cell storage amount Q by adding the current integrated value ∫Idt after the timing at which the base storage amount Qb is updated to the base storage amount Qb.
 具体的には、セル蓄電量演算部33は、CC充電時における促進タイミングtP以降においては、区間下限量QLに、促進タイミングtP以降における電流積算値∫Idtを足し合わせることにより、現在のセル蓄電量Qを演算する。そして、CC充電時における抑制タイミングtS以降においては、区間上限量QUに、抑制タイミングtS以降における電流積算値∫Idtを足し合わせることにより、現在のセル蓄電量Qを演算する。そして、電圧計測タイミングtV以降においては、セル電圧Vに基づく蓄電量Qvに、電圧計測タイミングtV以降における電流積算値∫Idtを足し合わせることにより、現在のセル蓄電量Qを演算する。 Specifically, after the acceleration timing tP during CC charging, the cell storage amount calculation unit 33 adds the current integrated value ∫Idt after the acceleration timing tP to the interval lower limit amount QL, thereby Compute the quantity Q. Then, after the suppression timing tS during CC charging, the current cell storage amount Q is calculated by adding the current integrated value ∫Idt after the suppression timing tS to the section upper limit amount QU. After the voltage measurement timing tV, the current cell storage amount Q is calculated by adding the current integrated value ∫Idt after the voltage measurement timing tV to the storage amount Qv based on the cell voltage V.
 パック蓄電量演算部34は、それらの演算されたセル蓄電量Qの最小値である最小セル蓄電量Qminを、パック蓄電量ΣQとして演算する。 The pack power storage amount calculation unit 34 calculates the minimum cell power storage amount Qmin, which is the minimum value of the calculated cell power storage amounts Q, as the pack power storage amount ΣQ.
 次に、以上により演算されたパック蓄電量ΣQの活用について説明する。その活用のための構成として、BMU30は、さらに残充電時間演算部36と電欠判定部37と電池故障判定部38とを有し、電動車両90は、さらに航続可能距離演算部97を有する。 Next, utilization of the pack power storage amount ΣQ calculated as described above will be described. BMU 30 further has a remaining charge time calculation unit 36 , a power failure determination unit 37 , and a battery failure determination unit 38 , and electric vehicle 90 further has a cruising range calculation unit 97 as a configuration for utilization thereof.
 残充電時間演算部36は、演算されたパック蓄電量ΣQを用いて、パック蓄電量ΣQがパック蓄電容量ΣQfになるまで電池パック93を充電するのに必要な時間である残充電時間を演算する。よって、パック蓄電容量ΣQfとパック蓄電量ΣQとの差(ΣQf-ΣQ)が大きいほど、残充電時間を大きく見積もる。 Using the calculated pack storage amount ΣQ, the remaining charge time calculation unit 36 calculates the remaining charge time, which is the time required to charge the battery pack 93 until the pack storage amount ΣQ reaches the pack storage capacity ΣQf. . Therefore, the larger the difference (ΣQf−ΣQ) between the pack power storage capacity ΣQf and the pack power storage amount ΣQ, the larger the remaining charging time is estimated.
 電欠判定部37は、演算されたパック蓄電量ΣQを用いて、電力が不足するか否かを判定する。具体的には、例えばパック蓄電量ΣQが所定値よりも小さいことを条件に、電力が不足すると判定する。 The electricity shortage determination unit 37 determines whether or not there is a shortage of electric power using the calculated pack power storage amount ΣQ. Specifically, it is determined that the electric power is insufficient, for example, on the condition that the pack charged amount ΣQ is smaller than a predetermined value.
 電池故障判定部38は、演算されたパック蓄電量ΣQを用いて、電池パック93が故障しているか否かを判定する。具体的には、例えばパック蓄電量ΣQが所定の下限閾値よりも小さいことを条件に、過放電故障と判定し、パック蓄電量ΣQが所定の上限閾値よりも大きいことを条件に、過充電故障と判定する。 The battery failure determination unit 38 determines whether or not the battery pack 93 has failed using the calculated pack charge amount ΣQ. Specifically, for example, on the condition that the pack charged amount ΣQ is smaller than a predetermined lower limit threshold, an overdischarge failure is determined, and on the condition that the pack charged amount ΣQ is larger than a predetermined upper threshold, an overcharge failure is determined. I judge.
 航続可能距離演算部97は、演算されたパック蓄電量ΣQを用いて、電動車両90が走行可能な距離としての航続可能距離を演算する。よって、パック蓄電量ΣQが大きいほど、航続可能距離を大きく見積もる。具体的には、航続可能距離は、パック蓄電量ΣQとその時々の消費電力とから演算してもよいし、電費を既定の値として演算してもよい。 The cruising range calculation unit 97 calculates the cruising range as the distance that the electric vehicle 90 can travel, using the calculated pack power storage amount ΣQ. Therefore, the larger the pack power storage amount ΣQ, the larger the estimated cruising range. Specifically, the cruising range may be calculated from the pack power storage amount ΣQ and the power consumption at that time, or may be calculated using the power consumption as a predetermined value.
 図5は、電池監視装置96による制御を示すフローチャートである。このフローは、例えば所定周期毎に繰り返し実施される。 FIG. 5 is a flowchart showing control by the battery monitoring device 96. FIG. This flow is repeated, for example, at predetermined intervals.
 まず、S101において、非プラトー領域時であり且つOCVを計測可能か否か判定する。非プラトー領域時であるか否かは、例えばセル電圧Vやセル蓄電量Q(演算値)が所定範囲内であるか否かに基づいて判定してもよいし、直近のセル蓄電量Q(演算値)の時間変化に対するセル電圧Vの時間変化が所定値よりも小さいか否かに基づいて判定してもよい。OCVを計測可能か否かは、例えば、充電終了時や放電終了時から所定時間以上経過したか否かに基づいて判定することができる。 First, in S101, it is determined whether or not it is in the non-plateau region and the OCV can be measured. Whether or not it is in the non-plateau region may be determined, for example, based on whether the cell voltage V or the cell storage amount Q (calculated value) is within a predetermined range, or the most recent cell storage amount Q ( The determination may be made based on whether the time change of the cell voltage V with respect to the time change of the calculated value) is smaller than a predetermined value. Whether or not the OCV can be measured can be determined, for example, based on whether or not a predetermined time or more has elapsed since the end of charging or the end of discharging.
 S101でプラトー領域時であると判定した場合やOCVを計測不能と判定した場合(S101:NO)、S102に進み、CC充電中であるか否か判定する。CC充電中であるか否かは、例えば、残充電時間が所定値以上であるか否かに基づいて判定することができる。S102で、CC充電中であると判定した場合(S102:YES)、S201に進む。そのS201から、後述するS403までのフローはセル電池B毎に実施する。 If it is determined in S101 that the vehicle is in the plateau region or that the OCV cannot be measured (S101: NO), proceed to S102 to determine whether CC charging is in progress. Whether or not CC charging is being performed can be determined, for example, based on whether or not the remaining charging time is equal to or longer than a predetermined value. When it is determined in S102 that CC charging is in progress (S102: YES), the process proceeds to S201. The flow from S201 to S403 described later is performed for each cell battery B.
 S201では、インピーダンス検出部31により、セルインピーダンスZを検出する。次くS202では、ベース蓄電量特定部32により、セルインピーダンスZの減少が所定基準以上、急激に促進されているか否か判定する。急激に促進されていると判定した場合(S202:YES)、S203に進み、ベース蓄電量Qbを区間下限量QLに更新してから、S401に進む。 In S201, the cell impedance Z is detected by the impedance detection unit 31. Next, in S202, the base charged amount specifying unit 32 determines whether or not the decrease in the cell impedance Z is rapidly accelerated beyond a predetermined standard. If it is determined that the acceleration is rapidly accelerated (S202: YES), the process proceeds to S203, updates the base charge amount Qb to the interval lower limit amount QL, and then proceeds to S401.
 他方、遡るS203において、セルインピーダンスZの減少が所定基準以上、急激に促進されていると判定しない場合(S202:NO)、S204に進む。そのS204では、同じくベース蓄電量特定部32により、セルインピーダンスZの減少が所定基準以上、急激に抑制されているか否か判定する。急激に抑制されていると判定した場合(S204:YES)、S205に進み、ベース蓄電量Qbを区間上限量QUに更新してからS401に進む。 On the other hand, in retroactive S203, if it is not determined that the decrease in cell impedance Z has rapidly accelerated beyond the predetermined standard (S202: NO), proceed to S204. In S204, similarly, the base charged amount specifying unit 32 determines whether or not the decrease in the cell impedance Z is rapidly suppressed by a predetermined standard or more. If it is determined that it is rapidly suppressed (S204: YES), the process proceeds to S205, updates the base charged amount Qb to the section upper limit amount QU, and then proceeds to S401.
 他方、S204において、セルインピーダンスZの減少が所定基準以上、急激に抑制されていると判定しない場合(S204:NO)、S402に進み、セル蓄電量演算部33により、電流積算値∫Idtを更新する。具体的には、前回のフローでのS401から今回のフローでのS401までの間での電池電流Iの時間積分値だけ、前回の電流積算値∫Idtに加えることにより、今回の電流積算値∫Idtを更新する。そして、S403に進む。 On the other hand, if it is not determined in S204 that the decrease in cell impedance Z has been suppressed abruptly by the predetermined criterion or more (S204: NO), the process proceeds to S402, and the cell storage amount calculation unit 33 updates the integrated current value ∫Idt. do. Specifically, by adding the time integrated value of the battery current I from S401 in the previous flow to S401 in the current flow to the previous integrated current value ∫Idt, the current integrated value ∫ Update Idt. Then, the process proceeds to S403.
 他方、遡るS101において、非プラトー領域時であり且つOCVを計測可能と判定した場合、S301に進む。そのS301から、後述するS403までのフローはセル電池B毎に実施する。S301では、電圧センサ20により、セル電圧Vを計測する。続くS302では、BMU30により、セル電圧Vに基づく蓄電量Qvを演算する。続くS303では、ベース蓄電量特定部32により、ベース蓄電量Qbをセル電圧Vに基づく蓄電量Qvに更新して、S401に進む。 On the other hand, in retroactive S101, if it is determined that it is in the non-plateau region and the OCV can be measured, the process proceeds to S301. The flow from S301 to S403 described later is performed for each cell battery B. In S<b>301 , the cell voltage V is measured by the voltage sensor 20 . In subsequent S302, the BMU 30 calculates the amount of stored electricity Qv based on the cell voltage V. FIG. In subsequent S303, the base charged amount specifying unit 32 updates the base charged amount Qb to the charged amount Qv based on the cell voltage V, and the process proceeds to S401.
 S401では、セル蓄電量演算部33により、電流積算値∫Idtをゼロにリセットしてから、S403に進む。そのS403では、セル蓄電量演算部33により、ベース蓄電量Qbに電流積算値∫Idtを足し合わせたもの(Qb+∫Idt)を、セル蓄電量Qとして演算する。 In S401, the cell power storage amount calculator 33 resets the integrated current value ∫Idt to zero, and then proceeds to S403. In S403, the cell storage amount calculator 33 calculates the sum of the base storage amount Qb and the integrated current value ∫Idt (Qb+∫Idt) as the cell storage amount Q.
 続くS404では、パック蓄電量演算部34により、S403で演算されたセル蓄電量Qの最小値である最小セル蓄電量Qminを、パック蓄電量ΣQとして演算してから、S501,S502,S503,S504に進む。 In subsequent S404, the pack power storage amount calculation unit 34 calculates the minimum cell power storage amount Qmin, which is the minimum value of the cell power storage amounts Q calculated in S403, as the pack power storage amount ΣQ. proceed to
 S501では、残充電時間演算部36が残充電時間を演算する。S502では、電欠判定部37が電力が不足するか否か判定する。S503では、電池故障判定部38が電池故障か否か判定する。S504では、航続可能距離演算部97が航続可能距離を演算する。これらS501~S504が終了するとフローが終了する。 In S501, the remaining charging time calculation unit 36 calculates the remaining charging time. In S502, the power failure determination unit 37 determines whether or not the power is insufficient. In S503, the battery failure determination unit 38 determines whether or not there is a battery failure. In S504, the cruising distance calculation unit 97 calculates the cruising distance. The flow ends when these S501 to S504 are completed.
 図6は、CC充電時及びその前後における各値の推移をタイムチャートである。ここでは、図6(a)に示すように、所定の第1タイミングt1から第2タイミングt2までの間に、電池パック93がCC充電された場合を示している。このCC充電は、セル蓄電量Qが区間下限量QL以上かつ区間上限量QU以下、つまりセル蓄電量Qが高発熱区間(QL~QU)の状態から、区間上限量QUよりも大きくなるまで、実施されたものとする。 FIG. 6 is a time chart showing changes in values before and after CC charging. Here, as shown in FIG. 6A, a case is shown in which the battery pack 93 is CC-charged between a predetermined first timing t1 and a second timing t2. This CC charging is performed until the cell storage amount Q is greater than or equal to the section lower limit amount QL and less than or equal to the section upper limit amount QU, that is, from the state of the high heat generation section (QL to QU) to the cell storage amount Q becoming larger than the section upper limit amount QU. shall be implemented.
 このとき、図6(b)に示すように、CC充電が開始される第1タイミングt1からしばらくの間は、セル蓄電量Qが高発熱区間(QL~QU)内にあって発熱係数dV/dTが大きいことから、セルインピーダンスZが顕著に減少する。 At this time, as shown in FIG. 6B, for a while from the first timing t1 when CC charging is started, the cell charge amount Q is within the high heat generation section (QL to QU) and the heat generation coefficient dV/ Due to the large dT, the cell impedance Z is significantly reduced.
 その後、所定のタイミング(tS(B))でセル蓄電量Qが区間上限量QUに達すると、セル蓄電量Qが高発熱区間(QL~QU)から脱することにより、発熱係数dV/dTが急減して、図6(b)に示すように、セルインピーダンスZの減少が急激に抑制される。このとき、図6(c)に示すように、インピーダンス2回微分Zddが、一瞬急激に大きくなり、正の抑制判定値ZddSを上回る。それにより、抑制タイミングtS(B)と判定されて、ベース蓄電量Qbが区間上限量QUに更新されると共に、図6(d)に示すように、電流積算値∫Idtがリセットされる。 After that, when the cell charge amount Q reaches the section upper limit amount QU at a predetermined timing (tS(B)), the cell charge amount Q exits the high heat generation section (QL to QU), and the heat generation coefficient dV/dT changes. Then, as shown in FIG. 6(b), the decrease in cell impedance Z is rapidly suppressed. At this time, as shown in FIG. 6(c), the impedance second derivative Zdd suddenly increases for a moment and exceeds the positive suppression determination value ZddS. As a result, it is determined that it is the suppression timing tS(B), the base storage amount Qb is updated to the interval upper limit amount QU, and the integrated current value ∫Idt is reset as shown in FIG. 6(d).
 その抑制タイミングtS(B)での更新及びリセットにより、最小セル蓄電量Qmin(演算値)が変化した場合、それに伴いパック蓄電量ΣQ=Qmin(演算値)も、図6(e)に示すように変化する。その後、別のセル電池Bのセル蓄電量Qが区間上限量QUに達すると、そのセル電池Bのベース蓄電量Qbが区間上限量QUに更新されると共に、電流積算値∫Idtがリセットされる。そして、このタイミングでも、最小セル蓄電量Qmin(演算値)が変化した場合には、同様にパック蓄電量ΣQ=Qmin(演算値)が変化する。以上により、いずれかのセル蓄電量Qが区間上限量QUに達して、ベース蓄電量Qbの更新及び電流積算値∫Idtのリセットがされる度に、パック蓄電量ΣQの演算値が真値(Qmin)に近づいていく。 When the minimum cell charge amount Qmin (calculated value) changes due to the update and reset at the suppression timing tS(B), the pack charge amount ΣQ=Qmin (calculated value) also changes as shown in FIG. 6(e). change to After that, when the cell storage amount Q of another cell battery B reaches the section upper limit QU, the base storage amount Qb of that cell battery B is updated to the section upper limit QU, and the integrated current value ∫Idt is reset. . Also at this timing, when the minimum cell charged amount Qmin (calculated value) changes, the pack charged amount ΣQ=Qmin (calculated value) similarly changes. As described above, each time any cell storage amount Q reaches the section upper limit QU and the base storage amount Qb is updated and the current integrated value ∫Idt is reset, the calculated value of the pack storage amount ΣQ becomes the true value ( Qmin).
 図7は、CC充電時、その後の電動車両90の走行時、及びその後の電動車両90の起動時、並びにそれらの前後における各値の推移をタイムチャートである。第7(a)に示すように、前述の通り第1タイミングt1から第2タイミングt2までの間にCC充電が行われたものとする。そして、第2タイミングt2からその後の第3タイミングt3までの間に、電動車両90が走行し、第3タイミングt3からその後の第4タイミングt4まで、電動車両90が停車したものとする。そして、第4タイミングt4からその後の第5タイミングt5までの間に、電動車両90が起動し、第5タイミングt5からその後の第6タイミングt6までの間に、電動車両90が再び走行したものとする。 FIG. 7 is a time chart showing transition of each value during CC charging, subsequent running of the electric vehicle 90, subsequent activation of the electric vehicle 90, and before and after these times. As shown in 7th (a), it is assumed that CC charging is performed between the first timing t1 and the second timing t2 as described above. Then, it is assumed that the electric vehicle 90 travels from the second timing t2 to the subsequent third timing t3, and the electric vehicle 90 stops from the third timing t3 to the subsequent fourth timing t4. Then, it is assumed that the electric vehicle 90 starts up between the fourth timing t4 and the subsequent fifth timing t5, and the electric vehicle 90 runs again between the fifth timing t5 and the subsequent sixth timing t6. do.
 この図7(a)に示すように、走行中(t2~t3)には、放電方向(グラフでは負の方向)に電池電流Iが流れる。その放電により、図7(d)の第2タイミングt2から第3タイミングt3に示すように、セル蓄電量Qが減少していく。その減少に伴い、セル蓄電量Qの演算値(実線)と真値(破線)との乖離も徐々に大きくなっていく。 As shown in FIG. 7(a), the battery current I flows in the discharge direction (negative direction in the graph) while the vehicle is running (t2 to t3). Due to the discharge, the cell storage amount Q decreases as shown from the second timing t2 to the third timing t3 in FIG. 7(d). Along with the decrease, the divergence between the calculated value (solid line) and the true value (broken line) of the cell storage amount Q gradually increases.
 図7(c)に示すように、走行を終了した第3タイミングt3よりも後においても、しばらくの間は、セル電圧Vの信頼性が低い。セル電池Bには、電力使用(放電)により分極が発生するが、その分極は、走行終了時である第3タイミングt3からしばらく経過しないと収まらないからである。ここでは、この図7(c)に示すように、電動車両90が起動を開始する第4タイミングt4までに、分極が収まってセル電圧Vの信頼性が回復したものとする。 As shown in FIG. 7(c), the reliability of the cell voltage V is low for a while even after the third timing t3 when the vehicle ends running. This is because polarization occurs in the cell battery B due to the use (discharge) of electric power, but the polarization does not subside until some time has passed from the third timing t3 at which the vehicle ends running. Here, as shown in FIG. 7(c), it is assumed that the polarization subsides and the reliability of the cell voltage V recovers by the fourth timing t4 at which the electric vehicle 90 starts to start.
 この場合、起動時である第4タイミングt4に、BMU30が、OCVであるセル電圧Vに基づく蓄電量Qvを演算する。そして、ベース蓄電量特定部32が、ベース蓄電量Qbをセル電圧Vに基づく蓄電量Qvに更新する。そして、セル蓄電量演算部33が、電流積算値∫Idtをゼロにリセットする。 In this case, the BMU 30 calculates the storage amount Qv based on the cell voltage V, which is the OCV, at the fourth timing t4 at startup. Then, the base storage amount specifying unit 32 updates the base storage amount Qb to the storage amount Qv based on the cell voltage V. FIG. Then, the cell storage amount calculator 33 resets the integrated current value ∫Idt to zero.
 その第4タイミングt4でのベース蓄電量Qbの更新及び電流積算値∫Idtのリセットにより、最小セル蓄電量Qmin(演算値)が変化した場合、それに伴いパック蓄電量ΣQ=Qmin(演算値)も、図7(e)に示すように変化する。これにより、パック蓄電量ΣQの演算値が真値に近づく。 When the minimum cell storage amount Qmin (calculated value) changes due to the update of the base storage amount Qb and the reset of the current integrated value ∫Idt at the fourth timing t4, the pack storage amount ΣQ=Qmin (calculated value) is also changed accordingly. , changes as shown in FIG. As a result, the calculated value of the pack charged amount ΣQ approaches the true value.
 以下に本実施形態の効果をまとめる。 The effects of this embodiment are summarized below.
 電池パック93の充電時には、その時々のセル蓄電量Qに応じてセルインピーダンスZの変化傾向が変化する。そこで、インピーダンス検出部31は、電池パック93の充電時にセルインピーダンスZを検出する。セル蓄電量演算部33は、そのセルインピーダンスZの変化傾向の変化であるインピーダンス2回微分Zddに基づいて、セル蓄電量Qを演算する。パック蓄電量演算部34は、それらセル蓄電量Qに基づいて、パック蓄電量ΣQを演算する。そのため、プラトー領域時やOCVを計測できない時等、セル電圧Vに基づいてセル蓄電量Qを演算するのが難しい状況下においても、セルインピーダンスZに基づいてセル蓄電量Qを演算して、それらのセル蓄電量Qに基づいてパック蓄電量ΣQを演算することができる。 When the battery pack 93 is charged, the change tendency of the cell impedance Z changes according to the cell charge amount Q at that time. Therefore, the impedance detector 31 detects the cell impedance Z when the battery pack 93 is charged. The cell storage amount calculation unit 33 calculates the cell storage amount Q based on the second impedance differential Zdd, which is the change in the change tendency of the cell impedance Z. FIG. Based on the cell storage amounts Q, the pack storage amount calculation unit 34 calculates the pack storage amount ΣQ. Therefore, even in situations where it is difficult to calculate the cell storage amount Q based on the cell voltage V, such as when the plateau region or when the OCV cannot be measured, the cell storage amount Q can be calculated based on the cell impedance Z, The pack storage amount ΣQ can be calculated based on the cell storage amount Q of .
 また、セル蓄電量演算部33は、ベース蓄電量Qbと、ベース蓄電量Qbを特定したタイミング以降における電流積算値∫Idtとに基づいて、セル蓄電量Qを演算する。そのため、単にベース蓄電量Qbと、ベース蓄電量Qbを特定したタイミングからの経過時間とに基づいて、セル蓄電量Qを演算する場合に比べて、精度良くセル蓄電量Qを演算できる。そのため、精度よくパック蓄電量ΣQを演算できる。 In addition, the cell storage amount calculation unit 33 calculates the cell storage amount Q based on the base storage amount Qb and the integrated current value ∫Idt after the timing at which the base storage amount Qb is specified. Therefore, the cell storage amount Q can be calculated with higher accuracy than when the cell storage amount Q is calculated simply based on the base storage amount Qb and the elapsed time from the timing at which the base storage amount Qb is specified. Therefore, the pack charged amount ΣQ can be calculated with high accuracy.
 また、電池パック93に蓄えられている電荷は、最小セル蓄電量Qminが零付近の放電可能な下限蓄電量になるまでしか放電することができない。その点、パック蓄電量演算部34は、最小セル蓄電量Qminを、パック蓄電量ΣQとして演算する。そのため、電池パック93が放電可能な電荷(Ah)を、パック蓄電量ΣQとして演算することができる。 Also, the charge stored in the battery pack 93 can be discharged only until the minimum cell storage amount Qmin reaches the dischargeable lower limit storage amount near zero. In this regard, the pack power storage amount calculator 34 calculates the minimum cell power storage amount Qmin as the pack power storage amount ΣQ. Therefore, the charge (Ah) that can be discharged by the battery pack 93 can be calculated as the pack storage amount ΣQ.
 また、交流印加回路40は、電池パック93に交流電圧を印加する。そして、インピーダンス検出部31は、電池パック93に交流電圧が印加されているときのセル電池Bのインピーダンスを検出する。そのため、セル電池Bが有する交流抵抗を、セルインピーダンスZとして計測できる。 Also, the AC application circuit 40 applies AC voltage to the battery pack 93 . Then, the impedance detection unit 31 detects the impedance of the cell battery B when the AC voltage is applied to the battery pack 93 . Therefore, the AC resistance of the cell battery B can be measured as the cell impedance Z.
 さらに、交流印加回路40は、CC充電中に交流電圧を電池パック93に印加する。そのため、当該交流電圧による交流電流に、充電電流の変化による交流ノイズが重畳する心配がない。そのため、インピーダンス検出部31は、精度良くセルインピーダンスZを検出できる。そのため、精度良く促進タイミングtPや抑制タイミングtSを特定できる。そのため、この点でも精度良くセル蓄電量Qを演算して、精度良くパック蓄電量ΣQを演算できる。 Furthermore, the AC application circuit 40 applies AC voltage to the battery pack 93 during CC charging. Therefore, there is no concern that AC noise due to changes in the charging current will be superimposed on the AC current due to the AC voltage. Therefore, the impedance detector 31 can detect the cell impedance Z with high accuracy. Therefore, the acceleration timing tP and the suppression timing tS can be specified with high accuracy. Therefore, in this respect as well, the cell storage amount Q can be calculated with high accuracy, and the pack storage amount ΣQ can be calculated with high accuracy.
 また、セル蓄電量演算部33は、CC充電時におけるプラトー領域時等に、セルインピーダンスZに基づいてセル蓄電量Qを演算するだけでなく、非プラトー領域時且つOCVを計測可能な時にも、セル電圧Vに基づく蓄電量Qvを演算する。そのため、CC充電中のみならず、非プラトー領域時且つOCVを計測可能な時においても、パック蓄電量ΣQを演算できる。 In addition, the cell storage amount calculation unit 33 not only calculates the cell storage amount Q based on the cell impedance Z in the plateau region during CC charging, but also in the non-plateau region and when the OCV can be measured. A charged amount Qv based on the cell voltage V is calculated. Therefore, the pack charge amount ΣQ can be calculated not only during CC charging, but also in the non-plateau region and when the OCV can be measured.
 また、セル電池Bは、負極に黒鉛を有する。その黒鉛により、セル蓄電量Qが高発熱区間(QL~QU)内になった時の発熱係数dV/dTが顕著に大きくなる。そのため、セル蓄電量Qが高発熱区間(QL~QU)に入った時のセルインピーダンスZの減少の促進や、セル蓄電量Qが高発熱区間(QL~QU)から脱した時のセルインピーダンスZの減少の抑制が顕著になる。そのため、この点でも、精度良く促進タイミングtPや抑制タイミングtSを特定して、精度よくパック蓄電量ΣQを演算できる。 In addition, cell battery B has graphite in the negative electrode. The graphite remarkably increases the heat generation coefficient dV/dT when the cell charge amount Q is within the high heat generation section (QL to QU). Therefore, when the cell storage amount Q enters the high heat generation section (QL to QU), the decrease in the cell impedance Z is accelerated, and when the cell storage amount Q exits the high heat generation section (QL to QU), the cell impedance Z suppression of the decrease in Therefore, in this respect as well, the acceleration timing tP and the suppression timing tS can be specified with high accuracy, and the pack charged amount ΣQ can be calculated with high accuracy.
 しかも、セル電池Bは、正極にオリビン構造を有する。そのオリビン構造により、正極での発熱係数dV/dTの変化が抑制される。それにより、負極での発熱係数dV/dTの変化に対して、正極での発熱係数dV/dTの変化がノイズとして重畳するのを抑制できる。そのため、この点でも、精度良く促進タイミングtPや抑制タイミングtSを特定して、精度よくパック蓄電量ΣQを演算できる。 Moreover, cell battery B has an olivine structure in the positive electrode. The olivine structure suppresses the change in the heat generation coefficient dV/dT at the positive electrode. As a result, it is possible to suppress superimposition of the change in the heat generation coefficient dV/dT at the positive electrode as noise on the change in the heat generation coefficient dV/dT at the negative electrode. Therefore, in this respect as well, the acceleration timing tP and the suppression timing tS can be specified with high accuracy, and the pack charged amount ΣQ can be calculated with high accuracy.
 また、以上のようにして演算されたパック蓄電量ΣQを用いて、残充電時間演算部36が残充電時間を演算し、電欠判定部37が、電力が不足するか否か判定し、電池故障判定部38が、電池パック93が故障しているか否か判定し、航続可能距離演算部97が航続可能距離を演算する。そのため、プラトー領域時等であっても、問題なく、残充電時間の演算や、電欠判定や、電池パック93の故障判定や、航続可能距離の演算を実施できる。 Further, using the pack power storage amount ΣQ calculated as described above, the remaining charge time calculation unit 36 calculates the remaining charge time, and the power shortage determination unit 37 determines whether or not the power is insufficient. A failure determination unit 38 determines whether or not the battery pack 93 has failed, and a cruising distance calculation unit 97 calculates a cruising distance. Therefore, even in the plateau region or the like, it is possible to calculate the remaining charging time, determine the lack of electricity, determine the failure of the battery pack 93, and calculate the cruising range without any problem.
 [第2実施形態]
 次に第2実施形態について説明する。以下の実施形態においては、それ以前の実施形態のものと同一の又は対応する部材等について同一の符号を付する。本実施形態については、第1実施形態をベースにこれと異なる点を中心に説明し、第1実施形態と同一又は類似の部分については、適宜説明を省略する。
[Second embodiment]
Next, a second embodiment will be described. In the following embodiments, the same reference numerals are given to members that are the same as or correspond to those of the previous embodiments. The present embodiment will be described based on the first embodiment, focusing on the differences, and the description of the same or similar parts as those of the first embodiment will be omitted as appropriate.
 本実施形態では、CC充電時のみならず電力使用時(放電時)にも、セルインピーダンスZに基づいてセル蓄電量Qを演算して、それらのセル蓄電量Qに基づいてパック蓄電量ΣQを演算する。そのメカニズムについて以下に説明する。 In this embodiment, not only during CC charging but also during power use (discharging), the cell storage amount Q is calculated based on the cell impedance Z, and the pack storage amount ΣQ is calculated based on the cell storage amount Q. Calculate. The mechanism will be explained below.
 図8(a)は、電池パック93の電力使用時におけるセルインピーダンスZの推移を示すグラフであり、図8(b)は、電力使用時におけるセル蓄電量Qの推移を示すグラフである。図8(b)に示すように、セル電池Bが略満充電の状態から電力使用を開始した場合、セル蓄電量Qが区間上限量QUに減少するまでの間は、セル蓄電量Qが高発熱区間(QL~QU)外であるので、セル発熱は小さい。そのため、図8(a)に示すセルインピーダンスZの減少は緩やかである。 FIG. 8(a) is a graph showing changes in the cell impedance Z when the battery pack 93 is using power, and FIG. 8(b) is a graph showing changes in the cell storage amount Q when using power. As shown in FIG. 8(b), when the use of electric power is started from the state where the cell battery B is substantially fully charged, the cell storage amount Q remains high until the cell storage amount Q decreases to the section upper limit amount QU. Since it is outside the heat generation section (QL-QU), the cell heat generation is small. Therefore, the decrease in the cell impedance Z shown in FIG. 8(a) is moderate.
 その後、図8(b)に示すように、電力使用によりセル蓄電量Qが区間上限量QUにまで減少すると、セル蓄電量Qが高発熱区間(QL~QU)に入ることにより、発熱係数dV/dTが急増してセル発熱が急増する。それにより、セル温度Tの上昇が急激に促進されて、図8(a)に示すセルインピーダンスZの減少が急激に促進される。その促進タイミングtPでのセル蓄電量Qを、図8(b)に示す区間上限量QUと特定できる。よって、前述の充電時には、促進タイミングtPでのセル蓄電量Qを、区間下限量QLと特定できるのに対して、電力使用時には、促進タイミングtPでのセル蓄電量Qを、区間上限量QUと特定できる点で相違している。 After that, as shown in FIG. 8(b), when the cell storage amount Q decreases to the section upper limit amount QU due to the use of electric power, the cell storage amount Q enters the high heat generation section (QL to QU), and the heat generation coefficient dV /dT increases rapidly, and the cell heat generation increases rapidly. As a result, the increase in cell temperature T is rapidly accelerated, and the decrease in cell impedance Z shown in FIG. 8(a) is rapidly accelerated. The cell charged amount Q at the promotion timing tP can be identified as the section upper limit amount QU shown in FIG. 8(b). Therefore, during the aforementioned charging, the cell storage amount Q at the promotion timing tP can be specified as the interval lower limit amount QL, whereas during power use, the cell storage amount Q at the acceleration timing tP can be specified as the interval upper limit amount QU. They are different in an identifiable way.
 その後、図8(b)に示すように、電力使用によりセル蓄電量Qが区間下限量QLにまで減少すると、セル蓄電量Qが高発熱区間(QL~QU)から脱することにより、発熱係数dV/dTが急減してセル発熱が急減する。それにより、セル温度Tの上昇が急激に抑制されて、図8(a)に示すセルインピーダンスZの減少が急激に抑制される。その抑制タイミングtSでのセル蓄電量Qを、図8(b)に示す区間下限量QLと特定できる。よって、前述の充電時には、抑制タイミングtSでのセル蓄電量Qを、区間上限量QUと特定できるのに対して、電力使用時には、抑制タイミングtSでのセル蓄電量Qを、区間下限量QLと特定できる点で相違している。 After that, as shown in FIG. 8(b), when the cell storage amount Q decreases to the section lower limit amount QL due to the use of electric power, the cell storage amount Q exits the high heat generation section (QL to QU), and the heat generation coefficient dV/dT drops sharply and cell heat generation drops sharply. As a result, the increase in cell temperature T is abruptly suppressed, and the decrease in cell impedance Z shown in FIG. 8(a) is abruptly suppressed. The cell charge amount Q at the suppression timing tS can be identified as the interval lower limit amount QL shown in FIG. 8(b). Therefore, during the aforementioned charging, the cell storage amount Q at the suppression timing tS can be specified as the section upper limit amount QU, whereas during power use, the cell storage amount Q at the suppression timing tS can be specified as the section lower limit amount QL. They are different in an identifiable way.
 以上より、セル蓄電量Qの誤差を、セル蓄電量Qが区間上限量QUにまで減少したタイミングと、区間下限量QLにまで減少したタイミングとでリセットすることができる。つまり、プラトー領域時等においても、セル蓄電量Qを演算することができる。それらのセル蓄電量Qに基づいて、パック蓄電量ΣQを演算することができる。 As described above, the error in the cell storage amount Q can be reset at the timing when the cell storage amount Q decreases to the section upper limit amount QU and the timing when it decreases to the section lower limit amount QL. That is, the cell charge amount Q can be calculated even in the plateau region or the like. Based on these cell storage amounts Q, the pack storage amount ΣQ can be calculated.
 次に、第1実施形態と同じ図1を参照しつつ、電力使用時におけるセルインピーダンスZに基づくパック蓄電量ΣQの演算とのための構成について説明する。 Next, referring to FIG. 1, which is the same as the first embodiment, the configuration for calculating the pack charge amount ΣQ based on the cell impedance Z when electric power is used will be described.
 交流印加回路40は、CC充電中のみならず電力使用中にも、電池パック93に対して交流電圧を印加する。インピーダンス検出部31は、その電力使用中の交流電圧が印加されているときの、各セル電圧V及び電池電流Iに基づいて、各セルインピーダンスZを演算する。 The AC application circuit 40 applies AC voltage to the battery pack 93 not only during CC charging but also during power usage. The impedance detection unit 31 calculates each cell impedance Z based on each cell voltage V and battery current I when the AC voltage is applied while the power is being used.
 ベース蓄電量特定部32は、電力使用量が所定基準以上安定している状態において、検出されているセルインピーダンスZの減少が所定基準以上急激に促進されるタイミングを、促進タイミングtPと特定する。より具体的には、電力使用量が所定基準以上安定している状態において、インピーダンス2回微分Zddが、負の促進判定値ZddPを下回ったことを条件に、促進タイミングtPであると判定する。その促進タイミングtPに、ベース蓄電量Qbを区間上限量QUに更新する。 The base power storage amount specifying unit 32 specifies the timing at which the decrease in the detected cell impedance Z is accelerated abruptly by a predetermined standard or more in a state where the power usage is stable by a predetermined standard or more, as the acceleration timing tP. More specifically, it is determined that it is the promotion timing tP on the condition that the impedance second derivative Zdd has fallen below the negative acceleration determination value ZddP in a state where the power consumption is stable at a predetermined reference or more. At the promotion timing tP, the base storage amount Qb is updated to the section upper limit amount QU.
 また、ベース蓄電量特定部32は、電力使用量が所定基準以上安定している状態において、検出されているセルインピーダンスZの減少が所定基準以上急激に抑制されるタイミングを、抑制タイミングtSと特定する。より具体的には、電力使用量が所定基準以上安定している状態において、インピーダンス2回微分Zddが、正の抑制判定値ZddSを上回ったことを条件に、抑制タイミングtSであると判定する。その抑制タイミングtSに、ベース蓄電量Qbを区間下限量QLに更新する。 In addition, the base storage amount specifying unit 32 specifies the timing at which the decrease in the detected cell impedance Z is rapidly suppressed by a predetermined standard or more in a state where the power usage is stable by a predetermined standard or more as the suppression timing tS. do. More specifically, it is determined that it is the suppression timing tS on the condition that the impedance second derivative Zdd exceeds the positive suppression determination value ZddS in a state where the power consumption is stable at a predetermined reference or more. At the suppression timing tS, the base storage amount Qb is updated to the section lower limit amount QL.
 図9は、電池監視装置96による制御を示すフローチャートである。このフローは、例えば所定周期毎に繰り返し実施される。このフローは、S103,S211,S212,S214を有する点で、第1実施形態の図5のフロート相違している。 FIG. 9 is a flowchart showing control by the battery monitoring device 96. FIG. This flow is repeated, for example, at predetermined intervals. This flow differs from the float in FIG. 5 of the first embodiment in that it has S103, S211, S212, and S214.
 具体的には、S101でプラトー領域時であると判定した場合やOCVを計測不能と判定した場合(S101:NO)において、S102でCC充電中ではないと判定した場合(S102:NO)、S103に進む。そのS103では、電力使用中であるか否か判定する。具体的には、例えば電池電流Iが、放電方向に所定値以上であることを条件に電力使用中であると判定する。S103で、電力使用中ではないと判定した場合(S103:NO)、S402に進み、電流積算値∫Idtを更新する。他方、S103で、電力使用中であると判定した場合、S211に進む。 Specifically, when it is determined in S101 that it is in the plateau region or when it is determined that the OCV cannot be measured (S101: NO), if it is determined in S102 that CC charging is not being performed (S102: NO), S103 proceed to At S103, it is determined whether power is being used. Specifically, for example, it is determined that power is being used on condition that the battery current I is equal to or greater than a predetermined value in the discharging direction. If it is determined in S103 that power is not being used (S103: NO), the process proceeds to S402 to update the integrated current value ∫Idt. On the other hand, if it is determined in S103 that power is being used, the process proceeds to S211.
 S211では、インピーダンス検出部31が、セルインピーダンスZを演算する。続くS212では、ベース蓄電量特定部32が、セルインピーダンスZの減少が所定基準以上、急激に促進されているか否かを判定する。急激に促進されていると判定した場合(S212:YES)、S205に進み、ベース蓄電量Qbを区間上限量QUに更新してから、S401に進む。 In S211, the impedance detection unit 31 calculates the cell impedance Z. In subsequent S212, the base charged amount specifying unit 32 determines whether or not the decrease in the cell impedance Z is rapidly accelerated beyond a predetermined standard. If it is determined that the acceleration is rapidly accelerated (S212: YES), the process proceeds to S205, updates the base charge amount Qb to the section upper limit amount QU, and then proceeds to S401.
 他方、遡るS212において、セルインピーダンスZの減少が所定基準以上、急激に促進されていると判定しない場合(S212:NO)、S214に進む。そのS214では、ベース蓄電量特定部32が、セルインピーダンスZの減少が所定基準以上、急激に抑制されているか否かを判定する。急激に抑制されていると判定した場合(S214:YES)、S203に進み、ベース蓄電量Qbを区間下限量QLに更新してからS401に進む。他方、S214において、セルインピーダンスZの減少が所定基準以上、急激に抑制されていると判定しない場合(S214:NO)、S402に進み、電流積算値∫Idtをゼロにリセットする。以降は、第1実施形態の場合と同様である。 On the other hand, in retroactive S212, if it is not determined that the decrease in cell impedance Z has rapidly accelerated beyond the predetermined standard (S212: NO), proceed to S214. In S214, the base charged amount specifying unit 32 determines whether or not the decrease in the cell impedance Z is rapidly suppressed by a predetermined standard or more. If it is determined that it is rapidly suppressed (S214: YES), the process proceeds to S203, updates the base charge amount Qb to the section lower limit amount QL, and then proceeds to S401. On the other hand, if it is determined in S214 that the decrease in the cell impedance Z is not rapidly suppressed by the predetermined criterion or more (S214: NO), the process proceeds to S402 to reset the integrated current value ∫Idt to zero. Subsequent steps are the same as in the case of the first embodiment.
 本実施形態によれば、充電中のみならず、電力使用中においても、セルインピーダンスZに基づいてセル蓄電量Qを演算して、それらのセル蓄電量Qに基づいてパック蓄電量ΣQを演算することができる。 According to this embodiment, not only during charging but also during power use, the cell storage amount Q is calculated based on the cell impedance Z, and the pack storage amount ΣQ is calculated based on the cell storage amount Q. be able to.
 [他の実施形態]
 以上に示した実施形態は、例えば次のように変更して実施できる。
[Other embodiments]
For example, the embodiment shown above can be modified as follows.
 第1、第2実施形態では、セル電池BがLFPバッテリーであるが、これに代えて、その他の、プラトー領域を有するバッテリーにしてもよいし、プラトー領域を有しないバッテリーにしてもよい。すなわち、セル電池Bがプラトー領域を有しない場合であっても、充電中や電力使用中はOCVを取得できないので、プラトー領域時ほどではないにしろ、セル電圧Vに基づいてセル蓄電量Qを演算するのが難しい。よって、セル電池Bがプラトー領域を有しない場合であっても、セル電圧Vに基づいてセル蓄電量Qを演算するのが難しい際に、セルインピーダンスZに基づいてパック蓄電量ΣQを演算できるといった効果は奏する。 In the first and second embodiments, the cell battery B is an LFP battery, but instead of this, it may be a battery with a plateau region or a battery without a plateau region. That is, even if the cell battery B does not have a plateau region, the OCV cannot be obtained during charging or while power is being used. difficult to calculate. Therefore, even if the cell battery B does not have a plateau region, it is possible to calculate the pack charge amount ΣQ based on the cell impedance Z when it is difficult to calculate the cell charge amount Q based on the cell voltage V. It works.
 第1、第2実施形態では、セル蓄電量Qの変化に対するセル電圧Vの変化が所定基準以上小さい領域を「プラトー領域」とし、セル蓄電量Qがプラトー領域内の蓄電量である時を「プラトー領域時」としている。これに代えて、セル電圧Vが所定範囲内にあるときや、セル蓄電量Qが所定範囲内にあるときを、「プラトー領域時」としてもよい。 In the first and second embodiments, the region in which the change in the cell voltage V with respect to the change in the cell storage amount Q is smaller than a predetermined reference is defined as the "plateau region," and the state in which the cell storage amount Q is within the plateau region is defined as the "plateau region." in the plateau region." Alternatively, the time when the cell voltage V is within a predetermined range or the time when the cell charge amount Q is within a predetermined range may be defined as the "plateau region time".
 第1、第2実施形態では、セルインピーダンスZを時間微分したものを「インピーダンス変化Zd」とし、そのインピーダンス変化Zdをさらに時間微分したのもを「インピーダンス2回微分Zdd」としている。これに代えて、セルインピーダンスZを電流積算値∫Idtで微分したものを「インピーダンス変化Zd」とし、そのインピーダンス変化Zdをさらに電流積算値∫Idtで微分を「インピーダンス2回微分Zdd」としてもよい。この態様によれば、電流が一定でない状況下においても、精度良く促進タイミングtPや抑制タイミングtSを特定できる。 In the first and second embodiments, "impedance change Zd" is obtained by differentiating the cell impedance Z with time, and "impedance second differentiation Zdd" is obtained by further differentiating the impedance change Zd with time. Alternatively, the cell impedance Z may be differentiated by the current integrated value ∫Idt to be the “impedance change Zd”, and the impedance change Zd may be further differentiated by the current integrated value ∫Idt to be the “impedance twice differentiated Zdd”. . According to this aspect, it is possible to specify the promotion timing tP and the suppression timing tS with high accuracy even in a situation where the current is not constant.
 第1、第2実施形態では、セル電池Bに蓄えられている蓄電荷(Ah:アンペアアワー)を「セル蓄電量Q」としている。これに代えて、セル電池Bに蓄えられている蓄電エネルギー(Wh:ワットアワー)を「セル蓄電量」としてもよい。その場合には、セル蓄電量演算部33は、電荷換算のベース蓄電量Qb(Ah)と電流積算値∫Idt(Ah)との代わりに、エネルギー換算のベース蓄電量(Wh)と電力積算値(Wh)とを用いて、エネルギー換算のセル蓄電量(Wh)を演算するようにすればよい。なお、電力積算値は、セル電圧Vと電池電流Iとの積の時間積分値(∫VIdt)である。そして、この場合には、エネルギー換算の最小セル蓄電量(Wh)に、電池パック93が有するセル電池Bの数であるセル数を乗じた値を、エネルギー換算の「パック蓄電量(Wh)」として演算すればよい。 In the first and second embodiments, the stored charge (Ah: ampere hour) stored in the cell battery B is defined as the "cell storage amount Q". Alternatively, the stored energy (Wh: Watt-hour) stored in the cell battery B may be used as the "cell storage amount". In that case, the cell storage amount calculation unit 33 calculates the base storage amount in terms of energy (Wh) and the integrated power (Wh) may be used to calculate the cell storage amount (Wh) in terms of energy. The integrated power value is the time integral value (∫VIdt) of the product of the cell voltage V and the battery current I. In this case, the value obtained by multiplying the minimum cell storage amount (Wh) in terms of energy by the number of cells, which is the number of cell batteries B included in the battery pack 93, is the "pack storage amount (Wh)" in terms of energy. can be calculated as
 また、このように蓄電エネルギーを蓄電量とする場合において、セルインピーダンスZを電力積算値で微分したものを「インピーダンス変化Zd」とし、そのインピーダンス変化Zdをさらに電力積算値で微分したものを「インピーダンス2回微分Zdd」としてもよい。この態様によれば、電力が一定でない状況下においても、精度良く促進タイミングtPや抑制タイミングtSを特定できる。 In addition, when the stored energy is used as the stored amount in this way, the cell impedance Z differentiated by the integrated power value is defined as "impedance change Zd", and the impedance change Zd further differentiated by the power integrated value is defined as "impedance change Zd". 2nd derivative Zdd". According to this aspect, it is possible to specify the promotion timing tP and the suppression timing tS with high accuracy even in a situation where the electric power is not constant.
 第1、第2実施形態では、ベース蓄電量Qbと電流積算値∫Idtとに基づいて、セル蓄電量Qを演算している。これに代えて、単にベース蓄電量Qbと、ベース蓄電量Qbが更新されたタイミングからの経過時間とに基づいて、セル蓄電量Qを演算するようにしてもよい。 In the first and second embodiments, the cell storage amount Q is calculated based on the base storage amount Qb and the current integrated value ∫Idt. Alternatively, the cell storage amount Q may be calculated simply based on the base storage amount Qb and the elapsed time from the timing at which the base storage amount Qb was updated.
 第1、第2実施形態では、ベース蓄電量Qbと電流積算値∫Idtとの和を、セル蓄電量Qとして演算している。これに代えて、ベース蓄電量Qbと電流積算値∫Idtとの和に、所定の補正を施したものを、セル蓄電量Qとして演算してもよい。 In the first and second embodiments, the cell storage amount Q is calculated as the sum of the base storage amount Qb and the integrated current value ∫Idt. Alternatively, the cell storage amount Q may be calculated by performing a predetermined correction on the sum of the base storage amount Qb and the integrated current value ∫Idt.
 パック蓄電量演算部34は、最小セル蓄電量Qminをパック蓄電量ΣQとして演算している。これに代えて、例えばセル蓄電量Qの平均値をパック蓄電量ΣQとして演算してもよい。また例えば、上記のように蓄電エネルギーを蓄電量とする場合において、最小セル蓄電量(Wh)にセル数を乗じた値の代わりに、各セル蓄電量(Wh)を足し合わせた値をパック蓄電量(Wh)として演算してもよい。 The pack power storage amount calculation unit 34 calculates the minimum cell power storage amount Qmin as the pack power storage amount ΣQ. Alternatively, for example, the average value of the cell charged amounts Q may be calculated as the pack charged amount ΣQ. Further, for example, when the stored energy is the stored amount as described above, instead of the value obtained by multiplying the minimum cell stored amount (Wh) by the number of cells, the value obtained by adding each cell stored amount (Wh) is used as the pack stored amount. It may be calculated as an amount (Wh).
 第1、第2実施形態では、電池監視装置96は、交流印加回路40を有する。これに代えて、例えば、セル電池Bごとに放電スイッチをON、OFFすることにより、セル電池Bごとに特定の電流変化を発生させるようにしてもよい。そして、そのときのセル電池Bのインピーダンス(交流抵抗)をセルインピーダンスZとして検出するようにしてもよい。 In the first and second embodiments, the battery monitoring device 96 has the AC application circuit 40. Instead of this, for example, by turning on and off the discharge switch for each cell battery B, a specific current change for each cell battery B may be generated. Then, the impedance (AC resistance) of the cell battery B at that time may be detected as the cell impedance Z.
 第1、第2実施形態では、交流に対するセル電池Bのインピーダンスを「セルインピーダンスZ」としている。これに代えて、直流に対するセル電池Bのインピーダンスを「セルインピーダンスZ」としてもよい。 In the first and second embodiments, the impedance of the cell battery B with respect to alternating current is "cell impedance Z". Alternatively, the impedance of the cell battery B with respect to direct current may be defined as "cell impedance Z".
 第1、第2実施形態では、外部電源80は、CC充電とCV充電とを実施するものであり、交流印加回路40は、CC充電中に交流電圧を電池パック93に印加する。これに代えて、例えば外部電源80を、CP充電(定電力充電)とCV充電とを実施するものにして、交流印加回路40を、CP充電中に交流電圧を電池パック93に印加するものにしてもよい。 In the first and second embodiments, the external power supply 80 performs CC charging and CV charging, and the AC applying circuit 40 applies AC voltage to the battery pack 93 during CC charging. Alternatively, for example, the external power supply 80 may be configured to perform CP charging (constant power charging) and CV charging, and the AC application circuit 40 may be configured to apply an AC voltage to the battery pack 93 during CP charging. may
 第1、第2実施形態では、セルインピーダンスZに基づいてパック蓄電量ΣQを演算しているのに加え、非プラトー領域時且つOCVを計測可能な時には、セル電圧Vにも基づいてパック蓄電量ΣQを演算している。これに代えて、セルインピーダンスZにのみ基づいてパック蓄電量ΣQを演算するようにしてもよい。 In the first and second embodiments, in addition to calculating the pack charge amount ΣQ based on the cell impedance Z, when the OCV is measurable in the non-plateau region, the pack charge amount is also calculated based on the cell voltage V. ΣQ is calculated. Alternatively, the pack charge amount ΣQ may be calculated based on the cell impedance Z only.
 第1、第2実施形態では、セルインピーダンスZに基づくパック蓄電量ΣQの演算を、CC充電中と電力使用中との両方に実施している。これに代えて、CC充電中にのみや電力使用中にのみ実施するようにしてもよい。 In the first and second embodiments, the pack storage amount ΣQ based on the cell impedance Z is calculated both during CC charging and during power use. Alternatively, it may be performed only during CC charging or during power use.
 第1、第2実施形態でいう電動車両90は、前述の通り、エンジンを有するハイブリッド車であってもよい。この場合において、電動車両90は、演算されたパック蓄電量ΣQが所定閾値よりも小さいことを条件に、エンジン燃焼が必要と判定する等の、パック蓄電量ΣQに基づいてエンジン燃焼の要否を判定するエンジン燃焼要否判定部を有していてもよい。 The electric vehicle 90 referred to in the first and second embodiments may be a hybrid vehicle having an engine, as described above. In this case, the electric vehicle 90 determines the necessity of engine combustion based on the pack power storage amount ΣQ, such as determining that engine combustion is necessary, on the condition that the calculated pack power storage amount ΣQ is smaller than a predetermined threshold value. You may have the engine combustion necessity determination part which determines.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described with reference to examples, it is understood that the present disclosure is not limited to those examples or structures. The present disclosure also includes various modifications and modifications within the equivalent range. In addition, various combinations and configurations, as well as other combinations and configurations, including single elements, more, or less, are within the scope and spirit of this disclosure.

Claims (10)

  1.  複数のセル電池(B)の直列接続体を有する電池パック(93)を監視する電池監視装置(96)において、
     前記電池パックの蓄電量が時間経過に伴い変化するパック蓄電量変化時において、複数の前記セル電池のインピーダンス(Z)を検出するインピーダンス検出部(31)と、
     検出されている前記インピーダンスの変化傾向(Zd)の変化(Zdd)に基づいて、前記セル電池の蓄電量(Q)を演算するセル蓄電量演算部(33)と、
     演算された前記セル電池の蓄電量に基づいて、前記電池パックの蓄電量(ΣQ)を演算するパック蓄電量演算部(34)と、
     を有する電池監視装置。
    In a battery monitoring device (96) that monitors a battery pack (93) having a series connection of a plurality of cell batteries (B),
    an impedance detection unit (31) for detecting the impedance (Z) of the plurality of cell batteries when the amount of stored electricity in the battery pack changes with the passage of time;
    a cell storage amount calculation unit (33) for calculating the storage amount (Q) of the cell battery based on the detected change (Zdd) of the impedance change tendency (Zd);
    a pack power storage amount calculator (34) for calculating the power storage amount (ΣQ) of the battery pack based on the calculated power storage amount of the cell battery;
    a battery monitor.
  2.  検出された前記インピーダンスの変化傾向の変化に基づいて、ベース蓄電量(Qb)を特定蓄電量(QL,QU)に特定するベース蓄電量特定部(32)を有し、
     前記セル蓄電量演算部は、前記ベース蓄電量と、前記ベース蓄電量が前記特定蓄電量に特定された特定タイミング(tP,tS)以降における、前記セル電池の電流又は電力の積算値(∫Idt)とに基づいて、前記セル電池の蓄電量を演算する、請求項1に記載の電池監視装置。
    a base storage amount specifying unit (32) for specifying a base storage amount (Qb) as a specific storage amount (QL, QU) based on the detected change in the tendency of impedance change;
    The cell storage amount calculator calculates the base storage amount and an integrated value (∫Idt ), the battery monitoring device according to claim 1, wherein the amount of charge of the cell battery is calculated based on the above.
  3.  前記蓄電量は、蓄えられている電荷の量を示すものであり、前記パック蓄電量演算部は、演算された蓄電量が最小の前記セル電池の当該蓄電量(Qmin)を、前記電池パックの蓄電量として演算する、又は、
     前記蓄電量は、蓄えられているエネルギーの量を示すものであり、前記パック蓄電量演算部は、演算された蓄電量が最小の前記セル電池の当該蓄電量に、前記電池パックが有する前記セル電池の数を乗じた値を、前記電池パックの蓄電量として演算する、
     請求項1又は2に記載の電池監視装置。
    The storage amount indicates the amount of stored electric charge, and the pack storage amount calculation unit calculates the storage amount (Qmin) of the cell battery with the smallest calculated storage amount, Calculate as the amount of electricity stored, or
    The storage amount indicates the amount of stored energy, and the pack storage amount calculation unit adds the storage amount of the cell battery with the smallest calculated storage amount to the cell included in the battery pack. calculating the value obtained by multiplying the number of batteries as the amount of electricity stored in the battery pack;
    The battery monitoring device according to claim 1 or 2.
  4.  前記インピーダンスは、交流抵抗を含み、
     前記電池パックに交流電圧を印加する交流印加回路(40)を有し、
     前記インピーダンス検出部は、前記電池パックに前記交流電圧が印加されているときの前記セル電池のインピーダンスを検出する、請求項1~3のいずれか1項に記載の電池監視装置。
    The impedance includes AC resistance,
    Having an AC application circuit (40) for applying an AC voltage to the battery pack,
    The battery monitoring device according to any one of claims 1 to 3, wherein said impedance detector detects the impedance of said cell battery when said AC voltage is applied to said battery pack.
  5.  前記交流印加回路は、前記電池パックの定電流充電中に前記交流電圧を印加し、前記インピーダンス検出部は、前記定電流充電中において前記交流電圧が印加されているときの前記インピーダンスを検出する、請求項4に記載の電池監視装置。 The AC application circuit applies the AC voltage during constant current charging of the battery pack, and the impedance detection unit detects the impedance when the AC voltage is applied during the constant current charging. The battery monitoring device according to claim 4.
  6.  前記セル蓄電量演算部は、前記セル電池の電圧の変化に対する前記セル電池の蓄電量の変化が所定基準よりも小さいプラトー領域時に、前記インピーダンスの変化傾向の変化に基づいて前記セル電池の蓄電量を演算し、前記プラトー領域時以外の時に、前記セル電池の電圧に基づいて前記セル電池の蓄電量を演算する、請求項1~5のいずれか1項に記載の電池監視装置。 The cell storage amount calculator calculates the storage amount of the cell battery based on the change in the impedance change trend when the change in the storage amount of the cell battery with respect to the voltage change of the cell battery is in a plateau region smaller than a predetermined reference. 6. The battery monitoring device according to any one of claims 1 to 5, which calculates the amount of charge of the cell battery based on the voltage of the cell battery at a time other than the plateau region.
  7.  前記セル電池は、負極に黒鉛を有する請求項1~6のいずれか1項に記載の電池監視装置。 The battery monitoring device according to any one of claims 1 to 6, wherein the cell battery has graphite in the negative electrode.
  8.  前記セル電池は、正極にオリビン構造を有する請求項1~7のいずれか1項に記載の電池監視装置。 The battery monitoring device according to any one of claims 1 to 7, wherein the cell battery has an olivine structure on the positive electrode.
  9.  演算された前記パック蓄電量を用いて、前記電池パックをその蓄電容量まで充電するのに必要な時間である残充電時間を演算する残充電時間演算部(36)と、
     演算された前記パック蓄電量を用いて、電力が不足するか否かを判定する電欠判定部(37)と、
     演算された前記パック蓄電量を用いて、前記電池パックが故障しているか否かを判定する電池故障判定部(38)と、
     のうちの少なくともいずれか1つを有する、請求項1~8のいずれか1項に記載の電池監視装置。
    a remaining charge time calculation unit (36) for calculating a remaining charge time, which is the time required to charge the battery pack to its charge capacity, using the calculated pack power storage amount;
    a power shortage determination unit (37) that determines whether or not there is a shortage of electric power using the calculated amount of power stored in the pack;
    a battery failure determination unit (38) that determines whether or not the battery pack has failed using the calculated pack power storage amount;
    The battery monitoring device according to any one of claims 1 to 8, comprising at least one of
  10.  請求項1~9のいずれか1項に記載の前記電池監視装置が搭載された電動車両(90)であって、
     演算された前記パック蓄電量を用いて、前記電動車両が走行可能な距離としての航続可能距離を演算する航続可能距離演算部(97)を有する電動車両。
    An electric vehicle (90) equipped with the battery monitoring device according to any one of claims 1 to 9,
    An electric vehicle having a cruising distance calculation unit (97) that calculates a cruising distance as a distance that the electric vehicle can travel, using the calculated pack power storage amount.
PCT/JP2022/013586 2021-04-21 2022-03-23 Battery monitoring device and electric vehicle having same installed therein WO2022224681A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-071859 2021-04-21
JP2021071859A JP2022166578A (en) 2021-04-21 2021-04-21 Battery monitoring device and electric vehicle having the same mounted thereon

Publications (1)

Publication Number Publication Date
WO2022224681A1 true WO2022224681A1 (en) 2022-10-27

Family

ID=83722282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013586 WO2022224681A1 (en) 2021-04-21 2022-03-23 Battery monitoring device and electric vehicle having same installed therein

Country Status (2)

Country Link
JP (1) JP2022166578A (en)
WO (1) WO2022224681A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117465291A (en) * 2023-12-27 2024-01-30 中航锂电(洛阳)有限公司 Method for estimating electric quantity SOC of lithium iron phosphate battery hybrid vehicle and vehicle

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06342044A (en) * 1993-05-31 1994-12-13 Omron Corp Battery measuring apparatus
JPH11174136A (en) * 1997-12-09 1999-07-02 Hioki Ee Corp Method and device for judging deterioration of battery pack
JP2004093551A (en) * 2002-07-12 2004-03-25 Toyota Motor Corp Battery charged condition presuming device
JP2010232104A (en) * 2009-03-27 2010-10-14 Itochu Corp Battery control unit, vehicle, and battery control method
JP2010266221A (en) * 2009-05-12 2010-11-25 Honda Motor Co Ltd Battery state estimating device
WO2012081104A1 (en) * 2010-12-16 2012-06-21 トヨタ自動車株式会社 Vehicle control device and vehicle control method
JP2012145403A (en) * 2011-01-11 2012-08-02 Denso Corp Battery capacity detector of lithium ion secondary battery
JP2018128769A (en) * 2017-02-07 2018-08-16 トヨタ自動車株式会社 Battery exchange support system and server used for the same
JP2020048318A (en) * 2018-09-19 2020-03-26 株式会社デンソー Secondary battery device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06342044A (en) * 1993-05-31 1994-12-13 Omron Corp Battery measuring apparatus
JPH11174136A (en) * 1997-12-09 1999-07-02 Hioki Ee Corp Method and device for judging deterioration of battery pack
JP2004093551A (en) * 2002-07-12 2004-03-25 Toyota Motor Corp Battery charged condition presuming device
JP2010232104A (en) * 2009-03-27 2010-10-14 Itochu Corp Battery control unit, vehicle, and battery control method
JP2010266221A (en) * 2009-05-12 2010-11-25 Honda Motor Co Ltd Battery state estimating device
WO2012081104A1 (en) * 2010-12-16 2012-06-21 トヨタ自動車株式会社 Vehicle control device and vehicle control method
JP2012145403A (en) * 2011-01-11 2012-08-02 Denso Corp Battery capacity detector of lithium ion secondary battery
JP2018128769A (en) * 2017-02-07 2018-08-16 トヨタ自動車株式会社 Battery exchange support system and server used for the same
JP2020048318A (en) * 2018-09-19 2020-03-26 株式会社デンソー Secondary battery device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117465291A (en) * 2023-12-27 2024-01-30 中航锂电(洛阳)有限公司 Method for estimating electric quantity SOC of lithium iron phosphate battery hybrid vehicle and vehicle
CN117465291B (en) * 2023-12-27 2024-04-02 中航锂电(洛阳)有限公司 Method for estimating electric quantity SOC of lithium iron phosphate battery hybrid vehicle and vehicle

Also Published As

Publication number Publication date
JP2022166578A (en) 2022-11-02

Similar Documents

Publication Publication Date Title
KR101343158B1 (en) Degradation determination device and degradation determination method for lithium ion secondary battery
US9634498B2 (en) Electrical storage system and equalizing method
KR101589155B1 (en) Electricity storage system
US9933491B2 (en) Electric storage system
JP5159498B2 (en) Charge / discharge control method for battery in power supply device of hybrid car
JP5623629B2 (en) Remaining life judgment method
JP6500789B2 (en) Control system of secondary battery
CN109313239B (en) Management device and power storage system
US9939494B2 (en) Battery system and method of determining polarization of secondary battery
KR20100085791A (en) The control and management equipment of battery stack, and method there of
WO2019054020A1 (en) Battery management device, battery system, and battery management method
US9551753B2 (en) Electric storage system determining operation of current breaker
WO2012132160A1 (en) Device for measuring degradation, rechargeable battery pack, method for measuring degradation, and program
JP2013171691A (en) Power storage system
JP5470961B2 (en) Secondary battery control device
JP2008151745A (en) Residual capacity computing device for charge accumulating device
JP5911407B2 (en) Battery soundness calculation device and soundness calculation method
WO2022224681A1 (en) Battery monitoring device and electric vehicle having same installed therein
JP5626190B2 (en) Power storage system
JP2015061505A (en) Power storage system
US20140343876A1 (en) Electric storage system
JP6365820B2 (en) Secondary battery abnormality determination device
JP2013160539A (en) Power storage system
JP2016014567A (en) Remaining battery capacity calculation system and remaining battery capacity calculation method
WO2020085097A1 (en) Battery control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22791458

Country of ref document: EP

Kind code of ref document: A1