JP2008151745A - Residual capacity computing device for charge accumulating device - Google Patents

Residual capacity computing device for charge accumulating device Download PDF

Info

Publication number
JP2008151745A
JP2008151745A JP2006342594A JP2006342594A JP2008151745A JP 2008151745 A JP2008151745 A JP 2008151745A JP 2006342594 A JP2006342594 A JP 2006342594A JP 2006342594 A JP2006342594 A JP 2006342594A JP 2008151745 A JP2008151745 A JP 2008151745A
Authority
JP
Japan
Prior art keywords
current
storage device
capacity
voltage
remaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006342594A
Other languages
Japanese (ja)
Other versions
JP4810417B2 (en
Inventor
Mikio Ono
幹夫 小野
Mitsuo Shiraga
充朗 白髪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2006342594A priority Critical patent/JP4810417B2/en
Publication of JP2008151745A publication Critical patent/JP2008151745A/en
Application granted granted Critical
Publication of JP4810417B2 publication Critical patent/JP4810417B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To precisely compute the residual capacity of a charge accumulating device. <P>SOLUTION: A terminal voltage V, a current I and a cell temperature T are read in (step S1), in this residual capacity computing device, and a release voltage Vo is estimated based on the terminal voltage V (step S2). A sampling time Ts is also calculated based on a current change rate di/dt (step S3), and an average current value Ai is calculated using the sampling time Ts (step S5). Then, a full charge capacity FAh of a capacitor 20 is calculated by referring to a prescribed current capacity table, based on the average current value Ai and the cell temperature T (step S6). A current capacity Ah remaining in the capacitor 20 is calculated based on the full charge capacity FAh, the release voltage Vo, an upper limit voltage Vmax and a lower limit voltage Vmin (step S7), and an energy amount Wh remaining in the capacitor 20 is calculated by multiplying the current capacity Ah with the release voltage Vo (step S8). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、蓄電デバイスの残存容量を演算する蓄電デバイスの残存容量演算装置に関する。   The present invention relates to a remaining capacity computing device for an electricity storage device that computes the remaining capacity of an electricity storage device.

電気自動車やハイブリッド自動車に搭載される蓄電デバイスや、各種パワーツールに組み付けられる蓄電デバイスとしては、高エネルギー密度や高出力密度が要求されることから、リチウムイオン二次電池や電気二重層キャパシタ等が候補として挙げられている。また、エネルギー密度と出力密度との双方を向上させるため、リチウムイオン二次電池と電気二重層キャパシタの蓄電原理を組み合わせたリチウムイオンキャパシタとも呼ばれる蓄電デバイスも提案されている。このリチウムイオンキャパシタは、正極に電気二重層キャパシタの活性炭を採用することにより、正極では電気二重層を利用して電荷を蓄積する一方、負極にリチウムイオン二次電池の炭素材料を採用することにより、負極では炭素材料にリチウムイオンを担持させて電荷を蓄積している。このような蓄電機構を採用することにより、出力密度およびエネルギー密度を向上させることが可能となる。   High energy density and high output density are required for energy storage devices mounted on electric vehicles and hybrid vehicles, and power devices assembled in various power tools, so lithium ion secondary batteries, electric double layer capacitors, etc. It is listed as a candidate. In order to improve both energy density and power density, an electricity storage device called a lithium ion capacitor that combines the electricity storage principles of a lithium ion secondary battery and an electric double layer capacitor has also been proposed. This lithium ion capacitor uses activated carbon of an electric double layer capacitor for the positive electrode, and charges are accumulated using the electric double layer for the positive electrode, while the carbon material of the lithium ion secondary battery is used for the negative electrode. In the negative electrode, a carbon material is loaded with lithium ions to accumulate electric charges. By adopting such a power storage mechanism, the output density and energy density can be improved.

ところで、これらの蓄電デバイスを有効に活用する為には、蓄電デバイス内の残存容量を正確に把握することが重要となっている。そこで、蓄電デバイスの充放電電流を積算して残存容量を求める技術や、蓄電デバイスの開放電圧に基づいて残存容量を求める技術が提案されている。一般的に、電流積算に基づく演算方法にあっては、突入電流等の負荷変動に強い反面、誤差が累積し易いという課題を有しており、開放電圧に基づく演算方法にあっては、開放電圧が正確に推定される状況では有効性が高い反面、突入電流等の負荷変動に弱いという課題を有している。このため、充放電状態に応じて設定されるウェイトを用いて、電流積算に基づく残存容量と開放電圧に基づく残存容量とを重み付けをして合成し、残存容量の演算精度を向上させるようにした技術が提案されている(たとえば、特許文献1参照)。
特開2005−201743号公報
By the way, in order to effectively use these power storage devices, it is important to accurately grasp the remaining capacity in the power storage devices. In view of this, there have been proposed a technique for obtaining the remaining capacity by integrating charge / discharge currents of the electricity storage device and a technique for obtaining the remaining capacity based on the open circuit voltage of the electricity storage device. In general, calculation methods based on current integration are resistant to load fluctuations such as inrush currents, but have a problem that errors are likely to accumulate. While the effectiveness is high in a situation where the voltage is accurately estimated, it has a problem that it is vulnerable to load fluctuations such as inrush current. Therefore, using the weight set according to the charge / discharge state, the remaining capacity based on the current integration and the remaining capacity based on the open circuit voltage are weighted and synthesized to improve the calculation accuracy of the remaining capacity. A technique has been proposed (see, for example, Patent Document 1).
JP 2005-201743 A

しかしながら、前述したリチウムイオンキャパシタ等の蓄電デバイスにあっては、従来の二次電池に比べて容量が少ないことから、充放電レートに応じて容量が大きく変動してしまう傾向にあり、従来の方法を用いて精度良く残存容量を算出することが困難となっていた。   However, in the above-described power storage device such as a lithium ion capacitor, the capacity is less than that of a conventional secondary battery, so that the capacity tends to fluctuate greatly depending on the charge / discharge rate. It has been difficult to calculate the remaining capacity with high accuracy.

また、リチウムイオンキャパシタ等の蓄電デバイスにあっては、使用可能な容量を放電しても所定の下限電圧を有するため、この下限電圧を下回って更に放電させることが可能となっている。しかしながら、許容量を超えて放電することは蓄電デバイスの劣化や損傷を招くおそれがあるため、残存容量を正確に把握して下限電圧を下回らないように制御することが重要となっている。   In addition, an electricity storage device such as a lithium ion capacitor has a predetermined lower limit voltage even when a usable capacity is discharged, so that it can be further discharged below the lower limit voltage. However, since discharging exceeding the allowable amount may cause deterioration or damage of the electricity storage device, it is important to accurately grasp the remaining capacity and control it so as not to fall below the lower limit voltage.

本発明の目的は、蓄電デバイスの残存容量を精度良く演算することにある。   An object of the present invention is to accurately calculate the remaining capacity of an electricity storage device.

本発明の蓄電デバイスの残存容量演算装置は、蓄電デバイスの端子電圧に基づいて、前記蓄電デバイスの開放電圧を推定する開放電圧推定手段と、前記蓄電デバイスの電流および温度に基づいて、前記蓄電デバイスの電流容量を算出する電流容量算出手段と、前記蓄電デバイスの電流容量に開放電圧を乗算して、前記蓄電デバイスに残存するエネルギー量を算出するエネルギー量算出手段とを有することを特徴とする。   The remaining capacity computing device for an electricity storage device of the present invention includes an open-circuit voltage estimating means for estimating an open-circuit voltage of the electricity storage device based on a terminal voltage of the electricity storage device, and the electricity storage device based on the current and temperature of the electricity storage device. Current capacity calculation means for calculating the current capacity of the power storage device, and energy amount calculation means for calculating the amount of energy remaining in the power storage device by multiplying the current capacity of the power storage device by an open circuit voltage.

本発明の蓄電デバイスの残存容量演算装置は、前記開放電圧推定手段は、端子電圧、電流およびインピーダンスに基づいて開放電圧を推定することを特徴とする。   The remaining capacity computing device for an electricity storage device according to the present invention is characterized in that the open-circuit voltage estimating means estimates an open-circuit voltage based on a terminal voltage, a current and an impedance.

本発明の蓄電デバイスの残存容量演算装置は、前記電流容量算出手段は、電流変化率に応じて増減されるサンプリング時間に基づき電流平均値を算出し、電流平均値および温度に基づいて満充電時電流容量を算出し、満充電時電流容量および開放電圧に基づいて前記蓄電デバイスに残存する電流容量を算出することを特徴とする。   In the remaining capacity calculation device for an electricity storage device according to the present invention, the current capacity calculation means calculates a current average value based on a sampling time that is increased or decreased according to a current change rate, and at the time of full charge based on the current average value and temperature. A current capacity is calculated, and a current capacity remaining in the power storage device is calculated based on a full-charge current capacity and an open circuit voltage.

本発明の蓄電デバイスの残存容量演算装置は、前記電流容量算出手段は、電流変化率が増加するときにはサンプリング時間を増加させる一方、電流変化率が減少するときにはサンプリング時間を減少させることを特徴とする。   The remaining capacity calculation device for an electricity storage device according to the present invention is characterized in that the current capacity calculation means increases the sampling time when the current change rate increases, and decreases the sampling time when the current change rate decreases. .

本発明の蓄電デバイスの残存容量演算装置は、前記蓄電デバイスの下限電圧が0Vを上回ることを特徴とする。   The remaining capacity computing device for an electricity storage device according to the present invention is characterized in that a lower limit voltage of the electricity storage device exceeds 0V.

本発明によれば、電流および温度に基づいて蓄電デバイスの電流容量を算出し、この電流容量に開放電圧を乗算して蓄電デバイスに残存するエネルギー量を算出するようにしたので、蓄電デバイスの残存容量を精度良く演算することが可能となる。   According to the present invention, the current capacity of the power storage device is calculated based on the current and temperature, and the amount of energy remaining in the power storage device is calculated by multiplying the current capacity by the open circuit voltage. The capacity can be calculated with high accuracy.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。図1はハイブリッド車両の駆動制御システムを示す概略図である。図1に示すように、ハイブリッド車両のパワーユニット10には、駆動源としてエンジン11とモータジェネレータ12とが設けられており、モータジェネレータ12の後方側にはトルクコンバータ13を介してトランスミッション14が連結されている。エンジン11やモータジェネレータ12から出力される動力は、トランスミッション14を介して変速された後に、デファレンシャル機構15を経て各駆動輪16に分配される。図示するパワーユニット10はパラレル方式のパワーユニット10であり、主要な駆動源としてエンジン11が駆動される一方、発進時や加速時にはモータジェネレータ12が補助的に駆動される。また、減速時や定常走行時にはモータジェネレータ12を発電駆動させることにより、運動エネルギーを電気エネルギーに変換して回収することが可能となる。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram showing a drive control system for a hybrid vehicle. As shown in FIG. 1, the power unit 10 of the hybrid vehicle is provided with an engine 11 and a motor generator 12 as drive sources, and a transmission 14 is connected to the rear side of the motor generator 12 via a torque converter 13. ing. The power output from the engine 11 and the motor generator 12 is shifted through the transmission 14 and then distributed to the drive wheels 16 through the differential mechanism 15. The illustrated power unit 10 is a parallel type power unit 10, and an engine 11 is driven as a main drive source, while a motor generator 12 is driven in an auxiliary manner when starting or accelerating. Further, when the motor generator 12 is driven to generate power during deceleration or steady running, kinetic energy can be converted into electric energy and recovered.

このようなハイブリッド車両には、モータジェネレータ12に対して電力を供給するとともに、モータジェネレータ12によって発電された電力を蓄える蓄電デバイスとして、リチウムイオンキャパシタ(以下、キャパシタという)20が搭載されている。このキャパシタ20は、リチウムイオンやアニオンを可逆的に担持可能な活性炭を用いて形成される正極と、リチウムイオンを可逆的に担持可能な炭素系材料を用いて形成される負極とを有しており、電解液にはリチウム塩を溶解した有機溶媒溶液が用いられている。また、負極に対してリチウムイオンを予め担持(プレドープ)させることにより、負極電位を低下させるとともに負極容量を高めることができ、キャパシタ20のエネルギー密度を高めることが可能となる。   In such a hybrid vehicle, a lithium ion capacitor (hereinafter referred to as a capacitor) 20 is mounted as an electric storage device that supplies electric power to the motor generator 12 and stores electric power generated by the motor generator 12. This capacitor 20 has a positive electrode formed using activated carbon capable of reversibly supporting lithium ions and anions, and a negative electrode formed using a carbon-based material capable of reversibly supporting lithium ions. An organic solvent solution in which a lithium salt is dissolved is used as the electrolytic solution. In addition, by preloading (pre-doping) lithium ions with respect to the negative electrode, the negative electrode potential can be lowered, the negative electrode capacity can be increased, and the energy density of the capacitor 20 can be increased.

また、キャパシタ20の充放電制御を実行するため、キャパシタ20にはキャパシタ制御ユニット21が接続されている。このキャパシタ制御ユニット21には、キャパシタ20の端子電圧Vを検出する電圧センサ22が接続され、キャパシタ20の電流Iを検出する電流センサ23が接続され、キャパシタ20の温度であるセル温度Tを検出する温度センサ24が接続されている。そして、開放電圧推定手段、電流容量算出手段およびエネルギー量算出手段として機能するキャパシタ制御ユニット21は、後述する演算処理に従って残存容量つまりキャパシタ20に残存するエネルギー量Whを演算することになる。   In addition, a capacitor control unit 21 is connected to the capacitor 20 in order to execute charge / discharge control of the capacitor 20. A voltage sensor 22 for detecting the terminal voltage V of the capacitor 20 is connected to the capacitor control unit 21, and a current sensor 23 for detecting the current I of the capacitor 20 is connected to detect the cell temperature T which is the temperature of the capacitor 20. A temperature sensor 24 is connected. Then, the capacitor control unit 21 that functions as an open-circuit voltage estimating means, a current capacity calculating means, and an energy amount calculating means calculates the remaining capacity, that is, the energy amount Wh remaining in the capacitor 20 in accordance with a calculation process described later.

また、ハイブリッド車両には、キャパシタ20のエネルギー量Whや車両の走行状態等に基づいて、エンジン11やモータジェネレータ12等を協調制御するハイブリッド制御ユニット25が設けられている。このハイブリッド制御ユニット25には、モータジェネレータ12のトルクや回転数を制御するインバータ26が接続され、エンジン11のトルクや回転数を制御するエンジン制御ユニット27が接続されている。さらに、ハイブリッド制御ユニット25には、図示しないアクセルペダルセンサやブレーキペダルセンサ等が接続されており、車両の走行状態を示す各種情報がハイブリッド制御ユニット25に入力されるようになっている。なお、各制御ユニット21,25,27は、制御信号等を演算するCPUを備えるとともに、制御プログラム、演算式、マップデータ等を格納するROMや、一時的にデータを格納するRAMを備えている。   In addition, the hybrid vehicle is provided with a hybrid control unit 25 that cooperatively controls the engine 11, the motor generator 12, and the like based on the energy amount Wh of the capacitor 20, the traveling state of the vehicle, and the like. The hybrid control unit 25 is connected to an inverter 26 that controls the torque and the rotational speed of the motor generator 12, and an engine control unit 27 that controls the torque and the rotational speed of the engine 11. Further, an accelerator pedal sensor, a brake pedal sensor, and the like (not shown) are connected to the hybrid control unit 25, and various information indicating the traveling state of the vehicle is input to the hybrid control unit 25. Each control unit 21, 25, 27 includes a CPU that calculates control signals and the like, and also includes a ROM that stores control programs, arithmetic expressions, map data, and the like, and a RAM that temporarily stores data. .

続いて、キャパシタ制御ユニット21によって実行されるエネルギー量Whの演算処理について説明する。図2はエネルギー量Whの演算手順を示すフローチャートである。図2に示すように、まずステップS1では、キャパシタ20の端子電圧V、電流Iおよびセル温度Tが読み込まれ、続くステップS2では、端子電圧Vに基づき開放電圧Voが推定される。ステップS2において、端子電圧Vから開放電圧Voを推定するため、予め図3に示すキャパシタ20の等価回路モデル図を用いることによってキャパシタ20のインピーダンスZが求められている。この等価回路モデルは、抵抗分R1〜R3、容量分C1,CPE1,CPE2(但し、CPE1,CPE2は二重層容量分)の各パラメータを直列及び並列に組み合わせた等価回路モデルであり、交流インピーダンス法における周知のCole−Coleプロットをカーブフィッティングすることによって各パラメータを決定することが可能となる。   Next, the calculation process of the energy amount Wh executed by the capacitor control unit 21 will be described. FIG. 2 is a flowchart showing a calculation procedure of the energy amount Wh. As shown in FIG. 2, first, in step S1, the terminal voltage V, current I, and cell temperature T of the capacitor 20 are read. In the subsequent step S2, the open circuit voltage Vo is estimated based on the terminal voltage V. In step S2, in order to estimate the open circuit voltage Vo from the terminal voltage V, the impedance Z of the capacitor 20 is obtained in advance by using an equivalent circuit model diagram of the capacitor 20 shown in FIG. This equivalent circuit model is an equivalent circuit model in which the parameters of resistance components R1 to R3 and capacitance components C1, CPE1, and CPE2 (where CPE1 and CPE2 are double layer capacitance components) are combined in series and in parallel. Each parameter can be determined by curve fitting a well-known Cole-Cole plot.

これらの各パラメータから求められるインピーダンスZは、キャパシタ20のセル温度T、電気化学的な反応速度、電流Iの周波数成分によって大きく変化する。したがって、インピーダンスZを決定するパラメータとして、単位時間当たりの電流Iの移動平均値MAiを周波数成分に置き換えて採用し、移動平均値MAiとセル温度Tとを条件とするインピーダンス測定を行ってデータを蓄積した後、移動平均値MAiとセル温度Tとに基づいてインピーダンスZのテーブルを作成する。そして、インピーダンステーブルを利用してインピーダンスZを求め、このインピーダンスZ、実測した端子電圧Vおよび電流Iから、以下の式(1)を用いて開放電圧Voを推定する。
V=Vo−I×Z・・・(1)
The impedance Z obtained from these parameters varies greatly depending on the cell temperature T of the capacitor 20, the electrochemical reaction rate, and the frequency component of the current I. Therefore, as a parameter for determining the impedance Z, the moving average value MAi of the current I per unit time is replaced with a frequency component, and impedance measurement is performed on the condition of the moving average value MAi and the cell temperature T to obtain data. After the accumulation, a table of impedance Z is created based on the moving average value MAi and the cell temperature T. Then, the impedance Z is obtained using the impedance table, and the open-circuit voltage Vo is estimated from the impedance Z, the measured terminal voltage V and the current I using the following formula (1).
V = Vo-I × Z (1)

続いて、ステップS3では、電流変化率di/dtに基づきサンプリング時間Tsが算出され、ステップS4では、このサンプリング時間Tsを経過したか否かが判断される。ステップS4において、サンプリング時間Tsが経過したと判定されると、続くステップS5に進み、サンプリング時間Tsを用いて電流平均値Aiが算出される。ここで、図4(A)は所定の走行状態における端子電圧V、電流Iおよびセル温度Tの変動状態を示す線図であり、図4(B)は電流Iから算出される電流変化率di/dtを示す線図であり、図4(C)は電流変化率di/dtに基づき算出されるサンプリング時間Tsを示す線図である。図4(A)〜(C)に示すように、電流Iが大きく増減して電流変化率di/dtが大きく現れる場合にはサンプリング時間Tsが長く設定される一方、電流Iが小さく増減して電流変化率di/dtが小さく現れる場合にはサンプリング時間Tsが短く設定される。これにより、一時的な負荷変動に影響されることなく電流平均値Aiを算出することが可能となる。   Subsequently, in step S3, the sampling time Ts is calculated based on the current change rate di / dt, and in step S4, it is determined whether or not the sampling time Ts has elapsed. If it is determined in step S4 that the sampling time Ts has elapsed, the process proceeds to the subsequent step S5, and the current average value Ai is calculated using the sampling time Ts. Here, FIG. 4A is a diagram showing the fluctuation state of the terminal voltage V, the current I, and the cell temperature T in a predetermined running state, and FIG. 4B is a current change rate di calculated from the current I. FIG. 4C is a diagram showing the sampling time Ts calculated based on the current change rate di / dt. As shown in FIGS. 4A to 4C, when the current I greatly increases and decreases and the current change rate di / dt appears to be large, the sampling time Ts is set long, while the current I decreases and increases and decreases. When the current change rate di / dt appears small, the sampling time Ts is set short. As a result, the current average value Ai can be calculated without being affected by temporary load fluctuations.

続くステップS6では、電流平均値Aiとセル温度Tとに基づき所定の電流容量テーブルを参照することにより、キャパシタ20を満充電状態にしたときの満充電時電流容量(以下、満充電容量という)FAhが算出される。ここで、図5は電流容量テーブルの一例を示す線図である。図5に示すように、キャパシタ20の満充電容量FAhは、セル温度Tが高く電流Iが低いほど高く算出される一方、セル温度Tが低く電流Iが高いほど低く算出されるようになっている。   In the subsequent step S6, by referring to a predetermined current capacity table based on the current average value Ai and the cell temperature T, the current capacity at full charge when the capacitor 20 is fully charged (hereinafter referred to as full charge capacity). FAh is calculated. Here, FIG. 5 is a diagram showing an example of a current capacity table. As shown in FIG. 5, the full charge capacity FAh of the capacitor 20 is calculated to be higher as the cell temperature T is higher and the current I is lower, while it is calculated to be lower as the cell temperature T is lower and the current I is higher. Yes.

続くステップS7では、満充電容量FAh、開放電圧Vo、上限電圧Vmaxおよび下限電圧Vminから、以下の式(2)を用いてキャパシタ20内に残存する電流容量Ahが算出される。ここで、図6は所定の電流レートにおける電流容量Ahと開放電圧Voとの関係を示す説明図であり、図7は電流容量Ahを算出する際の補正係数について説明する説明図である。まず、図6に示すように、電流容量Ahと開放電圧Voとはほぼ比例関係を保つとともに、電流容量Ahが0%のときには開放電圧Voが下限電圧Vmin(たとえば2.2V)となり、電流容量Ahが100%のときには開放電圧Voが上限電圧Vmax(たとえば3.8V)となっている。そして、開放電圧Voが下限電圧Vminに達したときの電流容量Ahを0に設定するとともに、開放電圧Voが上限電圧Vmaxに達したときの電流容量Ahを満充電容量FAhに設定するため、以下の式(2)に示すように、満充電容量FAhに補正係数として(Vo−Vmin)/(Vmax−Vmin)を乗算する。すなわち、図6および図7に示すように、電流容量Ahと開放電圧Voとはほぼ比例関係にあるため、満充電容量FAhに補正係数としてb/aを乗算することにより、満充電容量FAhからキャパシタ20に残存する電流容量Ahを算出するようにしている。
Ah=FAh×(Vo−Vmin)/(Vmax−Vmin)・・・(2)
In the subsequent step S7, the current capacity Ah remaining in the capacitor 20 is calculated from the full charge capacity FAh, the open circuit voltage Vo, the upper limit voltage Vmax, and the lower limit voltage Vmin using the following equation (2). Here, FIG. 6 is an explanatory diagram showing the relationship between the current capacity Ah and the open circuit voltage Vo at a predetermined current rate, and FIG. 7 is an explanatory diagram for explaining a correction coefficient when calculating the current capacity Ah. First, as shown in FIG. 6, the current capacity Ah and the open circuit voltage Vo maintain a substantially proportional relationship, and when the current capacity Ah is 0%, the open circuit voltage Vo becomes the lower limit voltage Vmin (eg, 2.2 V), and the current capacity When Ah is 100%, open circuit voltage Vo is upper limit voltage Vmax (for example, 3.8 V). Then, the current capacity Ah when the open circuit voltage Vo reaches the lower limit voltage Vmin is set to 0, and the current capacity Ah when the open circuit voltage Vo reaches the upper limit voltage Vmax is set to the full charge capacity FAh. As shown in equation (2), the full charge capacity FAh is multiplied by (Vo−Vmin) / (Vmax−Vmin) as a correction coefficient. That is, as shown in FIGS. 6 and 7, since the current capacity Ah and the open circuit voltage Vo are substantially proportional, by multiplying the full charge capacity FAh by b / a as a correction coefficient, the full charge capacity FAh is obtained. The current capacity Ah remaining in the capacitor 20 is calculated.
Ah = FAh × (Vo−Vmin) / (Vmax−Vmin) (2)

ステップS8では、電流容量Ahに開放電圧Voが乗算され、キャパシタ20内に残存するエネルギー量Whが算出される。そして、算出されたエネルギー量Whに基づいて、キャパシタ20の充放電制御やエンジン11およびモータジェネレータ12の駆動制御が実行されることになる。このように、キャパシタ20内に残存する電流容量Ahを平均電流値Aiに基づいて算出した後に、この電流容量Ahに開放電圧Voを乗算してキャパシタ20内に残存するエネルギー量Whを算出するようにしたので、残存容量の演算精度を向上させることが可能となる。すなわち、充放電時の電流レートによって容量が変動する蓄電デバイスであっても、電流レートを示す平均電流値Aiに基づいて満充電容量FAhを算出し、この満充電容量FAhに基づいて残存する電流容量Ahを算出するようにしたので、電流容量Ahの算出精度を高めることが可能となり、残存するエネルギー量Whの算出精度を高めることが可能となる。また、電流容量Ahをそのまま利用するのではなく、この電流容量Ahに開放電圧Voを乗算して算出したエネルギー量Whを用いるようにしたので、下限電圧Vminが0Vを上回るような蓄電デバイスであっても、下限電圧Vminに到達する迄に使用可能なエネルギー量Whを正確に算出することが可能となっている。   In step S8, the current capacity Ah is multiplied by the open circuit voltage Vo, and the amount of energy Wh remaining in the capacitor 20 is calculated. Based on the calculated energy amount Wh, charge / discharge control of the capacitor 20 and drive control of the engine 11 and the motor generator 12 are executed. Thus, after calculating the current capacity Ah remaining in the capacitor 20 based on the average current value Ai, the current capacity Ah is multiplied by the open circuit voltage Vo to calculate the energy amount Wh remaining in the capacitor 20. Therefore, it is possible to improve the calculation accuracy of the remaining capacity. That is, even in an electric storage device whose capacity varies depending on the current rate at the time of charging / discharging, the full charge capacity FAh is calculated based on the average current value Ai indicating the current rate, and the remaining current based on the full charge capacity FAh. Since the capacity Ah is calculated, the calculation accuracy of the current capacity Ah can be increased, and the calculation accuracy of the remaining energy amount Wh can be increased. Further, instead of using the current capacity Ah as it is, the energy amount Wh calculated by multiplying the current capacity Ah by the open circuit voltage Vo is used, so that the power storage device has a lower limit voltage Vmin exceeding 0V. However, it is possible to accurately calculate the amount of energy Wh that can be used until the lower limit voltage Vmin is reached.

また、ステップS3において、電流変化率di/dtが大きく現れる場合にはサンプリング時間Tsを長く設定する一方、電流変化率di/dtが小さく現れる場合にはサンプリング時間Tsを短く設定するようにしたので、一時的に電流Iが大きく変動した場合であっても、電流容量Ahを算出する際の振動を防止することが可能となり、負荷変動が小さい場合には電流容量Ahを算出する際の精度を向上させることが可能となる。ここで、図8はサンプリング時間Tsを増減させた場合と固定した場合のエネルギー量Whを示す比較図である。なお、図8に示すエネルギー量Whは図4(A)に示す端子電圧V、電流Iおよびセル温度Tに基づいて演算されたエネルギー量Whである。図4(A)および図8に示すように、負荷変動によって電流Iが大きく変動する場合には、サンプリング時間Tsを長く設定することにより、演算されるエネルギー量Whの変動を抑制することが可能となる。また、電流Iが大きく変動していない場合には、サンプリング時間Tsを短く設定することにより、エネルギー量Whを精度良く演算することが可能となる。   In step S3, when the current change rate di / dt appears large, the sampling time Ts is set to be long. On the other hand, when the current change rate di / dt appears small, the sampling time Ts is set to be short. Even when the current I fluctuates greatly, it is possible to prevent vibration when calculating the current capacity Ah. When the load fluctuation is small, the accuracy when calculating the current capacity Ah can be improved. It becomes possible to improve. Here, FIG. 8 is a comparison diagram showing the energy amount Wh when the sampling time Ts is increased or decreased and when it is fixed. Note that the energy amount Wh shown in FIG. 8 is the energy amount Wh calculated based on the terminal voltage V, current I, and cell temperature T shown in FIG. As shown in FIGS. 4A and 8, when the current I greatly fluctuates due to load fluctuation, it is possible to suppress fluctuations in the calculated energy amount Wh by setting the sampling time Ts long. It becomes. Further, when the current I does not fluctuate greatly, the energy amount Wh can be calculated with high accuracy by setting the sampling time Ts short.

本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。たとえば、図示する場合には、ハイブリッド車両に搭載されるキャパシタ20の残存容量を求めるために本発明を適用しているが、これに限られることはなく、電気自動車等、他の輸送機器に搭載される蓄電デバイスに対して本発明を適用しても良く、電気機器等の電源として機能する蓄電デバイスに対して本発明を適用しても良い。また、蓄電デバイスとしては、前述したリチウムイオンキャパシタ20に限られることはなく、電気二重層キャパシタに対して本発明を適用しても良く、リチウムイオン二次電池等の二次電池に対して本発明を適用するようにしても良い。   The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention. For example, in the case shown in the drawing, the present invention is applied to obtain the remaining capacity of the capacitor 20 mounted on the hybrid vehicle, but the present invention is not limited to this, and is mounted on other transportation equipment such as an electric vehicle. The present invention may be applied to a stored electricity storage device, or the present invention may be applied to an electricity storage device that functions as a power source for an electrical device or the like. Further, the power storage device is not limited to the lithium ion capacitor 20 described above, and the present invention may be applied to an electric double layer capacitor, and the present invention may be applied to a secondary battery such as a lithium ion secondary battery. You may make it apply invention.

また、図2に示すように、ステップS2において、電流IとインピーダンスZとを乗算し、これに端子電圧Vを加算することにより、開放電圧Voを推定しているが、これに限られることはなく、他の方法によって開放電圧Voを推定しても良い。たとえば、端子電圧Vと開放電圧Voとの差を示すキックバック電圧を予め実験等によって算出しておき、このキックバック電圧と実測した端子電圧Vとに基づいて開放電圧Voを推定するようにしても良い。さらに、キックバック電圧をセル温度T毎に設定して精度を高めるようにしても良く、キックバック電圧を係数として設定しても良い。   Further, as shown in FIG. 2, in step S2, the open circuit voltage Vo is estimated by multiplying the current I and the impedance Z and adding the terminal voltage V thereto. However, the present invention is not limited to this. Alternatively, the open circuit voltage Vo may be estimated by another method. For example, a kickback voltage indicating a difference between the terminal voltage V and the open circuit voltage Vo is calculated in advance by experiments or the like, and the open circuit voltage Vo is estimated based on the kickback voltage and the actually measured terminal voltage V. Also good. Further, the kickback voltage may be set for each cell temperature T to increase the accuracy, or the kickback voltage may be set as a coefficient.

ハイブリッド車両の駆動制御システムを示す概略図である。It is the schematic which shows the drive control system of a hybrid vehicle. エネルギー量の演算手順を示すフローチャートである。It is a flowchart which shows the calculation procedure of energy amount. キャパシタの等価回路モデル図である。It is an equivalent circuit model figure of a capacitor. (A)は所定の走行状態における端子電圧、電流およびセル温度の変動状態を示す線図であり、(B)は電流Iから算出される電流変化率を示す線図であり、(C)は電流変化率に基づき算出されるサンプリング時間を示す線図である。(A) is a diagram showing the fluctuation state of the terminal voltage, current and cell temperature in a predetermined running state, (B) is a diagram showing the current change rate calculated from the current I, (C) is It is a diagram which shows the sampling time calculated based on a current change rate. 電流容量テーブルの一例を示す線図である。It is a diagram which shows an example of a current capacity table. 所定の電流レートにおける電流容量と開放電圧との関係を示す説明図である。It is explanatory drawing which shows the relationship between the current capacity in a predetermined | prescribed current rate, and an open circuit voltage. 電流容量を算出する際の補正係数について説明する説明図である。It is explanatory drawing explaining the correction coefficient at the time of calculating a current capacity. サンプリング時間を増減させた場合と固定した場合のエネルギー量を示す比較図である。It is a comparison figure which shows the energy amount when the sampling time is increased / decreased and when it is fixed.

符号の説明Explanation of symbols

20 リチウムイオンキャパシタ(蓄電デバイス)
21 キャパシタ制御ユニット(開放電圧推定手段,電流容量算出手段,エネルギー量算出手段)
V 端子電圧
Vo 開放電圧
I 電流
T セル温度(温度)
Ah 電流容量
Wh エネルギー量
Z インピーダンス
Ts サンプリング時間
Ai 電流平均値
FAh 満充電容量(満充電時電流容量)
di/dt 電流変化率
Vmin 下限電圧
20 Lithium ion capacitor (electric storage device)
21 Capacitor control unit (open-circuit voltage estimating means, current capacity calculating means, energy amount calculating means)
V Terminal voltage Vo Open voltage I Current T Cell temperature (temperature)
Ah Current capacity Wh Energy amount Z Impedance Ts Sampling time Ai Current average value FAh Full charge capacity (current capacity at full charge)
di / dt Current change rate Vmin Lower limit voltage

Claims (5)

蓄電デバイスの端子電圧に基づいて、前記蓄電デバイスの開放電圧を推定する開放電圧推定手段と、
前記蓄電デバイスの電流および温度に基づいて、前記蓄電デバイスの電流容量を算出する電流容量算出手段と、
前記蓄電デバイスの電流容量に開放電圧を乗算して、前記蓄電デバイスに残存するエネルギー量を算出するエネルギー量算出手段とを有することを特徴とする蓄電デバイスの残存容量演算装置。
An open-circuit voltage estimating means for estimating an open-circuit voltage of the power storage device based on a terminal voltage of the power storage device;
Current capacity calculating means for calculating the current capacity of the electricity storage device based on the current and temperature of the electricity storage device;
An energy storage device remaining capacity computing device comprising: an energy amount calculating means for calculating an energy amount remaining in the energy storage device by multiplying an open circuit voltage by the current capacity of the energy storage device.
請求項1記載の蓄電デバイスの残存容量演算装置において、
前記開放電圧推定手段は、端子電圧、電流およびインピーダンスに基づいて開放電圧を推定することを特徴とする蓄電デバイスの残存容量演算装置。
The apparatus for calculating a remaining capacity of an electricity storage device according to claim 1,
The open-circuit voltage estimation means estimates an open-circuit voltage based on a terminal voltage, a current, and an impedance.
請求項1または2記載の蓄電デバイスの残存容量演算装置において、
前記電流容量算出手段は、電流変化率に応じて増減されるサンプリング時間に基づき電流平均値を算出し、電流平均値および温度に基づいて満充電時電流容量を算出し、満充電時電流容量および開放電圧に基づいて前記蓄電デバイスに残存する電流容量を算出することを特徴とする蓄電デバイスの残存容量演算装置。
The remaining capacity computing device for an electricity storage device according to claim 1 or 2,
The current capacity calculating means calculates a current average value based on a sampling time that is increased or decreased according to a current change rate, calculates a full charge current capacity based on the current average value and temperature, An apparatus for calculating a remaining capacity of a power storage device, wherein a current capacity remaining in the power storage device is calculated based on an open circuit voltage.
請求項3記載の蓄電デバイスの残存容量演算装置において、
前記電流容量算出手段は、電流変化率が増加するときにはサンプリング時間を増加させる一方、電流変化率が減少するときにはサンプリング時間を減少させることを特徴とする蓄電デバイスの残存容量演算装置。
The remaining capacity computing device for an electricity storage device according to claim 3,
The current capacity calculating means increases the sampling time when the current change rate increases, and decreases the sampling time when the current change rate decreases.
請求項1〜4のいずれか1項に記載の蓄電デバイスの残存容量演算装置において、
前記蓄電デバイスの下限電圧が0Vを上回ることを特徴とする蓄電デバイスの残存容量演算装置。
In the remaining capacity calculation apparatus of the electrical storage device of any one of Claims 1-4,
An apparatus for calculating a remaining capacity of an electricity storage device, wherein a lower limit voltage of the electricity storage device exceeds 0V.
JP2006342594A 2006-12-20 2006-12-20 Remaining capacity calculation device for power storage device Expired - Fee Related JP4810417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006342594A JP4810417B2 (en) 2006-12-20 2006-12-20 Remaining capacity calculation device for power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006342594A JP4810417B2 (en) 2006-12-20 2006-12-20 Remaining capacity calculation device for power storage device

Publications (2)

Publication Number Publication Date
JP2008151745A true JP2008151745A (en) 2008-07-03
JP4810417B2 JP4810417B2 (en) 2011-11-09

Family

ID=39654046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006342594A Expired - Fee Related JP4810417B2 (en) 2006-12-20 2006-12-20 Remaining capacity calculation device for power storage device

Country Status (1)

Country Link
JP (1) JP4810417B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010193588A (en) * 2009-02-17 2010-09-02 Hitachi Chem Co Ltd Power supply device
WO2011152086A1 (en) * 2010-06-03 2011-12-08 新神戸電機株式会社 Power supply device
JP2012235592A (en) * 2011-04-28 2012-11-29 Toyota Motor Corp Charge controller for vehicle and method of charge control
WO2013037307A1 (en) * 2011-09-15 2013-03-21 Mediatek Inc. System and methods for determining remaining battery capacity of battery device
JP2013122399A (en) * 2011-12-09 2013-06-20 Yokogawa Electric Corp Transmitter
KR20180053018A (en) * 2016-11-11 2018-05-21 에스케이이노베이션 주식회사 Apparatus and method for estimating state of charge of battery
US10042004B2 (en) 2015-02-12 2018-08-07 Mediatek Inc. Apparatus used with processor of portable device and arranged for performing at least one part of fuel gauge operation for battery by using hardware circuit element(s) when processor enter sleep mode
KR20190073654A (en) * 2017-12-19 2019-06-27 주식회사 엘지화학 Apparatus and method for sorting of low-voltage battery cell
CN111768558A (en) * 2020-03-18 2020-10-13 杭州协能科技股份有限公司 Charging control system and control method for electric vehicle battery
US10942221B2 (en) 2016-02-04 2021-03-09 Mediatek Inc. Method and apparatus capable of accurately estimating/determining power percentage of battery based on confidence levels determined from resultant information of multiple different fuel gauge operations and/or information of battery history, aging factor, sleep time, or battery temperature

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07274411A (en) * 1994-03-30 1995-10-20 Mitsubishi Electric Corp Power generation controller for vehicle
JP2005201743A (en) * 2004-01-14 2005-07-28 Fuji Heavy Ind Ltd Remaining capacity calculation device for electric power storage device
JP2006058012A (en) * 2004-08-17 2006-03-02 Yazaki Corp Dischargeable capacity detection method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07274411A (en) * 1994-03-30 1995-10-20 Mitsubishi Electric Corp Power generation controller for vehicle
JP2005201743A (en) * 2004-01-14 2005-07-28 Fuji Heavy Ind Ltd Remaining capacity calculation device for electric power storage device
JP2006058012A (en) * 2004-08-17 2006-03-02 Yazaki Corp Dischargeable capacity detection method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8803486B2 (en) 2009-02-17 2014-08-12 Shin-Kobe Electric Machinery Co., Ltd. Power supply device
JP2010193588A (en) * 2009-02-17 2010-09-02 Hitachi Chem Co Ltd Power supply device
WO2011152086A1 (en) * 2010-06-03 2011-12-08 新神戸電機株式会社 Power supply device
JP2011254650A (en) * 2010-06-03 2011-12-15 Shin Kobe Electric Mach Co Ltd Electric power apparatus
JP2012235592A (en) * 2011-04-28 2012-11-29 Toyota Motor Corp Charge controller for vehicle and method of charge control
WO2013037307A1 (en) * 2011-09-15 2013-03-21 Mediatek Inc. System and methods for determining remaining battery capacity of battery device
CN103168247A (en) * 2011-09-15 2013-06-19 联发科技股份有限公司 Systems and methods for determining a remaining battery capacity of a battery device
JP2013122399A (en) * 2011-12-09 2013-06-20 Yokogawa Electric Corp Transmitter
US10042004B2 (en) 2015-02-12 2018-08-07 Mediatek Inc. Apparatus used with processor of portable device and arranged for performing at least one part of fuel gauge operation for battery by using hardware circuit element(s) when processor enter sleep mode
US10942221B2 (en) 2016-02-04 2021-03-09 Mediatek Inc. Method and apparatus capable of accurately estimating/determining power percentage of battery based on confidence levels determined from resultant information of multiple different fuel gauge operations and/or information of battery history, aging factor, sleep time, or battery temperature
KR20180053018A (en) * 2016-11-11 2018-05-21 에스케이이노베이션 주식회사 Apparatus and method for estimating state of charge of battery
KR102348075B1 (en) * 2016-11-11 2022-01-10 에스케이온 주식회사 Apparatus and method for estimating state of charge of battery
KR20190073654A (en) * 2017-12-19 2019-06-27 주식회사 엘지화학 Apparatus and method for sorting of low-voltage battery cell
KR102443429B1 (en) * 2017-12-19 2022-09-14 주식회사 엘지에너지솔루션 Apparatus and method for sorting of low-voltage battery cell
CN111768558A (en) * 2020-03-18 2020-10-13 杭州协能科技股份有限公司 Charging control system and control method for electric vehicle battery
CN111768558B (en) * 2020-03-18 2024-03-15 杭州协能科技股份有限公司 Charging control system and control method for electric automobile battery

Also Published As

Publication number Publication date
JP4810417B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
JP4810417B2 (en) Remaining capacity calculation device for power storage device
JP5009223B2 (en) Secondary battery remaining capacity estimation method and apparatus
US10859632B2 (en) Secondary battery system and SOC estimation method for secondary battery
US10254346B2 (en) SOC estimation device for secondary battery
CN108819731B (en) Charge rate estimation method and vehicle-mounted battery system
US20110127958A1 (en) Battery charge/discharge control device and hybrid vehicle using the same
JP2003197272A (en) Estimating method and device of residual capacity of secondary battery, as well as battery pack system
JP2005083970A (en) State sensing device and state detection method of secondary battery
JP2010019595A (en) Residual capacity calculating apparatus of storage device
JP2008014702A (en) Device for operating deterioration of battery
JP2015155859A (en) Battery residual amount estimation device, battery pack, power storage device, electric vehicle and battery residual amount estimation method
JP2019106285A (en) Secondary battery system and method for estimating stress of secondary battery active material
WO2012137456A1 (en) Method for determining remaining lifetime
US10381855B2 (en) Secondary battery system using temperature threshold in response to lithium ion concentrations
US20180313900A1 (en) Battery system and control method thereof
JP5989320B2 (en) Vehicle control apparatus and remaining capacity estimation method
JP6577990B2 (en) Internal state estimation device
JP2018155706A (en) Device for estimating degradation state of secondary battery, battery system having the same, and electric vehicle
JP2006098134A (en) Residual capacity arithmetic unit for charge accumulation device
JP2004301782A (en) Fully charging state detecting device, its method, charging state detecting device and its method, and deterioration detecting device and its method
JP4954791B2 (en) Voltage prediction method for power storage devices
JP2007333447A (en) Charge state estimation device of secondary battery, charge state estimation method, and program
US11180051B2 (en) Display apparatus and vehicle including the same
JP2005345254A (en) Residual capacity arithmetic unit for charge accumulating device
JP4519551B2 (en) Remaining capacity calculation device for power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees