JP2007333447A - Charge state estimation device of secondary battery, charge state estimation method, and program - Google Patents

Charge state estimation device of secondary battery, charge state estimation method, and program Download PDF

Info

Publication number
JP2007333447A
JP2007333447A JP2006163103A JP2006163103A JP2007333447A JP 2007333447 A JP2007333447 A JP 2007333447A JP 2006163103 A JP2006163103 A JP 2006163103A JP 2006163103 A JP2006163103 A JP 2006163103A JP 2007333447 A JP2007333447 A JP 2007333447A
Authority
JP
Japan
Prior art keywords
secondary battery
voltage
load voltage
charge
electromotive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006163103A
Other languages
Japanese (ja)
Other versions
JP4866156B2 (en
Inventor
Toshifumi Ueda
利史 植田
Kunio Kanamaru
邦郎 金丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primearth EV Energy Co Ltd
Original Assignee
Panasonic EV Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic EV Energy Co Ltd filed Critical Panasonic EV Energy Co Ltd
Priority to JP2006163103A priority Critical patent/JP4866156B2/en
Publication of JP2007333447A publication Critical patent/JP2007333447A/en
Application granted granted Critical
Publication of JP4866156B2 publication Critical patent/JP4866156B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve accuracy of an estimated SOC even when the range of an SOC permitted in controlling charge/discharge of a secondary battery is relatively wide. <P>SOLUTION: A battery ECU 20 calculates a no-load voltage of a secondary battery 30 based on at least a battery voltage and a charge/discharge current of the secondary battery 30, compensates the no-load voltage based on a compensation value representing a voltage drop portion by a memory effect caused by the discharging of the secondary battery 30, or a voltage rise portion by a memory effect caused by the charging of the secondary battery 30, in a range from a lower-limit threshold at which the state of charge of the secondary battery 30 is smaller than 50% to an upper-limit threshold value at which it is larger than 50%, and obtains electromotive force by subtracting a polarization voltage from the compensated no-load voltage. Then, the state of charge of the secondary battery 30 based on the compensated no-load voltage is estimated by referring to relationship information representing the relationship between the electromotive force and the state of charge. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ニッケル水素電池やリチウムイオン電池などの二次電池に関し、特に、二次電池の充電状態を求める技術に関する。   The present invention relates to a secondary battery such as a nickel metal hydride battery or a lithium ion battery, and more particularly to a technique for obtaining a charged state of the secondary battery.

ニッケル水素二次電池、リチウムイオン二次電池などの二次電池の充電状態((以下、SOC(State Of Charge)と称す)を推定し、SOCに基づいて二次電池の充放電を制御する技術が知られている。   A technique for estimating the state of charge of a secondary battery such as a nickel metal hydride secondary battery or a lithium ion secondary battery (hereinafter referred to as SOC (State Of Charge)) and controlling the charge / discharge of the secondary battery based on the SOC It has been known.

一般にSOCを推定するにあたって、二次電池から入出力される電流値の積算値を計測し、あるいは放電電圧と放電電流との関係を算出する。また、精度を上げるために二次電池を放置した場合に放出する自己放電量を放置温度および放置時間から予測してSOCを補正する技術も知られている。   In general, when estimating the SOC, the integrated value of the current values input and output from the secondary battery is measured, or the relationship between the discharge voltage and the discharge current is calculated. In addition, a technique for correcting the SOC by predicting the amount of self-discharge discharged when the secondary battery is left to stand for accuracy from the standing temperature and the standing time is also known.

このように推定されるSOCの精度を低下させる原因として自己放電以外に、メモリ効果がある。メモリ効果とは、正極として水酸化ニッケルを使用するニッケル水素二次電池やニッケルカドミウム二次電池において、部分充放電を繰り返すと、放電側に電圧降下が現れ、充電側に電圧上昇が現れる現象である。近年、リチウムイオン二次電池においても僅かではあるが同様の現象が生じると言われている。   In addition to self-discharge, there is a memory effect as a cause of lowering the estimated SOC accuracy. The memory effect is a phenomenon in which a voltage drop appears on the discharge side and a voltage rise appears on the charge side when partial charge and discharge are repeated in nickel-hydrogen secondary batteries and nickel cadmium secondary batteries that use nickel hydroxide as the positive electrode. is there. In recent years, it is said that a similar phenomenon occurs in a lithium ion secondary battery, though only slightly.

特許文献1では、二次電池の放電電圧や電池温度や放電電流に基づいて求めたSOCを、二次電池が充放電された回数もしくは電気量に基づいて補正する技術が開示されている。しかし、特許文献1では、放電時におけるメモリ効果による影響を考慮しているが、充電時におけるメモリ効果による影響を考慮していない。   Patent Document 1 discloses a technique for correcting the SOC obtained based on the discharge voltage, battery temperature, and discharge current of the secondary battery based on the number of times the secondary battery is charged / discharged or the amount of electricity. However, Patent Document 1 considers the influence of the memory effect during discharging, but does not consider the influence of the memory effect during charging.

ところで、二次電池の充放電を制御する際に許容されるSOCの使用範囲が比較的狭く、例えばSOCを50%前後で保ちながら二次電池の充放電を行うシステムでは、二次電池の充放電を繰り返すと、図7に示すように、50%近傍を境界として、放電側ではSOCが50%以下でメモリ効果による電圧降下の現象が現れ、充電側ではSOCが50%以上でメモリ効果による電圧上昇の現象が現れることがある。   By the way, in the system that charges and discharges the secondary battery while maintaining the SOC at around 50%, for example, in a system in which the SOC usage range allowed when controlling the charging and discharging of the secondary battery is relatively narrow, the charging and discharging of the secondary battery is performed. When the discharge is repeated, as shown in FIG. 7, with the vicinity of 50% as a boundary, the SOC causes a voltage drop phenomenon due to the memory effect when the SOC is 50% or less, and the SOC causes the memory effect when the SOC is 50% or more. The phenomenon of voltage rise may appear.

特許文献2では、メモリ効果に対する補正値が適用されるSOCの範囲およびOCVの範囲をメモリに記憶させておき、電池温度および充放電電流に基づいて補正値を算出して、その補正値を、メモリに記憶されたSOCの範囲およびOCVの範囲においてのみ適用させ、OCV−SOCマップを作成し、そのOCV−SOCマップに基づいてSOCを推定する技術が開示されている。特許文献2では、SOCを50%前後で保ちながら二次電池の充放電を行うシステムを想定しており、OCV−SOCマップに対してSOCが50%以上で充電側の補正を行い、SOCが50%以下で放電側の補正を行っている。   In Patent Document 2, the SOC range and the OCV range to which the correction value for the memory effect is applied are stored in the memory, the correction value is calculated based on the battery temperature and the charge / discharge current, and the correction value is calculated as follows: A technique is disclosed in which an OCV-SOC map is created by applying only in the SOC range and OCV range stored in a memory, and the SOC is estimated based on the OCV-SOC map. Patent Document 2 assumes a system in which the secondary battery is charged and discharged while maintaining the SOC at around 50%. The SOC is corrected with respect to the OCV-SOC map when the SOC is 50% or more. The discharge side correction is performed at 50% or less.

しかし、メモリ効果による影響は、例えば、充放電時に許容するSOCの範囲を広げた場合、充電側においてはSOCが50%以下でも起こり、放電側においてはSOCが50%以上でも起こりうる。そのため、特許文献2に記載の技術では、メモリ効果による影響を補正できず、推定されるSOCの精度を低下させる原因となる場合がある。   However, for example, when the range of SOC allowed at the time of charging / discharging is widened, the memory effect may occur even if the SOC is 50% or less on the charge side and the SOC is 50% or more on the discharge side. For this reason, the technique described in Patent Document 2 cannot correct the influence of the memory effect, which may cause a decrease in the estimated SOC accuracy.

特開平9−129267号公報JP-A-9-129267 特開2004−22322号公報JP 2004-22322 A

本発明は、たとえ二次電池の充放電を制御する際に許容するSOCの範囲が比較的広い場合でも、推定するSOCの精度を向上させることを目的とする。   An object of the present invention is to improve the accuracy of estimated SOC even when the range of SOC allowed when controlling charge / discharge of a secondary battery is relatively wide.

本発明に係る二次電池の充電状態推定装置は、少なくとも二次電池の電池電圧と充放電電流とに基づいて前記二次電池の無負荷電圧を算出する無負荷電圧算出部と、前記二次電池の充電状態が50%より小さい下限閾値から50%より大きい上限閾値までの範囲において、前記二次電池の放電に伴うメモリ効果による電圧降下分もしくは前記二次電池の充電に伴うメモリ効果による電圧上昇分を表す補正値に基づく前記無負荷電圧の補正を行う無負荷電圧補正部と、前記無負荷電圧補正部で算出された無負荷電圧に基づいて起電力を算出する起電力算出部と、前記起電力算出部で算出された起電力と充電状態との関係を示す関係情報を参照して、前記起電力に基づく前記二次電池の充電状態を推定する充電状態推定部と、を備えることを特徴とする。   The secondary battery charge state estimation apparatus according to the present invention includes a no-load voltage calculation unit that calculates a no-load voltage of the secondary battery based on at least a battery voltage and a charge / discharge current of the secondary battery, and the secondary battery In a range from a lower threshold value that is lower than 50% to an upper threshold value that is higher than 50%, the voltage drop due to the memory effect accompanying the discharge of the secondary battery or the voltage due to the memory effect accompanying the charging of the secondary battery A no-load voltage correction unit that corrects the no-load voltage based on a correction value that represents an increase, an electromotive force calculation unit that calculates an electromotive force based on the no-load voltage calculated by the no-load voltage correction unit, A charging state estimation unit that estimates a charging state of the secondary battery based on the electromotive force with reference to relationship information indicating a relationship between the electromotive force and the charging state calculated by the electromotive force calculation unit. Features To.

本発明に係る充電状態推定装置の1つの態様によれば、前記無負荷電圧補正部は、前記二次電池の充電状態が50%より大きい範囲において、前記二次電池の放電に伴うメモリ効果による電圧降下分を表す補正値に基づいて前記無負荷電圧を補正することを特徴とする。   According to one aspect of the charging state estimation device according to the present invention, the no-load voltage correction unit is based on a memory effect associated with discharging of the secondary battery in a range where the charging state of the secondary battery is greater than 50%. The no-load voltage is corrected based on a correction value representing a voltage drop.

本発明に係る充電状態推定装置の1つの態様によれば、前記無負荷電圧補正部は、前記二次電池の充電状態が50%より小さい範囲において、前記二次電池の充電状態に伴うメモリ効果による電圧上昇分を表す補正値に基づいて前記無負荷電圧を補正することを特徴とする。   According to one aspect of the state of charge estimation device according to the present invention, the no-load voltage correction unit has a memory effect associated with the state of charge of the secondary battery in a range where the state of charge of the secondary battery is less than 50%. The no-load voltage is corrected on the basis of a correction value representing a voltage increase due to.

本発明に係る二次電池の充電状態推定装置は、少なくとも二次電池の電池電圧と充放電電流とに基づいて前記二次電池の無負荷電圧を算出する無負荷電圧算出部と、前記二次電池の充電状態が50%より大きい範囲において、前記二次電池の放電に伴うメモリ効果による電圧降下分を表す補正値に基づいて前記無負荷電圧を補正し、前記二次電池の充電状態が50%より小さい範囲において、前記二次電池の充電状態に伴うメモリ効果による電圧上昇分を表す補正値に基づいて前記無負荷電圧を補正する無負荷電圧補正部と、前記無負荷電圧補正部で算出された無負荷電圧に基づいて起電力を算出する起電力算出部と、前記起電力算出部で算出された起電力と充電状態との関係を示す関係情報を参照して、前記起電力に基づく前記二次電池の充電状態を推定する充電状態推定部と、を備えることを特徴とする。   The secondary battery charge state estimation apparatus according to the present invention includes a no-load voltage calculation unit that calculates a no-load voltage of the secondary battery based on at least a battery voltage and a charge / discharge current of the secondary battery, and the secondary battery When the state of charge of the battery is greater than 50%, the no-load voltage is corrected based on a correction value representing a voltage drop due to the memory effect accompanying the discharge of the secondary battery, and the state of charge of the secondary battery is 50 Calculated by the no-load voltage correction unit and the no-load voltage correction unit for correcting the no-load voltage based on a correction value representing a voltage increase due to the memory effect associated with the charged state of the secondary battery in a range smaller than%. Based on the electromotive force with reference to the electromotive force calculation unit that calculates the electromotive force based on the no-load voltage that has been generated and the relationship information that indicates the relationship between the electromotive force and the state of charge calculated by the electromotive force calculation unit Of the secondary battery Characterized in that it comprises a state-of-charge estimation unit that estimates a conductive state.

本発明に係る充電状態推定装置の1つの態様によれば、さらに、所定期間に亘り充放電電流を積算する積算充放電電気量算出部を備え、前記無負荷電圧補正部は、所定期間における前記二次電池の放電電気量と充電電気量との割合に基づいて、放電電気量の割合が多い場合には、電圧降下分を表す補正値を用いて前記無負荷電圧を補正し、充電電気量の割合が多い場合には、電圧上昇分を表す補正値を用いて前記無負荷電圧を補正することを特徴する。   According to one aspect of the charging state estimation device according to the present invention, the charging state estimation device further includes an integrated charge / discharge electric quantity calculation unit that integrates the charge / discharge current over a predetermined period, and the no-load voltage correction unit Based on the ratio of the amount of discharged electricity and the amount of charged electricity of the secondary battery, if the ratio of the amount of discharged electricity is large, the correction of the no-load voltage is corrected using a correction value representing the voltage drop, and the amount of charged electricity When the ratio is large, the no-load voltage is corrected using a correction value representing the voltage increase.

本発明に係る充電状態推定装置の1つの態様によれば、前記無負荷電圧補正部は、前記二次電池の充放電状況を表す物理量とメモリ効果による電圧降下分もしくは電圧上昇分を表す補正値との関係を示す補正マップを参照して、前記無負荷電圧を補正する際に用いる電圧降下分もしくは電圧上昇分の補正値を決定することを特徴とする。   According to one aspect of the state-of-charge estimation device according to the present invention, the no-load voltage correction unit includes a physical quantity indicating a charge / discharge status of the secondary battery and a correction value indicating a voltage drop or a voltage increase due to a memory effect. And a correction value for a voltage drop or a voltage rise used for correcting the no-load voltage is determined.

本発明によれば、たとえ二次電池の充放電を制御する際に許容するSOCの範囲が比較的広い場合でも、推定するSOCの精度を向上させることができる。   According to the present invention, it is possible to improve the accuracy of estimated SOC even when the range of SOC allowed when controlling charge / discharge of a secondary battery is relatively wide.

本発明を実施するための最良の形態(以下、実施形態と称す)について、ハイブリッド電気自動車を例に、図面を参照して説明する。なお、本実施形態では、電気自動車の1つであるハイブリッド電気自動車を例に説明するが、駆動源としてモータ(電動機)を備える他の電気自動車にも本実施形態は適用可能である。   A best mode for carrying out the present invention (hereinafter referred to as an embodiment) will be described with reference to the drawings, taking a hybrid electric vehicle as an example. In addition, although this embodiment demonstrates the hybrid electric vehicle which is one of the electric vehicles to an example, this embodiment is applicable also to the other electric vehicle provided with a motor (electric motor) as a drive source.

図1は、本実施形態に係るハイブリッド電気自動車の概略構成を示す図である。図1において、車両ECU10は、インバータ50、エンジン電子制御ユニット(以下、エンジンECUと称す)40を制御する。エンジンECU40は、エンジン60を制御する。また、電池電子制御ユニット(以下、電池ECU)20は、充電状態推定装置としても機能し、二次電池30から、電池電圧V、充放電電流I、電池温度Tなどの情報を受けて、二次電池30のSOCを推定する。また、電池ECU20は、二次電池30のSOCや電池温度などの電池情報を車両ECU10に送信する。車両ECU10は、各種電池情報に基づいてエンジンECU40やインバータ50等を制御することで、二次電池30の充放電を制御する。   FIG. 1 is a diagram illustrating a schematic configuration of a hybrid electric vehicle according to the present embodiment. In FIG. 1, a vehicle ECU 10 controls an inverter 50 and an engine electronic control unit (hereinafter referred to as engine ECU) 40. The engine ECU 40 controls the engine 60. The battery electronic control unit (hereinafter referred to as battery ECU) 20 also functions as a charge state estimation device, receives information such as the battery voltage V, charge / discharge current I, and battery temperature T from the secondary battery 30 and The SOC of the secondary battery 30 is estimated. Further, the battery ECU 20 transmits battery information such as the SOC and battery temperature of the secondary battery 30 to the vehicle ECU 10. The vehicle ECU 10 controls charging / discharging of the secondary battery 30 by controlling the engine ECU 40, the inverter 50, and the like based on various battery information.

二次電池30は、モータ52に電力を供給する。インバータ50は、二次電池30の放電時に、二次電池30から供給される直流電力を交流電力に変換し、モータ52に交流電力を供給する。   The secondary battery 30 supplies power to the motor 52. The inverter 50 converts the DC power supplied from the secondary battery 30 into AC power and supplies the AC power to the motor 52 when the secondary battery 30 is discharged.

エンジン60は、動力分割機構42、減速機44およびドライブシャフト46を介して車輪に動力を伝達している。モータ52は、減速機44およびドライブシャフト46を介して車輪に動力を伝達している。二次電池30に充電が必要な場合は、エンジン60の動力の一部が動力分割機構42を介して発電機54に供給され、充電に利用される。   The engine 60 transmits power to the wheels via the power split mechanism 42, the speed reducer 44, and the drive shaft 46. The motor 52 transmits power to the wheels via the speed reducer 44 and the drive shaft 46. When the secondary battery 30 needs to be charged, a part of the power of the engine 60 is supplied to the generator 54 via the power split mechanism 42 and used for charging.

車両ECU10は、エンジンECU40からのエンジン60の運転状態の情報や、アクセルペダルの操作量、ブレーキペダルの操作量、シフトレバーで設定されるシフトレンジ等の運転情報や、電池ECU20からのSOCなどの各種電池情報に基づいて、エンジンECU40やインバータ50に制御命令を出力し、エンジン60やモータ52を駆動させる。   The vehicle ECU 10 includes information on the operating state of the engine 60 from the engine ECU 40, operating information such as an accelerator pedal operation amount, a brake pedal operation amount, a shift range set by a shift lever, SOC from the battery ECU 20, and the like. Based on various battery information, a control command is output to engine ECU40 or inverter 50, and engine 60 and motor 52 are driven.

二次電池30は、図2に示すように、電池ブロックB1〜B20を直列に接続して構成される。電池ブロックB1〜B20は、電池ケース32に収容されている。また、電池ブロックB1〜B20はそれぞれ、2個の電池モジュールを電気的に直列接続して構成されており、更に、各電池モジュールは、6個の単電池を電気的に直列に接続して構成されている。各単電池としては、ニッケル水素電池やリチウムイオン電池等を用いることができる。本実施形態では、ニッケル水素電池を用いた場合について説明する。なお、電池ブロック、電池モジュール、単電池の数は特に限定されるものではない。二次電池30の構成も上記した例に限定されるものではない。   As shown in FIG. 2, the secondary battery 30 is configured by connecting battery blocks B1 to B20 in series. Battery blocks B <b> 1 to B <b> 20 are accommodated in a battery case 32. Each of the battery blocks B1 to B20 is configured by electrically connecting two battery modules in series. Further, each battery module is configured by electrically connecting six unit cells in series. Has been. As each single battery, a nickel metal hydride battery, a lithium ion battery, or the like can be used. In this embodiment, a case where a nickel metal hydride battery is used will be described. In addition, the number of battery blocks, battery modules, and single cells is not particularly limited. The configuration of the secondary battery 30 is not limited to the above example.

さらに、電池ケース32内には、複数の温度センサ34が配置されている。複数の温度センサ34の配置は、比較的温度が近い複数の電池ブロックを1つのグループとして、あるいはいずれの電池ブロックとも比較的温度差がある1つの電池ブロックを1つのグループとして、グループごとに1つの温度センサ34を配置することによって行われている。また、グループ分けは、事前の実験等によって各電池ブロックの温度を測定することによって行われている。本実施形態では、M(Mは整数)個の温度センサ34を備えるものとし、各温度センサ34が測定した温度をそれぞれ温度T(1)〜温度T(M)と表現する。   Further, a plurality of temperature sensors 34 are arranged in the battery case 32. The plurality of temperature sensors 34 are arranged so that a plurality of battery blocks having relatively close temperatures are grouped as one group, or one battery block having a relatively different temperature from any of the battery blocks is grouped as one group. This is done by arranging two temperature sensors 34. The grouping is performed by measuring the temperature of each battery block by a prior experiment or the like. In the present embodiment, M (M is an integer) number of temperature sensors 34 are provided, and the temperatures measured by the temperature sensors 34 are expressed as temperatures T (1) to T (M), respectively.

図2において、電圧測定部22は、二次電池30の端子電圧を測定する。本実施形態では、電圧測定部22は、電池ブロックB1〜B20それぞれの端子電圧Vb(1)〜Vb(20)を測定する。電圧測定部22は、端子電圧Vb(1)〜Vb(20)を特定する電圧データを生成し、これらを制御部26に出力する。制御部26への電圧データの出力は、予め設定された周期(例えば、100ms)で行われ、制御部26は、電圧データを記憶部28に格納する。制御部26は、記憶部28に格納された電圧データに示される端子電圧Vb(1)〜Vb(20)を合計することで、電池電圧Vを算出する。   In FIG. 2, the voltage measurement unit 22 measures the terminal voltage of the secondary battery 30. In the present embodiment, the voltage measurement unit 22 measures the terminal voltages Vb (1) to Vb (20) of the battery blocks B1 to B20. The voltage measuring unit 22 generates voltage data specifying the terminal voltages Vb (1) to Vb (20) and outputs them to the control unit 26. The output of the voltage data to the control unit 26 is performed at a preset period (for example, 100 ms), and the control unit 26 stores the voltage data in the storage unit 28. The control unit 26 calculates the battery voltage V by totaling the terminal voltages Vb (1) to Vb (20) indicated in the voltage data stored in the storage unit 28.

電流測定部23は、二次電池30の充放電時における充放電電流Iを測定する。本実施形態では、電流測定部23は、電流センサ35が出力したアナログ信号をデジタル信号に変換し、これに基づいて充電時に二次電池30に入力された電流と、放電時に二次電池30から出力された電流とを特定する電流データを生成し、これを制御部26に出力する。また、電流測定部23は、例えば充電時をマイナス、放電時をプラスとして電流データを生成する。電流測定部23による制御部26への電流データも、予め設定された周期(例えば、100ms)で行われ、制御部26は電流データも記憶部28に格納する。   The current measuring unit 23 measures the charge / discharge current I when the secondary battery 30 is charged / discharged. In the present embodiment, the current measuring unit 23 converts the analog signal output from the current sensor 35 into a digital signal, and based on this, the current input to the secondary battery 30 during charging, and the secondary battery 30 during discharging. Current data for specifying the output current is generated and output to the control unit 26. In addition, the current measurement unit 23 generates current data, for example, when charging is negative and when discharging is positive. Current data from the current measurement unit 23 to the control unit 26 is also performed at a preset period (for example, 100 ms), and the control unit 26 also stores the current data in the storage unit 28.

温度測定部24は、二次電池30の電池温度を測定する。本実施形態では、グループごとに設定された各温度センサ34が出力するアナログ信号をデジタル信号に変換し、これに基づいてグループごとの電池温度を特定する温度データを生成し、これを制御部26に出力する。温度測定部24による制御部26への温度データの出力も、予め設定された周期(例えば、100ms)で行われ、制御部26は温度データも記憶部28に格納する。制御部26は、例えば、記憶部28に格納された温度データに示される温度T(1)〜温度T(M)の平均値を求めることで、電池温度Tを求める。   The temperature measurement unit 24 measures the battery temperature of the secondary battery 30. In the present embodiment, the analog signal output from each temperature sensor 34 set for each group is converted into a digital signal, and based on this, temperature data for specifying the battery temperature for each group is generated, and this is used as the control unit 26. Output to. The output of the temperature data to the control unit 26 by the temperature measurement unit 24 is also performed at a preset period (for example, 100 ms), and the control unit 26 also stores the temperature data in the storage unit 28. For example, the control unit 26 obtains the battery temperature T by obtaining an average value of the temperatures T (1) to T (M) indicated in the temperature data stored in the storage unit 28.

制御部26は、電池電圧V、充放電電流I、電池温度Tなどに基づいて二次電池30の充電状態((以下、SOC(State Of Charge)と称す)を推定する。本実施形態では、以下のような方法でSOCの推定を行う。すなわち、無負荷電圧算出部261が所定期間D(例えば、60[秒])における電池電圧Vと充放電電流Iとのペアデータを記憶部28から複数個取得して、そのペアデータから、回帰分析により1次の近似直線(電圧V−電流I近似直線)を求め、V−I近似直線のV切片を基準電圧V0(無負荷電圧)として求める。次に、分極電圧算出部262が所定期間(例えば、60秒)における積算容量の変化量に基づいて分極電圧Vbusを算出し、起電力算出部263が、上記の基準電圧V0から分極電圧Vbusを減算して起電力Vkを求める。次に、充電状態推定部264が予め用意された図3に示すような起電力VkとSOCとの関係を示す複数の起電力−SOC関係情報の中から、電池温度Tに対応する関係情報を選択し、選択された当該関係情報を参照して、求められた起電力VkからSOCを推定する。   The control unit 26 estimates the state of charge of the secondary battery 30 (hereinafter referred to as SOC (State Of Charge)) based on the battery voltage V, the charge / discharge current I, the battery temperature T, etc. In the present embodiment, The SOC is estimated by the following method: That is, the no-load voltage calculation unit 261 obtains the pair data of the battery voltage V and the charge / discharge current I in the predetermined period D (for example, 60 [seconds]) from the storage unit 28. A plurality of data are obtained, and a first-order approximation line (voltage V-current I approximation line) is obtained from the pair data by regression analysis, and the V-intercept of the V-I approximation line is obtained as a reference voltage V0 (no load voltage). Next, the polarization voltage calculation unit 262 calculates the polarization voltage Vbus based on the amount of change in the accumulated capacity during a predetermined period (for example, 60 seconds), and the electromotive force calculation unit 263 calculates the polarization voltage Vbus from the reference voltage V0. Subtract Next, the battery state T is calculated from the plurality of electromotive force-SOC relationship information indicating the relationship between the electromotive force Vk and the SOC as shown in FIG. Corresponding relationship information is selected, and the SOC is estimated from the obtained electromotive force Vk with reference to the selected relationship information.

ところで、二次電池20は充放電を繰り返すと、いわゆるメモリ効果により充電時には電圧上昇を引き起こし、放電時には電圧降下を引き起こす。例えば、SOCの使用範囲が比較的広く、SOCを例えば20%〜80%まで許容して二次電池30の充放電を行う場合、図4に示すように、メモリ効果による電圧上昇および電圧降下がSOCの広範囲に亘って現れる。このような現象は、例えばハイブリッド電気自動車が長距離に亘って上り坂や下り坂を走行し続ける場合に起こりやすい。このようなメモリ効果による影響を考慮せずに、上記のように求めた基準電圧V0から起電力Vkを算出し、図3に示すような起電力−SOC関係情報を参照して起電力VkからSOCを推定すると、推定されるSOCの精度が低下する場合がある。   By the way, when the secondary battery 20 is repeatedly charged and discharged, the so-called memory effect causes a voltage rise during charging and a voltage drop during discharging. For example, when the SOC is used in a relatively wide range and the SOC is charged / discharged while allowing the SOC to 20% to 80%, for example, as shown in FIG. Appears over a wide range of SOCs. Such a phenomenon is likely to occur when, for example, a hybrid electric vehicle continues to travel uphill or downhill for a long distance. Without considering the influence of the memory effect, the electromotive force Vk is calculated from the reference voltage V0 obtained as described above, and from the electromotive force Vk with reference to the electromotive force-SOC relationship information as shown in FIG. When the SOC is estimated, the accuracy of the estimated SOC may decrease.

そこで、本実施形態では、充電状態推定部264が起電力−SOC関係情報を参照して起電力VkからSOCを推定する前に、無負荷電圧補正部265が基準電圧V0に対してメモリ効果による電圧降下もしくは電圧上昇に応じた補正を行う。このような補正を行うことで、SOCの使用範囲が比較的広く、SOCを例えば20%〜80%まで許容して二次電池30の充放電を行う場合でも、推定されるSOCの精度の低下を招くことを防ぐ。   Therefore, in this embodiment, before the charge state estimation unit 264 estimates the SOC from the electromotive force Vk with reference to the electromotive force-SOC relationship information, the no-load voltage correction unit 265 uses the memory effect with respect to the reference voltage V0. Perform correction according to voltage drop or voltage rise. By performing such correction, the SOC usage range is relatively wide, and even when charging / discharging the secondary battery 30 while allowing the SOC to 20% to 80%, for example, the estimated accuracy of the SOC is reduced. Prevent inviting.

以下、図5を参照して、本実施形態において、電池ECU20がSOCを推定する手順について説明する。   Hereinafter, the procedure in which the battery ECU 20 estimates the SOC in the present embodiment will be described with reference to FIG.

まず、電池ECU20は、上記の通り、所定期間Dにおいて測定された電池電圧Vと充放電電流Iとの複数のペアデータに基づいて、基準電圧V0を算出する(S100)。次いで、電池ECU20は、所定期間Dに測定された充放電電流Iを記憶部28から取得して、取得した複数の充放電電流Iを積算充放電電気量算出部266において合計することで積算充放電電気量Cを算出する。上記の通り、記憶部28には、充電時をマイナス、放電時をプラスとして充放電電流Iが記憶される。よって、所定期間Dにおいて二次電池30への充電の割合が多ければ、積算充放電電気量Cは、マイナスとなり、逆に二次電池30からの放電の割合が多ければ、積算充放電電気量Cは、プラスになる。   First, the battery ECU 20 calculates the reference voltage V0 based on a plurality of pair data of the battery voltage V and the charge / discharge current I measured in the predetermined period D as described above (S100). Next, the battery ECU 20 acquires the charging / discharging current I measured during the predetermined period D from the storage unit 28, and sums the acquired charging / discharging currents I in the integrated charging / discharging electric quantity calculation unit 266. A discharge electricity amount C is calculated. As described above, the storage unit 28 stores the charging / discharging current I with the charging time being negative and the discharging time being positive. Therefore, if the charge rate to the secondary battery 30 is large in the predetermined period D, the cumulative charge / discharge electricity amount C becomes negative, and conversely if the charge rate from the secondary battery 30 is large, the cumulative charge / discharge electricity amount. C becomes positive.

そこで、電池ECU20は、積算充放電電気量Cがゼロより大きい場合には、放電の割合が多いと判断して(ステップS104の判定結果が、肯定「Y」)、基準電圧V0に対してメモリ効果による電圧降下を補うように補正を行う(S106)。より具体的には、電池ECU20は、記憶部28に記憶された電流データを用いて、二次電池30が今までに放電した放電電流を合計することで総電気量(以下、総放電電気量と称す)を算出する。次いで、電池ECU20は、記憶部28に予め記憶された図6Aに示すような放電側の補正マップを参照して、総放電電気量に対応する電圧補正量(ゼロ以下の値)を決定し、その電圧補正量に基づいて基準電圧V0を補正する。具体的には、図4に示すメモリ効果による影響を受けた放電側の基準電圧線の基準電圧V0から電圧補正量(ゼロ以下の値)を減算する。なお、図6Aでは、電圧補正量を決定するためのパラメータとしては、総放電電気量を用いたが、メモリ効果による電圧降下に対応して変化する二次電池の充放電状況を表す物理量であれば他の物理量を用いてもよい。他の物理量としては、例えば、ハイブリッド電気自動車の総走行距離や、二次電池30の総充放電期間などが挙げられる。なお、補正マップは、予め実験などを行うことにより、メモリ効果による電圧降下と総放電電気量との関係を求めて作成する。図6Bに示す充電側の補正マップについても同様である。   Therefore, when the accumulated charge / discharge electricity amount C is greater than zero, the battery ECU 20 determines that the discharge rate is large (the determination result of step S104 is affirmative “Y”), and the memory is stored with respect to the reference voltage V0. Correction is performed to compensate for the voltage drop due to the effect (S106). More specifically, the battery ECU 20 uses the current data stored in the storage unit 28 to sum up the discharge currents that have been discharged by the secondary battery 30 so far, thereby calculating the total amount of electricity (hereinafter referred to as the total amount of discharged electricity). Calculated). Next, the battery ECU 20 determines a voltage correction amount (a value equal to or less than zero) corresponding to the total discharge electricity amount with reference to the discharge-side correction map as shown in FIG. The reference voltage V0 is corrected based on the voltage correction amount. Specifically, the voltage correction amount (a value less than or equal to zero) is subtracted from the reference voltage V0 of the discharge-side reference voltage line affected by the memory effect shown in FIG. In FIG. 6A, the total discharge electricity amount is used as a parameter for determining the voltage correction amount. However, it may be a physical amount representing the charge / discharge state of the secondary battery that changes corresponding to the voltage drop due to the memory effect. Other physical quantities may be used. Examples of other physical quantities include the total travel distance of the hybrid electric vehicle and the total charge / discharge period of the secondary battery 30. The correction map is created by obtaining the relationship between the voltage drop due to the memory effect and the total amount of discharge electricity by conducting an experiment or the like in advance. The same applies to the correction map on the charging side shown in FIG. 6B.

一方、電池ECU20は、積算充放電電気量Cがゼロ以下の場合には、充電の割合が多いと判断して(ステップS104の判定結果が、否定「N」)、基準電圧V0に対してメモリ効果による電圧上昇を補うように補正を行う(S108)。より具体的には、電池ECU20は、記憶部28に予め記憶された図6Bに示すような充電側の補正マップを参照して、総放電電気量に対応する電圧補正量(ゼロ以上の値)を決定し、その電圧補正量に基づいて基準電圧V0を補正する。具体的には、図4に示すメモリ効果による影響を受けた充電側の基準電圧線の基準電圧V0から電圧補正量(ゼロ以上の値)を減算する。   On the other hand, the battery ECU 20 determines that the charging rate is high when the accumulated charge / discharge electricity amount C is equal to or less than zero (the determination result of step S104 is negative “N”), and the memory is stored with respect to the reference voltage V0. Correction is performed to compensate for the voltage increase due to the effect (S108). More specifically, the battery ECU 20 refers to a correction map on the charging side as shown in FIG. 6B stored in advance in the storage unit 28, and a voltage correction amount (a value equal to or greater than zero) corresponding to the total discharge electricity amount. And the reference voltage V0 is corrected based on the voltage correction amount. Specifically, the voltage correction amount (a value equal to or greater than zero) is subtracted from the reference voltage V0 of the charging-side reference voltage line affected by the memory effect shown in FIG.

上記の通り、電池ECU20は、所定期間Dにおける二次電池30の充放電状況に応じて、放電側の補正マップもしくは充電側の補正マップを参照して、電圧補正量を決定し、その電圧補正量を用いて基準電圧V0を補正する。次に補正した基準電圧V0から分極電圧Vbusを減算して起電力Vkを求める。その後、電池ECU20は、図3に示すような起電力−SOC関係情報を参照して、起電力に対応するSOCを推定する。よって、本実施形態によれば、SOCを例えば20%〜80%まで許容して二次電池30の充放電を行う場合でも、推定されるSOCの精度の低下を招くことを防ぐことができる。また、本実施形態によれば、例えばハイブリッド電気自動車が長距離に亘って上り坂や下り坂を走行し続ける場合でも、推定されるSOCの精度の低下を招くことを防ぐことができる。   As described above, the battery ECU 20 determines the voltage correction amount with reference to the discharge-side correction map or the charge-side correction map in accordance with the charge / discharge status of the secondary battery 30 in the predetermined period D, and the voltage correction. The reference voltage V0 is corrected using the quantity. Next, the electromotive force Vk is obtained by subtracting the polarization voltage Vbus from the corrected reference voltage V0. Thereafter, the battery ECU 20 estimates the SOC corresponding to the electromotive force with reference to the electromotive force-SOC relation information as shown in FIG. Therefore, according to this embodiment, even when SOC is allowed to 20% to 80%, for example, and charging / discharging of the secondary battery 30 is performed, it is possible to prevent a decrease in estimated SOC accuracy. Further, according to the present embodiment, for example, even when the hybrid electric vehicle continues to travel uphill or downhill for a long distance, it is possible to prevent the estimated SOC from being degraded.

なお、上記の実施形態では、放電側の補正マップおよび充電側の補正マップはそれぞれ1つずつ用意されている場合を説明したが、電池温度TやSOCに応じて電池ECU20が参照する補正マップを変更してもよい。   In the above-described embodiment, a case has been described in which one discharge-side correction map and one charge-side correction map are prepared. However, the correction map referred to by the battery ECU 20 according to the battery temperature T and SOC is described. It may be changed.

なお、上記では、電池ECU20は、マイクロコンピュータに図5に示す各種処理を具現化させるプログラムをインストールし、このプログラムを実行することによって実現することができる。   In the above description, the battery ECU 20 can be realized by installing a program for implementing various processes shown in FIG. 5 in the microcomputer and executing the program.

すなわち、マイクロコンピュータはCPU、ROM、RAM、EEPROM等の各種メモリ、通信バス及びインタフェースを有し、予めファームウェアとしてROMに格納された処理プログラムを読み出してCPUが順次実行する。基準電圧−SOC関係情報や補正マップは予めメモリに記憶されており、CPUはインタフェースを介して各種センサから入力しメモリに記憶された電池電圧Vや充放電電流Iなどに基づいて基準電圧V0を算出し、さらに、補正マップを参照して、基準電圧V0に対する電圧補正量を決定し、その電圧補正量に基づいて基準電圧V0を補正した後、基準電圧V0から分極電圧を減算して起電力を算出する。次いで、起電力−SOC関係情報を参照して起電力に基づいて二次電池の充電状態を推定する。   That is, the microcomputer has various memories such as a CPU, ROM, RAM, and EEPROM, a communication bus, and an interface. The processing program stored in the ROM as firmware in advance is read out and sequentially executed by the CPU. The reference voltage-SOC relation information and the correction map are stored in the memory in advance, and the CPU inputs the reference voltage V0 based on the battery voltage V, the charge / discharge current I, etc. input from various sensors via the interface and stored in the memory. Further, referring to the correction map, the voltage correction amount for the reference voltage V0 is determined, the reference voltage V0 is corrected based on the voltage correction amount, and then the polarization voltage is subtracted from the reference voltage V0. Is calculated. Next, the state of charge of the secondary battery is estimated based on the electromotive force with reference to the electromotive force-SOC relationship information.

本実施形態に係るハイブリッド電気自動車の概略構成を示す図である。It is a figure which shows schematic structure of the hybrid electric vehicle which concerns on this embodiment. 二次電池と電池ECUについて説明するための機能ブロックを示す図である。It is a figure which shows the functional block for demonstrating a secondary battery and battery ECU. 電池ECUが二次電池の充電状態を推定する際に参照する起電力−SOC関係情報の一例を示す図である。It is a figure which shows an example of the electromotive force-SOC relationship information referred when battery ECU estimates the charge condition of a secondary battery. メモリ効果による電圧上昇もしくは電圧降下とSOCとの関係を説明するための基準電圧−SOC関係情報の一例を示す図である。It is a figure which shows an example of the reference voltage-SOC relationship information for demonstrating the relationship between the voltage rise or voltage drop by a memory effect, and SOC. 電池ECUが二次電池の充電状態を推定する手順を示すフローチャートである。It is a flowchart which shows the procedure in which battery ECU estimates the charge condition of a secondary battery. 電池ECUが放電側の電圧補正量を決定する際に参照する補正マップの一例を示す図である。It is a figure which shows an example of the correction map referred when battery ECU determines the voltage correction amount by the side of discharge. 電池ECUが充電側の電圧補正量を決定する際に参照する補正マップの一例を示す図である。It is a figure which shows an example of the correction map referred when battery ECU determines the voltage correction amount by the side of charge. メモリ効果による電圧上昇もしくは電圧降下とSOCとの関係を説明するための基準電圧−SOC関係情報の一例を示す図である。It is a figure which shows an example of the reference voltage-SOC relationship information for demonstrating the relationship between the voltage rise or voltage drop by a memory effect, and SOC.

符号の説明Explanation of symbols

10 車両ECU、20 電池ECU、30 二次電池、40 エンジンECU、42 動力分割機構、44 減速機、46 ドライブシャフト、50 インバータ、52 モータ、54 発電機、60 エンジン。   DESCRIPTION OF SYMBOLS 10 Vehicle ECU, 20 Battery ECU, 30 Secondary battery, 40 Engine ECU, 42 Power split mechanism, 44 Reducer, 46 Drive shaft, 50 Inverter, 52 Motor, 54 Generator, 60 Engine

Claims (8)

少なくとも二次電池の電池電圧と充放電電流とに基づいて前記二次電池の無負荷電圧を算出する無負荷電圧算出部と、
前記二次電池の充電状態が50%より小さい下限閾値から50%より大きい上限閾値までの範囲において、前記二次電池の放電に伴うメモリ効果による電圧降下分もしくは前記二次電池の充電に伴うメモリ効果による電圧上昇分を表す補正値に基づく前記無負荷電圧の補正を行う無負荷電圧補正部と、
前記無負荷電圧補正部で算出された無負荷電圧に基づいて起電力を算出する起電力算出部と、
前記起電力算出部で算出された起電力と充電状態との関係を示す関係情報を参照して、前記起電力に基づく前記二次電池の充電状態を推定する充電状態推定部と、
を備えることを特徴とする充電状態推定装置。
A no-load voltage calculator that calculates a no-load voltage of the secondary battery based on at least the battery voltage and the charge / discharge current of the secondary battery;
A voltage drop due to a memory effect accompanying discharge of the secondary battery or a memory accompanying charging of the secondary battery in a range from a lower limit threshold value less than 50% to an upper limit threshold value greater than 50%. A no-load voltage correction unit that corrects the no-load voltage based on a correction value representing a voltage increase due to an effect;
An electromotive force calculation unit that calculates an electromotive force based on the no-load voltage calculated by the no-load voltage correction unit;
A charge state estimation unit that estimates a charge state of the secondary battery based on the electromotive force with reference to relationship information indicating a relationship between the electromotive force and the charge state calculated by the electromotive force calculation unit;
A charging state estimation device comprising:
請求項1に記載の充電状態推定装置において、
前記無負荷電圧補正部は、
前記二次電池の充電状態が50%より大きい範囲において、前記二次電池の放電に伴うメモリ効果による電圧降下分を表す補正値に基づいて前記無負荷電圧を補正することを特徴とする充電状態推定装置。
In the charging state estimation device according to claim 1,
The no-load voltage correction unit is
The state of charge of the secondary battery corrects the no-load voltage based on a correction value representing a voltage drop due to a memory effect accompanying discharge of the secondary battery in a range where the state of charge is greater than 50%. Estimating device.
請求項1に記載の充電状態推定装置において、
前記無負荷電圧補正部は、
前記二次電池の充電状態が50%より小さい範囲において、前記二次電池の充電状態に伴うメモリ効果による電圧上昇分を表す補正値に基づいて前記無負荷電圧を補正することを特徴とする充電状態推定装置。
In the charging state estimation device according to claim 1,
The no-load voltage correction unit is
Charging wherein the no-load voltage is corrected based on a correction value representing a voltage increase due to a memory effect associated with the charging state of the secondary battery in a range where the charging state of the secondary battery is less than 50% State estimation device.
少なくとも二次電池の電池電圧と充放電電流とに基づいて前記二次電池の無負荷電圧を算出する無負荷電圧算出部と、
前記二次電池の充電状態が50%より大きい範囲において、前記二次電池の放電に伴うメモリ効果による電圧降下分を表す補正値に基づいて前記無負荷電圧を補正し、前記二次電池の充電状態が50%より小さい範囲において、前記二次電池の充電状態に伴うメモリ効果による電圧上昇分を表す補正値に基づいて前記無負荷電圧を補正する無負荷電圧補正部と、
前記無負荷電圧補正部で算出された無負荷電圧に基づいて起電力を算出する起電力算出部と、
前記起電力算出部で算出された起電力と充電状態との関係を示す関係情報を参照して、前記起電力に基づく前記二次電池の充電状態を推定する充電状態推定部と、
を備えることを特徴とする充電状態推定装置。
A no-load voltage calculator that calculates a no-load voltage of the secondary battery based on at least the battery voltage and the charge / discharge current of the secondary battery;
In the range where the charge state of the secondary battery is greater than 50%, the no-load voltage is corrected based on a correction value representing a voltage drop due to the memory effect accompanying the discharge of the secondary battery, and the secondary battery is charged A no-load voltage correction unit that corrects the no-load voltage based on a correction value representing a voltage increase due to a memory effect associated with a charged state of the secondary battery in a range where the state is less than 50%;
An electromotive force calculation unit that calculates an electromotive force based on the no-load voltage calculated by the no-load voltage correction unit;
A charge state estimation unit that estimates a charge state of the secondary battery based on the electromotive force with reference to relationship information indicating a relationship between the electromotive force and the charge state calculated by the electromotive force calculation unit;
A charging state estimation device comprising:
請求項1乃至4のいずれか1つに記載の充電状態推定装置において、
さらに、所定期間に亘り充放電電流を積算する積算充放電電気量算出部を備え、
前記無負荷電圧補正部は、
所定期間における前記二次電池の放電電気量と充電電気量との割合に基づいて、放電電気量の割合が多い場合には、電圧降下分を表す補正値を用いて前記無負荷電圧を補正し、充電電気量の割合が多い場合には、電圧上昇分を表す補正値を用いて前記無負荷電圧を補正する、
ことを特徴する充電状態推定装置。
In the charging state estimation device according to any one of claims 1 to 4,
Furthermore, an integrated charge / discharge electricity amount calculation unit that integrates charge / discharge current over a predetermined period is provided,
The no-load voltage correction unit is
Based on the ratio between the amount of discharged electricity and the amount of charged electricity of the secondary battery in a predetermined period, when the ratio of the amount of discharged electricity is large, the no-load voltage is corrected using a correction value representing a voltage drop. When the ratio of the amount of charged electricity is large, the no-load voltage is corrected using a correction value representing the voltage increase.
The charge state estimation apparatus characterized by the above-mentioned.
請求項1乃至5のいずれか1つに記載の充電状態推定装置において、
前記無負荷電圧補正部は、
前記二次電池の充放電状況を表す物理量とメモリ効果による電圧降下分もしくは電圧上昇分を表す補正値との関係を示す補正マップを参照して、前記無負荷電圧を補正する際に用いる電圧降下分もしくは電圧上昇分の補正値を決定する、
ことを特徴とする充電状態推定装置。
In the charging state estimation device according to any one of claims 1 to 5,
The no-load voltage correction unit is
Voltage drop used when correcting the no-load voltage with reference to a correction map showing a relationship between a physical quantity representing the charge / discharge status of the secondary battery and a correction value representing a voltage drop or voltage rise due to the memory effect Determine the correction value for the minute or voltage rise,
The charge state estimation apparatus characterized by the above-mentioned.
二次電池の充電状態を推定する充電状態推定方法であって、
少なくとも前記二次電池の電池電圧と充放電電流とに基づいて前記二次電池の無負荷電圧を算出する工程と、
前記二次電池の充電状態が50%より小さい下限閾値から50%より大きい上限閾値までの範囲において、前記二次電池の放電に伴うメモリ効果による電圧降下分もしくは前記二次電池の充電に伴うメモリ効果による電圧上昇分を表す補正値に基づく前記無負荷電圧の補正を行う無負荷電圧補正工程と、
前記無負荷電圧補正工程で算出された無負荷電圧に基づいて起電力を算出する起電力算出工程と、
前記起電力算出工程で算出された起電力と充電状態との関係を示す関係情報を参照して、前記起電力に基づく前記二次電池の充電状態を推定する工程と、
を含むことを特徴とする充電状態推定方法。
A charging state estimation method for estimating a charging state of a secondary battery,
Calculating a no-load voltage of the secondary battery based on at least a battery voltage and a charge / discharge current of the secondary battery;
A voltage drop due to a memory effect accompanying discharge of the secondary battery or a memory accompanying charging of the secondary battery in a range from a lower limit threshold value less than 50% to an upper limit threshold value greater than 50%. A no-load voltage correction step for correcting the no-load voltage based on a correction value representing a voltage increase due to the effect;
An electromotive force calculation step of calculating an electromotive force based on the no-load voltage calculated in the no-load voltage correction step;
A step of estimating a charge state of the secondary battery based on the electromotive force with reference to relationship information indicating a relationship between the electromotive force and the charge state calculated in the electromotive force calculation step;
The charging state estimation method characterized by including.
二次電池の充電状態を推定する充電状態推定方法をコンピュータに実行させるためのプログラムであって、
前記二次電池の充電状態が50%より小さい下限閾値から50%より大きい上限閾値までの範囲において、前記二次電池の放電に伴うメモリ効果による電圧降下分もしくは前記二次電池の充電に伴うメモリ効果による電圧上昇分を表す補正値に基づく前記無負荷電圧の補正を行う無負荷電圧補正ステップと、
前記無負荷電圧補正ステップで算出された無負荷電圧に基づいて起電力を算出する起電力算出ステップと、
前記起電力算出ステップで算出された起電力と充電状態との関係を示す関係情報を参照して、前記起電力に基づく前記二次電池の充電状態を推定する充電状態推定ステップと、
を前記コンピュータに実行させるためのプログラム。
A program for causing a computer to execute a charging state estimation method for estimating a charging state of a secondary battery,
A voltage drop due to a memory effect accompanying discharge of the secondary battery or a memory accompanying charging of the secondary battery in a range from a lower limit threshold value less than 50% to an upper limit threshold value greater than 50%. A no-load voltage correction step for correcting the no-load voltage based on a correction value representing a voltage increase due to the effect;
An electromotive force calculation step for calculating an electromotive force based on the no-load voltage calculated in the no-load voltage correction step;
A charge state estimation step for estimating a charge state of the secondary battery based on the electromotive force with reference to relationship information indicating a relationship between the electromotive force and the charge state calculated in the electromotive force calculation step;
For causing the computer to execute.
JP2006163103A 2006-06-13 2006-06-13 Secondary battery charge state estimation device, charge state estimation method, and program Expired - Fee Related JP4866156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006163103A JP4866156B2 (en) 2006-06-13 2006-06-13 Secondary battery charge state estimation device, charge state estimation method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006163103A JP4866156B2 (en) 2006-06-13 2006-06-13 Secondary battery charge state estimation device, charge state estimation method, and program

Publications (2)

Publication Number Publication Date
JP2007333447A true JP2007333447A (en) 2007-12-27
JP4866156B2 JP4866156B2 (en) 2012-02-01

Family

ID=38933070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006163103A Expired - Fee Related JP4866156B2 (en) 2006-06-13 2006-06-13 Secondary battery charge state estimation device, charge state estimation method, and program

Country Status (1)

Country Link
JP (1) JP4866156B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013054939A (en) * 2011-09-05 2013-03-21 Toyota Motor Corp Battery system
JP2017112754A (en) * 2015-12-17 2017-06-22 プライムアースEvエナジー株式会社 Secondary battery control device, control method and control program
CN107492685A (en) * 2016-06-10 2017-12-19 丰田自动车株式会社 Battery system
JP2018087785A (en) * 2016-11-30 2018-06-07 トヨタ自動車株式会社 Battery system
JP2018087784A (en) * 2016-11-30 2018-06-07 トヨタ自動車株式会社 Battery system
JP2019008999A (en) * 2017-06-26 2019-01-17 トヨタ自動車株式会社 Secondary battery system
WO2023139921A1 (en) * 2022-01-21 2023-07-27 日本碍子株式会社 Battery control device and battery control method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013054939A (en) * 2011-09-05 2013-03-21 Toyota Motor Corp Battery system
JP2017112754A (en) * 2015-12-17 2017-06-22 プライムアースEvエナジー株式会社 Secondary battery control device, control method and control program
CN107492685A (en) * 2016-06-10 2017-12-19 丰田自动车株式会社 Battery system
EP3258283A1 (en) 2016-06-10 2017-12-20 Toyota Jidosha Kabushiki Kaisha Battery system with estimation of memory effect
CN107492685B (en) * 2016-06-10 2020-07-31 丰田自动车株式会社 Battery system
US11181583B2 (en) 2016-06-10 2021-11-23 Toyota Jidosha Kabushiki Kaisha Battery system
JP2018087785A (en) * 2016-11-30 2018-06-07 トヨタ自動車株式会社 Battery system
JP2018087784A (en) * 2016-11-30 2018-06-07 トヨタ自動車株式会社 Battery system
JP2019008999A (en) * 2017-06-26 2019-01-17 トヨタ自動車株式会社 Secondary battery system
WO2023139921A1 (en) * 2022-01-21 2023-07-27 日本碍子株式会社 Battery control device and battery control method

Also Published As

Publication number Publication date
JP4866156B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
US10553896B2 (en) Battery capacity degradation resolution methods and systems
JP5009721B2 (en) Secondary battery charge state estimation device and program
CN110549876B (en) Energy output control method and device and hydrogen fuel hybrid electric vehicle
JP4097183B2 (en) Secondary battery remaining capacity estimation method and apparatus, and battery pack system
EP1265335B1 (en) Method and apparatus for controlling residual battery capacity of secondary battery
US9475480B2 (en) Battery charge/discharge control device and hybrid vehicle using the same
JP5862836B2 (en) Battery system
JP4075762B2 (en) Apparatus and method for calculating remaining capacity in secondary battery
EP3214456B1 (en) Secondary battery state detection device and secondary battery state detection method
JP4786058B2 (en) Power storage device remaining capacity detection device
US8000915B2 (en) Method for estimating state of charge of a rechargeable battery
US20100017155A1 (en) Battery management system
JP4866156B2 (en) Secondary battery charge state estimation device, charge state estimation method, and program
EP2442126A2 (en) Battery management system and method of estimating battery state of charge
JP5704108B2 (en) Battery system and estimation method
JP2018185260A (en) Charge rate estimation method and onboard battery system
JP2005083970A (en) State sensing device and state detection method of secondary battery
US10557891B2 (en) Battery system and control method thereof
JP4810417B2 (en) Remaining capacity calculation device for power storage device
US20150158395A1 (en) Estimation and Compensation of Battery Measurement and Asynchronization Biases
US20220099745A1 (en) Method and Apparatus for Device-Specific Determination of an Internal-Resistance Based State of Health of a Battery
JP5090865B2 (en) Electromotive force calculation device and charging state estimation device
JP4874646B2 (en) Battery control device, electric vehicle, and secondary battery control method
CN115864559A (en) Method for charging battery
JP3744833B2 (en) Method for determining the life of secondary batteries for electric vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4866156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees