JP4954791B2 - Voltage prediction method for power storage devices - Google Patents

Voltage prediction method for power storage devices Download PDF

Info

Publication number
JP4954791B2
JP4954791B2 JP2007137556A JP2007137556A JP4954791B2 JP 4954791 B2 JP4954791 B2 JP 4954791B2 JP 2007137556 A JP2007137556 A JP 2007137556A JP 2007137556 A JP2007137556 A JP 2007137556A JP 4954791 B2 JP4954791 B2 JP 4954791B2
Authority
JP
Japan
Prior art keywords
voltage
current
storage device
time
electricity storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007137556A
Other languages
Japanese (ja)
Other versions
JP2008292272A (en
Inventor
静邦 矢田
久史 佐竹
嗣朗 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Original Assignee
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Research Institute KRI Inc filed Critical Kansai Research Institute KRI Inc
Priority to JP2007137556A priority Critical patent/JP4954791B2/en
Publication of JP2008292272A publication Critical patent/JP2008292272A/en
Application granted granted Critical
Publication of JP4954791B2 publication Critical patent/JP4954791B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、簡便で予測精度が高く、かつ、実用的であり、蓄電デバイスの充放電制御、残存容量予測等に用いることが可能な蓄電デバイスの電圧予測方法に関する。   The present invention relates to a voltage prediction method for an electricity storage device that is simple, has high prediction accuracy, is practical, and can be used for charge / discharge control of an electricity storage device, prediction of remaining capacity, and the like.

近年、最先端蓄電デバイスであるリチウムイオン電池、キャパシタのハイブリッド電気自動車に代表される大電流負荷用途蓄電システムに向けた開発が加速している。この開発において蓄電デバイスの出力特性向上、信頼性向上、安全性に関する検討に加え、蓄電デバイスの容量、内部抵抗等を監視し、蓄電デバイスの充放電制御、残存容量予測等を実施することも重要な課題として検討されている。蓄電デバイスの監視システムにおいて、蓄電デバイスの状態予測に関しては、例えば、ノート型パソコン等の残存容量(使用可能時間)予測、充電時間完了予測等があるが、数十分以上の比較的遅い充放電に関する予測であり、事前に取得された容量−電圧カーブ、充放電容量の積算データに基づき予測されている。一方、大電流負荷用途等においては、大電流負荷における蓄電デバイスの内部抵抗に起因する電圧変化(放電時:電圧降下、充電時:電圧上昇)を含めた電池電圧の予測が重要となる。すなわち、例えば、残存容量がある場合においても、蓄電デバイスの電池電圧が規定電圧以下あるいは以上になる場合、システムが要求する出力が得られなくなる、システムの効率が低下する、過放電、過充電による寿命低下等の問題が発生する場合がある。従って、特に、大電流負荷用途蓄電システムにおいて、今後起こるべき充電、あるいは、放電に対して、その電池電圧を簡便かつ精度良く予測する方法が求められている。
この電圧予測に関して重要となるのが、電流負荷時における蓄電デバイスの電圧変化を引き起こす内部抵抗の予測方法である。蓄電デバイスの内部抵抗検知方法においては、例えば、特許文献1に記載されている交流でインピーダンスを測定する方法、特許文献2に記載されているパルス電流を印加したときの電圧降下から内部抵抗を算出する方法、特許文献3に記載されている充電電流を中断したときの電圧降下から内部抵抗を算出する方法が知られている。特許文献4に記載されているように模擬負荷を印加し、すなわち、蓄電デバイスに直接電圧を印加し、実際にその電圧降下からバッテリーをチェックする方法も開示されている。また、非特許文献1には蓄電デバイスの直流内部抵抗評価法として電流休止法が提案され、その評価具体例が記載されている。この電流休止法とは、直流内部抵抗評価を電流休止時の電圧降下(充電時)、電圧上昇(放電時)挙動から求め、その1秒までの時間変化を直流内部抵抗のオーム成分、1秒以降の電圧変化を直流内部抵抗の平衡成分として解析する方法である。しかしながら、時間t後の蓄電デバイスの電圧予測への適用に関しては何ら記載されていない。
特開平9−134742号公報 特開2002−142379号公報 特開平7−240235号公報 特開2006−153819号公報 矢田静邦、「リチウムイオン電池・キャパシタの実践評価技術」、技術情報協会(2006年9月)
In recent years, development for high-current load-use power storage systems represented by lithium-ion batteries, which are the most advanced power storage devices, and hybrid electric vehicles with capacitors, has been accelerated. In this development, it is important to monitor the capacity, internal resistance, etc. of the storage device, perform charge / discharge control of the storage device, predict remaining capacity, etc. in addition to examining the output characteristics, reliability, and safety of the storage device. It is being considered as an important issue. In the storage device monitoring system, the state prediction of the storage device includes, for example, prediction of the remaining capacity (usable time) of a notebook computer, etc., and prediction of completion of the charging time. And is predicted based on the previously acquired capacity-voltage curve and charge / discharge capacity integration data. On the other hand, in a large current load application or the like, it is important to predict a battery voltage including a voltage change (during discharging: voltage drop, during charging: voltage rise) due to the internal resistance of the electricity storage device under a large current load. That is, for example, even when there is a remaining capacity, if the battery voltage of the electricity storage device is below or above the specified voltage, the output required by the system cannot be obtained, the efficiency of the system is reduced, overdischarge, overcharge Problems such as reduced life may occur. Accordingly, there is a need for a method for easily and accurately predicting the battery voltage for charging or discharging that should occur in the future, particularly in a power storage system for large current loads.
What is important regarding this voltage prediction is a method of predicting internal resistance that causes a voltage change of the electricity storage device at the time of current load. In the method for detecting the internal resistance of an electricity storage device, for example, the method of measuring impedance with an alternating current described in Patent Document 1, and the internal resistance is calculated from the voltage drop when a pulse current described in Patent Document 2 is applied. And a method of calculating the internal resistance from the voltage drop when the charging current described in Patent Document 3 is interrupted. As described in Patent Document 4, a method is also disclosed in which a simulated load is applied, that is, a voltage is directly applied to an electricity storage device, and a battery is actually checked from the voltage drop. Non-Patent Document 1 proposes a current pause method as a DC internal resistance evaluation method for an electricity storage device, and describes an example of the evaluation. With this current pause method, DC internal resistance is evaluated from the voltage drop (during charging) and voltage rise (during discharge) behavior during current pause, and the time change up to 1 second is the ohmic component of the DC internal resistance, 1 second. This is a method of analyzing the subsequent voltage change as an equilibrium component of the DC internal resistance. However, there is no description regarding application to the voltage prediction of the electricity storage device after time t.
JP-A-9-134742 JP 2002-142379 A Japanese Patent Laid-Open No. 7-240235 JP 2006-153819 A Shigekuni Yada, “Practical evaluation technology for lithium-ion batteries and capacitors”, Technical Information Association (September 2006)

蓄電システム、特に、大電流負荷用途蓄電システムにおいて、充電、あるいは、放電に対して時間t後の電池電圧を予測するためには、充電電流印加時、放電電流印加時における内部抵抗による電圧降下を考慮する必要がある。非特許文献1によれば、直流内部抵抗は時間とともに大きく変化し、特に、大電流負荷用途における秒オーダーの充放電において直流内部抵抗の時間依存性は大きく、また、この直流内部抵抗の時間変化は蓄電デバイスの種類、放電深度により異なることが示されている。従って、例えば、特許文献1〜3に記載されている方法で得られる内部抵抗データでは、精度良く時間t後の電池電圧を予測することが難しい。また、直接電圧を印加する方法では、たとえ、直流内部抵抗の時間のファクターを考慮したとしても、充放電にともなうOCV変化等が電圧情報に含まれることから、精度良く時間t後の電池電圧を予測するには煩雑な手順を含む必要がある。   In a power storage system, in particular, a large current load power storage system, in order to predict a battery voltage after time t with respect to charging or discharging, a voltage drop due to internal resistance at the time of charging current application or discharge current application It is necessary to consider. According to Non-Patent Document 1, the DC internal resistance changes greatly with time. In particular, the time dependency of the DC internal resistance is large in charge and discharge on the order of seconds in a large current load application. Are different depending on the type of storage device and the depth of discharge. Therefore, for example, with the internal resistance data obtained by the methods described in Patent Documents 1 to 3, it is difficult to accurately predict the battery voltage after time t. In addition, in the method of directly applying a voltage, even if the time factor of the DC internal resistance is taken into account, the voltage information includes the OCV change associated with charging / discharging, so the battery voltage after time t can be accurately calculated. Prediction requires complicated procedures.

本発明者は、上記の様な従来技術の問題点に留意しつつ、研究を進めた結果、電流休止から時間t後の電圧変化ΔVtより算出される電流休止法に基づく直流内部抵抗Rtを用いることにより、蓄電デバイスの時間t後の蓄電デバイスの電圧V(t)を簡便で精度良く予測する方法を見出し本発明に至った。   The present inventor has used the DC internal resistance Rt based on the current pause method calculated from the voltage change ΔVt after a time t from the current pause as a result of research while paying attention to the problems of the prior art as described above. Thus, a method for predicting the voltage V (t) of the electricity storage device after time t of the electricity storage device simply and accurately has been found and the present invention has been achieved.

請求項1に記載の蓄電デバイスの電圧予測方法は、蓄電デバイスの充電あるいは放電が 開始されてから時間t後の放電深度Q(t)における開路電圧V(t)、印加電流I(t)(ここでI(t)は、放電時には正の値、充電時には負の値をとる)とした時、その時の蓄電デバイスの電圧V(t)を、予め測定された電流休止から時間t後の電圧変化ΔVtより算出される電流休止法に基づく直流内部抵抗Rtを用い、V(t)=V(t)−I(t)×Rtより算出することを特徴とする。The voltage predicting method for the electricity storage device according to claim 1 is the open circuit voltage V 0 (t) and the applied current I (t) at the depth of discharge Q (t) after time t from the start of charging or discharging of the electricity storage device. (Here, I (t) takes a positive value at the time of discharging and a negative value at the time of charging), and the voltage V (t) of the electric storage device at that time is a time t after the current pause measured in advance. A direct current internal resistance Rt based on the current pause method calculated from the voltage change ΔVt is used, and V (t) = V 0 (t) −I (t) × Rt.

請求項2に記載の蓄電デバイスの電圧予測方法は、前記印加電流I(t)が10C以上の電流であることを特徴とする。   The method for predicting the voltage of the electricity storage device according to claim 2 is characterized in that the applied current I (t) is a current of 10 C or more.

請求項3に記載の蓄電デバイスの電圧予測方法は、前記放電深度Q(t)が0%を超え70%以下であることを特徴とする。   The voltage predicting method for an electricity storage device according to claim 3 is characterized in that the depth of discharge Q (t) is more than 0% and 70% or less.

請求項4に記載の蓄電デバイスの電圧予測方法は、前記時間tが60秒以下であることを特徴とする。   The voltage predicting method for an electricity storage device according to claim 4 is characterized in that the time t is 60 seconds or less.

上記請求項1〜4の構成によれば、蓄電デバイスの時間t後の蓄電デバイスの電圧V(t)を電流休止法に基づく直流内部抵抗Rtを用いることにより簡便で精度良く予測することが可能となる。   According to the configuration of the first to fourth aspects, the voltage V (t) of the power storage device after time t of the power storage device can be easily and accurately predicted by using the DC internal resistance Rt based on the current pause method. It becomes.

本発明の蓄電デバイスの電圧予測方法は、電流休止時における蓄電デバイスの時間に対する電圧変化から求める電流休止法に基づく直流内部抵抗Rtを用いることにより、簡便で予測精度が高く、かつ、実用的に、今後起こる充電、あるいは、放電に対して時間t後の電池電圧を予測可能であるという効果を奏する。   The method for predicting the voltage of the electricity storage device of the present invention is simple, high in prediction accuracy, and practically by using the DC internal resistance Rt based on the current pause method obtained from the voltage change with respect to the time of the electricity storage device during the current pause. The battery voltage after time t can be predicted with respect to charging or discharging that will occur in the future.

本発明の一実施形態について、説明すれば以下の通りである。
本発明の蓄電デバイスの電圧予測方法は、蓄電デバイスの充電あるいは放電が開始され てから時間t後の放電深度Q(t)における開路電圧V(t)、印加電流I(t)(ここでI(t)は、放電時には正の値、充電時には負の値をとる)とした時、その時の蓄電デバイスの電圧V(t)を、予め測定された電流休止から時間t後の電圧変化ΔVtより算出される電流休止法に基づく直流内部抵抗Rtを用い、V(t)=V(t)−I(t)×Rtより算出することを特徴とする。まず、本発明の電圧予測では基本データとして放電深度に対する開路電圧を用いる。開路電圧のデータは予め取得される、あるいは、取得されたデータから算出されるものであり、放電深度との関数として表される。開路電圧のデータは一定電流で放電あるいは充電しながら、適時電流を休止し、充分な休止後の電圧を測定するが、実用的には予測したい印加電流に対し充分に低い電流で充放電を実施し、その時の充放電電圧を開路電圧として近似することも可能である。ここで温度、劣化レベル等の放電深度と開路電圧の関係に影響を与える因子に関し、開路電圧の補正条件も予め設定することも可能である。更に、蓄電デバイス使用時に、予め取得した上記データを蓄電デバイスの経年劣化状況等に応じ補正することにより、高い精度で予測データを得ることが可能となる。蓄電デバイスの使用においては、常時電流が印加されていることはなく、開路電圧を測定するに充分な休止時間があることが一般的である。本発明では開路電圧を基本データとして使用することにより、上記蓄電デバイスの開路電圧の経年変化も容易に補正することが可能となり、結果として精度の高い電圧予測が可能となる。
An embodiment of the present invention will be described as follows.
The method for predicting the voltage of an electricity storage device according to the present invention includes an open circuit voltage V 0 (t) and an applied current I (t) at a discharge depth Q (t) after a time t from when charging or discharging of the electricity storage device starts. I (t) takes a positive value at the time of discharging and a negative value at the time of charging), and the voltage V (t) of the power storage device at that time is a voltage change ΔVt after a time t from the current pause measured in advance. Using the DC internal resistance Rt based on the current pause method calculated from the above, V (t) = V 0 (t) −I (t) × Rt. First, in the voltage prediction of the present invention, an open circuit voltage with respect to the depth of discharge is used as basic data. The open circuit voltage data is acquired in advance or calculated from the acquired data, and is expressed as a function of the depth of discharge. The open circuit voltage data is measured by measuring the voltage after a sufficient pause while discharging or charging at a constant current, but in practice, charging and discharging is performed at a sufficiently low current relative to the applied current that is to be predicted. The charge / discharge voltage at that time can be approximated as an open circuit voltage. Here, with respect to factors that affect the relationship between the discharge depth such as temperature and deterioration level and the open circuit voltage, it is also possible to preset the open circuit voltage correction conditions. Furthermore, when the power storage device is used, it is possible to obtain prediction data with high accuracy by correcting the data acquired in advance according to the aging deterioration state of the power storage device. In the use of an electricity storage device, current is not always applied, and it is general that there is sufficient downtime to measure the open circuit voltage. In the present invention, by using the open circuit voltage as basic data, it is possible to easily correct the secular change of the open circuit voltage of the power storage device, and as a result, it is possible to predict the voltage with high accuracy.

蓄電デバイスの充電あるいは放電が開始されてから時間t後の電圧V(t)を予測する方法につき説明する。まず、蓄電デバイスの充電あるいは放電が開始されてから時間t後の放電深度Q(t)を設定する。Q(t)は、予測する蓄電デバイスの放電深度、すなわち、時間t=0における放電深度Q(0)と、予測する時間t内における放電容量、あるいは、充電容量から算出することができる。この予測方法を蓄電システムに実際応用する場合、放電深度は電流積算等の方法により監視する。予測精度を高めるためには、放電深度を、充電末(放電深度0%)での補正、上記放電深度と開路電圧の関係による補正等の手法により補正することも可能である。また、時間t=0が休止状態であるときは、すなわち、実際の開路電圧を測定することが可能である場合は、上記放電深度と開路電圧の関係から放電深度Q(0)を求めることも可能である。A method for predicting the voltage V (t) after time t from the start of charging or discharging of the electricity storage device will be described. First, the discharge depth Q (t) after the time t from the start of charging or discharging of the electricity storage device is set. Q (t) can be calculated from the predicted discharge depth of the electricity storage device, that is, the discharge depth Q (0) at time t = 0, and the discharge capacity or charge capacity within the predicted time t. When this prediction method is actually applied to a power storage system, the discharge depth is monitored by a method such as current integration. In order to increase the prediction accuracy, the depth of discharge can be corrected by a technique such as correction at the end of charging (discharge depth 0%), correction based on the relationship between the discharge depth and the open circuit voltage, and the like. Further, when the time t = 0 is in a resting state, that is, when the actual open circuit voltage can be measured, the discharge depth Q (0) may be obtained from the relationship between the discharge depth and the open circuit voltage. Is possible.

本発明では蓄電デバイスの時間t後の蓄電デバイスの電圧V(t)をV(t)=V(t)−I(t)×Rtより算出する。V(t)は時間t後の蓄電デバイスの開路電圧であり、時間t後の蓄電デバイスの放電深度Q(t)から、上述の予め取得された、あるいは、蓄電デバイス使用時に補正された放電深度と開路電圧の関係より求められる。I(t)は、予測する時間t後、蓄電デバイスに印加される電流(印加電流)であり、予測する時間t内において印加電流I(t)が一定である場合、Q(t)=Q(0)+〔I(t)×t/容量×100%〕の関係がある。I(t)は、放電時には正の値、充電時には負の値をとる。Rtは蓄電デバイスの時間t後の電流休止法に基づく直流内部抵抗であり、時間tにより変化する値である。In the present invention, the voltage V (t) of the electricity storage device after time t of the electricity storage device is calculated from V (t) = V 0 (t) −I (t) × Rt. V 0 (t) is the open circuit voltage of the electricity storage device after time t, and the discharge obtained previously from the discharge depth Q (t) of the electricity storage device after time t or corrected when the electricity storage device is used. It is obtained from the relationship between depth and open circuit voltage. I (t) is a current (applied current) applied to the electricity storage device after the predicted time t. When the applied current I (t) is constant within the predicted time t, Q (t) = Q (0) + [I (t) × t / capacity × 100%]. I (t) takes a positive value during discharging and takes a negative value during charging. Rt is a direct current internal resistance based on the current pause method after time t of the electricity storage device, and is a value that changes with time t.

本発明の予測方法の特徴は、蓄電デバイスに印加される種々の電流印加における実際の直流内部抵抗の時間変化を、予め測定された電流休止から時間t後の電圧変化ΔVtより算出される非特許文献1に記載の電流休止法に基づく直流内部抵抗Rtと等しいとすることにある。図1に蓄電デバイスの電流休止時の電圧変化を例示する。電流休止から時間t後の電圧変化ΔVtより算出される電流休止法に基づく直流内部抵抗Rtは、非特許文献1に記載のように、電流休止時直前の電流Irと電流休止時直前の電圧と電流休止から時間t後の電圧との差ΔVtから、Rt=ΔVt/Irで求めることができる。電流休止法に基づく直流内部抵抗Rtは予め測定する必要がある。この時、電流休止時直前の電流Irは特に限定されることはなく、10C、100Cと高いレートに対する予測に対しても、0.5C〜5Cに相当するIrが印加された後の電流休止時電圧変化ΔVtから算出されるRtを用いることができ、簡便でかつ汎用性が高い。予測に使用する電流休止法に基づく直流内部抵抗Rtは、予測する放電深度の近傍での測定された電流休止時の電圧変化値から算出することが好ましく、例えば、放電深度70%の電圧を予測する場合、放電深度10%での電流休止時の電圧変化値から算出される電流休止法に基づく直流内部抵抗Rtを用いることは、蓄電デバイスの種類にもよるが、予測精度の観点から避けたほうが好ましい場合が多い。どの程度近傍の値が必要とされるかについては蓄電デバイスの種類、予測する電流値により異なることから適宜決定する必要があるが、例えば、電気二重層キャパシタでは放電深度50%の電圧までは、放電深度10%での電流休止時の電圧変化値から算出される電流休止法に基づく直流内部抵抗Rtを用いて予測可能である。また、充電側の予測には、充電時の電流休止法に基づく直流内部抵抗Rtを、放電側の予測には、放電時の電流休止法に基づく直流内部抵抗Rtを用いることが好ましく、例えば、非特許文献1に記載されているように、電気二重層キャパシタにおいては電流休止法に基づく直流内部抵抗Rtが充電、放電の履歴に依存する場合、この点に特に注意する必要がある。   A feature of the prediction method of the present invention is that non-patents are calculated from a change in voltage ΔVt after a time t from a current pause measured in advance, with respect to the actual change in DC internal resistance over time when various currents are applied to the electricity storage device. It is to be equal to the DC internal resistance Rt based on the current pause method described in Document 1. FIG. 1 exemplifies a voltage change at the time of current suspension of the electricity storage device. As described in Non-Patent Document 1, the DC internal resistance Rt based on the current change method calculated from the voltage change ΔVt after time t from the current stop is the current Ir immediately before the current stop and the voltage immediately before the current stop. Rt = ΔVt / Ir can be obtained from the difference ΔVt from the voltage after time t from the current pause. The DC internal resistance Rt based on the current pause method needs to be measured in advance. At this time, the current Ir immediately before the current stop is not particularly limited, and the current stop after the Ir corresponding to 0.5C to 5C is applied to the prediction for a high rate of 10C and 100C. Rt calculated from the voltage change ΔVt can be used, which is simple and highly versatile. The DC internal resistance Rt based on the current pause method used for prediction is preferably calculated from the voltage change value at the time of current pause measured in the vicinity of the predicted discharge depth. For example, a voltage at a discharge depth of 70% is predicted. In this case, the use of the DC internal resistance Rt based on the current pause method calculated from the voltage change value at the time of current pause at a discharge depth of 10% was avoided from the viewpoint of prediction accuracy although it depends on the type of power storage device. This is often preferred. It is necessary to appropriately determine how close the value is required because it differs depending on the type of storage device and the current value to be predicted. For example, in an electric double layer capacitor, the voltage up to a discharge depth of 50% It can be predicted using the DC internal resistance Rt based on the current pause method calculated from the voltage change value during the current pause at a discharge depth of 10%. Moreover, it is preferable to use the DC internal resistance Rt based on the current pause method during charging for prediction on the charge side, and to use the DC internal resistance Rt based on the current pause method during discharge on the discharge side, for example, As described in Non-Patent Document 1, in an electric double layer capacitor, it is necessary to pay particular attention to this point when the DC internal resistance Rt based on the current pause method depends on the history of charging and discharging.

この予測方法を蓄電システムに実際応用する場合、電流休止から時間t後の電圧変化ΔVtを電流休止法により予め測定し、上述の方法による電流休止法に基づく直流内部抵抗Rtを算出することが必要となる。ΔVtの測定は蓄電デバイスの使用前に予め取得する、あるいは、使用中に取得する等それが予測前に測定されておれば良く、温度、劣化レベル等の電流休止法に基づく直流内部抵抗Rtに影響を与える因子に関し補正すること、あるいは、使用中の電流休止時の電圧変化から直接補正することが好ましい。また、予測直前に電流休止法による電圧変化ΔVtを測定する操作を蓄電デバイスに対し行うことも、蓄電デバイスの使用条件が許すのであれば好ましい。   When this prediction method is actually applied to a power storage system, it is necessary to measure in advance the voltage change ΔVt after time t from the current pause by the current pause method and to calculate the DC internal resistance Rt based on the current pause method by the above method. It becomes. The measurement of ΔVt may be acquired in advance before use of the electricity storage device, or may be acquired before use, such as being acquired during use, and may be measured in accordance with the DC internal resistance Rt based on the current pause method such as temperature and deterioration level. It is preferable to correct with respect to the influencing factors, or to correct directly from the voltage change at the time of current pause during use. It is also preferable to perform an operation on the electricity storage device to measure the voltage change ΔVt by the current pause method immediately before the prediction if the usage conditions of the electricity storage device allow.

本発明の予測方法において、予測する印加電流I(t)は、特に限定されるものではないが、10C以上の電流である場合、本発明の適用効果は大きく、50C以上の電流であることが更に適している。また、時間tについても、特に限定されるものではないが、60秒以下であることが本発明の適用効果は大きい。本発明では電流休止法により測定可能となる直流内部抵抗Rtの時間変化を考慮し予測することからその精度が向上する。従って、電流休止法に基づく直流内部抵抗Rtの影響を受けやすい大電流印加時、電流休止法に基づく直流内部抵抗Rtの時間変化が大きい電流印加から短時間内の予測に対し、特に、本発明の予測方法による精度向上効果が大きい。   In the prediction method of the present invention, the applied current I (t) to be predicted is not particularly limited, but when the current is 10 C or more, the application effect of the present invention is large, and the current is 50 C or more. More suitable. Also, the time t is not particularly limited, but the application effect of the present invention is great when it is 60 seconds or less. In the present invention, the accuracy is improved because the prediction is made in consideration of the time change of the DC internal resistance Rt that can be measured by the current pause method. Therefore, when applying a large current that is susceptible to the influence of the DC internal resistance Rt based on the current pause method, the present invention is particularly suitable for prediction within a short time from the current application in which the time change of the DC internal resistance Rt based on the current pause method is large. The accuracy improvement effect by this prediction method is great.

本発明の予測方法において、放電深度Q(t)は、特に限定されるものではないが、0%を超え70%以下であることが好ましい。これは蓄電デバイスの種類にもよるが、非特許文献1にも記載されているように、例えば、リチウムイオン電池は深い放電深度(電圧が低い領域)において、放電深度増加にともなう直流内部抵抗変化が大きく、これが原因として本発明の予測方法による精度向上効果が得られにくいことがある。   In the prediction method of the present invention, the discharge depth Q (t) is not particularly limited, but is preferably more than 0% and 70% or less. Although this depends on the type of power storage device, as described in Non-Patent Document 1, for example, a lithium ion battery has a change in DC internal resistance with an increase in discharge depth at a deep discharge depth (a region where the voltage is low). As a result, the accuracy improvement effect by the prediction method of the present invention may be difficult to obtain.

本発明の電圧予測方法は、リチウムイオン電池、電気二重層キャパシタ、新型リチウム系蓄電デバイス、Ni水素電池等の蓄電デバイスに適用可能であるが、特に、HEV用蓄電デバイス等の高出力時の電圧予測にその効果が大きい。   The voltage prediction method of the present invention can be applied to power storage devices such as lithium ion batteries, electric double layer capacitors, new lithium-based power storage devices, and Ni-hydrogen batteries. The effect is great for prediction.

以下に実施例を示し、本発明の特徴とするところをさらに明確化するが、本発明は実施例により何ら限定されるものではない。   EXAMPLES Examples will be shown below to further clarify the features of the present invention, but the present invention is not limited to the examples.

(1)比表面積1950m/gを有する市販活性炭77.5重量部、導電材ケッチェンブラック5.8重量部、PVdF(ポリフッ化ビニリデン)14.2重量部、PVP(ポリビニルピロリドン)2.5重量部をNMP(N−メチルピロリドン)355重量部と混合し、合材スラリーを得た。黒鉛系導電性塗料を予め塗布した厚さ30μmのアルミ箔に合材スラリーを片面に塗布し、乾燥した後、プレス加工して、電極層の厚み91μm、電極層密度0.68g/cmの活性炭電極を得た。 (1) 77.5 parts by weight of commercially available activated carbon having a specific surface area of 1950 m 2 / g, 5.8 parts by weight of conductive material ketjen black, 14.2 parts by weight of PVdF (polyvinylidene fluoride), 2.5 PVP (polyvinylpyrrolidone) Part by weight was mixed with 355 parts by weight of NMP (N-methylpyrrolidone) to obtain a composite slurry. A composite slurry was applied to one side of an aluminum foil having a thickness of 30 μm previously coated with a graphite-based conductive paint, dried, and then pressed to form an electrode layer having a thickness of 91 μm and an electrode layer density of 0.68 g / cm 3 . An activated carbon electrode was obtained.

(2)上記、活性炭電極を正極及び負極とし、電気二重層キャパシタを作製した。電極面積は2.8cmとし、セパレータにセルロース系不織布、電解液としてプロピレンカーボネートに1.5mol/lの濃度にトリエチルメチルアンモニウム(TEMA)BFを溶解した溶液を使用した。 (2) The above-mentioned activated carbon electrode was used as a positive electrode and a negative electrode to produce an electric double layer capacitor. The electrode area was 2.8 cm 2 , a cellulose-based non-woven fabric was used as the separator, and a solution obtained by dissolving triethylmethylammonium (TEMA) BF 4 in propylene carbonate at a concentration of 1.5 mol / l as the electrolytic solution was used.

(3)作製したキャパシタを0.66mAの定電流で2.5Vまで充電した後、0.66mAの電流で0.0Vまで放電した。放電カーブを図2に示す。この時の容量は0.66mAhであり、この値を放電深度100%とした。次に非特許文献1に記載されている電流休止法にて全充電過程、全放電過程の電流休止法に基づく直流内部抵抗を測定した。すなわち、1.98mAの電流を1分50秒印加し、10秒休止する操作によりキャパシタの電圧が2.5Vになるまで充電後、同様の操作でキャパシタの電圧が0.0Vになるまで放電した。1.98mAの電流を1分50秒印加した場合、その容量は放電深度変化約10%に相当する。このようにして得られる各放電深度における電流休止法に基づく直流内部抵抗(休止10秒後の値)と0.66mAの定電流充放電結果から開路電圧を計算し、放電深度と開路電圧との関係を得た。   (3) The manufactured capacitor was charged to 2.5 V with a constant current of 0.66 mA, and then discharged to 0.0 V with a current of 0.66 mA. A discharge curve is shown in FIG. The capacity at this time was 0.66 mAh, and this value was defined as a discharge depth of 100%. Next, the direct current internal resistance based on the current pause method of the whole charge process and the whole discharge process was measured by the current pause method described in Non-Patent Document 1. That is, a current of 1.98 mA was applied for 1 minute 50 seconds, and after charging for 10 seconds, the capacitor voltage was charged until it reached 2.5 V, and then the same operation was performed until the capacitor voltage reached 0.0 V. . When a current of 1.98 mA is applied for 1 minute 50 seconds, the capacity corresponds to a change in discharge depth of about 10%. The open circuit voltage is calculated from the DC internal resistance (value after 10 seconds of rest) and the constant current charge / discharge result of 0.66 mA based on the current rest method at each depth of discharge thus obtained. Got a relationship.

(4)このキャパシタの100C(66mA)で放電した場合の電圧予測及び300C(198mA)で放電した場合の時間t後の電圧予測を実施した。(3)で測定した電流休止法に基づく直流内部抵抗の放電時第1回目の休止(放電第一休止点)における時間tとΔVt及びΔVtと印加電流Ir=1.98mAから計算した直流内部抵抗Rtの結果を表1に示す。表1においては100msec間隔で測定されたデータの一部を説明のため記載している。

Figure 0004954791
(4) The voltage prediction when discharging at 100 C (66 mA) of this capacitor and the voltage prediction after time t when discharging at 300 C (198 mA) were performed. DC internal resistance calculated from time t, ΔVt, ΔVt and applied current Ir = 1.98 mA at the first pause (first discharge pause point) when discharging the DC internal resistance based on the current pause method measured in (3) The results of Rt are shown in Table 1. In Table 1, some of the data measured at 100 msec intervals are shown for explanation.
Figure 0004954791

(5)放電深度0%から100C(66mA)で時間t(秒)間放電した場合の放電容量は(66mA×t/3600)mAh、放電深度は(66mA×t/3600)/0.66mAh×100%となる。(3)で得られた放電深度と開路電圧の関係から時間t(秒)後の開路電圧V(t)が求まり、V(t)=V(t)−I(t)×Rtの関係からV(t)を求めた。ここでI(t)は66mAである。同様にして放電深度0%から300C(198mA)で時間t(秒)間放電した場合についても表1の電流休止法に基づく直流内部抵抗Rt、I(t)=198mAの値を用いて電圧予測を実施した。300C(198mA)で時間t(秒)間放電した場合の放電容量は(198mA×t/3600)mAh、放電深度は(198mA×t/3600)/0.66mAh×100%となる。結果を図3に示す。また、実際このキャパシタを100C(66mA)で放電した場合の実測電圧及び300C(198mA)で放電した場合の実測電圧を図3に合わせて示す。予測データと実測データがほぼ一致し、精度良く電圧予測できている。 (5) The discharge capacity is (66 mA × t / 3600) mAh and the discharge depth is (66 mA × t / 3600) /0.66 mAh × when discharged for a time t (seconds) from 0% discharge depth to 100 C (66 mA). 100%. The open circuit voltage V 0 (t) after time t (seconds) is obtained from the relationship between the discharge depth and the open circuit voltage obtained in (3), and V (t) = V 0 (t) −I (t) × Rt V (t) was obtained from the relationship. Here, I (t) is 66 mA. Similarly, when the discharge depth is 0% to 300C (198 mA) for a time t (second), the voltage is predicted using the values of DC internal resistance Rt, I (t) = 198 mA based on the current pause method shown in Table 1. Carried out. When discharging at 300 C (198 mA) for time t (seconds), the discharge capacity is (198 mA × t / 3600) mAh, and the discharge depth is (198 mA × t / 3600) /0.66 mAh × 100%. The results are shown in FIG. Also, FIG. 3 shows the measured voltage when this capacitor is actually discharged at 100 C (66 mA) and the measured voltage when discharged at 300 C (198 mA). The predicted data and the measured data are almost the same, and the voltage can be predicted accurately.

本発明の電圧予測法は、例えば、携帯機器用電源、電気自動車、ハイブリッド電気自動車、燃料電池電気自動車等に用いられる蓄電デバイスにおいて、時間t後の電圧V(t)を電流休止法に基づく直流内部抵抗を用いることにより、簡便で精度良く予測することが可能となる。特に、高出力蓄電デバイスに適用することにより、大電流負荷時におけるシステムの効率低下、過放電、過充電による寿命低下等の課題を解決することができる。   The voltage prediction method according to the present invention is a direct current based on the current pause method, for example, using a voltage V (t) after time t in an electricity storage device used for a power source for portable devices, an electric vehicle, a hybrid electric vehicle, a fuel cell electric vehicle, and the like. By using the internal resistance, it is possible to predict easily and accurately. In particular, when applied to a high-output power storage device, it is possible to solve problems such as a decrease in system efficiency at the time of a large current load, overdischarge, and a decrease in life due to overcharge.

本発明の電流休止から時間t後の電圧変化ΔVtの一例を示す説明図である。It is explanatory drawing which shows an example of voltage change (DELTA) Vt after the time t from the electric current rest of this invention. 本発明の実施例におけるキャパシタの放電カーブである。It is a discharge curve of the capacitor in the Example of this invention. 本発明の実施例における電圧予測結果と実測データを比較するものである(太線が予測値)。The voltage prediction result and measured data in the Example of this invention are compared (thick line is a predicted value).

Claims (4)

蓄電デバイスの充電あるいは放電が開始されてから時間t後の放電深度Q(t)における開路電圧V(t)、印加電流I(t)(ここでI(t)は、放電時には正の値、充電時には負の値をとる)とした時、その時の蓄電デバイスの電圧V(t)を、予め測定された電流休止から時間t後の電圧変化ΔVtより算出される電流休止法に基づく直流内部抵抗Rtを用い、V(t)=V(t)−I(t)×Rtより算出する蓄電デバイスの電圧予測方法。The open circuit voltage V 0 (t) and the applied current I (t) at the discharge depth Q (t) after a time t from the start of charging or discharging of the electricity storage device (where I (t) is a positive value during discharging) The voltage V (t) of the electricity storage device at that time is determined based on the current pause method calculated from the voltage change ΔVt after time t from the current pause measured in advance. A method for predicting the voltage of an electricity storage device, wherein the resistance Rt is used and V (t) = V 0 (t) −I (t) × Rt 前記、印加電流I(t)が10C以上の電流であることを特徴とする請求項1に記載の蓄電デバイスの電圧予測方法。   The method for predicting a voltage of an electricity storage device according to claim 1, wherein the applied current I (t) is a current of 10 C or more. 前記、放電深度Q(t)が0%を超え70%以下であることを特徴とする請求項1あるいは2に記載の蓄電デバイスの電圧予測方法。   The method for predicting a voltage of an electricity storage device according to claim 1 or 2, wherein the discharge depth Q (t) is more than 0% and 70% or less. 前記、時間tが60秒以下であることを特徴とする請求項1あるいは2に記載の蓄電デバイスの電圧予測方法。   The method for predicting a voltage of an electricity storage device according to claim 1, wherein the time t is 60 seconds or less.
JP2007137556A 2007-05-24 2007-05-24 Voltage prediction method for power storage devices Active JP4954791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007137556A JP4954791B2 (en) 2007-05-24 2007-05-24 Voltage prediction method for power storage devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007137556A JP4954791B2 (en) 2007-05-24 2007-05-24 Voltage prediction method for power storage devices

Publications (2)

Publication Number Publication Date
JP2008292272A JP2008292272A (en) 2008-12-04
JP4954791B2 true JP4954791B2 (en) 2012-06-20

Family

ID=40167155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007137556A Active JP4954791B2 (en) 2007-05-24 2007-05-24 Voltage prediction method for power storage devices

Country Status (1)

Country Link
JP (1) JP4954791B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3338102A4 (en) * 2015-08-19 2019-09-11 FCA Fiat Chrysler Automóveis Brasil Ltda. System and method of battery monitoring

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104662431B (en) * 2012-08-07 2017-06-23 Abb股份有限公司 Method and apparatus for controlling multiphase converter
TWI508915B (en) 2012-08-30 2015-11-21 Kureha Corp Carbonaceous material for negative electrode of lithium ion capacitors and manufacturing method thereof
JP5888315B2 (en) * 2013-12-18 2016-03-22 トヨタ自動車株式会社 Power storage system
CN108279385A (en) * 2018-01-26 2018-07-13 深圳市道通智能航空技术有限公司 State of charge evaluation method, device and the electronic equipment of battery
JP7390490B2 (en) 2020-07-29 2023-12-01 株式会社日立ハイテク Battery management device, battery management method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3286456B2 (en) * 1994-02-28 2002-05-27 三洋電機株式会社 Rechargeable battery charging method
JP2999405B2 (en) * 1995-11-08 2000-01-17 古河電池株式会社 Battery deterioration judgment method
JP3932675B2 (en) * 1998-06-16 2007-06-20 トヨタ自動車株式会社 Battery maximum input / output power estimation device
JP2000294228A (en) * 1999-04-06 2000-10-20 Mitsubishi Heavy Ind Ltd Lithium secondary battery
JP2002142379A (en) * 2000-11-06 2002-05-17 Sanyo Electric Co Ltd Charging method for battery
JP4215152B2 (en) * 2001-08-13 2009-01-28 日立マクセル株式会社 Battery capacity detection method
CA2363604C (en) * 2001-11-20 2010-04-13 Edison Source Method and apparatus for ameliorating electrolyte stratification during rapid charging
JP3968298B2 (en) * 2002-12-06 2007-08-29 株式会社日立製作所 Power supply
JP2006153819A (en) * 2004-12-01 2006-06-15 Canon Inc Device and method for checking battery
JP4809618B2 (en) * 2005-03-30 2011-11-09 古河電気工業株式会社 Secondary battery deterioration judgment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3338102A4 (en) * 2015-08-19 2019-09-11 FCA Fiat Chrysler Automóveis Brasil Ltda. System and method of battery monitoring

Also Published As

Publication number Publication date
JP2008292272A (en) 2008-12-04

Similar Documents

Publication Publication Date Title
Pastor-Fernández et al. Identification and quantification of ageing mechanisms in Lithium-ion batteries using the EIS technique
JP6731041B2 (en) Lithium deposition detection method, secondary battery charging method and apparatus using the same, and secondary battery system
US10534038B2 (en) Method and system for estimating state of charge or depth of discharge of battery, and method and system for evaluating health of battery
JP5850492B2 (en) Battery system and battery evaluation method
KR102010989B1 (en) Method and apparatus for assessing lifetime of secondary battery
US8907674B2 (en) System and method for determining degradation of rechargeable lithium ion battery
JP7122938B2 (en) Micro-short circuit detection method and micro-short circuit detection device
US20160069963A1 (en) Electricity storage device state inference method
WO2012095913A1 (en) Method for evaluating deterioration of lithium ion secondary cell, and cell pack
JP6500789B2 (en) Control system of secondary battery
JP2014222603A (en) Inspection method for battery
JP4810417B2 (en) Remaining capacity calculation device for power storage device
JP4954791B2 (en) Voltage prediction method for power storage devices
CN106997026B (en) Method and device for determining the residual capacity of a lead-acid battery
JP2009281916A (en) Method for testing battery and electrode
JP6822465B2 (en) Deterioration judgment method and power storage system
JP6607167B2 (en) Inspection method for lithium ion secondary battery
JP6493762B2 (en) Battery system
KR102259454B1 (en) Method for the in-situ recalibration of a comparison electrode incorporated into an electrochemical system
JP2019185969A (en) Diagnostic device and diagnostic method for secondary battery
JP2014013736A (en) Method and device for controlling secondary battery
JP6365820B2 (en) Secondary battery abnormality determination device
JP2020079764A (en) Secondary-battery state determination method
JP2005251538A (en) Inspection method and device of secondary cell
JP2018200800A (en) State estimation device and state estimation method for lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120314

R150 Certificate of patent or registration of utility model

Ref document number: 4954791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250