JP4809618B2 - Secondary battery deterioration judgment method - Google Patents

Secondary battery deterioration judgment method Download PDF

Info

Publication number
JP4809618B2
JP4809618B2 JP2005096958A JP2005096958A JP4809618B2 JP 4809618 B2 JP4809618 B2 JP 4809618B2 JP 2005096958 A JP2005096958 A JP 2005096958A JP 2005096958 A JP2005096958 A JP 2005096958A JP 4809618 B2 JP4809618 B2 JP 4809618B2
Authority
JP
Japan
Prior art keywords
secondary battery
voltage
deterioration
discharge
discharge voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005096958A
Other languages
Japanese (ja)
Other versions
JP2006275846A (en
Inventor
史和 岩花
貴史 木村
敏幸 佐藤
典靖 岩根
勇一 渡辺
哲也 加納
克己 稲庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Battery Co Ltd
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., Furukawa Battery Co Ltd filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2005096958A priority Critical patent/JP4809618B2/en
Publication of JP2006275846A publication Critical patent/JP2006275846A/en
Priority to JP2011125958A priority patent/JP5367762B2/en
Application granted granted Critical
Publication of JP4809618B2 publication Critical patent/JP4809618B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem wherein deterioration by an abrupt change or sudden change is not taken into consideration in the prior art, and a problem wherein a device or the like capable of determining the deterioration of a secondary battery is required because the secondary battery is not brought sometimes into a desired voltage or capacity, even an obtained internal impedance is within a prescribed range, in a method of measuring the internal impedance of the secondary battery. <P>SOLUTION: The present invention provides a method and a device for determining the deterioration of the secondary battery by discharging, self-discharging or discharging forcibly the secondary battery for an optional time of standing, to measure a discharge voltage therein, and for determining the deterioration by a level and a ratio of the voltage, or by comparing and/or computing a characteristic of the secondary battery with that of nondefective one, and provides an electric power source system therefor. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は、二次電池の劣化を判定する方に関するものである。 The present invention relates to how to determine the deterioration of the secondary battery.

観測装置や通信装置等に用いられるものや車両等に搭載される二次電池(蓄電池等)に関し、その劣化状態や良否について判定をする技術がこれまでにも提案されている。   Techniques have already been proposed for determining the deterioration state and quality of secondary batteries (storage batteries, etc.) used in observation devices, communication devices, etc., and in secondary vehicles (such as storage batteries).

例えば、特許文献1では、鉛蓄電池を1msec以下放電させ、放電前の電池電圧と放電後の安定状態の電池電圧の差分を測定し、その差分の電圧が現在の電池容量と強い相関があることを利用して、この差分の電圧から電池容量を求め、所定値以下の場合に劣化と判定することが述べられている。   For example, in Patent Document 1, a lead storage battery is discharged for 1 msec or less, the difference between the battery voltage before discharge and the stable battery voltage after discharge is measured, and the difference voltage has a strong correlation with the current battery capacity. It is stated that the battery capacity is obtained from the voltage of the difference using the difference, and it is determined that the battery capacity is deteriorated when it is equal to or less than a predetermined value.

また、特許文献2では、鉛蓄電池に一定の充電電流パルス、あるいは、一定の放電電流パルスを流し、放電電流が0[A]になった瞬間からの経過時間と、電池電圧の分極電圧の変化分を測定し、電池容量を推定して劣化具合を判定することが述べられている。   In Patent Document 2, a constant charge current pulse or a constant discharge current pulse is passed through a lead storage battery, and the elapsed time from the moment when the discharge current becomes 0 [A] and the change in the polarization voltage of the battery voltage are disclosed. It is stated that the deterioration is measured by measuring the minute and estimating the battery capacity.

さらに、特許文献3では、二次電池の複数のセル電池が直列接続されたモジュール電池を短時間放電させ、端子間電圧の電圧降下が安定状態にあるときの端子間電圧の変化の程度からいずれかのセル電池における特性劣化を判定することが述べられている。   Furthermore, in Patent Document 3, a module battery in which a plurality of cell batteries of a secondary battery are connected in series is discharged for a short time, and the degree of change in the voltage between terminals when the voltage drop of the voltage between terminals is in a stable state. It is described that the characteristic deterioration in such a cell battery is determined.

特許第3192794号公報(特開平5−281309号公報)Japanese Patent No. 3192794 (Japanese Patent Laid-Open No. 5-281309) 特開平10−221418号公報JP-A-10-22214 特開2001−296341号公報JP 2001-296341 A

一般に、二次電池は専用の容器に化合物や溶液他が封入されたものであって、例えば、化合物や溶液の変化や電極の腐食等の化学的な変化による劣化が発生することが知られている。そして、従来の方法では、急激な変化や突然の変化による劣化を判定することはあまり考慮されていなかった。   In general, a secondary battery is a container in which a compound, solution, or the like is enclosed in a dedicated container. For example, it is known that deterioration due to a chemical change such as a change in the compound or solution or corrosion of an electrode occurs. Yes. In the conventional method, it has not been much considered to determine deterioration due to a sudden change or a sudden change.

また、二次電池の劣化判定に内部インピーダンスを測定する方法では、得られた内部インピーダンスが正常な範囲内であっても二次電池が所望の電圧や容量でないことがあった。   In the method of measuring the internal impedance for determining the deterioration of the secondary battery, the secondary battery may not have a desired voltage or capacity even if the obtained internal impedance is within a normal range.

それは図5のように、複数の新品や良品の二次電池において、所定温度かつ一定の放電電流(図5では温度は−30℃、放電電流は10A)で放電したときの電池電圧をプロットし、内部インピーダンスと放電時電圧とに相関が見られることから近似式による仮想線を求め、所定の電圧を良否判定の閾値(図5では9V以上を良、9V未満を否)とするものである。しかし、測定した二次電池の内部インピーダンスは小さいが、放電時電圧が低い(図5では約5.3V)ものがあり、劣化が認められることがあった。   As shown in FIG. 5, in a plurality of new or non-defective secondary batteries, the battery voltage when discharging at a predetermined temperature and a constant discharge current (temperature is −30 ° C., discharge current is 10 A in FIG. 5) is plotted. Since there is a correlation between the internal impedance and the voltage at the time of discharge, a virtual line is obtained by an approximate expression, and a predetermined voltage is set as a pass / fail judgment threshold (in FIG. 5, 9V or higher is good and less than 9V is bad). . However, although the measured internal impedance of the secondary battery is small, there is a battery with a low discharge voltage (about 5.3 V in FIG. 5), and deterioration may be observed.

このように従来の内部インピーダンスをもちいた判定方法では劣化の有無を判定できない場合がある。二次電池の劣化はシステム全体の動作を不安定なものにする可能性があり、信頼性の高い判定方法が求められていた。   As described above, there is a case where it is not possible to determine the presence or absence of deterioration by the conventional determination method using the internal impedance. The deterioration of the secondary battery may make the operation of the entire system unstable, and a highly reliable determination method has been demanded.

そこで、本発明は、二次電池を任意の時間放置による放電又は自己放電又は強制放電させ、その際の放電電圧を測定し、電圧の大きさや比率、あるいは、二次電池の良品との特性を比較及び/又は演算することにより劣化を判定する二次電池の劣化判定方を提供することを目的とする。 Therefore, the present invention discharges the secondary battery by leaving it for an arbitrary period of time or self-discharge or forced discharge, measures the discharge voltage at that time, and determines the magnitude and ratio of the voltage, or the characteristics of the secondary battery as good. providing a deterioration determination how the secondary battery is judged to deterioration by comparing and / or calculating an object.

上記課題を解決するために、請求項1に記載の二次電池の劣化判定方法は、劣化状態が既知である少なくとも一つの二次電池基準品を所定の時間放電させ、放電電圧を測定し、前記二次電池基準品の放電電圧の時間特性と、劣化状態が未知である二次電池試験品の放電開始前の電圧と、所定時間放電させたときの放電電圧との差である電圧降下を用いて、前記二次電池試験品の劣化判定を行う次電池の劣化判定方法であって、劣化状態が既知である二次電池基準品として劣化していない良品二次電池を用い、少なくとも一つの前記良品二次電池の温度−電圧降下特性を用いて、前記二次電池試験品の前記電圧降下の値を、所定の温度における電圧降下の値に換算し、予め求められた二次電池におけるインピーダンスと所定条件下における放電電圧との関係を示すインピーダンス−放電電圧特性を用いて、予め求められた、少なくとも2つの前記良品二次電池のインピーダンスから、所定条件下における放電電圧を求め、さらに、前記良品二次電池の前記所定の温度における電圧降下の値を求め、前記少なくとも2つの前記良品二次電池の前記放電電圧をX、前記電圧降下の値をYとしたとき、Y=aX+bなる関係式を満たすa、bを演算によって求め、さらに劣化判定のための裕度として設定される値をk、前記二次電池試験品の前記放電電圧をVsとし、Vth=aVs+b+kなる関係式を満たす劣化判定閾値をVthとし、前記二次電池試験品の前記所定の温度における電圧降下の値をX−SOHとしたとき、X−SOH>Vthを満たすときに前記二次電池は劣化品であると判定する、ことを特徴とする。 In order to solve the above-mentioned problem, the deterioration determination method for a secondary battery according to claim 1 discharges at least one secondary battery reference product whose deterioration state is known for a predetermined time, measures a discharge voltage, The voltage drop that is the difference between the time characteristics of the discharge voltage of the secondary battery reference product, the voltage before the start of discharge of the secondary battery test product whose degradation state is unknown, and the discharge voltage when discharged for a predetermined time. used, the a deterioration determination method for a secondary battery which performs deterioration determination of the secondary battery specimen, using a non-defective secondary battery deterioration state is not deteriorated as the secondary battery based products is known, at least a Using the temperature-voltage drop characteristics of the two non-defective secondary batteries, the voltage drop value of the secondary battery test product is converted into the voltage drop value at a predetermined temperature, and the previously obtained secondary battery Impedance and release under specified conditions Using the impedance-discharge voltage characteristic indicating the relationship with the voltage, the discharge voltage under a predetermined condition is determined from the impedances of at least two of the non-defective secondary batteries obtained in advance. A value of voltage drop at a predetermined temperature is obtained, a and b satisfying the relational expression Y = aX + b, where X is the discharge voltage of the at least two non-defective secondary batteries and Y is the value of the voltage drop. Further, k is a value set as a tolerance for deterioration determination, Vs is the discharge voltage of the secondary battery test product, Vth is a deterioration determination threshold value that satisfies the relational expression Vth = aVs + b + k, and When the value of the voltage drop of the secondary battery test product at the predetermined temperature is X-SOH, the secondary battery is a deteriorated product when X-SOH> Vth is satisfied. That a determined, characterized in that.

請求項に記載の二次電池の劣化判定方法は、請求項1に記載の劣化判定方法において、前記二次電池試験品が充電中であった場合には、充電を中断或いは終了させた直後から放電電圧を測定することを特徴とする。 Immediately after deterioration determination method for a secondary battery according to claim 2 is the deterioration determination method according to claim 1, when the secondary battery specimen was being charged, which interrupted or to terminate the charging The discharge voltage is measured from the above.

請求項に記載の二次電池の劣化判定方法は、請求項1または請求項2に記載の劣化判定方法において、前記少なくとも一つの二次電池基準品の特性をフロート状態で測定することを特徴とする。 The degradation determination method for a secondary battery according to claim 3 is the degradation determination method according to claim 1 or 2 , wherein the characteristic of the at least one secondary battery reference product is measured in a float state. And

本発明によれば、得られた二次電池の内部インピーダンスが正常な範囲内であっても劣化しているものを判定することが可能となる。   According to the present invention, it is possible to determine whether the obtained secondary battery has deteriorated even if the internal impedance is within a normal range.

また、二次電池の化合物や溶液、及び/又は、電極の腐食等の化学的な変化による劣化が、急激に或いは突然に発生した場合も判定することが可能となる。   It is also possible to determine when deterioration due to chemical changes such as corrosion or corrosion of the secondary battery compound or solution and / or electrode occurs suddenly or suddenly.

以下、本発明の好ましい実施の形態を図面に基づいて、二次電池に対して本発明を適用する場合の実施形態について説明する。なお、本発明が適用可能な二次電池としては、どのような二次電池を用いてもよく、例えば鉛蓄電池や、ニッケル水素二次電池、リチウムイオン二次電池等を用いてもよい。それらの種類、電圧、容量等の区別なく用いることができる。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings when the present invention is applied to a secondary battery. In addition, as a secondary battery which can apply this invention, what kind of secondary battery may be used, for example, a lead storage battery, a nickel-hydrogen secondary battery, a lithium ion secondary battery, etc. may be used. These types, voltages, capacities, etc. can be used without distinction.

(電源システムに係る第1実施形態)
図1は、第1実施形態に係る電源システムの概略の構成を示すブロック図である。図1の電源システム1は、二次電池2と、二次電池2からの電力により動作する負荷3と、常時あるいは必要時に二次電池2を充電する充電装置4と、二次電池2や図示しない電力源から負荷3への電力の供給を制御する電源制御装置5を備えている。なお、実際の電源システム1には、負荷が多数設けられている場合もある。
(First embodiment according to power supply system)
FIG. 1 is a block diagram illustrating a schematic configuration of the power supply system according to the first embodiment. A power supply system 1 in FIG. 1 includes a secondary battery 2, a load 3 that operates with power from the secondary battery 2, a charging device 4 that charges the secondary battery 2 at all times or when necessary, a secondary battery 2, and the like. A power supply control device 5 is provided for controlling the supply of power from the power source not to be supplied to the load 3. The actual power supply system 1 may be provided with a large number of loads.

また、電源制御装置5は二次電池劣化判定装置6を備え、二次電池2の劣化状態を判定する。このとき、図示しない切替手段により負荷と切り離されたフロート状態で測定することができる。なお、切替手段は、例えば、必要時に二次電池と負荷とを接続することができる。   Further, the power supply control device 5 includes a secondary battery deterioration determination device 6 and determines the deterioration state of the secondary battery 2. At this time, the measurement can be performed in a float state separated from the load by a switching means (not shown). Note that the switching means can connect the secondary battery and the load, for example, when necessary.

また、電源制御装置5又は二次電池劣化判定装置6から自動的又は所望のタイミングにて二次電池2を所定時間放電させ、放電時間とその電圧及び/又は温度を測定し、測定時の温度での電圧の大きさや変動、又は電圧降下の大きさや変動を求め、劣化状態を判定することができる。なお、電源制御装置5又は二次電池劣化判定装置6は、二次電池の内部インピーダンスに基づいて劣化を判定する機能を有してもよい。   In addition, the secondary battery 2 is discharged for a predetermined time automatically or at a desired timing from the power supply control device 5 or the secondary battery deterioration determination device 6, and the discharge time and its voltage and / or temperature are measured. The deterioration level can be determined by obtaining the magnitude and fluctuation of the voltage at V, or the magnitude and fluctuation of the voltage drop. Note that the power supply control device 5 or the secondary battery deterioration determination device 6 may have a function of determining deterioration based on the internal impedance of the secondary battery.

(電源システムに係る第2実施形態)
図2は、第2実施形態に係る電源システムの概略の構成を示すブロック図である。図2の電源システム1は、2つの二次電池2と、二次電池2からの電力により動作する負荷3と、常時あるいは必要時に二次電池2を充電する充電装置4と、二次電池2や図示しない電力源から負荷3への電力の供給を制御する電源制御装置5を備えている。なお、実際の電源システム1には、負荷が多数設けられている場合もある。
(Second embodiment according to power supply system)
FIG. 2 is a block diagram illustrating a schematic configuration of a power supply system according to the second embodiment. The power supply system 1 in FIG. 2 includes two secondary batteries 2, a load 3 that operates with power from the secondary battery 2, a charging device 4 that charges the secondary battery 2 at all times or when necessary, and a secondary battery 2. And a power supply control device 5 that controls the supply of power from a power source (not shown) to the load 3. The actual power supply system 1 may be provided with a large number of loads.

図2の電源システムでは、通常使用される主たる二次電池2aと予備の二次電池2bとを併用するシステムである。なお、通常使用される二次電池2aと予備の二次電池2bの数量についての制限は特になく、それぞれ少なくとも1個用いたシステムであれば、どのように二次電池を組み合わせたシステムであっても、本発明を適用することが可能である。   The power supply system of FIG. 2 is a system that uses a main secondary battery 2a that is normally used and a spare secondary battery 2b in combination. In addition, there is no restriction | limiting in particular about the quantity of the secondary battery 2a normally used and the spare secondary battery 2b, and if it is a system using at least 1 each, it is a system which combined the secondary battery. In addition, the present invention can be applied.

また、電源制御装置5又は二次電池劣化判定装置6から自動的又は所望のタイミングにて二次電池2を所定時間放電させ、放電時間とその電圧及び/又は温度を測定し、測定時の温度での電圧の大きさや変動、又は電圧降下の大きさや変動を求め、劣化状態を判定することができる。なお、電源制御装置5又は二次電池劣化判定装置6は、二次電池の内部インピーダンスに基づいて劣化を判定する機能を有してもよい。   In addition, the secondary battery 2 is discharged for a predetermined time automatically or at a desired timing from the power supply control device 5 or the secondary battery deterioration determination device 6, and the discharge time and its voltage and / or temperature are measured. The deterioration level can be determined by obtaining the magnitude and fluctuation of the voltage at V, or the magnitude and fluctuation of the voltage drop. Note that the power supply control device 5 or the secondary battery deterioration determination device 6 may have a function of determining deterioration based on the internal impedance of the secondary battery.

また、図2では複数の二次電池を備えるものであり、少なくとも1つの二次電池について劣化状態を判定するようにし、その二次電池が劣化の見込まれる状態又は劣化状態である場合、充電又は交換を要する二次電池の情報を伝えることができるものである。
さらに、二次電池の情報を表示する表示部を設け、使用者他に二次電池の状態を伝え、充電する又は交換することを促すことができる。
Further, in FIG. 2, a plurality of secondary batteries are provided, and the deterioration state is determined for at least one secondary battery. Information on secondary batteries that require replacement can be conveyed.
Furthermore, the display part which displays the information of a secondary battery can be provided, the state of a secondary battery can be conveyed to a user etc., and it can prompt | urge to charge or replace | exchange.

さらに、少なくとも2つの二次電池について劣化状態を判定するようにし、二次電池が劣化の見込まれる状態又は劣化状態である場合、充電又は交換を要する「要対応二次電池」の情報と、継続して使用可能な「継続使用二次電池」の情報とを表示する表示部と、前記二次電池の履歴を記録する記憶部を有し、少なくとも充電して使用する又は継続して使用する二次電池の履歴を保持、及び/又は、継続して判定するプログラムを有する制御・判定部(図2の電源制御装置5や二次電池劣化判定装置6等)を備え、二次電池の劣化状態を判定することができる。   Further, the deterioration state is determined for at least two secondary batteries. When the secondary battery is expected to deteriorate or is in a deteriorated state, information on “required secondary battery” that requires charging or replacement, and continuation A display unit that displays information on “secondary battery that can be used continuously” and a storage unit that records the history of the secondary battery. A secondary battery deterioration state including a control / determination unit (such as the power supply control device 5 and the secondary battery deterioration determination device 6 in FIG. 2) having a program for holding and / or continuously determining the history of the secondary battery. Can be determined.

このようにすれば、少なくとも1つは常に使用可能な二次電池とすることが可能である。従って、例えば、非常時に少なくとも1つの電池が使用可能である必要があるようなシステムや装置に本発明を取り入れると有効である。   In this way, at least one of the secondary batteries can always be used. Thus, for example, it is advantageous to incorporate the present invention in a system or apparatus that requires at least one battery to be usable in an emergency.

さらに、電源制御装置5や二次電池劣化判定装置6は、通常使用される主たる二次電池2aと予備の二次電池2bとの少なくとも1個を切替手段により負荷3から切り離して、個別にフロート状態として各種データを取得し、劣化状態を判定することができる。   Furthermore, the power supply control device 5 and the secondary battery deterioration determination device 6 separate at least one of the main secondary battery 2a and the spare secondary battery 2b that are normally used from the load 3 by the switching means, and individually float them. Various data can be acquired as the state, and the deterioration state can be determined.

(電源システムに係る第3実施形態)
図3は、第3実施形態に係る電源システムの概略の構成を示すブロック図である。図3では、二次電池を劣化判定する機能又は二次電池劣化判定装置を有する電源制御装置18には、電流センサ11と、電圧センサ12と、制御部13と、記憶部14と、充電回路15と、放電回路16と、温度センサ17(温度変換部)を含んで電源システムが構成され、二次電池10から少なくとも1つの負荷20に電力を供給する構成になっている。
(Third embodiment of the power supply system)
FIG. 3 is a block diagram illustrating a schematic configuration of a power supply system according to the third embodiment. In FIG. 3, a power supply control device 18 having a function of determining deterioration of a secondary battery or a secondary battery deterioration determination device includes a current sensor 11, a voltage sensor 12, a control unit 13, a storage unit 14, and a charging circuit. 15, a discharge circuit 16, and a temperature sensor 17 (temperature conversion unit) are configured to supply power from the secondary battery 10 to at least one load 20.

次に、図3において、電流センサ11は、二次電池10を流れる電流を検出して、制御部13に電流値を送出する。また、電圧センサ12は、二次電池10の両端の電圧を検出して、制御部13に電圧値を送出する。これら電流センサ11と電圧センサ12は、本発明のセンサ手段として機能する。   Next, in FIG. 3, the current sensor 11 detects a current flowing through the secondary battery 10 and sends a current value to the control unit 13. The voltage sensor 12 detects the voltage across the secondary battery 10 and sends the voltage value to the control unit 13. These current sensor 11 and voltage sensor 12 function as sensor means of the present invention.

本発明の制御手段として機能する制御部13は、CPUにより構成され、電源システム全体の動作を制御するとともに、所定のタイミングで劣化判定のために必要な測定値の比較や演算処理を実行し、求めた結果を観測装置や通信装置等、または、車両の制御装置等に送出や表示をする。そして、制御部13に接続された記憶部14は、制御プログラム等の各種プログラムをあらかじめ記憶するROMや、制御部13による処理に必要なデータを一時的に記憶するRAMなどを含んでいる。   The control unit 13 that functions as a control unit of the present invention is configured by a CPU, controls the operation of the entire power supply system, performs measurement value comparison and calculation processing necessary for deterioration determination at a predetermined timing, The obtained results are sent to and displayed on an observation device, a communication device, or a vehicle control device. The storage unit 14 connected to the control unit 13 includes a ROM that stores various programs such as a control program in advance, a RAM that temporarily stores data necessary for processing by the control unit 13, and the like.

充電回路15は、二次電池10の充電動作を行うときに充電電流を供給する回路である。また、放電回路16は、二次電池10の放電動作を行うときに二次電池10から負荷20に放電電流を流す回路である。これらの充電回路15及び放電回路16は、制御部13によって制御され、充電動作時は充電回路15がオンの状態となり、放電動作時は放電回路16がオンの状態となる。   The charging circuit 15 is a circuit that supplies a charging current when the secondary battery 10 is charged. Further, the discharge circuit 16 is a circuit that causes a discharge current to flow from the secondary battery 10 to the load 20 when the secondary battery 10 is discharged. The charging circuit 15 and the discharging circuit 16 are controlled by the control unit 13, and the charging circuit 15 is turned on during the charging operation, and the discharging circuit 16 is turned on during the discharging operation.

なお、充電回路15から供給される充電電流と放電回路16を経由して負荷20に供給される放電電流は、いずれも多様な波形を用いることができる。すなわち、一定周波数のパルス波形に制約されることなく、任意の波形に対して、例えばフーリエ変換により電圧と電流の任意の周波数成分の値を得ることができ、これらの値を用いてインピーダンスの任意の周波数成分の値を求めることができる。   The charging current supplied from the charging circuit 15 and the discharging current supplied to the load 20 via the discharging circuit 16 can use various waveforms. In other words, it is possible to obtain values of arbitrary frequency components of voltage and current by, for example, Fourier transform for an arbitrary waveform without being restricted by a pulse waveform having a constant frequency. Can be obtained.

(劣化判定方法に係る第1実施形態)
図6は、所定の時間放電時の二次電池の電圧値をある温度で換算した図である。
(First Embodiment According to Degradation Determination Method)
FIG. 6 is a diagram in which the voltage value of the secondary battery during discharge for a predetermined time is converted at a certain temperature.

測定対象の二次電池の温度が26.3℃、放電電流が10Aのときの放電電圧を、所定の放電電流に対して予め求めておいた図4のような温度と電圧の関係から、図6(A)のように二次電池の温度が25℃のものに換算してプロットする。または、二次電池の使用温度の最も厳しい温度、例えば、図6(B)のように−30℃のものに換算してプロットする。   From the relationship between the temperature and voltage as shown in FIG. 4, the discharge voltage when the temperature of the secondary battery to be measured is 26.3 ° C. and the discharge current is 10 A is obtained in advance with respect to the predetermined discharge current. As in 6 (A), the secondary battery temperature is converted to a temperature of 25 ° C. and plotted. Alternatively, the temperature is plotted in terms of the temperature at which the secondary battery is most severely used, for example, at −30 ° C. as shown in FIG.

なお、図6は、二次電池の使用温度が−30℃から65℃の場合、予め所定の温度(例えば、−30℃、0℃、10℃の3点)や、5℃毎等の特性を取得するなどとしてよい。   In addition, FIG. 6 shows characteristics at a predetermined temperature (for example, three points of −30 ° C., 0 ° C., and 10 ° C.) or every 5 ° C. when the operating temperature of the secondary battery is −30 ° C. to 65 ° C. May be obtained.

この図6において、予め求めた良品の二次電池における放電前電圧と所定の時間放電した時の放電電圧との電圧差をΔVa、測定した二次電池における放電前電圧と所定の時間放電した時の放電電圧との電圧差をΔVbとすると、ΔVaとΔVbによって判定することができる。   In FIG. 6, ΔVa is the voltage difference between the pre-discharge voltage obtained in advance in a non-defective secondary battery and the discharge voltage when discharged for a predetermined time, and the measured voltage before discharge in the secondary battery is discharged for a predetermined time. If the voltage difference from the discharge voltage is ΔVb, it can be determined by ΔVa and ΔVb.

それは、図6(A)では、放電電流10Aでの放電時間3秒以上において、電源システムからの要求によって定められた良否の判定閾値9Vぎりぎりなので、放電電流10Aでは放電時間5秒程度にて判定をすることができる。なお、放電電流値と温度により判定に要する放電時間が変わるので、例えば、所定の温度毎について放電電流値5アンペア毎に放電電圧の時間特性を取得しておき、測定したものとの比較により劣化判定をする。   In FIG. 6 (A), when the discharge time is 10 seconds or more at the discharge current 10A, the pass / fail judgment threshold 9V is determined by the request from the power supply system. Therefore, the discharge current 10A is determined after the discharge time of about 5 seconds. Can do. Since the discharge time required for the determination varies depending on the discharge current value and the temperature, for example, the discharge voltage time characteristic is obtained every 5 amperes for each predetermined temperature, and deteriorated by comparison with the measured value. Make a decision.

また、図6(B)では、放電電流10Aでの放電時間0.5秒目を見ると、予め求めた良品の二次電池における放電前電圧が12.9Vに対して放電電圧が11.6Vであることから電圧差ΔVaが1.3Vとなる。また、測定した二次電池における放電前電圧が12.8Vに対して放電電圧が10.6Vであることから電圧差ΔVbが2.2Vとなる。このことから、ΔVb<2.0である時には測定した二次電池は良品、ΔVb≧2.0である時には測定した二次電池は劣化であると判定することができる。以上のように0.5秒程度の放電においても劣化を判定することができるものである。   In FIG. 6B, when the discharge time at the discharge current of 10A is 0.5 seconds, the pre-discharge voltage in the non-defective secondary battery obtained in advance is 12.9V and the discharge voltage is 11.6V. Therefore, the voltage difference ΔVa is 1.3V. Further, since the measured pre-discharge voltage in the secondary battery is 12.8V and the discharge voltage is 10.6V, the voltage difference ΔVb is 2.2V. From this, it can be determined that the measured secondary battery is good when ΔVb <2.0, and the measured secondary battery is degraded when ΔVb ≧ 2.0. As described above, deterioration can be determined even in a discharge of about 0.5 seconds.

従って、放電電流値と温度により放電時間に対する電圧降下を見ることにより、所定の閾値にて劣化を判定することができる。また、放電電流値と温度により放電時間を予め定めておき、その条件下で放電した場合の電圧降下から劣化判定をすることができる。   Therefore, the deterioration can be determined with a predetermined threshold by observing the voltage drop with respect to the discharge time based on the discharge current value and the temperature. Further, it is possible to determine the deterioration from the voltage drop when the discharge time is determined in advance by the discharge current value and the temperature and the discharge is performed under the condition.

(劣化判定方法に係る第2実施形態)
図7は、二次電池の温度と各温度での5秒間放電時における放電前電圧と放電電圧との電圧差(電圧降下)について3つの良品二次電池の特性を示すものである。また、図8は、二次電池の温度が−30℃での放電後電圧と電圧降下をプロットしたものである。なお点線は、予め求めた放電後電圧−電圧差特性のばらつきを考慮した閾値設定直線である。
(Second Embodiment According to Degradation Determination Method)
FIG. 7 shows the characteristics of three good secondary batteries with respect to the temperature of the secondary battery and the voltage difference (voltage drop) between the pre-discharge voltage and the discharge voltage at the time of discharging for 5 seconds at each temperature. FIG. 8 is a plot of post-discharge voltage and voltage drop when the temperature of the secondary battery is −30 ° C. The dotted line is a threshold setting line that takes into account the variation in the post-discharge voltage-voltage difference characteristic obtained in advance.

この電圧降下について、図8において、二次電池の放電前の電圧と放電電圧の差分を求め、良品と劣化品とを電圧差分の大きさにて判定することができる。例えば、良品は1.8未満とし、劣化品を1.8以上と所定の値を設定することにより劣化を判定することができる。図8ではVth=1.8[V]とした。   With respect to this voltage drop, in FIG. 8, the difference between the voltage before discharge of the secondary battery and the discharge voltage can be obtained, and a non-defective product and a deteriorated product can be determined by the magnitude of the voltage difference. For example, it is possible to determine the deterioration by setting a non-defective product to less than 1.8 and setting a predetermined value as 1.8 or more for the deteriorated product. In FIG. 8, Vth = 1.8 [V].

また、図8において、設定した閾値の電圧をVth、放電電圧をVs、係数a、定数b、並びに、劣化判定のための裕度として設定される値をkとすると、X−SOH>aVs+b+ kである時には測定した二次電池は劣化であると判定することができる。ここで、別途求められたインピーダンス−放電電圧特性を用いて、少なくとも3つの良品二次電池のインピーダンスから放電電圧を推定し、各々の良品二次電池について放電電圧と図7で求めたX−SOHを図8にプロットし、それらの点から回帰計算によって係数a、bを求める。尚、X−SOHの値は図8の縦軸に該当する。尚、2つの良品二次電池から係数a、定数bを求める場合は2点を結ぶ直線を表す式から求める。   In FIG. 8, assuming that the set threshold voltage is Vth, the discharge voltage is Vs, the coefficient a, the constant b, and the value set as the tolerance for deterioration determination is k, X−SOH> aVs + b + When it is k, it can be determined that the measured secondary battery is deteriorated. Here, using the impedance-discharge voltage characteristics obtained separately, the discharge voltage is estimated from the impedances of at least three good secondary batteries, and the discharge voltage for each good secondary battery and the X-SOH obtained in FIG. Are plotted in FIG. 8, and coefficients a and b are obtained from those points by regression calculation. Note that the value of X-SOH corresponds to the vertical axis of FIG. In addition, when calculating | requiring the coefficient a and the constant b from two good quality secondary batteries, it calculates | requires from the formula showing the straight line which connects two points.

(劣化判定方法に係る第3実施形態)
図9は、二次電池の充電、並びに、放電時における電圧変化を示す図である。図9では、充電中又は充電後から所定時間放置したときの電圧降下ΔV1と、所定時間放置したときの電圧と二次電池の安定状態OCVまでの電圧差分ΔV3、そして一定放電電流にて所定時間放電したときの電圧降下ΔV2とする。
(Third embodiment according to degradation determination method)
FIG. 9 is a diagram illustrating voltage changes during charging and discharging of the secondary battery. In FIG. 9, a voltage drop ΔV1 when left for a predetermined time during or after charging, a voltage difference ΔV3 between the voltage when left for a predetermined time and the stable state OCV of the secondary battery, and a predetermined discharge current for a predetermined time It is assumed that the voltage drop ΔV2 when discharged.

図9のように測定した良品の一例は、充電中又は充電後の電圧16.0V、所定時間放置したときの電圧14.0VであるのでΔV1=2.0V。所定時間放電後の電圧13.5VであるのでΔV2=0.5V。劣化品の一例は、充電中又は充電後の電圧15.8V、所定時間放置したときの電圧13.8VであるのでΔV1=2.0V。所定時間放電後の電圧11.8VであるのでΔV2=2.0V。これらよりΔV1とΔV2との比を求めると良品が|ΔV1/ΔV2|=4.0、劣化品が1.0となる。このことより、ΔV1とΔV2との比が1.0以下の時は劣化と判定することが可能である。   An example of a non-defective product measured as shown in FIG. 9 is ΔV1 = 2.0 V because the voltage during charging or after charging is 16.0 V, and the voltage after standing for a predetermined time is 14.0 V. Since the voltage after discharging for a predetermined time is 13.5V, ΔV2 = 0.5V. An example of a deteriorated product is ΔV1 = 2.0V because the voltage during charging or after charging is 15.8V, and the voltage after standing for a predetermined time is 13.8V. Since the voltage after discharging for a predetermined time is 11.8V, ΔV2 = 2.0V. When the ratio between ΔV1 and ΔV2 is obtained from these, the non-defective product is | ΔV1 / ΔV2 | = 4.0, and the deteriorated product is 1.0. From this, when the ratio of ΔV1 and ΔV2 is 1.0 or less, it can be determined that the deterioration has occurred.

図9のように測定したとき、良品の一例は、充電中又は充電後の電圧16.0V、所定時間放置したときの電圧14.0VであるのでΔV1=2.0V。所定時間放電後の電圧13.5VであるのでΔV2=0.5V。安定時OCV12.8Vであるので、ΔV3=1.2V。劣化品の一例は、充電中又は充電後の電圧15.0V、所定時間放置したときの電圧13.0VであるのでΔV1=2.0V。所定時間放電後の電圧11.8VであるのでΔV2=1.2V。安定時OCV12.6Vであるので、ΔV3=0.4V。これらよりΔV1とΔV3との比を求めると良品が|ΔV1/ΔV3|=1.7、劣化品が5.0となる。このことより、ΔV1とΔV3との比が4.0以上の時は劣化と判定することが可能である。一方、ΔV2とΔV3の比を求めると良品が|ΔV2/ΔV3|=0.42、劣化品が3.0となる。このことより、ΔV2とΔV3の比が3.0以上の時は劣化と判定することが可能である。   When measured as shown in FIG. 9, an example of a non-defective product is 16.0V during or after charging, and 14.0V when left for a predetermined time, so ΔV1 = 2.0V. Since the voltage after discharging for a predetermined time is 13.5V, ΔV2 = 0.5V. Since it is OCV12.8V at the time of stable, (DELTA) V3 = 1.2V. Since an example of a deteriorated product is a voltage of 15.0V during or after charging and a voltage of 13.0V when left for a predetermined time, ΔV1 = 2.0V. Since the voltage after discharging for a predetermined time is 11.8V, ΔV2 = 1.2V. Since it is OCV12.6V at the time of stable, (DELTA) V3 = 0.4V. When the ratio between ΔV1 and ΔV3 is obtained from these, the non-defective product is | ΔV1 / ΔV3 | = 1.7 and the deteriorated product is 5.0. From this, it is possible to determine that the deterioration has occurred when the ratio of ΔV1 and ΔV3 is 4.0 or more. On the other hand, when the ratio of ΔV2 and ΔV3 is obtained, the non-defective product is | ΔV2 / ΔV3 | = 0.42, and the deteriorated product is 3.0. From this, when the ratio of ΔV2 and ΔV3 is 3.0 or more, it can be determined that the deterioration has occurred.

(劣化判定方法に係る第4実施形態)
図10は、二次電池の充電、並びに、放電時における電圧変化を示す図である。図10では、放置又は放電後から所定時間放置又は充電したときの電圧上昇ΔV1と、所定時間放置又は充電したときの電圧と二次電池が安定状態OCVまでの電圧差分ΔV3、そして一定放電電流にて所定時間放電したときの電圧降下ΔV2とする。
(4th Embodiment which concerns on a degradation determination method)
FIG. 10 is a diagram illustrating voltage changes during charging and discharging of the secondary battery. In FIG. 10, the voltage rise ΔV1 when the battery is left or charged for a predetermined time after being left or discharged, the voltage when the battery is left or charged for a predetermined time, the voltage difference ΔV3 until the secondary battery reaches the stable state OCV, and the constant discharge current. The voltage drop ΔV2 when discharged for a predetermined time.

図10のように測定し、良品の場合のΔV1とΔV2を求めておき、測定した結果から|ΔV1/ΔV2|の値にて良否を判定する閾値を設定することにより、劣化を判定することができる。   By measuring as shown in FIG. 10, ΔV1 and ΔV2 in the case of a non-defective product are obtained, and deterioration is determined by setting a threshold for determining pass / fail by the value of | ΔV1 / ΔV2 | it can.

図10のように測定し、良品の場合のΔV1とΔV2とΔV3を求めておき、測定した結果から|ΔV1/ΔV3|の値にて良否を判定する閾値を設定することにより、劣化を判定することができる。また、|ΔV2/ΔV3|の値にて良否を判定する閾値を設定することにより、劣化を判定することができる。   Measurement is performed as shown in FIG. 10, and ΔV1, ΔV2, and ΔV3 in the case of a non-defective product are obtained, and deterioration is determined by setting a threshold value for determining pass / fail by the value of | ΔV1 / ΔV3 | be able to. Further, deterioration can be determined by setting a threshold value for determining pass / fail by the value of | ΔV2 / ΔV3 |.

また、その他の様態としては、例えば、図11に示す変形例では、二次電池の劣化判定を行うための電源システム100は、二次電池である二次電池106の電流、電圧、抵抗、温度等のデータを取得する検知回路101と、検知回路101から、データを受取って二次電池106の劣化判定を行う制御・判定装置102と、判定結果を各種態様で表示する表示部103とを備えるようにしてもよい。   As another aspect, for example, in the modification shown in FIG. 11, the power supply system 100 for determining the deterioration of the secondary battery is the current, voltage, resistance, temperature of the secondary battery 106 that is a secondary battery. For example, a detection circuit 101 that acquires data such as, a control / determination device 102 that receives data from the detection circuit 101 to determine deterioration of the secondary battery 106, and a display unit 103 that displays the determination results in various modes. You may do it.

このような構成とすることにより、検知回路101は、二次電池106の電流、電圧、抵抗、温度等のデータを取得し、測定したデータを制御・判定装置102に出力する。   With this configuration, the detection circuit 101 acquires data such as the current, voltage, resistance, and temperature of the secondary battery 106 and outputs the measured data to the control / determination device 102.

これにより制御・判定装置102は、データを受取って二次電池106の劣化判定を行い、判定結果を各種態様で表示部103に表示する。この結果、使用者は、二次電池106の状態を容易に把握することができる。   Thereby, the control / determination device 102 receives the data, determines the deterioration of the secondary battery 106, and displays the determination result on the display unit 103 in various modes. As a result, the user can easily grasp the state of the secondary battery 106.

この場合において、表示部103は、ランプの数や色、文字、音声等とそれらを2つ以上組み合わせて、二次電池106の状態、例えば、交換の必要の有無や、推奨される交換時期等を示すように構成することも可能である。   In this case, the display unit 103 combines the number of lamps, colors, characters, voices, and the like and two or more thereof to determine the state of the secondary battery 106, for example, whether or not replacement is required, recommended replacement time, etc. It is also possible to configure so as to show.

さらに、表示部103は、テレビモニタ、コンピュータディスプレイ、GPS装置(カーナビゲーション等)の表示部等の画面での表示であってよい。なお、音声のみで伝える方式であってよい。   Further, the display unit 103 may be a display on a screen of a television monitor, a computer display, a display unit of a GPS device (such as a car navigation system), or the like. In addition, the system which conveys only with an audio | voice may be sufficient.

また、図12に示す変形例では、二次電池の状態を検知、判別するための検知回路101、制御・判定装置102を二次電池の近傍に配置し、表示部103を所望の位置に設けるように構成することも可能である。   In the modification shown in FIG. 12, the detection circuit 101 for detecting and discriminating the state of the secondary battery and the control / determination device 102 are arranged in the vicinity of the secondary battery, and the display unit 103 is provided at a desired position. It is also possible to configure as described above.

例えば、二次電池の状態を検知、判別するための検知回路101、制御・判定装置102を二次電池106の近傍に配置し、制御・判定装置102は、検知回路101からデータを受取って二次電池106の劣化判定を行い、判定結果データを無線装置22,23を介して表示部103側に送信する。   For example, a detection circuit 101 and a control / determination device 102 for detecting and discriminating the state of the secondary battery are arranged in the vicinity of the secondary battery 106, and the control / determination device 102 receives data from the detection circuit 101 and receives the data. The deterioration determination of the secondary battery 106 is performed, and the determination result data is transmitted to the display unit 103 side via the wireless devices 22 and 23.

この結果、表示部103側に設置された無線装置22,23を介して、コンピュータ24等が判定結果データを受信し、表示部103を制御して判定結果を各種態様で表示する。   As a result, the computer 24 or the like receives the determination result data via the wireless devices 22 and 23 installed on the display unit 103 side, and controls the display unit 103 to display the determination result in various modes.

なお、図12の二次電池近傍に制御・判定装置102が無くてもよく、検知回路101にて得られる温度、電圧や抵抗等のデータについて無線装置22,23を介し表示側で受け、表示側に制御・判定装置を設ける、あるいは、コンピュータ24にて劣化判定をするようにしてもよい。   Note that the control / determination device 102 may not be provided in the vicinity of the secondary battery in FIG. 12, and data such as temperature, voltage, and resistance obtained by the detection circuit 101 is received and displayed on the display side via the wireless devices 22 and 23. A control / determination device may be provided on the side, or the computer 24 may determine deterioration.

このように構成することにより、例えば、複数の表示部を設ける、又は、複数箇所(二次電池製造メーカ、保守・メンテナンス拠点等)毎に設けた表示部から二次電池の状態を監視し、あるいは、1箇所の表示部により、複数の二次電池の監視や管理を行える。それらの際、二次電池を区別するシリアル番号やID番号等を付与しておけば、二次電池の個体識別を容易に行うことが可能となる。   By configuring in this way, for example, a plurality of display units are provided, or the state of the secondary battery is monitored from a display unit provided for each of a plurality of locations (secondary battery manufacturers, maintenance / maintenance bases, etc.) Alternatively, a plurality of secondary batteries can be monitored and managed by a single display unit. At that time, if a serial number, an ID number, or the like for distinguishing the secondary battery is assigned, the individual identification of the secondary battery can be easily performed.

また、図11のような有線式、図12のような無線式等の伝送路の形態に係らず、例えば、電話回線やインターネット等のネットワークを介して二次電池の劣化情報を電子データ(文字、画像、音声)として、携帯電話やコンピュータ等の情報端末等から見られるようにしてもよい。   In addition, regardless of the form of a transmission line such as a wired type as shown in FIG. 11 or a wireless type as shown in FIG. 12, for example, deterioration information of a secondary battery is transferred to electronic data (characters via a network such as a telephone line or the Internet. , Image, sound) may be viewed from an information terminal such as a mobile phone or a computer.

また、他の変形例として、図13のように複数の二次電池が離れた場所にあって、1箇所の回路を切替えることが可能な二次電池劣化判定装置104において、二次電池106(A,B,C)に回路を切替えて各二次電池の劣化判定をすることができる。その際、電気的情報(電圧、電流、抵抗等)は離れた場所の二次電池劣化判定装置104で判定可能であるが、温度測定は二次電池の近傍や二次電池106毎に温度センサ105を備えることが望ましい。   Further, as another modification example, in the secondary battery deterioration determination device 104 in which a plurality of secondary batteries are separated as shown in FIG. 13 and one circuit can be switched, the secondary battery 106 ( It is possible to judge the deterioration of each secondary battery by switching the circuit to A, B, C). At that time, electrical information (voltage, current, resistance, etc.) can be determined by the secondary battery deterioration determination device 104 at a remote location, but the temperature measurement is performed in the vicinity of the secondary battery or for each secondary battery 106. 105 is desirable.

このようにすれば、例えば、観測装置や通信装置などの複数の装置それぞれに設置した二次電池の劣化判定を行うことができる。また、車両においても座席の下や前後の収納スペース等に複数個設置した場合に、少なくとも1つの二次電池劣化判定装置で二次電池の劣化判定を行うことができる。   In this way, for example, it is possible to determine the deterioration of the secondary battery installed in each of a plurality of devices such as an observation device and a communication device. Further, when a plurality of vehicles are installed under a seat or in front and rear storage spaces, at least one secondary battery deterioration determination device can determine the deterioration of the secondary battery.

また、別の変形例として、図14のように複数の二次電池106のうち、1つは二次電池劣化判定装置107が二次電池106aの近傍にある。他の1つは二次電池劣化判定装置108が二次電池106bに取付けられるものである。なお、図14では残る二次電池C106は劣化判定をしないものである。   As another modified example, as shown in FIG. 14, one of the plurality of secondary batteries 106 has a secondary battery deterioration determination device 107 in the vicinity of the secondary battery 106a. The other one is one in which the secondary battery deterioration determination device 108 is attached to the secondary battery 106b. In FIG. 14, the remaining secondary battery C106 is not subjected to deterioration determination.

また、図14では、装置・電源制御装置109には、GPS(Global Positioning System)装置110、照明111、稼動部112等が接続される。装置・電源制御装置109によって電源を供給及び制御をする。例えば、照明111の点灯・消灯、稼動部112の動作制御やエネルギ消費量の制御等をするものである。なお、GPS装置110は位置や標高の他に時間も検出できるので、装置・電源制御装置109他の時刻合わせに利用することができる。   Further, in FIG. 14, a GPS (Global Positioning System) device 110, an illumination 111, an operation unit 112, and the like are connected to the device / power supply control device 109. Power is supplied and controlled by the device / power supply control device 109. For example, the lighting 111 is turned on / off, the operation of the operating unit 112 is controlled, the energy consumption is controlled, and the like. Since the GPS device 110 can detect time in addition to the position and altitude, it can be used for time adjustment of the device / power supply control device 109 and the like.

このようにすれば、装置・電源制御装置109によって複数の二次電池106を管理し、表示部103に二次電池106の劣化状態を表示することができる。さらに、装置・電源制御装置109、二次電池劣化判定装置107,108や図示しないコンピュータ等にはコネクタや無線(赤外線等)を介して外部機器と情報の送受信ができ、劣化判定情報の授受や制御プログラムのインストールや更新ができるようにしてもよい。また、表示部103は、装置・電源制御装置109や二次電池劣化判定装置107,108に、液晶画面(LCD)やランプ等が付いている、または、内蔵する構成であってもよい。   In this way, the plurality of secondary batteries 106 can be managed by the device / power supply control device 109, and the deterioration state of the secondary battery 106 can be displayed on the display unit 103. Furthermore, the device / power supply control device 109, the secondary battery deterioration determination devices 107, 108, a computer (not shown), and the like can transmit / receive information to / from an external device via a connector or wireless (infrared rays, etc.). The control program may be installed or updated. In addition, the display unit 103 may have a configuration in which a liquid crystal screen (LCD), a lamp, or the like is attached to or built in the device / power supply control device 109 or the secondary battery deterioration determination devices 107 and 108.

なお、本発明は、上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲内で種々変形して実施することが可能である。   Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.

第1実施形態に係る電源システムの概略の構成を示すブロック図である。1 is a block diagram showing a schematic configuration of a power supply system according to a first embodiment. 第2実施形態に係る電源システムの概略の構成を示すブロック図である。It is a block diagram which shows the structure of the outline of the power supply system which concerns on 2nd Embodiment. 第3実施形態に係る電源システムの概略の構成を示すブロック図である。It is a block diagram which shows the structure of the outline of the power supply system which concerns on 3rd Embodiment. 二次電池の温度と電圧の関係を示す図である。It is a figure which shows the relationship between the temperature and voltage of a secondary battery. 二次電池の内部インピーダンスと放電後電圧の関係を示す図である。It is a figure which shows the relationship between the internal impedance of a secondary battery, and the voltage after discharge. 所定の時間放電時の二次電池の電圧値をある温度で換算した図である。It is the figure which converted the voltage value of the secondary battery at the time of predetermined time discharge at a certain temperature. 二次電池の温度と各温度での5秒間放電時における放電前電圧と放電電圧との電圧差(電圧降下)について3つの良品二次電池の特性を示すものである。The characteristics of three non-defective secondary batteries are shown with respect to the temperature of the secondary battery and the voltage difference (voltage drop) between the pre-discharge voltage and the discharge voltage at the time of discharging for 5 seconds at each temperature. 二次電池の−30℃における放電後電圧と電圧差(電圧降下)の関係を示す図である。It is a figure which shows the relationship between the voltage after discharge in -30 degreeC of a secondary battery, and a voltage difference (voltage drop). 二次電池の充電、並びに、放電時における電圧変化を示す図である。It is a figure which shows the voltage change at the time of charge of a secondary battery, and discharge. 二次電池の充電、並びに、放電時における電圧変化を示す図である。It is a figure which shows the voltage change at the time of charge of a secondary battery, and discharge. 変形例のシステム構成図(その1)である。It is the system block diagram (the 1) of a modification. 変形例のシステム構成図(その2)である。It is the system block diagram (the 2) of a modification. 変形例のシステム構成図(その3)である。It is the system block diagram (the 3) of a modification. 変形例のシステム構成図(その4)である。It is the system block diagram (the 4) of a modification.

符号の説明Explanation of symbols

1、100…電源システム
2、10、106…二次電池
3、20…負荷
4…充電装置
5、18…電源制御装置
6…二次電池劣化判定装置
11…電流センサ
12…電圧センサ
13…制御部
14…記憶部
15…充電回路
16…放電回路
17,105…温度センサ
22,23…無線装置
24…コンピュータ
101…検知回路
102…制御・判定装置
103…表示部
104、107、108…二次電池劣化判定装置
109…装置・電源制御装置
110…GPS装置
111…照明
112…稼働部



















DESCRIPTION OF SYMBOLS 1,100 ... Power supply system 2, 10, 106 ... Secondary battery 3, 20 ... Load 4 ... Charging device 5, 18 ... Power supply control device 6 ... Secondary battery deterioration determination device 11 ... Current sensor 12 ... Voltage sensor 13 ... Control Unit 14 ... storage unit 15 ... charging circuit 16 ... discharging circuit 17 and 105 ... temperature sensors 22 and 23 ... wireless device 24 ... computer 101 ... detection circuit 102 ... control / determination device 103 ... display units 104, 107, 108 ... secondary Battery deterioration determination device 109 ... device / power supply control device 110 ... GPS device 111 ... light 112 ... operation unit



















Claims (3)

劣化状態が既知である少なくとも一つの二次電池基準品を所定の時間放電させ、放電電圧を測定し、前記二次電池基準品の放電電圧の時間特性と、
劣化状態が未知である二次電池試験品の放電開始前の電圧と、所定時間放電させたときの放電電圧との差である電圧降下を用いて、前記二次電池試験品の劣化判定を行う次電池の劣化判定方法であって、
劣化状態が既知である二次電池基準品として劣化していない良品二次電池を用い、
少なくとも一つの前記良品二次電池の温度−電圧降下特性を用いて、前記二次電池試験品の前記電圧降下の値を、所定の温度における電圧降下の値に換算し、
予め求められた二次電池におけるインピーダンスと所定条件下における放電電圧との関係を示すインピーダンス−放電電圧特性を用いて、予め求められた、少なくとも2つの前記良品二次電池のインピーダンスから、所定条件下における放電電圧を求め、さらに、前記良品二次電池の前記所定の温度における電圧降下の値を求め、
前記少なくとも2つの前記良品二次電池の前記放電電圧をX、前記電圧降下の値をYとしたとき、
Y=aX+b
なる関係式を満たすa、bを演算によって求め、
さらに劣化判定のための裕度として設定される値をk、前記二次電池試験品の前記放電電圧をVsとし、
Vth=aVs+b+kなる関係式を満たす劣化判定閾値をVthとし、前記二次電池試験品の前記所定の温度における電圧降下の値をX−SOHとしたとき、
X−SOH>Vth
を満たすときに前記二次電池は劣化品であると判定する、
ことを特徴とする二次電池の劣化判定方法。
Discharging at least one secondary battery reference product having a known deterioration state for a predetermined time, measuring a discharge voltage, and time characteristics of the discharge voltage of the secondary battery reference product;
Degradation determination of the secondary battery test product is performed using a voltage drop that is the difference between the voltage before the start of discharge of the secondary battery test product whose deterioration state is unknown and the discharge voltage when discharged for a predetermined time. A method for determining deterioration of a secondary battery ,
Using a non-degradable non-degradable secondary battery as a standard secondary battery with a known deterioration state,
Using the temperature-voltage drop characteristic of at least one non-defective secondary battery, the voltage drop value of the secondary battery test product is converted into a voltage drop value at a predetermined temperature,
Using the impedance-discharge voltage characteristic indicating the relationship between the impedance of the secondary battery determined in advance and the discharge voltage under the predetermined condition, the impedance of the at least two non-defective secondary batteries determined in advance is determined from the predetermined condition. Determining the discharge voltage, and further determining the value of the voltage drop at the predetermined temperature of the non-defective secondary battery,
When the discharge voltage of the at least two non-defective secondary batteries is X and the value of the voltage drop is Y,
Y = aX + b
A and b satisfying the relational expression
Further, the value set as the tolerance for deterioration determination is k, the discharge voltage of the secondary battery test product is Vs,
When the deterioration determination threshold value satisfying the relational expression Vth = aVs + b + k is Vth, and the voltage drop value at the predetermined temperature of the secondary battery test product is X-SOH,
X-SOH> Vth
When satisfying, the secondary battery is determined to be a deteriorated product,
A method for determining deterioration of a secondary battery.
前記二次電池試験品が充電中であった場合には、充電を中断或いは終了させた直後から放電電圧を測定する、
ことを特徴とする請求項1に記載の二次電池の劣化判定方法。
If the secondary battery test product is being charged, measure the discharge voltage immediately after the charge is interrupted or terminated,
The method for determining deterioration of a secondary battery according to claim 1 .
前記少なくとも一つの二次電池基準品の特性をフロート状態で測定する、
ことを特徴とする請求項1または請求項2に記載の二次電池の劣化判定方法。
Measuring characteristics of the at least one secondary battery reference product in a float state;
The method for determining deterioration of a secondary battery according to claim 1 or 2 , wherein
JP2005096958A 2005-03-30 2005-03-30 Secondary battery deterioration judgment method Active JP4809618B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005096958A JP4809618B2 (en) 2005-03-30 2005-03-30 Secondary battery deterioration judgment method
JP2011125958A JP5367762B2 (en) 2005-03-30 2011-06-06 Secondary battery deterioration determination method, secondary battery deterioration determination device, and power supply system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005096958A JP4809618B2 (en) 2005-03-30 2005-03-30 Secondary battery deterioration judgment method
JP2011125958A JP5367762B2 (en) 2005-03-30 2011-06-06 Secondary battery deterioration determination method, secondary battery deterioration determination device, and power supply system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011125958A Division JP5367762B2 (en) 2005-03-30 2011-06-06 Secondary battery deterioration determination method, secondary battery deterioration determination device, and power supply system

Publications (2)

Publication Number Publication Date
JP2006275846A JP2006275846A (en) 2006-10-12
JP4809618B2 true JP4809618B2 (en) 2011-11-09

Family

ID=49289888

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2005096958A Active JP4809618B2 (en) 2005-03-30 2005-03-30 Secondary battery deterioration judgment method
JP2011125958A Active JP5367762B2 (en) 2005-03-30 2011-06-06 Secondary battery deterioration determination method, secondary battery deterioration determination device, and power supply system

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2011125958A Active JP5367762B2 (en) 2005-03-30 2011-06-06 Secondary battery deterioration determination method, secondary battery deterioration determination device, and power supply system

Country Status (1)

Country Link
JP (2) JP4809618B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11821960B2 (en) 2019-12-11 2023-11-21 Lg Energy Solution, Ltd. Apparatus and method for diagnosing degree of degradation of battery

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4805101B2 (en) * 2006-11-21 2011-11-02 古河電気工業株式会社 Battery state estimation method, battery state monitoring device, and battery power supply system
JP4954791B2 (en) * 2007-05-24 2012-06-20 株式会社Kri Voltage prediction method for power storage devices
JP5342160B2 (en) * 2008-03-31 2013-11-13 古河電気工業株式会社 Battery state detection method and battery state detection device
KR100948309B1 (en) * 2009-09-02 2010-03-17 주훈 Method and apparatus for grading rechargeable battery using thermal image
JP5386443B2 (en) * 2010-06-30 2014-01-15 株式会社日立製作所 Power supply, railway vehicle
JP5746856B2 (en) * 2010-12-24 2015-07-08 日立オートモティブシステムズ株式会社 Battery module manufacturing method
CN102269799B (en) * 2011-04-29 2013-09-04 海能达通信股份有限公司 Method and system for detecting capacity of secondary battery
JP6347212B2 (en) * 2012-11-28 2018-06-27 株式会社村田製作所 Control device, power storage module, electric vehicle, power supply system, and control method
FR3006450B1 (en) * 2013-06-04 2015-05-22 Renault Sa METHOD FOR ESTIMATING THE HEALTH STATUS OF AN ELECTROCHEMICAL CELL FOR STORING ELECTRIC ENERGY
JP6186227B2 (en) * 2013-09-26 2017-08-23 古河電池株式会社 Battery monitoring device
CN106154173A (en) * 2016-06-24 2016-11-23 合肥国轩高科动力能源有限公司 Quick, cheap and convenient self-discharge screening method for secondary battery
JP2018048893A (en) * 2016-09-21 2018-03-29 Ntn株式会社 Secondary battery degradation determination device
JP6958046B2 (en) * 2017-07-11 2021-11-02 株式会社ジェイ・エム・エス Intravenous monitoring device
JP7003471B2 (en) * 2017-07-20 2022-01-20 東京電力ホールディングス株式会社 Storage battery deterioration diagnosis method
KR101963888B1 (en) * 2017-11-29 2019-07-31 엘아이지넥스원 주식회사 Apparatus and method for investigating condition of secondary cell
JP7276676B2 (en) 2019-01-28 2023-05-18 トヨタ自動車株式会社 SECONDARY BATTERY EVALUATION METHOD, SECONDARY BATTERY EVALUATION DEVICE, AND POWER SUPPLY SYSTEM
WO2021149673A1 (en) 2020-01-24 2021-07-29 株式会社Gsユアサ Determination device, deterioration determination system, work assistance device, deterioration determination method, and computer program
CN113884900B (en) * 2021-09-13 2022-08-23 北京交通大学 Method for predicting capacity mutation point of ternary lithium ion battery
WO2024134867A1 (en) * 2022-12-23 2024-06-27 株式会社日立ハイテク Battery diagnosis device, battery diagnosis method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933620A (en) * 1995-07-19 1997-02-07 Nippon Telegr & Teleph Corp <Ntt> Degradation judgment method for lead storage-battery
JP4050914B2 (en) * 2002-02-19 2008-02-20 株式会社日本自動車部品総合研究所 Secondary battery deterioration judgment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11821960B2 (en) 2019-12-11 2023-11-21 Lg Energy Solution, Ltd. Apparatus and method for diagnosing degree of degradation of battery

Also Published As

Publication number Publication date
JP2011232345A (en) 2011-11-17
JP2006275846A (en) 2006-10-12
JP5367762B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
JP4809618B2 (en) Secondary battery deterioration judgment method
US12087920B2 (en) Battery charger with battery state detection
TWI451113B (en) Battery performance monitoring
US6331762B1 (en) Energy management system for automotive vehicle
EP1206826B1 (en) Energy management system for automotive vehicle
US6424158B2 (en) Apparatus and method for carrying out diagnostic tests on batteries and for rapidly charging batteries
US7742885B2 (en) Vehicle power supply device and its degradation judgment method
US20220144097A1 (en) System and method for managing vehicle battery
JP2003523049A (en) Storage battery with integrated battery tester
US20050024061A1 (en) Energy management system for automotive vehicle
US8878493B2 (en) Apparatus for monitoring operation state of battery pack composed of plurality of cells mutually connected in series
US20020010558A1 (en) Storage battery with integral battery tester
WO2005015252A1 (en) Method for judging deterioration of accumulator, method for measuring secondary cell internal impedance, device for measuring secondary cell internal impedance, device for judging deterioration of secondary cell, and power source system
EP3719917B1 (en) Chargeable battery abnormality detection apparatus and chargeable battery abnormality detection method
CN109895717B (en) Parking air conditioner and service life early warning method and system of vehicle battery
US20020065619A1 (en) Battery test module
KR20170088530A (en) An Power supply system of Electric drive multiplexing battery pack
JP2001526877A (en) Battery and battery equalization method connected in series
KR20210145024A (en) Method for detecting defective battery cells and battery management system providing the same
US10173548B2 (en) Method for determining characteristics of battery segments for operating a battery pack with modules of different chemical makeup field
US20230001794A1 (en) Method and device for ascertaining a state of health of a battery for a means of transportation
US8222859B2 (en) Method for determining the charge state of a motor vehicle battery when the drive unit is switched off
JPH09283188A (en) Measuring method and measuring device
KR20070020322A (en) Method and apparatus for judging deterioration of battery
JPH11317243A (en) Capacity computing method at battery replacement for automobile

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4809618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250