KR100852060B1 - Method for cell balancing of high voltage battery in hybrid electric vehicle - Google Patents

Method for cell balancing of high voltage battery in hybrid electric vehicle Download PDF

Info

Publication number
KR100852060B1
KR100852060B1 KR1020070069512A KR20070069512A KR100852060B1 KR 100852060 B1 KR100852060 B1 KR 100852060B1 KR 1020070069512 A KR1020070069512 A KR 1020070069512A KR 20070069512 A KR20070069512 A KR 20070069512A KR 100852060 B1 KR100852060 B1 KR 100852060B1
Authority
KR
South Korea
Prior art keywords
cell
battery
capacity
balancing
high voltage
Prior art date
Application number
KR1020070069512A
Other languages
Korean (ko)
Inventor
박현수
Original Assignee
현대자동차주식회사
기아자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, 기아자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020070069512A priority Critical patent/KR100852060B1/en
Application granted granted Critical
Publication of KR100852060B1 publication Critical patent/KR100852060B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A method for cell balancing a high voltage battery for a hybrid electric vehicle(HEV) is provided to improve the accuracy of cell balancing and the reliance of SOC control and to reduce the manufacturing cost of a controller. A method for cell balancing a high voltage battery for a HEV comprises the steps of (S500) turning on an IG(ignition) key; (S510) measuring the voltage of the each cell by a master BMS ECU; (S520) calculating the capacity of the each cell by using the voltage of the each cell; (S530) selecting the minimum value among the capacity of the each cell; (S540) calculating the capacity deviation of the each cell based on the minimum value; (S550) calculating the discharge time of the each cell by using the capacity deviation; and (S560) discharging the cell during the discharge time.

Description

하이브리드 자동차용 고전압배터리의 셀 밸런싱 방법 {Method For Cell Balancing Of High Voltage Battery In Hybrid Electric Vehicle}Cell balancing method for high voltage battery for hybrid vehicle {Method For Cell Balancing Of High Voltage Battery In Hybrid Electric Vehicle}

본 발명은 HEV용 고전압배터리의 셀 밸런싱 방법에 대한 것으로서, 더욱 상세하게는 키 온(key on) 시에 마스터 BMS ECU를 이용하여 각 배터리 셀의 전압을 측정하고 상기 전압값을 이용하여 각 셀의 방전 시간을 계산하여 방전시킴으로써, 셀 밸런싱의 정확도를 향상시키고 SOC 제어 신뢰성을 높이며 제어기 생산 원가를 절감할 수 있는 HEV용 고전압배터리의 셀 밸런싱 방법에 관한 것이다.The present invention relates to a cell balancing method for a high voltage battery for HEV, and more particularly, to measure the voltage of each battery cell using a master BMS ECU at the time of key on and using the voltage value of each cell. The present invention relates to a cell balancing method of a high voltage battery for HEV, which can improve cell balancing accuracy, improve SOC control reliability, and reduce controller production cost by calculating and discharging a discharge time.

일반적으로 배터리 전원 공급 장치는 관련 전자 기기에 에너지를 제공하는 전원으로서 멀티셀 배터리 팩을 적용한다. 단일셀보다는 멀티셀의 팩을 이용함으로서 고전압을 인가하거나 용량을 증가시킬 수 있다. 그러나, 각각의 전지의 전압은 전지 자체적으로 충방전 특성을 갖기 때문에 시간이 경과함에 따라 언밸런싱되는 경향이 있다.In general, a battery power supply device applies a multicell battery pack as a power source for supplying energy to related electronic devices. By using a pack of multicells rather than a single cell, a high voltage can be applied or the capacity can be increased. However, the voltage of each battery tends to be unbalanced over time because the battery itself has charge and discharge characteristics.

이러한 배터리 팩 안의 전지들 사이의 전압차는 배터리 전지들 사이에 언밸 런싱을 생성하여, 배터리 팩의 용량의 손실을 초래할 수 있다. 이에 따라, 모든 배터리 전지의 과충전을 방지하고 균일하게 충전시킬 수 있도록 각각의 전지들을 밸런싱하기 위한 다양한 전지 밸런싱 시스템 및 방법이 개발되었다.The voltage difference between the cells in such a battery pack may create unbalancing between the battery cells, resulting in a loss of capacity of the battery pack. Accordingly, various battery balancing systems and methods have been developed for balancing individual cells to prevent overcharging of all battery cells and to evenly charge them.

즉, 셀 밸런싱(cell balancign)은 고전압배터리를 이루고 있는 단위 셀간의 전압편차를 줄여 줌으로써 배터리의 성능과 내구 수명을 향상시키는 역할을 한다. That is, cell balancign improves battery performance and endurance life by reducing the voltage deviation between unit cells forming a high voltage battery.

일반적으로 배터리 팩의 성능은 팩을 이루고 있는 셀 중 가장 높은 전압의 셀 혹은 가장 낮은 전압의 셀에 의하여 결정되며, 특정 셀에 의해 전압 High/Low 진단조건에 걸리면 배터리 사용이 불가하므로 전압편차로 인해 사용 영역이 줄어들게 된다. 따라서 셀간 전압 편차를 줄여 배터리팩의 최대 성능을 확보할 수 있다.In general, the performance of a battery pack is determined by the highest voltage or the lowest voltage among the cells that make up the pack.The battery cannot be used if the voltage high / low diagnostic conditions are met by a specific cell. The area of use will be reduced. Therefore, it is possible to secure the maximum performance of the battery pack by reducing the voltage variation between cells.

또한 배터리 셀간 전압 편차가 있는 상황에서 배터리를 사용하게 되면 팩 중 일부 셀이 다른 전압영역에서 다른 효율을 갖고 사용되게 되는데, 이는 특정 셀의 열화를 촉진하는 것으로서 이로 인해 팩 전체의 수명에 영향을 미치게 되므로, 셀간 전압 편차를 줄이면 배터리팩의 내구 성능이 향상되게 된다.In addition, when a battery is used in a voltage variation between battery cells, some cells in the pack may be used with different efficiencies in different voltage ranges, which may cause deterioration of specific cells, which may affect the life of the entire pack. Therefore, reducing the voltage variation between cells improves the durability of the battery pack.

상기와 같은 이유로 인하여 종래 기술은 셀 밸런싱을 수행하기 위하여 항시 각 셀의 전압을 측정하여 셀간 전압 편차를 제어한다.For the above reason, the prior art controls the voltage variation between cells by measuring the voltage of each cell at all times in order to perform cell balancing.

즉 종래 기술에 따른 셀 밸런싱 방법은 ⅰ) 고전압배터리를 제어하는 마스터(master) BMS(battery management system) ECU(electronic control unit), ⅱ) 셀 밸런싱을 위해 각각의 배터리 모듈을 제어하는 슬레이브(slave) BMS ECU ⅲ) 셀을 방전시키기 위한 방전저항, ⅳ) 방전시킬 셀을 제어하기 위한 스위치(solid state relay, SSR)를 사용하여 셀 밸런싱을 수행한다.In other words, the cell balancing method according to the prior art includes: (i) a master (BMS) battery management system (ECM) electronic control unit (ECU) controlling a high voltage battery, and ii) a slave controlling each battery module for cell balancing. BMS ECU Cell balancing is performed by using a discharge resistor for discharging a cell and a switch (solid state relay, SSR) for controlling a cell to be discharged.

상기의 슬레이브 BMS ECU에 대하여 설명하면, 셀 밸런싱을 하기 위해서는 매 순간의 정확한 셀 전압 측정이 필요한데, 다수의 셀 전압을 마스터 BMS ECU로만 측정하려면 긴 시간이 요구되므로 동시간대의 정확한 셀 전압을 측정할 수 없고, 따라서 정확한 셀 전압을 측정하기 위해 모듈마다 슬레이브 BMS ECU가 필요하게 된다. 예를 들어 6개의 모듈로 구성된 배터리팩의 경우 6개의 슬레이브 BMS ECU가 요구된다. Referring to the slave BMS ECU described above, accurate cell voltage measurement is required at every instant in order to perform cell balancing. Since measuring a large number of cell voltages only with the master BMS ECU requires a long time, accurate cell voltage measurement at the same time is required. Therefore, each module requires a slave BMS ECU to measure the correct cell voltage. For example, a six-module battery pack requires six slave BMS ECUs.

상기와 같은 종래 기술에 따라 셀 밸런싱을 하기 위해서는 항상 셀 전압을 모니터링 해야 한다. 모니터링 수행중 셀간 전압 편차가 어느 조건이상이 되면, 셀 밸런싱을 시작하여, 밸런싱 목표값 이상이 되는 모든 셀을 상기 방전저항을 이용하여 방전시킨다. 이후 셀간 최대 전압 편차가 밸런싱 목표값 이내가 되면 셀 밸런싱을 중단하고 상기의 셀 전압 모니터링 과정을 진행한다.In order to perform cell balancing according to the prior art as described above, the cell voltage should always be monitored. When the voltage difference between cells becomes greater than a certain condition during monitoring, cell balancing is started to discharge all the cells that are equal to or greater than the balancing target value by using the discharge resistor. After that, when the maximum voltage deviation between cells is within the balancing target value, cell balancing is stopped and the cell voltage monitoring process is performed.

그러나 상기와 같은 종래 기술에 따라 셀 밸런싱을 수행할 경우,However, when performing cell balancing according to the prior art as described above,

첫째, 셀의 정확한 전압 측정을 위해 모듈마다 슬레이브(slave) 제어기가 필요하므로 제어기의 제작 비용이 고가이고,First, since a slave controller is required for each module for accurate voltage measurement of a cell, the manufacturing cost of the controller is expensive,

둘째, 주행 중에도 셀 밸런싱을 수행하는데 충/방전 중에는 셀의 내부 저항에 따라 전압의 거동이 각기 다르므로 셀 밸런싱의 정확도가 떨어지며,Second, cell balancing is performed even while driving, and during charging / discharging, the voltage balancing varies depending on the internal resistance of the cell, thereby reducing the accuracy of cell balancing.

셋째 실질적인 충/방전이 없는 상황에서도 셀 밸런싱에 의해 셀이 방전되므로 SOC(state of charge)가 변하는 문제점이 있다.Third, there is a problem in that the state of charge (SOC) changes because the cell is discharged by cell balancing even in the absence of substantial charge / discharge.

본 발명은 상기와 같은 점을 감안하여 안출한 것으로서, 배터리 셀의 SOC(state of charge) 제어 신뢰성을 향상시키고, 셀 밸런싱 정확도를 높이며, 제어기의 생산 원가를 절감할 수 있는 HEV용 고전압배터리의 셀 밸런싱 방법을 제공하는데 그 목적이 있다.The present invention has been made in view of the above, and improves the reliability of control of SOC (state of charge) control of a battery cell, improves cell balancing accuracy, and reduces the production cost of a controller cell for a HEV high voltage battery. The purpose is to provide a balancing method.

상기와 같은 목적을 달성하기 위한 본 발명 HEV용 고전압배터리의 셀 밸런싱 방법은,The cell balancing method of the high voltage battery for HEV of the present invention for achieving the above object,

(a) IG(ignition) 키를 온 하는 단계;(a) turning on an IG key;

(b) 마스터 BMS ECU가 각 셀의 전압을 측정하는 단계;(b) the master BMS ECU measuring the voltage of each cell;

(c) 상기 각 셀의 전압을 이용하여 각 셀의 용량을 계산하는 단계;(c) calculating the capacity of each cell using the voltage of each cell;

(d) 상기 각 셀의 용량 중 최소값을 선정하는 단계;(d) selecting a minimum value of the capacity of each cell;

(e) 상기 최소값을 기준으로 각 셀의 용량 편차를 계산하는 단계;(e) calculating a capacity deviation of each cell based on the minimum value;

(f) 상기 용량 편차를 이용하여 각 셀의 방전시간을 계산하는 단계;(f) calculating the discharge time of each cell by using the capacity deviation;

(g)상기 방전시간만큼 각 셀을 방전시키는 단계를 포함하여 구성되는 것을 특징으로 한다.(g) discharging each cell by the discharge time.

상기와 같은 본 발명 HEV용 고전압배터리의 셀 밸런싱 방법에 의하면,According to the cell balancing method of the HEV high voltage battery of the present invention as described above,

첫째 본 발명에 따른 셀 밸런싱은 키 온(key on)시에 일 회만 수행하면 되므로 주행 중 전압 측정을 위한 슬레이브 BMS ECU가 필요하지 않아 생산 원가가 절감되며,First, since cell balancing according to the present invention only needs to be performed once at the time of key on, a slave BMS ECU is not required for voltage measurement while driving, thereby reducing production costs.

둘째 셀 밸런싱이 키 온 시에만 수행되므로 지속적인 전력 소비가 이루어지지 않고, 셀 밸런싱에 의해 SOC가 변하지 않아서 SoC 제어 신뢰성이 향상되며,Second, since cell balancing is performed only at key-on, there is no continuous power consumption, and SOC control reliability is improved because SOC is not changed by cell balancing.

셋째 고전압배터리의 충/방전 상태와 관계없이 키 온 시에만 셀 밸런싱이 수행되어 셀 밸런싱의 정확도가 증가하는 효과가 있다.Third, cell balancing is performed only at key-on regardless of the charge / discharge state of the high voltage battery, thereby increasing the accuracy of cell balancing.

본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다. 본 출원에서, “포함하다” 또는 “가지다” 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들의 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. A singular expression includes a plural expression unless the context clearly indicates otherwise. In this application, the terms “comprises” or “having” are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof described in the specification, and one or more other It is to be understood that the present invention does not exclude the possibility of the presence or the addition of features, numbers, steps, operations, components, parts, or a combination thereof.

이하, 본 발명을 첨부도면을 참조하여 상세하게 설명한다. Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

본 발명은 리튬 배터리의 셀간 전압편차를 유발하는 근본적인 원인에 근거해 키 온(Key On)시 1회만 셀 밸런싱을 수행하는 것을 특징으로 한다. 즉 리튬 배터리 의 셀간 전압 편차는 셀간 내부 저항 차이 및 셀의 미세한 마이크로-쇼트(micro-short)에 의한 서로 다른 자기방전률(self discharge rate) 때문에 발생한다. 따라서 셀간 전압 편차는 주로 셀을 방치한 후에 발생하게 되므로, 본 발명에서는 주행 전에 정확한 셀간 편차를 파악하여 셀 밸런싱을 수행하는 것을 목적으로 한다.The present invention is characterized in that cell balancing is performed only once when a key is on, based on a fundamental cause of voltage variation between cells of a lithium battery. That is, the voltage variation between cells of a lithium battery is caused by different self discharge rates due to the difference in internal resistance between cells and the micro-short of the cells. Therefore, since the voltage difference between cells is mainly generated after leaving the cell, the present invention aims to perform cell balancing by grasping accurate deviation between cells before driving.

특히 종래기술에서는 셀 밸런싱 수행을 위해 항시 정확한 전압 측정이 필요했던데 반해 본 기술은 시간 개념을 도입하여 초기에 일 회만 전압을 측정한다.In particular, the conventional technology required accurate voltage measurement at all times to perform cell balancing, whereas the present technology introduces a time concept to measure the voltage only once.

도 4에 도시된 바와 같이 키 온 시퀀스(key on sequence)에 소요되는 시간은 550ms ~ 600ms로서, 상기의 시간은 슬레이브 BMS ECU 없이 마스터 MBS ECU 만으로 모든 셀의 전압을 측정하기에 충분한 시간이다. As shown in FIG. 4, the time required for the key on sequence is 550 ms to 600 ms, which is a time sufficient to measure voltages of all cells using only the master MBS ECU without the slave BMS ECU.

또한, 키 온(key on)시에는 고전압배터리가 사용되지 않으므로, 슬레이브 BMS ECU 없이 마스터 BMS ECU 만으로 각 셀의 정확한 OCV(open circuit voltage) 측정이 가능하다. In addition, since a high voltage battery is not used when the key is on, accurate open circuit voltage (OCV) measurement of each cell can be performed using only a master BMS ECU without a slave BMS ECU.

이하, 도 5를 참조하여 본 발명에 따른 셀 밸런싱 방법에 대하여 상세하게 설명한다. Hereinafter, a cell balancing method according to the present invention will be described in detail with reference to FIG. 5.

먼저, IG(ignition) 키가 온(on) 되면(500), 마스터 BMS ECU에서 각 셀의 현재 전압(OCVn)을 측정하여 각 셀의 SOCn(state of charge)를 구한다(510). First, when the IG (ignition) key is turned on (500), the master BMS ECU measures the current voltage (OCV n ) of each cell to obtain the SOC n (state of charge) of each cell (510).

이때 상기에서 언급한 바와 같이 키 온 시에는 고전압배터리가 사용되지 않으므로 마스터 BMS ECU 만으로 정확한 측정이 가능하다.At this time, since the high voltage battery is not used at the time of key-on as described above, accurate measurement is possible only by the master BMS ECU.

이후 상기에서 계산된 각 셀의 SOCn를 이용하여 이를 용량(Ahn)으로 환산한 다(520). 그리고 계산된 각 셀의 용량 중 최소값(Ahmin)을 선정(530)하며, 상기 최소값(Ahmin )을 기준으로 각 셀의 용량 편차를 계산(Ahn-Ahmin)한다(540). Thereafter, using SOC n of each cell calculated above, this is converted into a capacity Ah n (520). And selects the minimum value (min Ah) of the capacity of each cell, the calculation unit 530, and calculates the capacity variation of each cell on the basis of the minimum value (min Ah) (Ah n -Ah min) (540).

상기 계산된 각 셀의 용량 편차를 이용하여, 상기 용량 편차만큼 방전하기 위한 방전 시간을 다음 수학식 1을 이용하여 계산한다(550).Using the calculated capacity deviation of each cell, the discharge time for discharging by the capacity deviation is calculated using Equation 1 below (550).

Figure 112007050442130-pat00001
Figure 112007050442130-pat00001

상기에서, Tn은 n번째 배터리 셀의 방전시간, Ahn은 n번째 배터리 셀의 용량, Ahmin은 각 배터리 셀의 용량 중 최소값, IB는 밸런싱 전류를 나타낸다. In the above description, T n is the discharge time of the n-th battery cell, Ah n is the capacity of the n-th battery cell, Ah min is the minimum value of the capacity of each battery cell, and I B is the balancing current.

각 셀의 방전 시간이 계산되면, 상기 시간만큼 각 셀을 방전시켜(560), 셀 밸런싱을 완료(570)한다.When the discharge time of each cell is calculated, each cell is discharged by the time (560), and cell balancing is completed (570).

따라서 본 발명에 따른 셀 밸런싱을 수행할 경우 고전압배터리 사용에 관계없이 초기에 측정한 OCV에 근거하여 정해진 시간 동안만 방전하면 되고, 매 순간 정확한 전압 측정이 필요하지 않기 때문에 슬레이브(slave) 제어기가 필요 없으며, 주행중 충/방전 상황에서도 정확한 셀 밸런싱이 가능하고, 한번만 셀 밸런싱을 하므로 그 이후 셀 밸런싱에 의해 SOC(state of charge)가 변하는 문제를 해결할 수 있다. Therefore, when performing cell balancing according to the present invention, it is necessary to discharge only for a predetermined time based on the OCV measured initially regardless of the use of a high voltage battery, and a slave controller is necessary because accurate voltage measurement is not required every minute. In addition, accurate cell balancing is possible even in a charging / discharging situation while driving, and since cell balancing is performed only once, the problem of SOC (state of charge) is changed by cell balancing thereafter.

이상에서는 본 발명을 특정의 바람직한 실시예에 대하여 도시하고 설명하였으나, 본 발명은 이러한 실시예에 한정되지 않으며, 당해 발명이 속하는 기술 분야 에서 통상의 지식을 가진 자가 특허청구범위에서 청구하는 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 실시할 수 있는 다양한 형태의 실시예들을 모두 포함한다. While the invention has been shown and described with respect to certain preferred embodiments thereof, the invention is not limited to these embodiments, and those of ordinary skill in the art to which the invention pertains may claim It includes all the various forms of embodiments that can be implemented without departing from the spirit.

도 1은 마스터 BMS ECU의 실제 사진,1 is a real picture of a master BMS ECU,

도 2는 슬레이브 BMS ECU의 실제 사진,2 is a real picture of a slave BMS ECU,

도 3은 종래 기술에 따른 셀 밸런싱 장치를 나타낸 도면,3 is a view showing a cell balancing apparatus according to the prior art,

도 4는 배터리셀의 키 온 시퀀스(key on sequence)를 나타낸 도면,4 is a diagram illustrating a key on sequence of a battery cell;

도 5는 본 발명에 따른 셀 밸런싱 방법을 나타낸 순서도이다. 5 is a flowchart illustrating a cell balancing method according to the present invention.

Claims (5)

(a) IG(ignition) 키를 온 하는 단계;(a) turning on an IG key; (b) 마스터 BMS ECU가 각 셀의 전압을 측정하는 단계;(b) the master BMS ECU measuring the voltage of each cell; (c) 상기 각 셀의 전압을 이용하여 각 셀의 용량을 계산하는 단계;(c) calculating the capacity of each cell using the voltage of each cell; (d) 상기 각 셀의 용량 중 최소값을 선정하는 단계;(d) selecting a minimum value of the capacity of each cell; (e) 상기 최소값을 기준으로 각 셀의 용량 편차를 계산하는 단계;(e) calculating a capacity deviation of each cell based on the minimum value; (f) 상기 용량 편차를 이용하여 각 셀의 방전시간을 계산하는 단계;(f) calculating the discharge time of each cell by using the capacity deviation; (g)상기 방전시간만큼 각 셀을 방전시키는 단계를 포함하여 구성되는 것을 특징으로 하는 HEV용 고전압배터리의 셀 밸런싱 방법.(g) a cell balancing method for a HEV high voltage battery, comprising the step of discharging each cell by the discharge time. 청구항 1에 있어서,The method according to claim 1, 상기 HEV용 고전압배터리는 리튬 배터리인 것을 특징으로 하는 HEV용 고전압배터리의 셀 밸런싱 방법.The HEV high voltage battery is a cell balancing method for a HEV high voltage battery, characterized in that the lithium battery. 청구항 1 또는 청구항 2에 있어서,The method according to claim 1 or 2, 상기 (b) 단계는,In step (b), 각 셀의 전압(OCV)를 측정하여 각 셀의 SOC를 구하는 단계를 더 포함하여 구 성되는 것을 특징으로 하는 HEV용 고전압배터리의 셀 밸런싱 방법.And measuring the voltage (OCV) of each cell to obtain the SOC of each cell. 청구항 3에 있어서,The method according to claim 3, 상기 (e) 단계의 용량 편차는 Ahn-Ahmin으로 정의되며, 상기 Ahn은 n번째 배터리 셀의 용량, Ahmin은 셀의 용량 중 최소값을 나타내는 것을 특징으로 하는 HEV용 고전압배터리의 셀 밸런싱 방법.The capacity deviation of the step (e) is defined as Ah n -Ah min , wherein Ah n is the capacity of the n-th battery cell, Ah min represents the minimum value of the capacity of the cell cell balancing of HEV high voltage battery Way. 청구항 4에 있어서,The method according to claim 4, 상기 (f) 단계의 각 셀의 방전시간은
Figure 112007050442130-pat00002
로 정의되며, 상기 Tn은 n번째 배터리 셀의 방전시간, Ahn은 n번째 배터리 셀의 용량, Ahmin은 각 배터리 셀의 용량 중 최소값, IB는 밸런싱 전류를 나타내는 것을 특징으로 하는 HEV용 고전압배터리의 셀 밸런싱 방법.
The discharge time of each cell of step (f)
Figure 112007050442130-pat00002
T n is the discharge time of the n-th battery cell, Ah n is the capacity of the n-th battery cell, Ah min is the minimum value of the capacity of each battery cell, I B for balancing HEB characterized in that Cell balancing method for high voltage battery.
KR1020070069512A 2007-07-11 2007-07-11 Method for cell balancing of high voltage battery in hybrid electric vehicle KR100852060B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070069512A KR100852060B1 (en) 2007-07-11 2007-07-11 Method for cell balancing of high voltage battery in hybrid electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070069512A KR100852060B1 (en) 2007-07-11 2007-07-11 Method for cell balancing of high voltage battery in hybrid electric vehicle

Publications (1)

Publication Number Publication Date
KR100852060B1 true KR100852060B1 (en) 2008-08-13

Family

ID=39881712

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070069512A KR100852060B1 (en) 2007-07-11 2007-07-11 Method for cell balancing of high voltage battery in hybrid electric vehicle

Country Status (1)

Country Link
KR (1) KR100852060B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100993655B1 (en) 2008-08-12 2010-11-10 기아자동차주식회사 Method of balancing cell in battery pack of hev
KR101263385B1 (en) * 2011-11-18 2013-05-21 자동차부품연구원 Bms simulator for verifying balancing function and method for verifying balancing function using the same
US10571523B2 (en) 2017-07-20 2020-02-25 Lg Chem, Ltd. Wireless battery management system and battery pack including same
CN112180273A (en) * 2019-06-14 2021-01-05 现代自动车株式会社 Vehicle battery diagnosis device, battery diagnosis method thereof, and vehicle including vehicle battery diagnosis device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010059081A (en) * 1999-12-30 2001-07-06 이계안 COMPLEMENT METHOD FOR THE FIRST STATE Of CHARGE OF ELECTRIC VEHICLE
KR100708854B1 (en) 2005-11-30 2007-04-17 삼성에스디아이 주식회사 Method of estimating soc for battery and battery management system using the same
KR100727002B1 (en) 2006-03-28 2007-06-14 넥스콘 테크놀러지 주식회사 A li-ion or li-polymer batterie balancing module for a hybrid electric vehicle
JP2007151256A (en) 2005-11-25 2007-06-14 Yazaki Corp Battery management device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010059081A (en) * 1999-12-30 2001-07-06 이계안 COMPLEMENT METHOD FOR THE FIRST STATE Of CHARGE OF ELECTRIC VEHICLE
JP2007151256A (en) 2005-11-25 2007-06-14 Yazaki Corp Battery management device
KR100708854B1 (en) 2005-11-30 2007-04-17 삼성에스디아이 주식회사 Method of estimating soc for battery and battery management system using the same
KR100727002B1 (en) 2006-03-28 2007-06-14 넥스콘 테크놀러지 주식회사 A li-ion or li-polymer batterie balancing module for a hybrid electric vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100993655B1 (en) 2008-08-12 2010-11-10 기아자동차주식회사 Method of balancing cell in battery pack of hev
KR101263385B1 (en) * 2011-11-18 2013-05-21 자동차부품연구원 Bms simulator for verifying balancing function and method for verifying balancing function using the same
US10571523B2 (en) 2017-07-20 2020-02-25 Lg Chem, Ltd. Wireless battery management system and battery pack including same
CN112180273A (en) * 2019-06-14 2021-01-05 现代自动车株式会社 Vehicle battery diagnosis device, battery diagnosis method thereof, and vehicle including vehicle battery diagnosis device

Similar Documents

Publication Publication Date Title
EP2587621B1 (en) Power storage unit control circuit and power storage apparatus
JP4089691B2 (en) Vehicle battery control device
JP3964635B2 (en) Memory effect detection method and solution
EP2360485B1 (en) Battery management system and driving method thereof
US8669741B2 (en) Battery management system and driving method thereof
EP2672606B1 (en) Charging-control device and charging-control method
EP3323184B1 (en) A method and system for balancing a battery pack
US8102153B2 (en) Battery voltage adjusting device
US20040257045A1 (en) Automotive battery state monitor apparatus
WO2008065910A1 (en) Accumulator failure detecting device, accumulator failure detecting method, accumulator failure detecting program, and computer-readable recording medium containing the accumulator failure detecting program
US20120161709A1 (en) Secondary-battery control apparatus
KR20150137678A (en) Method and apparatus for managing battery
CN100589301C (en) Apparatus and method for controlling output of secondary battery, battery back system, and electric vehicle
US7612540B2 (en) Lithium-ion battery diagnostic and prognostic techniques
US20230009288A1 (en) Vehicle battery diagnosis method and system
KR101498764B1 (en) Method and apparatus for battery resistance estimation, and battery management system using the same
KR100852060B1 (en) Method for cell balancing of high voltage battery in hybrid electric vehicle
US11899070B2 (en) Battery control device
JP7140082B2 (en) Sensor abnormality determination device
US20110199058A1 (en) Agm battery recovery and capacity tester
JP2003068370A (en) Detector of charged state of battery
US20220385095A1 (en) Fast Charging Method
EP3872506A1 (en) Battery control device
KR20090042367A (en) Method for battery performance improvement and soc reset of hev
JP2016140156A (en) Controller for power storage device

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120731

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130731

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150731

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160729

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180730

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190729

Year of fee payment: 12