KR20090042367A - Method for battery performance improvement and soc reset of hev - Google Patents

Method for battery performance improvement and soc reset of hev Download PDF

Info

Publication number
KR20090042367A
KR20090042367A KR1020070108080A KR20070108080A KR20090042367A KR 20090042367 A KR20090042367 A KR 20090042367A KR 1020070108080 A KR1020070108080 A KR 1020070108080A KR 20070108080 A KR20070108080 A KR 20070108080A KR 20090042367 A KR20090042367 A KR 20090042367A
Authority
KR
South Korea
Prior art keywords
battery
soc
internal resistance
resistance
charging
Prior art date
Application number
KR1020070108080A
Other languages
Korean (ko)
Other versions
KR100906872B1 (en
Inventor
강승원
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020070108080A priority Critical patent/KR100906872B1/en
Publication of KR20090042367A publication Critical patent/KR20090042367A/en
Application granted granted Critical
Publication of KR100906872B1 publication Critical patent/KR100906872B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/10Driver interactions by alarm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

A method for compensating for a battery of a hybrid vehicle and an SOC initializing method are provided to measure the internal resistance of the battery accurately by measuring a resistance element when discharging a high current. The internal resistance of a battery is measured when starting a vehicle. If the internal resistance of the battery is larger than the first reference resistance, the generating power is fixed in a regenerative braking operation. If the internal resistance of the battery is larger than the second reference resistance, the replacement of the battery is alarmed. The regenerative braking is performed by the fixed generating power. The battery charging is performed according to the regenerative braking. If the charging current of the battery is larger than the reference charging current, the battery constant-voltage charging control is performed. The SOC is initialized after the constant-voltage charging is completed.

Description

하이브리드 차량의 배터리 성능 보상 및 SOC 초기화 방법{Method for battery performance improvement and SOC reset of HEV}Battery performance compensation and SOC initialization method of hybrid vehicle {Method for battery performance improvement and SOC reset of HEV}

본 발명은 하이브리드 차량의 배터리 성능 보상 및 SOC 초기화 방법에 관한 것으로서, 더욱 상세하게는 배터리 내구 상태 측정을 통한 배터리 성능 보상 및 SOC 보정 알고리즘을 제공함으로써, 배터리 내구성 향상은 물론 적절한 배터리 교체 시점 판단 및 차량의 시동(기동) 성능을 확보할 수 있도록 한 하이브리드 차량의 배터리 성능 보상 및 SOC 초기화 방법에 관한 것이다.The present invention relates to a battery performance compensation and SOC initialization method of a hybrid vehicle, and more particularly, by providing a battery performance compensation and SOC correction algorithm by measuring battery endurance, thereby improving battery durability and determining a proper battery replacement time and a vehicle. The present invention relates to a battery performance compensation and SOC initialization method of a hybrid vehicle to ensure startup performance of the vehicle.

일반적으로, 하이브리드(Hybrid) 자동차란 두 개의 동력원을 이용하여 구동되는 차량을 말하며 상기한 하이브리드 차량의 에너지 저장 장치로는 고전압 배터리를 사용하고 있다.In general, a hybrid vehicle refers to a vehicle driven using two power sources, and a high voltage battery is used as an energy storage device of the hybrid vehicle.

하이브리드 차량은 주행 구동원으로서 엔진 및 모터가 직결되어 있고, 동력 전달을 위한 클러치 및 변속기(CVT), 엔진 및 모터 등의 구동을 위한 인버터, DC/DC컨버터, 고전압배터리 등을 포함하며, 또한 이들의 제어수단으로서 서로 캔 통신에 의하여 통신 가능하게 연결되는 하이브리드 제어기(HCU: Hybrid Control Unit)), 모터 제어기(MCU: Motor Control Unit), 배터리 제어기(BMS: Battery Management System) 등을 포함하고 있다.The hybrid vehicle includes an engine and a motor directly connected as driving driving sources, a clutch and a transmission (CVT) for power transmission, an inverter for driving the engine and the motor, a DC / DC converter, a high voltage battery, and the like. The control means includes a hybrid controller (HCU), a motor controller (MCU), a battery controller (BMS), and the like, which are communicatively connected to each other by can communication.

이러한 구성들 중, 본 발명과 관련된 고전압배터리는 하이브리드 차량의 모터 및 DC/DC 컨버터를 구동하는 에너지원이며, 그 제어기인 배터리 제어기는 고전압배터리의 전압, 전류, 온도를 모니터링하여, 고전압배터리의 충전상태량(SOC[%](State of Charge))을 조절하는 기능을 한다.Among these configurations, the high voltage battery related to the present invention is an energy source for driving a motor and a DC / DC converter of a hybrid vehicle, and the battery controller, the controller, monitors the voltage, current, and temperature of the high voltage battery, thereby charging the high voltage battery. Function to control SOC [%] (State of Charge).

기존의 배터리 성능 진단 방법에 있어서, 충방전 전류, 전압에 의한 배터리 내부저항 측정 방법을 사용하였는 바, 배터리 내부는 여러 개의 저항 성분으로 구성됨에 따라 일반적인 충방전 전류로는 정확한 배터리 내부저항 측정이 어려운 단점이 있고, 또한 배터리 내부 저항 증감을 원스텝(1step)으로만 측정하여 배터리 내구 상태를 판단하는 것은 신뢰성이 떨어지는 단점이 있다. In the conventional method for diagnosing battery performance, a method of measuring battery internal resistance by charging and discharging currents and voltages is used. Since the inside of the battery is composed of several resistance components, it is difficult to measure accurate battery internal resistance with general charging and discharging currents. In addition, it is also a disadvantage that the reliability of the battery to determine the battery durability by measuring the increase or decrease of the internal resistance of the battery in one step (1 step).

또한, 기존의 배터리 내부저항 증가시 제어 방식에 있어서, 일정 시간 정전압 또는 정전류 제어를 하는 방식을 채택하였는 바, 이는 정전압 또는 정전류 제어에 의해 고정된 충전량까지 충전하고, 고정 충전량까지 충전 후 SOC 초기화를 수행할 경우 장시간이 소요되어, 결국 차량에서 배터리 충전을 위한 장시간 발전 제어 기능에 제약이 따르고, 연비 성능이 저감되는 원인이 된다.In addition, in the conventional battery control method when the internal resistance is increased, a method of controlling the constant voltage or the constant current for a predetermined time is adopted, which charges up to a fixed charge amount by the constant voltage or constant current control, and initializes the SOC after charging to the fixed charge amount. If it is performed, it takes a long time, which in turn causes a restriction on the long-term power generation control function for charging the battery in the vehicle, and causes fuel economy performance to be reduced.

본 발명은 상기와 같은 점을 감안하여 안출한 것으로서, 시동시 전류, 전압에 의한 배터리 내부저항 측정(고전류 방전시 배터리 내부저항 측정)을 하고, 일정 시간 고정 회생제동 발전시 수입 전류 측정(고전력 충전 시 수입 전류로 배터리 내구 상태 판단)을 함으로써, 고전류 방전시 나타내는 저항 성분만을 측정하여 정확한 배터리 내부저항 측정이 가능하고, 또한 배터리 내부저항 변화를 2단계로 판단함과 함께 배터리 수입전류로서 배터리 내구 상태를 판단하여 신뢰성을 향상시킬 수 있으며, 임의의 시간 정전압 제어 후 수입 전류 모니터링을 하여 정전압 충전이 용이하고, 배터리 활성화에 효과적이며, 또한 수입 전류량에 의해 배터리 SOC 초기화하는 영역을 가변 설정이 단시간에 가능하므로 차량에서 배터리 충전을 위한 발전 제어 기능에 최소한의 제약 수반하여 연비 향상을 도모할 수 있는 하이브리드 차량의 배터리 성능 보상 및 SOC 초기화 방법을 제공하는데 그 목적이 있다.The present invention has been devised in view of the above, it is measured the internal resistance of the battery by the current at the start, the voltage (measurement of the internal resistance of the battery during high current discharge), and the measurement of the imported current at the time of fixed regenerative braking power generation (high power charging Battery endurance status is determined by the imported current at the time of measurement), and it is possible to measure the resistance of the battery during high current discharge and to accurately measure the internal resistance of the battery. It is possible to improve the reliability by judging the current, and to monitor the imported current after controlling the constant voltage at any time, it is easy to charge the constant voltage, and it is effective for battery activation. To minimize power generation control for battery charging in the vehicle. It is an object of the present invention to provide a method for compensating battery performance and initializing SOC of a hybrid vehicle, which can improve fuel efficiency with the constraint of.

상기한 목적을 달성하기 위한 본 발명은: 시동 온과 함께 차량의 기동시 배터리 내부저항을 측정하는 제1단계와; 배터리 내부저항 측정 결과, 배터리 내부저항이 기동 및 사용 가능한 배터리 내부저항 수치인 제1기준저항보다 크면, 회생제동시 발전 출력을 고정시키는 제2단계와; 고정된 발전 출력으로 회생제동이 이루어지는 제3단계와; 회생제동에 따른 배터리 충전이 이루어짐과 함께 배터리 충전전류가 기준충전전류와 비교하여 크면, 배터리 정전압 충전 제어가 수행되는 제4단계와; 정전압 충전이 진행된 후, SOC를 초기화시키는 제5단계; 를 포함하는 것을 특징으로 하는 하이브리드 차량의 배터리 성능 보상 및 SOC 초기화 방법을 제공한다.The present invention for achieving the above object comprises: a first step of measuring the battery internal resistance when the vehicle is started with the start-up; A second step of fixing the power generation output during regenerative braking if the battery internal resistance is greater than the first reference resistance, which is a value of the battery internal resistance that can be started and used; A third step of regenerative braking at a fixed power generation output; A fourth step of performing battery constant voltage charge control when the battery is charged by regenerative braking and the battery charge current is larger than the reference charge current; A fifth step of initializing the SOC after the constant voltage charging is performed; It provides a battery performance compensation and SOC initialization method of a hybrid vehicle comprising a.

바람직한 구현예로서, 배터리 내부저항을 측정 결과, 배터리 내부저항이 기동 및 사용 불가한 배터리 내부저항 수치인 제2기준저항보다 크면, 배터리 교체를 경고하는 단계가 진행되는 것을 특징으로 한다.In a preferred embodiment, if the battery internal resistance is measured, and the battery internal resistance is greater than the second reference resistance, which is a value of the battery internal resistance, which is not started and unusable, the step of warning battery replacement is performed.

바람직한 다른 구현예로서, 상기 회생제동에 따른 배터리 충전이 이루어짐과 함께 배터리 충전전류가 기준충전전류와 비교하여 더 작으면, 배터리 교체를 경고하는 단계가 진행되는 것을 특징으로 한다.In another preferred embodiment, when the battery charging is performed according to the regenerative braking and the battery charging current is smaller than the reference charging current, a step of warning battery replacement is performed.

바람직한 또 다른 구현예로서, 상기 SOC를 초기화시키는 단계는 정전압 충전시, 배터리 충전 전류를 측정하여 연산 SOC의 초기화를 설정하는 배터리 충전 전류가 수입됨을 판단하는 과정을 통하여, 일정 전류가 수입될 때 수렴전류에 의한 SOC를 추정하여 이 추정값을 SOC 초기화값으로 설정하여 SOC를 초기화시키는 것으로 진행되는 것을 특징으로 한다.In another preferred embodiment, the step of initializing the SOC converges when a constant current is imported through a process of determining a battery charging current for setting the initialization of the operation SOC by measuring the battery charging current during constant voltage charging. It is characterized by proceeding to initialize the SOC by estimating the SOC by the current and setting the estimated value to the SOC initialization value.

상기한 과제 해결 수단을 통하여, 본 발명은 다음과 같은 효과를 제공할 수 있다.Through the above problem solving means, the present invention can provide the following effects.

시동시(고전류 방전시) 전류, 전압에 의한 배터리 내부저항 측정시 고전류 방전시 나타나는 저항 성분만을 측정하여 정확한 배터리 내부저항을 측정할 수 있다.Accurate battery internal resistance can be measured by measuring only resistance components that appear during high current discharge when measuring battery internal resistance by current and voltage at start-up (high current discharge).

배터리 내부저항 변화를 2단계로 판단함과 함께 수입전류로서 배터리 내구상태를 판단하여 배터리 내구 상태 판단에 대한 신뢰성을 향상시킬 수 있다.The battery internal resistance change can be judged in two stages, and the durability of the battery can be improved by determining the battery durability as an imported current.

임의의 시간 정전압 제어 후 수입 전류 모니터링을 하여 정전압 충전이 용이하고, 배터리 SOC 초기화하는 영역을 가변으로 설정 가능하여, 배터리 활성화에 효과적이다.After the arbitrary time constant voltage control, the import current is monitored to facilitate constant voltage charging, and the area for initializing the battery SOC can be set to a variable value, which is effective for battery activation.

결국, 배터리 충전을 위한 발전 제어 기능에 최소한의 제약 수반하여 연비 향상을 도모할 수 있다.As a result, it is possible to improve fuel economy with minimal constraints on the power generation control function for battery charging.

이하, 본 발명의 바람직한 실시예를 첨부면을 참조로 상세하게 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

첨부한 도 1은 본 발명에 따른 하이브리드 차량의 배터리 성능 보상 및 SOC 초기화 방법을 설명하는 개괄적인 순서도이다.1 is a schematic flowchart illustrating a battery performance compensation and SOC initialization method of a hybrid vehicle according to the present invention.

본 발명에 따른 하이브리드 차량의 배터리 성능 보상 및 SOC 초기화 방법은 배터리 내부저항 측정 단계, 내터리 내부저항의 과도한 증가로 배터리 사용 불가 또는 배터리 내부저항의 일정량 증가 상태로 배터리 활성화 필요 또는 배터리 내부저항 양호 등을 판단하는 배터리 내구 상태 판별 단계, 배터리 최적의 충전(정전압)을 통한 배터리 활성화로 내부저항의 감소 로직인 배터리 성능 보상 로직, 배터리 저항 증가 상태에서 연산된 SOC값의 오차 성분 제거를 위한 배터리 SOC 초기화 단계 등을 포함하여 이루어진다.The battery performance compensation and SOC initialization method of the hybrid vehicle according to the present invention includes the battery internal resistance measuring step, the battery cannot be used due to excessive increase of the internal battery resistance, or the battery needs to be activated with a certain amount of battery internal resistance or the battery internal resistance is good. Battery endurance status determination step for determining the battery durability, battery performance compensation logic, which is a logic to reduce internal resistance by battery activation through optimal battery charging (constant voltage), and battery SOC initialization to remove the error component of SOC value calculated in the state of battery resistance increase. Steps and the like.

본 발명의 배터리 성능 보상 및 SOC 초기화 방법을 구체적으로 설명하면 다음과 같다.The battery performance compensation and SOC initialization method of the present invention will be described in detail as follows.

첨부한 도 2는 본 발명에 따른 하이브리드 차량의 배터리 성능 보상 및 SOC 초기화 방법을 설명하는 구체적인 순서도이다.2 is a detailed flowchart illustrating a battery performance compensation and SOC initialization method of a hybrid vehicle according to the present invention.

먼저, 시동 온과 함께 차량의 기동시 배터리 내부저항을 측정하는 제1단계가 진행된다.First, a first step of measuring the battery internal resistance when the vehicle is started along with the start-up is performed.

통상 배터리는 전기등가모델로 나타내면, 첨부한 도 3에 도시된 바와 같이 저항성분과 캐패시터 성분으로 나타낼 수 있고, 배터리는 에이징(Aging) 정도에 의해 저항 성분이 비례적으로 변하게 된다.In general, the battery may be represented by an electric equivalent model, and may be represented by a resistance component and a capacitor component as shown in FIG. 3. In the battery, the resistance component is proportionally changed by the degree of aging.

이때, 배터리는 여러개의 저항 성분으로 구성되어 있으나, 기동 시 즉, 대전류 방전시에는 거의 하나의 저항 성분이 나타나게 되는데, 첨부한 도 3에 나타낸 바와 같이 전해질과 극판의 저항성분(②)이 기동시 발생하는 대전류 방전에 의해 나타나게 된다.At this time, the battery is composed of a plurality of resistance components, but at the start, that is, when a large current discharge, almost one resistance component appears, as shown in the accompanying Figure 3 when the resistance component (②) of the electrolyte and the electrode plate is started It is caused by the large current discharge generated.

이러한 기동시 배터리 내부저항을 측정한 결과, 배터리 내부저항이 기동 및 사용 가능한 배터리 내부저항 수치를 의미하는 제1기준저항보다 크면, 회생제동시 발전 출력을 고정시키는 제2단계가 진행되고, 작으면 정상적인 배터리 상태로 판단하여 SOC 연산을 그대로 수행하게 된다.As a result of measuring the battery internal resistance at the start, if the battery internal resistance is larger than the first reference resistance, which means the value of the battery internal resistance that can be started and used, a second step of fixing the power generation output during regenerative braking is performed. The SOC operation is performed as it is determined as a normal battery state.

또한, 기동시 배터리 내부저항 측정 결과, 배터리 내부저항이 기동 및 사용 불가한 배터리 내부저항 수치인 제2기준저항보다 크면, 시동 자체가 불가하므로 배터리 교체를 경고하는 단계가 더 진행된다.In addition, when the battery internal resistance measurement results at startup, when the battery internal resistance is greater than the second reference resistance, which is a value of the battery internal resistance, which is not started and unusable, starting may not be performed.

이와 같이, 배터리 내부저항 변화를 2단계로 판단하여 배터리 내구 상태를 판단함에 있어 신뢰성을 향상시킬 수 있다.As described above, reliability of the battery durability may be improved by determining the battery internal resistance change in two steps.

이어서, 배터리 내부저항의 일정량 증가 즉, 배터리 내부저항이 제1기준저항보다 크면, 고정된 발전 출력으로 회생제동이 이루어지는 제3단계가 진행된다.Subsequently, when the battery internal resistance increases by a certain amount, that is, when the battery internal resistance is greater than the first reference resistance, a third step of regenerative braking is performed at a fixed power generation output.

주지된 바와 같이, 하이브리드 차량의 주요 주행모드는 모터 동력만을 이용하는 순수 전기자동차 모드인 EV(electric vehicle)모드와, 엔진의 회전력을 주동력으로 하면서 상기 모터의 회전력을 보조 동력으로 이용하는 보조모드인 HEV(hybrid electric vehicle)모드와, 차량의 제동 혹은 관성에 의한 주행시 차량의 제동 및 관성 에너지를 상기 모터에서 발전을 통하여 회수하여 배터리에 충전하는 회생제동(RB: Regenerative Braking)모드로 이루어진다.As is well known, the main driving mode of the hybrid vehicle is EV (electric vehicle) mode, which is a pure electric vehicle mode using only motor power, and HEV, an auxiliary mode using the rotational force of the motor as an auxiliary power while the rotational force of the engine is the main power. (hybrid electric vehicle) mode and a regenerative braking (RB) mode in which the braking and inertia energy of the vehicle is recovered from the motor and charged in the battery when the vehicle is driven by braking or inertia.

본 발명에 따르면, 상기 배터리 내부저항 변화를 2단계로 판단한 후, 차량이 회생제동 모드로 진입하게 되면 고정된 발전 출력으로 회생제동이 이루어진다. According to the present invention, after determining the battery internal resistance change in two stages, when the vehicle enters the regenerative braking mode, regenerative braking is performed at a fixed power generation output.

회생제동시 일정량의 전류가 충전될 경우, 즉 배터리 충전전류가 기준충전전류보다 크면, 배터리 활성화를 위하여 정전압 충전 제어가 수행되는 제4단계가 진행되고, 반면에 회생제동시 내부저항 증가로 충전되지 않을 경우, 배터리 충전전류가 기준충전전류와 비교하여 더 작으면, 배터리 교체를 경고하는 단계가 진행된다.If a certain amount of current is charged during regenerative braking, i.e., if the battery charging current is greater than the reference charging current, a fourth step in which the constant voltage charging control is performed to activate the battery is performed. If not, if the battery charge current is smaller than the reference charge current, a step of warning battery replacement is proceeded.

이때, 상기 정전압 충전 제어는 배터리 활성화를 가져오게 되고, 이는 곧 증가된 배터리 내부저항의 감소를 가져 오게 하는 바, 정전압 충전에 사용되는 정전압은 배터리 활성화에 의해 적합한 전압으로서 배터리 제조사에 의해 결정될 수 있다.At this time, the constant voltage charge control brings the battery activation, which leads to a decrease of the increased battery internal resistance. The constant voltage used for the constant voltage charging may be determined by the battery manufacturer as a suitable voltage by the battery activation. .

이어서, 정전압 충전이 진행된 후, SOC를 초기화시키는 제5단계가 진행된다.Subsequently, after the constant voltage charging is performed, a fifth step of initializing the SOC is performed.

정전압 충전 제어 수행 시점에 배터리 SOC 연산 정보는 증가된 배터리 내부 저항에 의해 오차값을 갖게 되므로, 정전압 충전이 수행 된 후에는 배터리 SOC를 초기화해야 한다.Since the battery SOC calculation information has an error value due to the increased battery internal resistance at the time of performing the constant voltage charging control, the battery SOC should be initialized after the constant voltage charging is performed.

즉, 배터리 충전 전류를 측정하여 연산 SOC의 초기화를 설정하는 배터리 충전 전류가 수입됨을 판단하는 과정을 통하여, 일정 전류가 수입될 때 수렴전류에 의한 SOC를 추정하고 이 추정값을 SOC 초기화값으로 설정하여, SOC를 초기화시키게 된다.That is, through the process of measuring the battery charging current to determine that the battery charging current to set the initialization of the calculation SOC is imported, when the constant current is imported to estimate the SOC by the converged current and set this estimated value to the SOC initialization value This will initialize the SOC.

예를들어, 첨부한 도 4의 그래프에서 보듯이 초기 SOC값이 다른 상태에서 정전압 충전을 할 경우 일정 시간이 경과되면 배터리 충전 전류가 D보다 작은 경우에는 충전전류에 의해 SOC 리셋을 수행하게 된다.For example, as shown in the attached graph of FIG. 4, when constant voltage charging is performed in a state where the initial SOC value is different, SOC reset is performed by the charging current when the battery charging current is smaller than D after a predetermined time elapses.

이와 같이, 배터리 SOC 초기화 및 배터리 저항 측정은 차량 주행중에 실시간으로 수행되므로, 배터리 내부저항이 지속적으로 증가되는 현상을 방지할 수 있고, 결국 배터리 내구 향상 및 기동(시동) 성능 확보할 수 있게 된다.As described above, since battery SOC initialization and battery resistance measurement are performed in real time while driving a vehicle, it is possible to prevent a phenomenon in which battery internal resistance is continuously increased, and thus battery durability improvement and startup (startup) performance can be secured.

도 1은 본 발명에 따른 하이브리드 차량의 배터리 성능 보상 및 SOC 초기화 방법을 설명하는 개괄적인 순서도,1 is a schematic flowchart illustrating a battery performance compensation and SOC initialization method of a hybrid vehicle according to the present invention;

도 2는 본 발명에 따른 하이브리드 차량의 배터리 성능 보상 및 SOC 초기화 방법을 설명하는 구체적인 순서도,2 is a detailed flowchart illustrating a battery performance compensation and SOC initialization method of a hybrid vehicle according to the present invention;

도 3은 배터리 전기 등가 모델을 설명하는 등가회로도,3 is an equivalent circuit diagram illustrating a battery electric equivalent model;

도 4는 배터리 SOC를 초기화시키는 방법을 설명하는 그래프.4 is a graph illustrating a method of initializing a battery SOC.

Claims (4)

시동 온과 함께 차량의 기동시 배터리 내부저항을 측정하는 제1단계와;A first step of measuring internal battery resistance when the vehicle is started when the vehicle is started on; 배터리 내부저항 측정 결과, 배터리 내부저항이 기동 및 사용 가능한 배터리 내부저항 수치인 제1기준저항보다 크면, 회생제동시 발전 출력을 고정시키는 제2단계와;A second step of fixing the power generation output during regenerative braking if the battery internal resistance is greater than the first reference resistance, which is a value of the battery internal resistance that can be started and used; 고정된 발전 출력으로 회생제동이 이루어지는 제3단계와;A third step of regenerative braking at a fixed power generation output; 회생제동에 따른 배터리 충전이 이루어짐과 함께 배터리 충전전류가 기준충전전류와 비교하여 크면, 배터리 정전압 충전 제어가 수행되는 제4단계와;A fourth step of performing battery constant voltage charge control when the battery is charged by regenerative braking and the battery charge current is larger than the reference charge current; 정전압 충전이 진행된 후, SOC를 초기화시키는 제5단계;A fifth step of initializing the SOC after the constant voltage charging is performed; 를 포함하는 것을 특징으로 하는 하이브리드 차량의 배터리 성능 보상 및 SOC 초기화 방법.Battery performance compensation and SOC initialization method of a hybrid vehicle comprising a. 청구항 1에 있어서, 배터리 내부저항을 측정 결과, 배터리 내부저항이 기동 및 사용 불가한 배터리 내부저항 수치인 제2기준저항보다 크면, 배터리 교체를 경고하는 단계가 진행되는 것을 특징으로 하는 하이브리드 차량의 배터리 성능 보상 및 SOC 초기화 방법.The hybrid vehicle battery of claim 1, wherein when the battery internal resistance is measured, if the battery internal resistance is greater than the second reference resistance, which is a value of the internal resistance of the battery that is not activated and unusable, a warning of replacing the battery is performed. Performance compensation and SOC initialization method. 청구항 1에 있어서, 상기 회생제동에 따른 배터리 충전이 이루어짐과 함께 배터리 충전전류가 기준충전전류와 비교하여 더 작으면, 배터리 교체를 경고하는 단계가 진행되는 것을 특징으로 하는 하이브리드 차량의 배터리 성능 보상 및 SOC 초기화 방법.The battery performance compensation of the hybrid vehicle according to claim 1, wherein if the battery charging is performed according to the regenerative braking and the battery charging current is smaller than the reference charging current, a warning of battery replacement is performed. SOC initialization method. 청구항 1에 있어서, 상기 SOC를 초기화시키는 단계는 정전압 충전시, 배터리 충전 전류를 측정하여 연산 SOC의 초기화를 설정하는 배터리 충전 전류가 수입됨을 판단하는 과정을 통하여, 일정 전류가 수입될 때 수렴전류에 의한 SOC를 추정하여 이 추정값을 SOC 초기화값으로 설정하여 SOC를 초기화시키는 것으로 진행되는 것을 특징으로 하는 하이브리드 차량의 배터리 성능 보상 및 SOC 초기화 방법.The method of claim 1, wherein the initializing of the SOC is performed by measuring a battery charging current during constant voltage charging and determining that a battery charging current for setting initialization of an operation SOC is imported. And estimating the SOC, and setting the estimated value as an SOC initialization value to initialize the SOC.
KR1020070108080A 2007-10-26 2007-10-26 Method for battery performance improvement and SOC reset of HEV KR100906872B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070108080A KR100906872B1 (en) 2007-10-26 2007-10-26 Method for battery performance improvement and SOC reset of HEV

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070108080A KR100906872B1 (en) 2007-10-26 2007-10-26 Method for battery performance improvement and SOC reset of HEV

Publications (2)

Publication Number Publication Date
KR20090042367A true KR20090042367A (en) 2009-04-30
KR100906872B1 KR100906872B1 (en) 2009-07-08

Family

ID=40765101

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070108080A KR100906872B1 (en) 2007-10-26 2007-10-26 Method for battery performance improvement and SOC reset of HEV

Country Status (1)

Country Link
KR (1) KR100906872B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101371742B1 (en) * 2012-10-05 2014-03-14 기아자동차(주) Estimating method for state of charge of high voltage battery in vehicle
US9834106B2 (en) 2014-12-09 2017-12-05 Hyundai Motor Company Method for resetting state of charge of battery in hybrid vehicle
CN107628022A (en) * 2016-07-19 2018-01-26 现代自动车株式会社 The method and apparatus for determining the battery performance of light hybrid electric vehicle
KR20230029088A (en) 2021-08-23 2023-03-03 경북대학교 산학협력단 Battery SOC Estimation method and system using Artificial Neural Networks and Vehicle Simulator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102285148B1 (en) 2016-08-22 2021-08-04 삼성에스디아이 주식회사 Battery charging method and battery charging apparatus using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11332016A (en) 1998-05-19 1999-11-30 Nissan Motor Co Ltd Charging controller of hybrid vehicle
JP3736268B2 (en) * 2000-03-21 2006-01-18 日産自動車株式会社 Control device for hybrid vehicle
KR100460876B1 (en) * 2002-05-29 2004-12-09 현대자동차주식회사 State of charge detection method of electric vehicle
KR100669470B1 (en) 2005-12-22 2007-01-16 삼성에스디아이 주식회사 Method of compensating soc for battery and battery management system using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101371742B1 (en) * 2012-10-05 2014-03-14 기아자동차(주) Estimating method for state of charge of high voltage battery in vehicle
US9834106B2 (en) 2014-12-09 2017-12-05 Hyundai Motor Company Method for resetting state of charge of battery in hybrid vehicle
CN107628022A (en) * 2016-07-19 2018-01-26 现代自动车株式会社 The method and apparatus for determining the battery performance of light hybrid electric vehicle
US10086824B2 (en) 2016-07-19 2018-10-02 Hyundai Motor Company Method and apparatus of determining performance for battery for mild hybrid electric vehicle
KR20230029088A (en) 2021-08-23 2023-03-03 경북대학교 산학협력단 Battery SOC Estimation method and system using Artificial Neural Networks and Vehicle Simulator

Also Published As

Publication number Publication date
KR100906872B1 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
US7800345B2 (en) Battery management system and method of operating same
US9428071B2 (en) Impedance based battery parameter estimation
CN107128186B (en) System and method for battery state of health monitoring
US9855854B2 (en) Charge control device and charge control method
CN107817450B (en) Storage element pack, management device, SOC estimation method, medium, and panel system
JP4806558B2 (en) Secondary battery control device and secondary battery deterioration judgment method
JP4209423B2 (en) Secondary battery control device and secondary battery output control method
US10367235B2 (en) Systems and methods for real-time parameter estimation of a rechargeable battery
US8674659B2 (en) Charge control device and vehicle equipped with the same
US20170242077A1 (en) Systems and methods for real-time estimation of capacity of a rechargeable battery
KR101498760B1 (en) Apparatus and method of estimating state of charging for battery, and battery management system using the same
EP2586663B1 (en) Control device for vehicle and control method for vehicle
EP3323184B1 (en) A method and system for balancing a battery pack
KR101261956B1 (en) Battery management system and method of car
KR20080095919A (en) Hybrid car and its control method
CN101141016A (en) Battery management system and method
JP6250164B2 (en) Method and apparatus for balancing an energy storage system
US10145899B2 (en) Battery class determination device and battery class determination method
KR20200086397A (en) Apparatus and Method for evaluating battery state of charge
KR100906872B1 (en) Method for battery performance improvement and SOC reset of HEV
CN104620468B (en) Method for determining the carrying capacity in Vehicular battery
KR101498764B1 (en) Method and apparatus for battery resistance estimation, and battery management system using the same
JP3687463B2 (en) Control device for hybrid vehicle
JP2014071100A (en) Charge control device of power storage element, power storage device, and charge control method
KR20220009273A (en) Method for battery management and battery system providing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130627

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140630

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150630

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160630

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180628

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190627

Year of fee payment: 11