JPH0933620A - Degradation judgment method for lead storage-battery - Google Patents

Degradation judgment method for lead storage-battery

Info

Publication number
JPH0933620A
JPH0933620A JP7182566A JP18256695A JPH0933620A JP H0933620 A JPH0933620 A JP H0933620A JP 7182566 A JP7182566 A JP 7182566A JP 18256695 A JP18256695 A JP 18256695A JP H0933620 A JPH0933620 A JP H0933620A
Authority
JP
Japan
Prior art keywords
battery
voltage
lead storage
storage battery
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7182566A
Other languages
Japanese (ja)
Inventor
Katsuhiko Yamamoto
克彦 山本
Minoru Takahashi
稔 高橋
Takeo Saito
武雄 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AFUTEI KK
Nippon Telegraph and Telephone Corp
Original Assignee
AFUTEI KK
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AFUTEI KK, Nippon Telegraph and Telephone Corp filed Critical AFUTEI KK
Priority to JP7182566A priority Critical patent/JPH0933620A/en
Publication of JPH0933620A publication Critical patent/JPH0933620A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • G01R31/379Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator for lead-acid batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a degradation judgment method for a lead storage battery whose degradation can be judged safely, in an extremely short time and precisely. SOLUTION: A resistance 4 is connected to a lead storage battery 1 via a switch 3, the switch 3 is closed for 200μsec to 1msec, and the lead storage battery 1 is discharged. The difference between a battery voltage at this discharge and a battery voltage in a stable state after the discharge is measured. By making use of a strong correlation between a difference voltage and a present battery capacity, a battery capacity or a voltage at a fifth second is found on the basis of the difference voltage, and the lead storage battery is judged to have been degraded in the case of a prescribed value or lower. In this manner, when the testing time is set at 200μsec to 1msec, there is no fear that a spark is generated due to the finish of a discharge even when the lead storage battery is removed from a tester due to a mistake, and the safety of a degradation judgment method is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、短時間通電によっ
て自動車用などの鉛蓄電池の劣化状態を判定する鉛蓄電
池の劣化判定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead storage battery deterioration determination method for determining the deterioration state of a lead storage battery for an automobile or the like by energizing for a short time.

【0002】[0002]

【従来の技術】自動車用等の液式鉛蓄電池は、電解液の
比重測定により、状態の把握を行っていたが、比重測定
は、電池を開け、中の電解液を少量とり出してはかるた
め、電池販売店やガソリンスタンド等で簡易に測定でき
なかった。また、大電流を数秒流し、5秒目電圧を測定
することにより自動車用鉛蓄電池の始動性能を測定して
いたが、100Aを越える電流で測定していたため比重
測定と同等簡易に測定できず、専門の車両検査場等での
検査に限られていた。さらに、電池容量の測定は、実際
の電池を規定の電流で規定時間放電することで実施して
いた。そのため、試験時間は充電時間も含めると20時
間以上に及び、試験者が長時間に亘って拘束されるとい
う欠点がある。
2. Description of the Related Art Liquid lead-acid batteries for automobiles and the like have been checked for their condition by measuring the specific gravity of the electrolyte, but the specific gravity is measured by opening the battery and taking out a small amount of the electrolyte. , I couldn't measure easily at a battery shop or a gas station. Also, the starting performance of the lead acid battery for automobiles was measured by flowing a large current for several seconds and measuring the voltage at the fifth second, but since it was measured at a current exceeding 100A, it could not be measured as easily as the specific gravity measurement. It was limited to inspections at specialized vehicle inspection stations. Further, the battery capacity is measured by discharging an actual battery with a specified current for a specified time. Therefore, the test time includes 20 hours or more including the charging time, and there is a drawback that the tester is restrained for a long time.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記5
秒目電圧などから電池の始動性能の判定を行う方法で
は、電池端子に疑似負荷付きの大形クリップなどを接続
して行うため、短時間放電中に誤って電池端子から大形
クリップを外した場合、火花が発生し、人体に火傷を負
わす危険がある。また、充電終了直後に試験を行った場
合、火花が発生すると爆発の危険性がある。したがって
安全性の点では短時間放電の時間は短ければ短い程よ
い。しかし、極端に短い時間では、放電時の過渡電圧変
動が電池の始動性能や容量劣化と関係のない配線のイン
ダクタンス成分の影響を受け、正確な測定が出来ない問
題が生じる。
[0005] However, the above 5)
In the method of judging the starting performance of the battery from the second voltage etc., a large clip with a pseudo load is connected to the battery terminal, so the large clip was accidentally removed from the battery terminal during short-time discharge. In that case, there is a risk that sparks may be generated and burn the human body. In addition, if a test is conducted immediately after the end of charging, there is a risk of explosion if sparks are generated. Therefore, in terms of safety, the shorter the short-time discharge time is, the better. However, in an extremely short time, the transient voltage fluctuation at the time of discharge is affected by the inductance component of the wiring, which is not related to the starting performance of the battery and the capacity deterioration, and there arises a problem that accurate measurement cannot be performed.

【0004】本発明は、上記問題点を解決するためにな
されたものであり、その目的は、安全性が高く、極めて
短時間で正確な始動性能や容量劣化判定が行える鉛蓄電
池の劣化判定方法を提供することにある。
The present invention has been made in order to solve the above problems, and an object thereof is a method for judging deterioration of a lead storage battery which has high safety and can perform accurate starting performance and capacity deterioration judgment in an extremely short time. To provide.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに本発明は、鉛蓄電池を一定電流で短時間通電(放電
もしくは充電)させることにより、該鉛蓄電池の劣化状
態を判定する方法において、通電を開始してから200
μsec〜1msecの時間経過後の前記鉛蓄電池の電
池電圧と通電開始前の前記鉛蓄電池の電池電圧との差分
の電圧を測定し、前記差分の電圧と前記一定電流より電
池の内部抵抗を算出し、前記鉛蓄電池の電池容量あるい
は5秒目電圧と、前記差分の電圧あるいは前記電池の内
部抵抗との回帰式に、前記差分の電圧あるいは前記電池
の内部抵抗を代入することにより、現在の電池容量ある
いは5秒目電圧を推定することを特徴とする。
In order to achieve the above object, the present invention provides a method for determining the deterioration state of a lead storage battery by energizing (discharging or charging) the lead storage battery at a constant current for a short time. , 200 after starting energization
The voltage difference between the battery voltage of the lead storage battery after a lapse of μsec to 1 msec and the battery voltage of the lead storage battery before the start of energization is measured, and the internal resistance of the battery is calculated from the difference voltage and the constant current. The current battery capacity is obtained by substituting the differential voltage or the internal resistance of the battery into a regression equation of the battery capacity or the fifth-second voltage of the lead storage battery and the differential voltage or the internal resistance of the battery. Alternatively, the fifth voltage is estimated.

【0006】また本発明は、鉛蓄電池を一定電流で短時
間通電させることにより、該鉛蓄電池の劣化状態を判定
する方法において、通電を開始してから200μsec
〜1msecの時間経過後の前記鉛蓄電池の電池電圧と
通電開始前の前記鉛蓄電池の電池電圧との差分の電圧を
測定し、前記差分の電圧と前記一定電流より電池の内部
抵抗を算出し、前記鉛蓄電池の電池容量あるいは5秒目
電圧と、前記差分の電圧あるいは前記電池の内部抵抗と
の関係を表す図より、現在の電池容量あるいは5秒目電
圧を推定することを特徴とする。
Further, the present invention is a method for determining the deterioration state of a lead storage battery by energizing the lead storage battery for a short time at a constant current for 200 μsec from the start of the supply of electricity.
~ 1msec after measuring the voltage difference between the battery voltage of the lead storage battery after the passage of time and the battery voltage of the lead storage battery before the start of energization, to calculate the internal resistance of the battery from the voltage difference and the constant current, It is characterized in that the current battery capacity or the voltage at the fifth second is estimated from a diagram showing the relationship between the battery capacity or the voltage at the fifth second of the lead storage battery and the voltage of the difference or the internal resistance of the battery.

【0007】また本発明は、前記5秒目電圧V5 を内部
抵抗rの1次関数で近似したことを特徴とする。本発明
の鉛蓄電池の劣化判定方法では、鉛蓄電池において、通
電前の電池電圧と短時間通電後の安定状態の電池電圧の
差分電圧が現在の電池容量および5秒目電圧と強い相関
があり、またその電池電圧の安定状態も200μsec
で達することに着目し、200μsec〜1msecの
通電特性の上記差分の電圧と電池容量および5秒目電圧
の関係から高い精度で現在の電池容量や始動性能を推定
する。このように試験時間を1msec以下とすること
により、万一、電池と試験器がミスにより外れても、通
電終了により火花が発生する恐れをなくし、安全性を高
めている。
The present invention is also characterized in that the fifth-second voltage V 5 is approximated by a linear function of the internal resistance r. In the lead storage battery deterioration determination method of the present invention, in the lead storage battery, the differential voltage between the battery voltage before energization and the battery voltage in a stable state after short-time energization has a strong correlation with the current battery capacity and the fifth-second voltage, Also, the stable state of the battery voltage is 200 μsec.
Paying attention to the fact that the voltage reaches in the above condition, the current battery capacity and the starting performance are estimated with high accuracy from the relationship between the voltage of the difference of the energization characteristics of 200 μsec to 1 msec, the battery capacity, and the voltage at the fifth second. By setting the test time to 1 msec or less as described above, even if the battery and the tester are accidentally separated from each other, there is no fear that a spark will be generated due to the end of energization, and safety is improved.

【0008】[0008]

【発明の実施の形態】以下図面を参照して本発明の実施
の形態例を詳細に説明する。図1は本発明の一実施形態
例に係る自動車用鉛蓄電池の特性を測定するための測定
回路の一例を示す図である。図において、1は自動車用
鉛蓄電池(単セル電池、複セル電池、組電池のいずれで
も良い)、2は放電回路、3はスイッチ、4は放電用抵
抗、20は電圧測定回路、21は電流測定回路である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a diagram showing an example of a measuring circuit for measuring the characteristics of an automotive lead storage battery according to an embodiment of the present invention. In the figure, 1 is a lead-acid battery for an automobile (may be a single cell battery, a multi-cell battery or an assembled battery), 2 is a discharge circuit, 3 is a switch, 4 is a discharge resistor, 20 is a voltage measuring circuit, and 21 is current. It is a measurement circuit.

【0009】すなわち、鉛蓄電池1の劣化を判定するた
めの測定回路として鉛蓄電池1にスイッチ3を介して抵
抗4が接続され、スイッチ3を閉じることにより鉛蓄電
池1の放電が開始される。
That is, a resistor 4 is connected to the lead storage battery 1 via the switch 3 as a measuring circuit for determining deterioration of the lead storage battery 1, and the switch 3 is closed to start discharging the lead storage battery 1.

【0010】次に、鉛蓄電池を極めて短い時間の放電か
ら劣化判定を行う方法について述べる。まず、1mse
c以下の放電特性から鉛蓄電池の劣化を判定する方法の
原理について説明する。図2は新品と劣化した鉛蓄電池
の短時間放電特性を示す図である。また図3は電池の短
時間放電特性の等価回路モデルを示す図である。図3の
等価回路において、7は電池電圧VB 、8は電極内部抵
抗を含む液抵抗R1 、9は電荷移動抵抗R2 、10は電
気二重層コンデンサC、11は放電電流と等価の電流
I、12、13は電池端子である。電気二重層コンデン
サ10の両端の電圧をVC とし、短時間放電時の電池端
子12、13間の電圧V(t) を図3より求めると、次の
ようになる。
Next, a method for determining deterioration of a lead storage battery from discharge of an extremely short time will be described. First, 1 mse
The principle of the method of determining the deterioration of the lead storage battery from the discharge characteristics of c or less will be described. FIG. 2 is a diagram showing short-time discharge characteristics of a new lead battery and a deteriorated lead storage battery. FIG. 3 is a diagram showing an equivalent circuit model of the short-time discharge characteristic of the battery. In the equivalent circuit of FIG. 3, 7 is a battery voltage V B , 8 is a liquid resistance R 1 including an electrode internal resistance, 9 is a charge transfer resistance R 2 , 10 is an electric double layer capacitor C, and 11 is a current equivalent to a discharge current. I, 12, 13 are battery terminals. When the voltage across the electric double layer capacitor 10 is V C and the voltage V (t) between the battery terminals 12 and 13 at the time of short-time discharge is obtained from FIG. 3, it is as follows.

【0011】 V(t) =VB −I・(R1 +R2 )+R2 ・I・EXP(−t/CR2 ) −VC ・EXP(−t/CR2 ) …(1) (1)式より安定状態(t→∞)を求めると V(t) =VB −I・(R1 +R2 ) となる。放電前の電池電圧VB と放電後の安定状態の電
池端子電圧V(t) の差分の電圧をΔV(図2)とすると ΔV=VB −V(t) =I・(R1 +R2 ) …(2) となる。電池の劣化が進むと、電極内部抵抗を含む液抵
抗R1 、電荷移動抵抗R2 も増加するため(2)式の差
分の電圧ΔVが大きくなる。また、これは図2に示すよ
うに短時間放電時の電圧特性からも分かることである。
V (t) = V B −I · (R 1 + R 2 ) + R 2 · I · EXP (−t / CR 2 ) −V C · EXP (−t / CR 2 ) ... (1) (1) When the stable state (t → ∞) is calculated from the equation), V (t) = V B −I · (R 1 + R 2 ) is obtained. Letting ΔV (FIG. 2) be the difference voltage between the battery voltage V B before discharge and the battery terminal voltage V (t) in the stable state after discharge, ΔV = V B −V (t) = I · (R 1 + R 2 )… (2) As the deterioration of the battery progresses, the liquid resistance R 1 including the electrode internal resistance and the charge transfer resistance R 2 also increase, so that the voltage ΔV of the difference in the equation (2) increases. This can also be understood from the voltage characteristics during short-time discharge as shown in FIG.

【0012】図4は例えば自動車用鉛蓄電池の放電開始
から300μsec経過後の式(2)の差分の電圧ΔV
を放電電流Iで除した抵抗Rと電池容量の相関性を表す
データを図示したものである。この例では相関関係が
0.95であり、明らかに式(2)の差分の電圧ΔVと
電池容量は強い相関があるといえる。
FIG. 4 shows, for example, the difference voltage ΔV of the equation (2) after 300 μsec has elapsed from the start of discharging the lead acid battery for automobiles.
2 is a graph showing data showing the correlation between the resistance R and the battery capacity, which is obtained by dividing by the discharge current I. In this example, the correlation is 0.95, and it can be said that there is a strong correlation between the voltage ΔV of the difference in Expression (2) and the battery capacity.

【0013】図5は例えば自動車用鉛蓄電池の放電開始
から300μsec経過後の抵抗Rと自動車用鉛蓄電池
の始動性能である5秒目電圧の相関性を表すデータを図
示したものである。この例では相関関係が0.95以上
あり、明らかに抵抗rと5秒目電圧V5 は強い相関があ
り、1次関数 V5 =Ar+B で表せる。ここで、A、Bは定数で、A=−0.083
6、B=11.0961である。
FIG. 5 shows data representing the correlation between the resistance R after 300 μsec has elapsed from the start of discharging the lead acid battery for automobiles and the fifth-second voltage which is the starting performance of the lead acid battery for automobiles. In this example, the correlation is 0.95 or more, and the resistance r and the voltage V 5 at the fifth second are clearly strongly correlated, and can be expressed by a linear function V 5 = Ar + B. Here, A and B are constants and A = −0.083
6, B = 11.0961.

【0014】例えば、自動車用鉛蓄電池の短時間放電特
性からの劣化判定は、図4あるいは図5によって行う。
まず、図1においてスイッチ3を300μsecの間閉
じ、放電開始から300μsec経過後の図2に示す差
分の電圧ΔVを測定し、放電電流と差分の電圧ΔVより
内部抵抗を算出する。次に図4から内部抵抗に相当する
電池容量を読み取る。この電池容量が規定値以下の時に
劣化と判断する。
For example, the deterioration determination based on the short-time discharge characteristic of a lead-acid battery for an automobile is performed according to FIG. 4 or 5.
First, in FIG. 1, the switch 3 is closed for 300 μsec, the difference voltage ΔV shown in FIG. 2 is measured after 300 μsec has elapsed from the start of discharge, and the internal resistance is calculated from the discharge current and the difference voltage ΔV. Next, the battery capacity corresponding to the internal resistance is read from FIG. When the battery capacity is less than or equal to the specified value, it is determined to be deteriorated.

【0015】なお、図4および図5に示す抵抗と電池容
量あるいは5秒目電圧との関係は回帰式によっても表す
ことができ、この式に抵抗Rを代入することにより電池
容量あるいは5秒目電圧を求めることができる。また、
上記実施形態例では、放電時間300μsec後の抵抗
Rから電池容量あるいは5秒目電圧を求める方法を説明
したが、放電時間200μsec〜1msecでも抵抗
Rと電池容量の相関係数は0.9以上と高く、同様の手
法によって電池容量を推定することができる。ここで、
放電時間の下限値は、図2をもとに、200μsec程
度で安定状態になることに基づき、上限値の1msec
は、火花の発生を防止し、安全性を高めるということで
設定される。
The relationship between the resistance and the battery capacity or the voltage at the 5th second shown in FIGS. 4 and 5 can also be expressed by a regression equation. By substituting the resistance R into this expression, the battery capacity or the 5th second can be obtained. The voltage can be calculated. Also,
In the above-described embodiment, the method of obtaining the battery capacity or the voltage at the fifth second from the resistance R after the discharge time of 300 μsec has been described, but the correlation coefficient between the resistance R and the battery capacity is 0.9 or more even at the discharge time of 200 μsec to 1 msec. It is high and the battery capacity can be estimated by a similar method. here,
The lower limit value of the discharge time is 1 msec which is the upper limit value based on the stable state in about 200 μsec based on FIG.
Is set to prevent sparks and increase safety.

【0016】このように本発明は、その主旨に沿って種
々に応用され、種々の実施態様を取り得るものである。
図6には本発明の他の実施形態例を示す。ここで、1は
自動車用鉛蓄電池、3はスイッチ、5は充電回路、6は
定電流源であり、20は電圧測定回路、21は電流測定
回路である。本実施形態例は充電時間200μsec〜
1msecのパルス充電した時の差分電圧ΔVの大小あ
るいは差分電圧ΔVと充電電流から算出した内部抵抗に
て電池容量あるいは5秒目電圧を推定する方法である。
充電パルスにおいても放電と同様に電池容量あるいは5
秒目電圧が推定できる。
As described above, the present invention can be variously applied in accordance with the gist thereof and can take various embodiments.
FIG. 6 shows another embodiment of the present invention. Here, 1 is a lead acid battery for automobiles, 3 is a switch, 5 is a charging circuit, 6 is a constant current source, 20 is a voltage measuring circuit, and 21 is a current measuring circuit. In this embodiment, the charging time is 200 μsec
This is a method of estimating the battery capacity or the voltage at the 5th second by the internal resistance calculated from the magnitude of the differential voltage ΔV or the differential voltage ΔV and the charging current when the pulse charging is performed for 1 msec.
In the charging pulse, the battery capacity or 5
Second-second voltage can be estimated.

【0017】以上のように、鉛蓄電池を一定電流で短時
間通電(放電もしくは充電)させることにより、該鉛蓄
電池の劣化状態を判定する方法において、通電を開始し
てから200μsec〜1msecの時間経過後の前記
鉛蓄電池の電池電圧と通電開始前の前記鉛蓄電池の電池
電圧との差分の電圧を測定し、前記差分の電圧と前記一
定電流より電池の内部抵抗を算出し、前記鉛蓄電池の電
池容量あるいは5秒目電圧と、前記差分の電圧あるいは
前記電池の内部抵抗との回帰式に、前記差分の電圧ある
いは前記電池の内部抵抗を代入することにより、現在の
電池容量あるいは5秒目電圧を推定することができる。
As described above, in the method for determining the deterioration state of a lead storage battery by allowing the lead storage battery to be energized (discharged or charged) at a constant current for a short time, a time of 200 μsec to 1 msec elapses from the start of energization. After measuring the voltage difference between the battery voltage of the lead storage battery and the battery voltage of the lead storage battery before the start of energization, calculate the internal resistance of the battery from the voltage difference and the constant current, the battery of the lead storage battery By substituting the voltage of the difference or the internal resistance of the battery into the regression equation of the capacity or the voltage of the 5th second and the voltage of the difference or the internal resistance of the battery, the current battery capacity or the voltage at the 5th second is calculated. Can be estimated.

【0018】また、鉛蓄電池を一定電流で短時間通電さ
せることにより、該鉛蓄電池の劣化状態を判定する方法
において、通電を開始してから200μsec〜1ms
ecの時間経過後の前記鉛蓄電池の電池電圧と通電開始
前の前記鉛蓄電池の電池電圧との差分の電圧を測定し、
前記差分の電圧と前記一定電流より電池の内部抵抗を算
出し、前記鉛蓄電池の電池容量あるいは5秒目電圧と、
前記差分の電圧あるいは前記電池の内部抵抗との関係を
表す図より、現在の電池容量あるいは5秒目電圧を推定
することができる。また、前記5秒目電圧V5 を内部抵
抗rの1次関数で近似することができる。
Further, in a method of determining the deterioration state of the lead storage battery by supplying the lead storage battery with a constant current for a short time, 200 μsec to 1 ms after the start of the supply of electricity.
The voltage of the difference between the battery voltage of the lead storage battery after the elapse of time ec and the battery voltage of the lead storage battery before the start of energization is measured,
The internal resistance of the battery is calculated from the voltage of the difference and the constant current, and the battery capacity of the lead storage battery or the voltage at the fifth second,
The current battery capacity or the voltage at the fifth second can be estimated from the diagram showing the relationship between the voltage difference and the internal resistance of the battery. Further, the voltage V 5 at the fifth second can be approximated by a linear function of the internal resistance r.

【0019】[0019]

【発明の効果】以上の説明で明らかなように、本発明の
鉛蓄電池の劣化判定方法によれば、極めて短時間に試験
が終了するために保守者の負担が極めて少なくなるとと
もに、試験時間が200μsec〜1msecであるの
で、万一、試験器と電池の接続が保守者のミスによって
外れても、そのときには放電または充電が終了してお
り、火花が発生する恐れもなく、極めて安全性の高い劣
化判定方法が実現できる。
As is clear from the above description, according to the deterioration determination method for a lead storage battery of the present invention, the test is completed in an extremely short time, so that the burden on the maintenance person is extremely reduced and the test time is reduced. Since it is 200 μsec to 1 msec, even if the connection between the tester and the battery is disconnected due to a mistake made by a maintenance person, at that time, discharge or charge is completed, there is no danger of sparks, and the safety is extremely high. A deterioration determination method can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態例に係る測定回路の一例を
示す構成説明図である。
FIG. 1 is a configuration explanatory view showing an example of a measurement circuit according to an embodiment of the present invention.

【図2】本発明に係る短時間放電による過渡電圧特性の
一例を示す特性図である。
FIG. 2 is a characteristic diagram showing an example of transient voltage characteristics due to short-time discharge according to the present invention.

【図3】一般的な鉛蓄電池の等価回路モデルの一例を示
す回路図である。
FIG. 3 is a circuit diagram showing an example of an equivalent circuit model of a general lead storage battery.

【図4】本発明に係る放電前と放電後の定常状態におけ
る電池電圧の差分電圧ΔVを放電電流Iで除した抵抗R
と電池容量の相関の一例を示す特性図である。
FIG. 4 is a resistance R obtained by dividing a differential voltage ΔV of a battery voltage in a steady state before and after discharge according to the present invention by a discharge current I.
It is a characteristic view which shows an example of the correlation of a battery capacity.

【図5】本発明に係る放電前と放電後の定常状態におけ
る抵抗Rと5秒目電圧の相関の一例を示す特性図であ
る。
FIG. 5 is a characteristic diagram showing an example of the correlation between the resistance R and the fifth-second voltage in a steady state before and after discharge according to the present invention.

【図6】本発明の他の実施形態例に係る測定回路の一例
を示す構成説明図である。
FIG. 6 is a configuration explanatory view showing an example of a measurement circuit according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…自動車用鉛蓄電池、2…放電回路、3…スイッチ、
4…放電用抵抗、5…充電回路、6…定電流源、7…電
池電圧VB 、8…電極内部抵抗を含む液抵抗R1 、9…
電荷移動抵抗R2 、10…電気二重層コンデンサC、1
1…放電電流と等価の電流I、12、13…電池端子。
1 ... Lead acid battery for automobile, 2 ... Discharge circuit, 3 ... Switch,
4 ... Discharging resistance, 5 ... Charging circuit, 6 ... Constant current source, 7 ... Battery voltage V B , 8 ... Liquid resistance including electrode internal resistance R 1 , 9 ...
Charge transfer resistance R 2 , 10 ... Electric double layer capacitor C, 1
1 ... Current I equivalent to discharge current, 12, 13, ... Battery terminals.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斎藤 武雄 東京都武蔵野市緑町3丁目9番11号 株式 会社アフティ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takeo Saito 3-9-11 Midoricho, Musashino-shi, Tokyo Inside Afty Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鉛蓄電池を一定電流で短時間通電させる
ことにより、該鉛蓄電池の劣化状態を判定する方法にお
いて、 通電を開始してから200μsec〜1msecの時間
経過後の前記鉛蓄電池の電池電圧と通電開始前の前記鉛
蓄電池の電池電圧との差分の電圧を測定し、前記差分の
電圧と前記一定電流より電池の内部抵抗を算出し、 前記鉛蓄電池の電池容量あるいは5秒目電圧と、前記差
分の電圧あるいは前記電池の内部抵抗との回帰式に、前
記差分の電圧あるいは前記電池の内部抵抗を代入するこ
とにより、現在の電池容量あるいは5秒目電圧を推定す
ることを特徴とする鉛蓄電池の劣化判定方法。
1. A method of determining a deterioration state of a lead storage battery by energizing the lead storage battery at a constant current for a short time, wherein a battery voltage of the lead storage battery after 200 μsec to 1 msec has elapsed from the start of energization. And the battery voltage of the lead storage battery before the start of energization is measured, the internal resistance of the battery is calculated from the voltage of the difference and the constant current, and the battery capacity or the fifth-second voltage of the lead storage battery, Lead that is characterized in that the current battery capacity or the voltage at the fifth second is estimated by substituting the differential voltage or the internal resistance of the battery into the regression equation with the differential voltage or the internal resistance of the battery. Storage battery deterioration determination method.
【請求項2】 鉛蓄電池を一定電流で短時間通電させる
ことにより、該鉛蓄電池の劣化状態を判定する方法にお
いて、 通電を開始してから200μsec〜1msecの時間
経過後の前記鉛蓄電池の電池電圧と通電開始前の前記鉛
蓄電池の電池電圧との差分の電圧を測定し、前記差分の
電圧と前記一定電流より電池の内部抵抗を算出し、 前記鉛蓄電池の電池容量あるいは5秒目電圧と、前記差
分の電圧あるいは前記電池の内部抵抗との関係を表す図
より、現在の電池容量あるいは5秒目電圧を推定するこ
とを特徴とする鉛蓄電池の劣化判定方法。
2. A method for determining a deterioration state of a lead storage battery by energizing the lead storage battery for a short time at a constant current, wherein a battery voltage of the lead storage battery after a time of 200 μsec to 1 msec has elapsed from the start of energization. And the battery voltage of the lead storage battery before the start of energization is measured, the internal resistance of the battery is calculated from the voltage of the difference and the constant current, and the battery capacity or the fifth-second voltage of the lead storage battery, A method for determining deterioration of a lead storage battery, comprising estimating a current battery capacity or a voltage at the fifth second from a diagram showing a relationship between the voltage difference and the internal resistance of the battery.
【請求項3】 5秒目電圧V5 を内部抵抗rの1次関数
で近似したことを特徴とする請求項1又は2記載の鉛蓄
電池の劣化判定方法。
3. The deterioration determining method for a lead storage battery according to claim 1, wherein the fifth-second voltage V 5 is approximated by a linear function of the internal resistance r.
JP7182566A 1995-07-19 1995-07-19 Degradation judgment method for lead storage-battery Pending JPH0933620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7182566A JPH0933620A (en) 1995-07-19 1995-07-19 Degradation judgment method for lead storage-battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7182566A JPH0933620A (en) 1995-07-19 1995-07-19 Degradation judgment method for lead storage-battery

Publications (1)

Publication Number Publication Date
JPH0933620A true JPH0933620A (en) 1997-02-07

Family

ID=16120523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7182566A Pending JPH0933620A (en) 1995-07-19 1995-07-19 Degradation judgment method for lead storage-battery

Country Status (1)

Country Link
JP (1) JPH0933620A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5994877A (en) * 1997-06-24 1999-11-30 Matsushita Electric Industrial Co., Ltd. Method for detecting working condition of non-aqueous electrolyte secondary batteries
JP2002334725A (en) * 2001-05-07 2002-11-22 Furukawa Battery Co Ltd:The Method for monitoring condition of lead-acid battery
JP2006275846A (en) * 2005-03-30 2006-10-12 Furukawa Electric Co Ltd:The Method and device for determining deterioration of secondary battery, and power source system
JP2007099028A (en) * 2005-10-03 2007-04-19 Matsushita Electric Ind Co Ltd Method and device for determining deterioration of storage battery for starting engine, and storage battery for starting engine with deterioration determining device
JP2008103196A (en) * 2006-10-19 2008-05-01 Shin Kobe Electric Mach Co Ltd State of charge judging device and automobile lead battery
JP2008128802A (en) * 2006-11-21 2008-06-05 Furukawa Electric Co Ltd:The Battery state estimation method, battery state monitoring device, and battery power source system
JP2009058518A (en) * 2001-05-25 2009-03-19 Avestor Ltd Partnership Self-diagnostic system for energy storage device
US7507497B2 (en) 2005-09-06 2009-03-24 Denso Corporation Method and apparatus for judging degradation of storage battery
US8390253B2 (en) 2009-07-01 2013-03-05 Toyota Jidosha Kabushiki Kaisha Battery control system and vehicle
JP2014082178A (en) * 2012-10-14 2014-05-08 Nikko Denki Kk Vehicle having function of automatically inspecting defects in power supply device
WO2022107349A1 (en) * 2020-11-19 2022-05-27 オムロン株式会社 Storage battery management system and storage battery management method
JP2023013495A (en) * 2021-07-16 2023-01-26 株式会社D&I Lead storage battery monitoring system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5994877A (en) * 1997-06-24 1999-11-30 Matsushita Electric Industrial Co., Ltd. Method for detecting working condition of non-aqueous electrolyte secondary batteries
JP2002334725A (en) * 2001-05-07 2002-11-22 Furukawa Battery Co Ltd:The Method for monitoring condition of lead-acid battery
JP2009058518A (en) * 2001-05-25 2009-03-19 Avestor Ltd Partnership Self-diagnostic system for energy storage device
JP2006275846A (en) * 2005-03-30 2006-10-12 Furukawa Electric Co Ltd:The Method and device for determining deterioration of secondary battery, and power source system
US7507497B2 (en) 2005-09-06 2009-03-24 Denso Corporation Method and apparatus for judging degradation of storage battery
JP2007099028A (en) * 2005-10-03 2007-04-19 Matsushita Electric Ind Co Ltd Method and device for determining deterioration of storage battery for starting engine, and storage battery for starting engine with deterioration determining device
JP2008103196A (en) * 2006-10-19 2008-05-01 Shin Kobe Electric Mach Co Ltd State of charge judging device and automobile lead battery
JP2008128802A (en) * 2006-11-21 2008-06-05 Furukawa Electric Co Ltd:The Battery state estimation method, battery state monitoring device, and battery power source system
US8390253B2 (en) 2009-07-01 2013-03-05 Toyota Jidosha Kabushiki Kaisha Battery control system and vehicle
US8629655B2 (en) 2009-07-01 2014-01-14 Toyota Jidosha Kabushiki Kaisha Battery control system and vehicle
JP2014082178A (en) * 2012-10-14 2014-05-08 Nikko Denki Kk Vehicle having function of automatically inspecting defects in power supply device
WO2022107349A1 (en) * 2020-11-19 2022-05-27 オムロン株式会社 Storage battery management system and storage battery management method
JP2023013495A (en) * 2021-07-16 2023-01-26 株式会社D&I Lead storage battery monitoring system

Similar Documents

Publication Publication Date Title
US7295936B2 (en) Electronic battery tester with relative test output
US6930485B2 (en) Electronic battery tester with battery failure temperature determination
US7723993B2 (en) Electronic battery tester configured to predict a load test result based on open circuit voltage, temperature, cranking size rating, and a dynamic parameter
US7619417B2 (en) Battery monitoring system
US7999505B2 (en) In-vehicle battery monitor
EP0438477B1 (en) Automotive battery status monitor
US7078879B2 (en) Method and apparatus for testing and charging a power source
US4968942A (en) Method for monitoring aircraft battery status
US5773977A (en) Method of testing an electric storage battery by determining a bounce-back voltage after a load has been removed
US20040008031A1 (en) Method of estimating state of charge and open circuit voltage of battery, and method and device for computing degradation degree of battery
US20030088375A1 (en) Electronic battery tester with relative test output
JP3192794B2 (en) Lead storage battery deterioration judgment method and deterioration judgment device
JPH0650340B2 (en) Life Diagnostic Device for Automotive Battery
WO1999012044A2 (en) Battery charge indicator
WO2007075403A2 (en) Battery monitoring system
CN110850306B (en) Inspection method and manufacturing method for electricity storage device
US7507497B2 (en) Method and apparatus for judging degradation of storage battery
JP6794974B2 (en) Self-discharge inspection method for power storage devices
JPH0933620A (en) Degradation judgment method for lead storage-battery
WO2007006121A1 (en) Detecting the state-of-charge of a lithium ion battery in a hybrid electric vehicle
JP2001296341A (en) Method for diagnosing deterioration of module battery
JP4014995B2 (en) Storage battery deterioration determination method and apparatus
JP4751381B2 (en) Engine control method and engine control apparatus for idling stop vehicle
JP4442275B2 (en) How to detect battery status
JPH0137703B2 (en)