JP2002334725A - Method for monitoring condition of lead-acid battery - Google Patents

Method for monitoring condition of lead-acid battery

Info

Publication number
JP2002334725A
JP2002334725A JP2001136451A JP2001136451A JP2002334725A JP 2002334725 A JP2002334725 A JP 2002334725A JP 2001136451 A JP2001136451 A JP 2001136451A JP 2001136451 A JP2001136451 A JP 2001136451A JP 2002334725 A JP2002334725 A JP 2002334725A
Authority
JP
Japan
Prior art keywords
lead
internal resistance
remaining capacity
acid battery
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001136451A
Other languages
Japanese (ja)
Other versions
JP4011303B2 (en
Inventor
Tetsuya Kano
哲也 加納
Yuichi Watakabe
雄一 渡壁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2001136451A priority Critical patent/JP4011303B2/en
Publication of JP2002334725A publication Critical patent/JP2002334725A/en
Application granted granted Critical
Publication of JP4011303B2 publication Critical patent/JP4011303B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • G01R31/379Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator for lead-acid batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3647Constructional arrangements for determining the ability of a battery to perform a critical function, e.g. cranking

Abstract

PROBLEM TO BE SOLVED: To accurately monitor a remaining capacity and a life of a lead-acid battery. SOLUTION: A correlative approximate expression of an internal resistance and a remaining capacity from the time when the internal resistance reaches a fixed value or more is found, and the remaining capacity is monitored based on it. When the remaining capacity becomes not more than 85% of the initial value, the correlative approximate expression of the internal resistance and the remaining capacity is found by the change of the internal resistance within a fixed time period, and the time of the battery life is estimated by the approximation to display it.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉛蓄電池の残存容
量や寿命等の状態を監視する状態監視方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a state monitoring method for monitoring a state of a lead storage battery such as a remaining capacity and a life.

【0002】[0002]

【従来の技術】従来、鉛蓄電池は、非常時用電源として
使用される場合がある。この据置用鉛蓄電池は、負荷に
対し商用電源と並列接続され、通常は商用電源によりフ
ロート充電と呼ばれる小さな電流で充電され、その鉛蓄
電池の容量を100%の状態に維持され、商用電源に停
電等の異常事態が発生した時に該商用電源に代わり鉛蓄
電池から負荷へ電力を供給するものである。
2. Description of the Related Art Conventionally, a lead storage battery is sometimes used as an emergency power supply. This stationary lead-acid battery is connected in parallel with a commercial power supply to a load, and is usually charged with a small current called float charging by the commercial power supply, the capacity of the lead-acid battery is maintained at 100%, and power is cut off to the commercial power supply. When an abnormal situation such as occurs, power is supplied from a lead storage battery to a load instead of the commercial power supply.

【0003】この様な据置用鉛蓄電池は多数の鉛蓄電池
を直列接続して用いられる。そしてこの様な鉛蓄電池
は、絶えずフロート充電を行っているとは言え或いは行
っている為に、鉛蓄電池は除除に劣化しやがては負荷へ
の充分な電力を供給出来ない状態に至ることは知られて
いる。その為、商用電源の異常時に実際に充分な電力を
供給し得るか否かを、蓄電池の電圧を測ったり内部抵抗
を測定してその結果から残存容量を導く方法によって鉛
蓄電池の状態を監視し、残存容量が所定の値以下になっ
た時を寿命と判断し鉛蓄電池を交換している。
[0003] Such a stationary lead-acid battery is used by connecting a large number of lead-acid batteries in series. Such a lead-acid battery can be said to be or constantly being float-charged, so that the lead-acid battery will eventually deteriorate and eventually fail to supply sufficient power to the load. Are known. For this reason, the state of the lead-acid battery is monitored by measuring the voltage of the storage battery, measuring the internal resistance, and deriving the remaining capacity from the result to determine whether sufficient power can be actually supplied when the commercial power supply is abnormal. When the remaining capacity becomes equal to or less than a predetermined value, the life is determined and the lead storage battery is replaced.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
据置用の鉛蓄電池の長期使用が望まれ、より正確な状態
監視が望まれている。
However, long-term use of these stationary lead-acid batteries is desired, and more accurate condition monitoring is desired.

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を解
決する為に、請求項1に記載の発明では内部抵抗と残存
容量の相関関係を近似するに当たり、内部抵抗値が小さ
い初期の値は無視し、その内部抵抗値が大きくなり始め
の値以降の値を用いて相関関係を近似して、残存容量を
監視するものであり、請求項2に記載の発明では、請求
項1に記載の方法によって計測した残存容量が初期値の
85%以下になった時に、その時から以前の一定期間の
内部抵抗値のデータを基に近似した近似式により所定の
末期となる残存容量値に到達する時間を算出し寿命の予
測をしたものである。
According to the present invention, in order to solve the above-mentioned problems, the invention according to claim 1 uses an initial value having a small internal resistance value when approximating the correlation between the internal resistance and the remaining capacity. Is ignored and the remaining capacity is monitored by approximating the correlation using values after the value at which the internal resistance value starts to increase, and the remaining capacity is monitored according to the first aspect of the present invention. When the remaining capacity measured by the method described above becomes 85% or less of the initial value, the remaining capacity value reaches a predetermined end time by an approximation formula that is approximated based on the internal resistance value data for a predetermined period from that time. The time is calculated and the life is predicted.

【0006】更に請求項3に記載の発明は、個々の鉛蓄
電池の内部抵抗を計測し、これから個々の鉛蓄電池の残
存容量と寿命予測をしたものである。
Further, according to a third aspect of the present invention, the internal resistance of each lead-acid battery is measured, and the remaining capacity and the life of each lead-acid battery are estimated from this.

【0007】[0007]

【発明の実施の形態】小さな充電電流でフロート充電中
の据置用鉛蓄電池に交流電圧を印加し、その電圧と電流
から内部抵抗を求めることが出来る。この内部抵抗は鉛
蓄電池の充電状態、即ち残存容量に対し相関関係を有す
る。従って、鉛蓄電池の内部抵抗を測定することにより
鉛蓄電池の残存容量を監視することが出来る.しかしな
がら実際に鉛蓄電池をの内部抵抗と残存容量の関係を調
べて見ると、内部抵抗値が低い初期の状態では、明確な
相関はなく、ある程度内部抵抗が高くなってからである
とより明確な相関関係にあることが分かった。そこで、
内部抵抗値が低い状態の数値を削除し、ある一定値以上
になってから以後の相関関係から近似式を求めたら、高
い相関関係が得られた。そして、内部抵抗値が低い期間
は、残存容量が100%であるとしても実用上問題のな
いことを確認した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An AC voltage can be applied to a stationary lead-acid battery during float charging with a small charging current, and the internal resistance can be determined from the voltage and current. This internal resistance has a correlation with the state of charge of the lead storage battery, that is, the remaining capacity. Therefore, the remaining capacity of the lead-acid battery can be monitored by measuring the internal resistance of the lead-acid battery. However, when actually examining the relationship between the internal resistance and the remaining capacity of a lead-acid battery, in the initial state where the internal resistance is low, there is no clear correlation, and it is more clear that the internal resistance has increased to some extent. It turns out that there is a correlation. Therefore,
When the numerical value in a state where the internal resistance value was low was deleted and an approximate expression was obtained from a correlation after the value became a certain value or more, a high correlation was obtained. Then, it was confirmed that there was no practical problem even when the remaining capacity was 100% during the period when the internal resistance was low.

【0008】又、これら据置用鉛蓄電池は、商用電源異
常時に負荷へ電力を供給するものであるので、負荷への
充分な電力量を供給し得る残存容量が要求され、それを
下回った場合は、これを寿命として交換する必要があ
る。この場合、上記内部抵抗の測定による鉛蓄電池の状
態監視のみでは、寿命に至った時期は確認し得るも、寿
命に何時なるのかと言った予想はつかず、従来は経験に
頼っている。そこで、本発明者らは、寿命末期に至る前
の状態に至った鉛蓄電池の寿命末期を予測すべく、測定
時期から過去の一定期間の内部抵抗を基に、新たに近似
式を作成し、これを基に寿命時期を予測したものであ
る。
In addition, since these stationary lead-acid batteries supply electric power to the load in the event of a commercial power failure, a remaining capacity that can supply a sufficient amount of electric power to the load is required. It is necessary to replace this as a lifetime. In this case, only by monitoring the state of the lead storage battery by measuring the internal resistance, it is possible to confirm when the life has expired, but it is not possible to predict when the life will be reached, and the conventional method relies on experience. Therefore, the present inventors have created a new approximate expression based on the internal resistance of a certain period in the past from the measurement time, in order to predict the end of life of the lead storage battery that has reached the state before the end of life, The life expectancy is predicted based on this.

【0009】[0009]

【実施例】満充電された公称容量200AH密閉型鉛蓄
電池を用い、加速寿命試験により鉛蓄電池の残存容量と
内部抵抗の推移を図1に示した。横軸は鉛蓄電池の内部
抵抗、縦軸は0.16Cの電流で放電した時の放電容量
を示す。加速寿命試験の条件は、65℃の水槽中に鉛蓄
電池を入れ、これに1Aの小さな電流を流し続けた。ま
た、内部抵抗は20Hzの一定周波数の交流電流を印加
し、その時の応答電圧、位相差により内部抵抗を算出し
た。そして、内部抵抗値の小さい初期の値の部分、実施
例では0.568mΩ以下の部分を削除し、それより大きい
内部抵抗値を基に内部抵抗と残存容量との相関関係の近
似曲線を求めた。結果はy=314.8e- 0.7409x(y=残
存容量、x=内部抵抗)の相関近似式が求められ、相関
係数は0.953となり、従来の初期の内部抵抗をも入れた
場合に比し高い相関関係が得られた。尚、内部抵抗は温
度補正した値である。又、相関関係は1.000が実際との
ずれが無い場合を示し、これから外れる程ずれが大きい
ことを示す。
FIG. 1 shows a change in the remaining capacity and internal resistance of a lead storage battery by an accelerated life test using a fully charged nominal capacity 200 AH sealed lead storage battery. The horizontal axis indicates the internal resistance of the lead storage battery, and the vertical axis indicates the discharge capacity when discharging with a current of 0.16C. The conditions for the accelerated life test were as follows. A lead storage battery was placed in a water bath at 65 ° C., and a small current of 1 A was continuously passed through the battery. As the internal resistance, an alternating current having a constant frequency of 20 Hz was applied, and the internal resistance was calculated from the response voltage and the phase difference at that time. Then, a portion of the initial value having a small internal resistance value, that is, a portion of 0.568 mΩ or less in the example was deleted, and an approximate curve of the correlation between the internal resistance and the remaining capacity was obtained based on the larger internal resistance value. As a result, a correlation approximation formula of y = 314.8e 0.7409x (y = remaining capacity, x = internal resistance) is obtained, and the correlation coefficient is 0.953, which is higher than the case where the conventional initial internal resistance is also included. A correlation was obtained. The internal resistance is a temperature-corrected value. The correlation value of 1.000 indicates a case where there is no deviation from the actual value, and the deviation from this indicates that the deviation is larger.

【0010】次に、この近似式をコンピュータの記憶部
に予め入力した。上記公称容量200AHの密閉鉛蓄電
池に接続し、そして各鉛蓄電池の正負極端子に交流電流
入力線を接続し、1Aの電流でのフロート充電を継続
し、1日1回、鉛蓄電池に20Hzの交流電流を印加し
た際の応答電圧および印加した交流電流の値等を演算部
へ入力し、該演算部で演算して内部抵抗を求め、予め入
力された記憶部の近似式を基に相応する鉛蓄電池の残存
容量を演算し、これを表示部へ表示し、各鉛蓄電池の状
態を監視することが出来た。この表示値は、実際に鉛蓄
電池を0.16Cの放電電流により調べた残存容量試験
の結果と大差なく、実用し得ることを確認した。
Next, this approximate expression was previously input to the storage unit of the computer. Connected to a sealed lead-acid battery having a nominal capacity of 200 AH, and connected to the positive and negative terminals of each lead-acid battery by an AC current input line to continue float charging at a current of 1 A, and once a day to a lead-acid battery at 20 Hz. The response voltage when the AC current is applied, the value of the applied AC current, and the like are input to the arithmetic unit, and the arithmetic unit calculates the internal resistance to obtain the internal resistance, which corresponds to the previously input approximate expression of the storage unit. The remaining capacity of the lead storage battery was calculated and displayed on the display unit, and the state of each lead storage battery could be monitored. This display value was confirmed to be practical without any significant difference from the result of a residual capacity test in which a lead storage battery was actually tested with a discharge current of 0.16 C.

【0011】[0011]

【実施例2】次に、鉛蓄電池の寿命の予測方法を説明す
る。実施例1における鉛蓄電池の寿命を残存容量が初期
値の80%に達した時点とした。図2は、実施例1の鉛
蓄電池を12個近接して並べ、互いに直列接続し、これ
に1Aの電流でフロート充電している時に、それぞれの
鉛蓄電池に20Hzの交流電流を印加し、場所の異なる
3個の電池について内部抵抗(R)と残存容量の推移を
見たものである。横軸に実施例1の加速寿命試験の月数
(その下に実際の予測年数併記)を、縦軸には左右にお
のおの内部抵抗(R)と放電容量を示す。各鉛蓄電池が
異なる内部抵抗値の推移を示していることが分かる。こ
れは、場所により鉛蓄電池の環境、特にフロート充電中
の場所に起因する鉛蓄電池の温度の影響によるものと思
われる。この結果から、単純に内部抵抗の値から残存容
量が初期値の80%になるであろう時期を予測するのは
実際と掛け離れることが明白である。即ち、ある鉛蓄電
池は、内部抵抗の立ち上がりが早く、比較的早く寿命の
残存容量になったり、ある鉛蓄電池は急な立ち上がりを
見せたかと思えばまた立ち上がりがゆっくりとなる等、
鉛蓄電池の設置される環境等によりその挙動を異にする
為である。そこで、寿命末期の近傍、本実施例では、少
なくとも寿命に至るまでに1年の有余が確保出来る残存
容量が85%の時期を捉え、この状態になった鉛蓄電池
のその後の状態を、それ以前の半年間の内部抵抗の推移
から寿命を予測し、以後この予測を、データー採取時期
以前の半年間のデーターを基に予測を更新していくもの
である。このとこにより、より正確な寿命予測が可能と
成る。
Embodiment 2 Next, a method of estimating the life of a lead storage battery will be described. The life of the lead storage battery in Example 1 was defined as the time when the remaining capacity reached 80% of the initial value. FIG. 2 shows that 12 lead-acid batteries of Example 1 are arranged close to each other, connected in series, and float-charged with a current of 1 A. 3 shows changes in the internal resistance (R) and the remaining capacity of three batteries having different values. The horizontal axis shows the number of months of the accelerated life test of Example 1 (below, along with the actual predicted years), and the vertical axis shows the internal resistance (R) and discharge capacity on the left and right. It can be seen that each lead storage battery shows a different transition of the internal resistance value. This is thought to be due to the effect of the temperature of the lead storage battery due to the environment of the lead storage battery depending on the location, particularly the location during float charging. From this result, it is clear that simply predicting when the remaining capacity will be 80% of the initial value from the value of the internal resistance is far from actual. In other words, some lead-acid batteries have a rapid rise in internal resistance and have a relatively short life remaining capacity, and some lead-acid batteries have a slow rise if they show a sudden rise.
This is because the behavior differs depending on the environment in which the lead storage battery is installed. Therefore, near the end of the life, in this embodiment, at least the time when the remaining capacity that can secure one year to reach the life is 85% is captured, and the subsequent state of the lead storage battery in this state is described before. The life expectancy is predicted from the change in internal resistance for six months, and thereafter, this prediction is updated based on the data for half a year before the data collection time. This enables more accurate life prediction.

【0012】具体的には、図3に示す通り、商用電源1
は整流・制御部2を介して負荷3に接続されると共に、
鉛蓄電池4を、負荷とは並行に接続されている。鉛蓄電
池4は満充電された公称容量200AHの密閉形鉛蓄電
池を12個直列に接続し、各鉛蓄電池の正負極端子の交
流電流印加線5を接続し、直流接続された鉛蓄電池4に
1Aのフロート充電電流を流し続けた。そして、タイマ
ーにより1日一回、計測部6から印加線5より各鉛蓄電
池4に20Hzの交流電流を印加し、応答電圧及び位相
差の情報を演算部へ入力し、計測日と内部抵抗を記憶部
RAM8に記憶すると共に、各鉛蓄電池の電槽側面に固
定したサーミスタ(図示せず)より各鉛蓄電池の温度を
計測し、これを演算部に入れ、予め記憶部RAM8に記
憶された温度と内部抵抗の相関関係を示す検量線により
前記測定した内部抵抗を温度補正して、同様に予め記憶
部RAM8に入力された内部抵抗と残存容量の相関関係
を示す近似式により、プログラムが記憶されたROM9
により鉛蓄電池の残存容量を求めた。その結果をデータ
として記憶部RAM8に記憶すると共に、残存容量が初
期の容量より85%に低下するまでは、「良好」の表示
を、85%〜80%の範囲は「警告」を表示部10に表
示するようにした。そして、「警告」の表示中は、それ
より以前の半年間の内部抵抗値より、上記近似式とは別
に、二次関数の近似式を求め、寿命である残存容量が8
0%になる時期を計算して、その結果を寿命予想として
寿命まであと「何年」と表示部10に表示した。この時
の抵抗値は温度補正のしない値で近似式を求めた。この
ことによりより実際に近い寿命予測を可能にすることが
出来る。
More specifically, as shown in FIG.
Is connected to the load 3 via the rectification / control unit 2 and
The lead storage battery 4 is connected in parallel with the load. The lead-acid battery 4 has 12 fully-charged sealed lead-acid batteries having a nominal capacity of 200 AH connected in series, connected to the alternating current application line 5 at the positive and negative terminals of each lead-acid battery, and connected to the direct-current connected lead-acid battery 4 at 1 A. The float charging current was kept flowing. Once a day, the timer applies an alternating current of 20 Hz from the measuring unit 6 to the lead storage battery 4 from the application line 5 to input the information of the response voltage and the phase difference to the calculating unit. The temperature of each lead-acid battery is measured by a thermistor (not shown) fixed to the side of the battery case of each lead-acid battery, and is stored in the storage unit RAM8. The temperature of the measured internal resistance is corrected by a calibration curve indicating the correlation between the internal resistance and the internal resistance. Similarly, a program is stored by an approximate expression indicating the correlation between the internal resistance and the remaining capacity previously input to the storage unit RAM8. ROM 9
The remaining capacity of the lead storage battery was determined by the following. The result is stored in the storage unit RAM 8 as data, and "good" is displayed until the remaining capacity is reduced to 85% from the initial capacity, and "warning" is displayed in the range of 85% to 80%. Is displayed on the screen. During the display of the “warning”, an approximate expression of a quadratic function is obtained separately from the above-mentioned approximate expression from the internal resistance value of the previous half year, and the remaining capacity as the life is 8
The time at which it reaches 0% was calculated, and the result was displayed on the display unit 10 as "How many years" until the life was reached as the life expectancy. The approximate value of the resistance value at this time was determined by a value without temperature correction. As a result, it is possible to predict the life more realistically.

【0013】演算部では記憶部ROM9に記憶させたプ
ログラムにより図4に示すフローチャートにより演算す
る。まず、鉛蓄電池がフロート充電されているか否かを
見る。鉛蓄電池は、先に説明した通り、商用電源が停電
等の異常事態になった時に放電し、負荷へ電力を供給す
るものである。そして、商用電源が復旧した後は、該商
用電源により充電され満充電になった時再びフロート充
電されるが、鉛蓄電池の放電時や充電時には交流電流の
印加をせず、内部抵抗の測定はしない。このようにする
為に、鉛蓄電池がフロート充電状態時のみ定期的に交流
電流を印加する。このフロート充電の状態は鉛蓄電池の
電圧を監視することで判断した。そして、該鉛蓄電池の
状態がフロート充電である時は、交流電流を印加し、各
鉛蓄電池の内部抵抗を演算測定し、予め入力している内
部抵抗と残存容量との相関近似式により残存容量を求め
る。次いで、求めた残存容量が寿命と定めた残存容量8
0%以上か否かを判断し、以下ならば、寿命の表示を
し、警報する。80%以上の場合は、次いで残存容量が
85%以上か否かを判断し、以上ならば、良好の表示を
する。以下ならば警告の表示をし、その時点で、それよ
り半年間の内部抵抗値の推移から内部抵抗と残存容量の
相関関係を二次関数の近似式としてを求め、この近似式
から残存容量が80%となる時期を計算し、現在から差
し引いて寿命時期を予測し、予測寿命を表示する。以後
この演算を繰り返し実行するものである。
The calculation section performs calculation according to the flowchart shown in FIG. 4 according to the program stored in the storage section ROM9. First, it is determined whether or not the lead storage battery is float-charged. As described above, the lead storage battery discharges when an abnormal situation such as a power failure occurs in a commercial power supply, and supplies power to a load. After the commercial power supply is restored, when the battery is charged by the commercial power supply and becomes fully charged, float charging is performed again.However, when discharging or charging the lead storage battery, no AC current is applied, and measurement of the internal resistance is not performed. do not do. In order to do this, an alternating current is applied periodically only when the lead storage battery is in the float charge state. The state of the float charge was determined by monitoring the voltage of the lead storage battery. When the state of the lead storage battery is float charging, an alternating current is applied to calculate and measure the internal resistance of each lead storage battery, and the remaining capacity is calculated by a correlation approximation equation between the previously input internal resistance and the remaining capacity. Ask for. Next, the obtained remaining capacity is the remaining capacity 8 determined as the life.
It is determined whether it is 0% or more, and if it is less than 0%, the life is displayed and an alarm is issued. If it is 80% or more, it is then determined whether or not the remaining capacity is 85% or more. If it is below, a warning is displayed, and at that time, the correlation between the internal resistance and the remaining capacity is obtained as an approximate expression of a quadratic function from the transition of the internal resistance value for six months from that time, and the remaining capacity is calculated from this approximate expression. The time when the battery life reaches 80% is calculated, the life time is predicted by subtracting it from the present time, and the predicted life is displayed. Thereafter, this operation is repeatedly executed.

【0014】場所の異なる5個の密閉形鉛蓄電池につい
て、残存容量が85%になった時の近似式による寿命予
測と実測した寿命年を加速寿命試験により確認した結果
は表1の通りであり、予測と実測の誤差が約0.2年以
内とほぼ満足する結果が得られた。
Table 1 shows the results obtained by confirming the life expectancy of the five sealed lead-acid batteries at different locations by an approximate expression when the remaining capacity is 85% and the actually measured life years by an accelerated life test. The result was almost satisfied, with the error between the prediction and the actual measurement being within about 0.2 years.

【0015】[0015]

【表1】 [Table 1]

【0016】又、残存要領の異なる密閉形鉛蓄電池5個
を用いて、その容量と表示状態を調べた結果を表2に示
した。
Table 2 shows the results of examining the capacities and display states of five sealed lead-acid batteries having different residual procedures.

【0017】[0017]

【表2】 [Table 2]

【0018】この結果もほぼ満足のいくものであった。This result was also almost satisfactory.

【0019】尚、上記いずれの実施例も、内部抵抗値は
その都度の値を用いたが、例えば1週間分の内部抵抗の
データを平均した値、或いは1月の平均した値を用いて
も良い。
In each of the above-described embodiments, the internal resistance value is used as it is. However, for example, a value obtained by averaging the internal resistance data for one week or an average value in January may be used. good.

【0020】[0020]

【発明の効果】以上の通り、本発明によれば、鉛蓄電池
の状態監視方法として鉛蓄電池の残存容量および寿命予
測を正確に表示することが出来、鉛蓄電池の状態を正確
に監視出来る等の効果を相するものである。又、各鉛蓄
電池の個々の状態を監視することで、組電池としての群
監視ではなく、個々の蓄電池への適切な対応が出来る等
の効果を奏するものである。
As described above, according to the present invention, as a method for monitoring the state of a lead-acid battery, it is possible to accurately display the remaining capacity and life expectancy of the lead-acid battery, and to accurately monitor the state of the lead-acid battery. It is effective. In addition, by monitoring the individual state of each lead storage battery, it is possible to perform an appropriate response to each storage battery instead of group monitoring as an assembled battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 内部抵抗と鉛蓄電池の容量の関係図FIG. 1 is a diagram showing the relationship between the internal resistance and the capacity of a lead storage battery.

【図2】 期間と内部抵抗及び鉛蓄電池容量の関係図FIG. 2 is a diagram showing a relationship between a period, an internal resistance, and a lead storage battery capacity.

【図3】 本発明一実施例の説明図FIG. 3 is an explanatory view of one embodiment of the present invention.

【図4】 本発明一実施例のチャート図FIG. 4 is a chart diagram of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…商用電源 2…整流・制御部 3…負荷 4…鉛蓄電池 5…印加線 DESCRIPTION OF SYMBOLS 1 ... Commercial power supply 2 ... Rectification / control part 3 ... Load 4 ... Lead storage battery 5 ... Application line

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡壁 雄一 栃木県今市市荊沢字上原597 古河電池株 式会社今市事業所内 Fターム(参考) 2G016 CA00 CB06 CB12 CC04 CC06 CC27 CC28 CE00 5G003 AA01 BA03 EA05 EA08 5H030 AA06 AS03 FF41  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yuichi Watanabe 597 Jingzawa-ji Uehara, Imaichi-shi, Tochigi Furukawa Battery Co., Ltd.Imaichi Office F-term (reference) 2G016 CA00 CB06 CB12 CC04 CC06 CC27 CC28 CE00 5G003 AA01 BA03 EA05 EA08 5H030 AA06 AS03 FF41

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鉛蓄電池の内部抵抗を測定し、予め求め
た内部抵抗と鉛蓄電池の残存容量の相関関係を示す近似
式により前記測定した内部抵抗における鉛蓄電池の残存
容量等鉛蓄電池の状態を監視する鉛蓄電池の状態監視方
法おいて、内部抵抗と鉛蓄電池の残存容量の相関関係の
近似式は、内部抵抗が一定値以上になった時からの近似
式を求め、この近似式により鉛蓄電池の残存容量を監視
するとともに、内部抵抗が一定値以下の場合は、残存容
量が満充電であると判定することを特徴とする鉛蓄電池
の状態監視方法。
An internal resistance of a lead-acid battery is measured, and a state of the lead-acid battery such as a remaining capacity of the lead-acid battery at the measured internal resistance is determined by an approximate expression showing a correlation between a predetermined internal resistance and a remaining capacity of the lead-acid battery. In the method of monitoring the state of the lead-acid battery to be monitored, an approximate expression of the correlation between the internal resistance and the remaining capacity of the lead-acid battery is obtained from an approximate expression from the time when the internal resistance becomes a certain value or more. Monitoring the remaining capacity of the battery and determining that the remaining capacity is fully charged when the internal resistance is equal to or less than a predetermined value.
【請求項2】 鉛蓄電池の内部抵抗を測定し、予め求め
た内部抵抗と鉛蓄電池の残存容量の相関関係を示す近似
式により前記測定した内部抵抗における鉛蓄電池の残存
容量等鉛蓄電池の状態を監視する鉛蓄電池の状態監視方
法おいて、残存容量が初期容量の85%に低下した時点
から、それより一定期間前の内部抵抗の変化状態に基づ
き内部抵抗と残存容量の相関関係を示す近似式を求め、
それに基づき鉛蓄電池の寿命を予測することを特徴とす
る鉛蓄電池の状態監視方法。
2. The internal resistance of the lead-acid battery is measured, and the state of the lead-acid battery, such as the remaining capacity of the lead-acid battery at the measured internal resistance, is determined by an approximate expression indicating the correlation between the previously determined internal resistance and the remaining capacity of the lead-acid battery. In the method of monitoring the state of the lead storage battery to be monitored, an approximate expression showing a correlation between the internal resistance and the remaining capacity based on a change state of the internal resistance a certain period before the time when the remaining capacity decreases to 85% of the initial capacity. ,
A method for monitoring the state of a lead-acid battery, comprising predicting the life of the lead-acid battery based thereon.
【請求項3】 鉛蓄電池の状態監視を個々の鉛蓄電池に
行うことを特徴とする請求項1および請求項2に記載の
鉛蓄電池の状態監視方法。
3. The method for monitoring the state of a lead storage battery according to claim 1, wherein the state of the lead storage battery is monitored for each lead storage battery.
JP2001136451A 2001-05-07 2001-05-07 Lead storage battery condition monitoring method Expired - Lifetime JP4011303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001136451A JP4011303B2 (en) 2001-05-07 2001-05-07 Lead storage battery condition monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001136451A JP4011303B2 (en) 2001-05-07 2001-05-07 Lead storage battery condition monitoring method

Publications (2)

Publication Number Publication Date
JP2002334725A true JP2002334725A (en) 2002-11-22
JP4011303B2 JP4011303B2 (en) 2007-11-21

Family

ID=18983727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001136451A Expired - Lifetime JP4011303B2 (en) 2001-05-07 2001-05-07 Lead storage battery condition monitoring method

Country Status (1)

Country Link
JP (1) JP4011303B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271438A (en) * 2006-03-31 2007-10-18 Furukawa Battery Co Ltd:The Method and device for estimating life of lead-acid battery
JP2008094211A (en) * 2006-10-11 2008-04-24 Shin Kobe Electric Mach Co Ltd Battery state determining device, and lead battery for automobile
JP2008128802A (en) * 2006-11-21 2008-06-05 Furukawa Electric Co Ltd:The Battery state estimation method, battery state monitoring device, and battery power source system
JP2011133443A (en) * 2009-12-25 2011-07-07 Toshiba Corp Diagnostic device, battery pack, and method of manufacturing battery value index
JP2012181037A (en) * 2011-02-28 2012-09-20 Mitsubishi Heavy Ind Ltd Deterioration estimation device, deterioration estimating method, and program
JP2014119397A (en) * 2012-12-18 2014-06-30 Toshiba Corp Battery state estimation apparatus of secondary battery
JP2017212049A (en) * 2016-05-23 2017-11-30 株式会社デンソー Charge control device
JP2018072346A (en) * 2017-11-14 2018-05-10 株式会社東芝 Battery state estimation apparatus of secondary battery
WO2021112223A1 (en) * 2019-12-06 2021-06-10 株式会社Gsユアサ Degradation estimation device, degradation estimation system, degradation estimation method, and computer program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05281310A (en) * 1992-01-24 1993-10-29 Nippon Telegr & Teleph Corp <Ntt> Method and device for detecting deterioration of lead battery
JPH0737623A (en) * 1993-07-21 1995-02-07 Nippon Telegr & Teleph Corp <Ntt> Method and device for judging deterioration of lead-acid battery
JPH08222279A (en) * 1995-02-13 1996-08-30 Japan Storage Battery Co Ltd Degraded condition detecting method of sealed lead-acid battery
JPH0933620A (en) * 1995-07-19 1997-02-07 Nippon Telegr & Teleph Corp <Ntt> Degradation judgment method for lead storage-battery
JPH09115554A (en) * 1995-10-23 1997-05-02 Japan Storage Battery Co Ltd Residual service life estimating method of negative electrode absorbing type sealed lead-acid battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05281310A (en) * 1992-01-24 1993-10-29 Nippon Telegr & Teleph Corp <Ntt> Method and device for detecting deterioration of lead battery
JPH0737623A (en) * 1993-07-21 1995-02-07 Nippon Telegr & Teleph Corp <Ntt> Method and device for judging deterioration of lead-acid battery
JPH08222279A (en) * 1995-02-13 1996-08-30 Japan Storage Battery Co Ltd Degraded condition detecting method of sealed lead-acid battery
JPH0933620A (en) * 1995-07-19 1997-02-07 Nippon Telegr & Teleph Corp <Ntt> Degradation judgment method for lead storage-battery
JPH09115554A (en) * 1995-10-23 1997-05-02 Japan Storage Battery Co Ltd Residual service life estimating method of negative electrode absorbing type sealed lead-acid battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271438A (en) * 2006-03-31 2007-10-18 Furukawa Battery Co Ltd:The Method and device for estimating life of lead-acid battery
JP2008094211A (en) * 2006-10-11 2008-04-24 Shin Kobe Electric Mach Co Ltd Battery state determining device, and lead battery for automobile
JP4677970B2 (en) * 2006-10-11 2011-04-27 新神戸電機株式会社 Battery state determination device and lead battery for automobile
JP2008128802A (en) * 2006-11-21 2008-06-05 Furukawa Electric Co Ltd:The Battery state estimation method, battery state monitoring device, and battery power source system
JP2011133443A (en) * 2009-12-25 2011-07-07 Toshiba Corp Diagnostic device, battery pack, and method of manufacturing battery value index
JP2012181037A (en) * 2011-02-28 2012-09-20 Mitsubishi Heavy Ind Ltd Deterioration estimation device, deterioration estimating method, and program
JP2014119397A (en) * 2012-12-18 2014-06-30 Toshiba Corp Battery state estimation apparatus of secondary battery
JP2017212049A (en) * 2016-05-23 2017-11-30 株式会社デンソー Charge control device
JP2018072346A (en) * 2017-11-14 2018-05-10 株式会社東芝 Battery state estimation apparatus of secondary battery
WO2021112223A1 (en) * 2019-12-06 2021-06-10 株式会社Gsユアサ Degradation estimation device, degradation estimation system, degradation estimation method, and computer program
JP2021092404A (en) * 2019-12-06 2021-06-17 株式会社Gsユアサ Deterioration estimation device, deterioration estimation system, deterioration estimation method, and computer program

Also Published As

Publication number Publication date
JP4011303B2 (en) 2007-11-21

Similar Documents

Publication Publication Date Title
EP1933158B1 (en) Secondary cell degradation judgment method, secondary cell degradation judgment device, and power supply system
EP2411824B1 (en) Battery life estimation
US8203305B1 (en) Enhanced voltage-based fuel gauges and methods
CN109507604B (en) Battery output monitoring device and battery output monitoring method
US20080125987A1 (en) Nickel-hydride battery life determining method and life determining apparatus
JP2007526456A (en) Method for assessing the state of charge, method for assessing the remaining usage time of a rechargeable battery and equipment implementing such method
JP2013122450A (en) Method and apparatus for online determination of battery state of charge and state of health
JPH03122581A (en) Method and apparatus for predicting bat- tery discharge holding time
KR20140082750A (en) System and method for battery monitoring
JP5535968B2 (en) CHARGE RATE ESTIMATION DEVICE, CHARGE RATE ESTIMATION METHOD, AND PROGRAM
KR101602848B1 (en) Method for predicting lifetime of battery
JP2011521206A (en) Method and apparatus for predicting the life of a rechargeable battery
JPS6327776A (en) Battery charging control and diagnostic apparatus for car
JP2006312528A (en) Electric power storage device of elevator
JP4849935B2 (en) Life estimation method and life estimation device for lead-acid battery whose initial value of internal resistance is unknown
JP2020003497A (en) Management device for power storage element, power storage device, method for estimating deterioration amount, and computer program
JP2006153663A (en) Method of determining lifetime of secondary battery
JP2002343444A (en) Status-monitoring system for lead-acid battery
JP2002334725A (en) Method for monitoring condition of lead-acid battery
JP7444846B2 (en) Rechargeable battery fluid loss detection device and rechargeable battery fluid loss detection method
US6838883B2 (en) Method and system for monitoring state of lead acid battery
JP2004191152A (en) Remaining life estimating device and method for secondary battery
EP1649538B1 (en) Battery float management
KR101473156B1 (en) The way of forecasting the life cycle of rechargeable secondary batteries
JP2007163145A (en) Discharge time calculation device and discharge time calculation method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20010508

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070905

R150 Certificate of patent or registration of utility model

Ref document number: 4011303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

EXPY Cancellation because of completion of term