JP2011254650A - Electric power apparatus - Google Patents

Electric power apparatus Download PDF

Info

Publication number
JP2011254650A
JP2011254650A JP2010127689A JP2010127689A JP2011254650A JP 2011254650 A JP2011254650 A JP 2011254650A JP 2010127689 A JP2010127689 A JP 2010127689A JP 2010127689 A JP2010127689 A JP 2010127689A JP 2011254650 A JP2011254650 A JP 2011254650A
Authority
JP
Japan
Prior art keywords
potential difference
storage device
power storage
power supply
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010127689A
Other languages
Japanese (ja)
Other versions
JP5440400B2 (en
Inventor
Shinji Imai
伸治 今井
Susumu Yamauchi
晋 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2010127689A priority Critical patent/JP5440400B2/en
Priority to PCT/JP2011/053263 priority patent/WO2011152086A1/en
Publication of JP2011254650A publication Critical patent/JP2011254650A/en
Application granted granted Critical
Publication of JP5440400B2 publication Critical patent/JP5440400B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electric power apparatus capable of preventing a bidirectional inrush current regardless of the magnitude of a voltage of two power storage devices when two power storage devices which are parallel connected are switched to a connecting state from a disconnecting state.SOLUTION: An electric power apparatus 1 is provided on a current path connecting a secondary battery 5 and a capacitor 6 which are parallel connected. The electric power apparatus 1 has: MOSFETs 71 and 72 switching a path disconnecting state and a path connecting state; a potential difference adjusting circuit that is parallel connected to the MOSFETs 71 and 72 and has current-amount restriction MOSFETs 73 and 74 which are serially connected; and a control unit 11. Since body diodes 731 and 741 of the current-amount restriction MOSFETs 73 and 74 are oppositely disposed, generation of an inrush current in either direction can be prevented when performing a precharge via a second current line to which the current-amount restriction MOSFETs 73 and 74 are disposed.

Description

本発明は、並列接続された2つの蓄電装置を備えた電源装置に関する。   The present invention relates to a power supply device including two power storage devices connected in parallel.

環境問題への配慮や国が定める排出ガス規制の強化を背景に、各自動車メーカは低公害車の開発に力を入れている。なかでも、従来のエンジンに加えて直流電源とインバータ、そしてモータとを組み合わせたハイブリッド自動車は、二次電池技術の進歩などで低コスト開発が加速し、近年急速に普及が進んでいる。   Automobile manufacturers are putting effort into the development of low-emission vehicles against the backdrop of consideration for environmental issues and the strengthening of exhaust emission regulations set by the government. In particular, hybrid vehicles that combine a DC power source, an inverter, and a motor in addition to a conventional engine have been rapidly popularized in recent years as low-cost development has accelerated due to advances in secondary battery technology.

ハイブリッド自動車の直流電源装置に搭載される二次電池は、モータ等の駆動および車両減速時のエネルギー回生に用いられる。そして、車両を適切に走行させながらエネルギー効率を向上させるために、負荷に応じた適切な電力を供給することや、回生時に高効率にエネルギーを回収することなどが求められる。これらの要求に対応するため、二次電池に加えてキャパシタを並列に接続したハイブリッド構成の電源装置をモータの電源供給源としてハイブリッド自動車等に搭載する技術が知られている(例えば、特許文献1参照)。   A secondary battery mounted on a DC power supply device of a hybrid vehicle is used for driving a motor or the like and for energy regeneration during vehicle deceleration. And in order to improve energy efficiency, driving | running | working a vehicle appropriately, supplying appropriate electric power according to load, recovering energy with high efficiency at the time of regeneration, etc. are calculated | required. In order to meet these demands, a technology is known in which a hybrid power supply device in which capacitors are connected in parallel to a secondary battery is mounted on a hybrid vehicle or the like as a power supply source of a motor (for example, Patent Document 1). reference).

二次電池とキャパシタとは、接続、遮断が可能なように機械式のリレーを使用したスイッチや、MOSFET(金属酸化膜半導体電界効果トランジスタ)等の半導体素子のスイッチを用いて接続されたものがある(例えば、特許文献2参照)。   A secondary battery and a capacitor are connected using a switch using a mechanical relay so that connection and disconnection are possible, and a switch of a semiconductor element such as a MOSFET (metal oxide semiconductor field effect transistor). Yes (see, for example, Patent Document 2).

低抵抗で出力性能に優れるキャパシタを二次電池と組み合わせることで、急峻に変動するモータ負荷に対して柔軟に電力供給でき、減速時のエネルギー回生を高効率に実現できる。さらに、キャパシタを用いることで、瞬間的な大電流出力が要求されるアイドリングストップからの始動を補助し、二次電池の負担低減並びに劣化防止を図ることができる。   By combining a capacitor with low resistance and excellent output performance with a secondary battery, it is possible to flexibly supply power to a rapidly changing motor load, and to realize energy regeneration during deceleration with high efficiency. Furthermore, by using a capacitor, it is possible to assist starting from an idling stop that requires an instantaneous large current output, and to reduce the burden on the secondary battery and prevent deterioration.

システム駆動中は二次電池とキャパシタとは電気的に並列に接続されるため、両者は等電位となっている。しかし、システム停止時等に両者が切り離されると、各々の自己放電量の違いにより電位差が生じる。一般に、キャパシタの方が二次電池に比べて自己放電が大きいとされるため、キャパシタの電位が二次電池の電位に比べて低下する傾向にある。   Since the secondary battery and the capacitor are electrically connected in parallel while the system is driven, they are equipotential. However, if the two are disconnected when the system is stopped, a potential difference is generated due to the difference in each self-discharge amount. Generally, a capacitor is considered to have a larger self-discharge than a secondary battery, and therefore the potential of the capacitor tends to be lower than the potential of the secondary battery.

このように二次電池とキャパシタとの間に電位差が生じると、システム起動時にキャパシタと二次電池を接続した際に、二次電池からキャパシタへと突入電流が流れ込むという問題が発生する。この突入電流は、キャパシタ内部を加熱して損傷させるとともに、キャパシタと電源線とを接続するリレー素子を溶着させる可能性がある。   When a potential difference is generated between the secondary battery and the capacitor as described above, there is a problem that an inrush current flows from the secondary battery to the capacitor when the capacitor and the secondary battery are connected at the time of starting the system. This inrush current heats and damages the inside of the capacitor, and may cause welding of a relay element that connects the capacitor and the power supply line.

そのため、このような突入電流を防止する方法として、接続および切り離しを行うメインスイッチ対して、電流制限抵抗とスイッチを配した経路を並列に設ける構成が知られている(例えば、特許文献3参照)。キャパシタと二次電池とを接続する際には、最初に電流制限抵抗のある経路を接続して電流量を制限しながらキャパシタへ予備充電(プリチャージ)させる。その後、電位差がほぼ無くなったならばメインのスイッチを接続するようにする。   Therefore, as a method for preventing such an inrush current, a configuration is known in which a path in which a current limiting resistor and a switch are arranged is provided in parallel with respect to a main switch to be connected and disconnected (see, for example, Patent Document 3). . When connecting the capacitor and the secondary battery, first, a path having a current limiting resistor is connected to precharge the capacitor while limiting the amount of current. After that, when the potential difference is almost eliminated, the main switch is connected.

また、上述した電流制限抵抗の代わりに半導体スイッチング素子をメインスイッチと並列に設けて、その半導体スイッチング素子を用いてプリチャージ機能を実現する構成も知られている(例えば、特許文献4)。   A configuration is also known in which a semiconductor switching element is provided in parallel with the main switch instead of the current limiting resistor described above, and a precharge function is realized using the semiconductor switching element (for example, Patent Document 4).

特開2004−312926号公報JP 2004-31926 A 特開2006−152820号公報JP 2006-152820 A 特開2005−312156号公報Japanese Patent Laying-Open No. 2005-312156 特開2007−143221号公報JP 2007-143221 A

近年、電気二重層キャパシタに加えて、より大容量の次世代キャパシタが開発されており、特に負極にリチウムイオンをドープしたタイプのキャパシタは自己放電が極めて少なく、保管環境によっては電圧が上昇することもある。このような次世代キャパシタを適用した場合、二次電池とキャパシタの自己放電量の大小関係が逆転し、キャパシタと二次電池とを接続した際に、キャパシタ側から二次電池側へ突入電流が流れる可能性がある。   In recent years, in addition to electric double layer capacitors, next-generation capacitors with larger capacities have been developed, and in particular, capacitors of the negative electrode doped with lithium ions have very little self-discharge, and the voltage increases depending on the storage environment. There is also. When such a next-generation capacitor is applied, the magnitude relationship between the amount of self-discharge of the secondary battery and the capacitor is reversed, and when the capacitor and the secondary battery are connected, an inrush current flows from the capacitor side to the secondary battery side. There is a possibility of flowing.

しかしながら、特許文献4に記載の構成では、二次電池からキャパシタへと流れ込む方向の突入電流には対応できるが、キャパシタから二次電池への流れに関しては半導体スイッチング素子のボディダイオードを介して電流が流れるため、突入電流を防止することができない。   However, the configuration described in Patent Document 4 can cope with an inrush current flowing in the direction from the secondary battery to the capacitor, but the current from the capacitor to the secondary battery is caused to flow through the body diode of the semiconductor switching element. Since it flows, inrush current cannot be prevented.

請求項1の発明による電源装置は、負荷に対して並列接続される第一の蓄電装置および第二の蓄電装置と、第一の蓄電装置と第二の蓄電装置とを結ぶ電流経路上に設けられて、経路切断状態と経路接続状態とを切り換える主スイッチング回路と、直列接続された第一および第二のスイッチング回路を有し、主スイッチング回路と並列に接続される電位差調整回路とを備え、第一のスイッチング回路は、第一の蓄電装置から第二の蓄電装置へ流れる電流を遮断する向きのボディダイオードを内蔵する少なくとも一つの第一の半導体スイッチング素子を有し、第二のスイッチング回路は、第二の蓄電装置から第一の蓄電装置へ流れる電流を遮断する向きのボディダイオードを内蔵する少なくとも一つの第二の半導体スイッチング素子を有し、第一の蓄電装置と第二の蓄電装置との間の電位差を低減させるように第一および第二の半導体スイッチング素子を制御し、電位差低減後に主スイッチング回路を経路切断状態から経路接続状態へ切り換える制御部をさらに備えたことを特徴とする。
なお、第一のスイッチング回路は、第一の半導体スイッチング素子を複数並列接続したスイッチング素子群を有し、第二のスイッチング回路は、第二の半導体スイッチング素子を複数並列接続したスイッチング素子群を有するように構成しても良い。
また、第一の蓄電装置と第二の蓄電装置との間の電位差が所定の閾値以上か否かを判定する電位差判定部を備え、電位差判定部により閾値以上と判定されると電位差の低減を行った後に経路接続状態へ切り換え、電位差判定部により電位差が閾値より小さいと判定されると電位差の低減を行わずに経路接続状態へ切り換えるようにしても良い。
さらにまた、制御部に、第一および第二の半導体スイッチング素子の出力電流量を調整する電流量調整回路をさらに設け、第一の蓄電装置と第二の蓄電装置との間の電位差に応じて出力電流量を調整して電位差を低減させるようにしても良い。
さらに、第一および第二の半導体スイッチング素子をMOSFETで構成し、MOSFETのゲート電圧を調整して第一および第二の半導体スイッチング素子の出力電流量を調整するようにしても良い。
A power supply device according to a first aspect of the present invention is provided on a current path connecting a first power storage device and a second power storage device connected in parallel to a load, and the first power storage device and the second power storage device. A main switching circuit that switches between a path disconnection state and a path connection state; a first and second switching circuit connected in series; and a potential difference adjustment circuit connected in parallel with the main switching circuit, The first switching circuit has at least one first semiconductor switching element having a built-in body diode oriented to cut off a current flowing from the first power storage device to the second power storage device. , Having at least one second semiconductor switching element including a body diode oriented to cut off current flowing from the second power storage device to the first power storage device, A controller that controls the first and second semiconductor switching elements so as to reduce a potential difference between the power storage device and the second power storage device, and switches the main switching circuit from the path disconnection state to the path connection state after the potential difference is reduced; It is further provided with a feature.
The first switching circuit has a switching element group in which a plurality of first semiconductor switching elements are connected in parallel, and the second switching circuit has a switching element group in which a plurality of second semiconductor switching elements are connected in parallel. You may comprise as follows.
In addition, a potential difference determination unit that determines whether or not the potential difference between the first power storage device and the second power storage device is equal to or greater than a predetermined threshold value, the potential difference is reduced when the potential difference determination unit determines that the potential difference is equal to or greater than the threshold value. After performing, it is possible to switch to the path connection state, and when the potential difference determination unit determines that the potential difference is smaller than the threshold value, it is possible to switch to the path connection state without reducing the potential difference.
Furthermore, the control unit is further provided with a current amount adjustment circuit for adjusting the output current amounts of the first and second semiconductor switching elements, and according to the potential difference between the first power storage device and the second power storage device. The potential difference may be reduced by adjusting the amount of output current.
Further, the first and second semiconductor switching elements may be constituted by MOSFETs, and the gate voltages of the MOSFETs may be adjusted to adjust the output current amounts of the first and second semiconductor switching elements.

本発明によれば、並列接続された2つの蓄電装置を切断状態から接続する際に、2つの蓄電装置の電圧の大小関係に関係なく、双方向の突入電流を防止することができる。   According to the present invention, when connecting two power storage devices connected in parallel from a disconnected state, a bidirectional inrush current can be prevented regardless of the magnitude relationship between the voltages of the two power storage devices.

本発明の第1の実施形態による電源装置の概略ブロック図である。1 is a schematic block diagram of a power supply device according to a first embodiment of the present invention. 制御部11の構成概略を示すブロック図である。3 is a block diagram illustrating a schematic configuration of a control unit 11. FIG. IGN起動時における制御手順を示すフローチャートである。It is a flowchart which shows the control procedure at the time of IGN starting. 電流量制限時の電流量制限電流経路を示す図である。It is a figure which shows the electric current amount limitation electric current path | route at the time of electric current amount limitation. 電流量制限処理時の電流制限方法を説明する図であり、(a)はMOSFET76のオン・オフ動作のタイムチャートであり、(b)はデューティー比DとMOSFET73、74のゲート−ソース間電圧との関係を示す。It is a figure explaining the current limiting method at the time of an electric current amount limiting process, (a) is a time chart of ON / OFF operation | movement of MOSFET76, (b) is the duty ratio D and the gate-source voltage of MOSFET73,74, and The relationship is shown. 電流量制限処理時におけるタイムチャートを示す図であり、(a)はキャパシタ6と二次電池5の電位差を示し、(b)は電流量制限回路起動用スイッチ75のON・OFF状態を示し、(c)はMOSFET71,72の状態を示す。It is a figure which shows the time chart at the time of an electric current amount limiting process, (a) shows the electric potential difference of the capacitor 6 and the secondary battery 5, (b) shows the ON / OFF state of the electric current amount limiting circuit starting switch 75, (C) shows the state of the MOSFETs 71 and 72. 従来技術との相違点を説明する図であり(a)は従来の構成を示し、(b)は第1の実施の形態の構成を示す。It is a figure explaining a difference with a prior art, (a) shows the conventional structure, (b) shows the structure of 1st Embodiment. 本発明の第2の実施の形態による電源装置を説明する図である。It is a figure explaining the power supply device by the 2nd Embodiment of this invention. 第2の実施の形態における制御手順を示すフローチャートである。It is a flowchart which shows the control procedure in 2nd Embodiment. 変形例を示す図である。It is a figure which shows a modification.

以下、図を参照して本発明を実施するための形態について説明する。
−第1の実施の形態−
図1は、本発明の第1の実施形態による電源装置を、回転電機の駆動に用いた場合の概略ブロック図である。図1において、電源装置1は、リレー2a,2bを介してインバータ装置3に接続される。回転電機4はインバータ装置3により回転駆動される。回転電機4は、車両のアイドリングストップシステムにおけるエンジン起動用のスタータモータやモータジェネレータを構成している。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
-First embodiment-
FIG. 1 is a schematic block diagram when the power supply device according to the first embodiment of the present invention is used for driving a rotating electrical machine. In FIG. 1, a power supply device 1 is connected to an inverter device 3 via relays 2a and 2b. The rotating electrical machine 4 is rotationally driven by the inverter device 3. The rotating electrical machine 4 constitutes a starter motor and a motor generator for starting an engine in an idling stop system of a vehicle.

電源装置1は、鉛蓄電池などの二次電池5と、二次電池5と並列に接続されるキャパシタ6と、放電遮断用MOSFET71と、充電遮断用MOSFET72と、キャパシタ側電流量制限用MOSFET73と、二次電池側電流量制限用MOSFET74と、電流量制限用MOSFETのゲート電圧固定用抵抗13と、MOSFET保護用抵抗14と、電流量制限回路起動用MOSFET76と、制御部11と、キャパシタ電圧検出部12とを備えている。   The power supply device 1 includes a secondary battery 5 such as a lead storage battery, a capacitor 6 connected in parallel with the secondary battery 5, a discharge cutoff MOSFET 71, a charge cutoff MOSFET 72, a capacitor side current amount limiting MOSFET 73, Secondary battery side current amount limiting MOSFET 74, current amount limiting MOSFET gate voltage fixing resistor 13, MOSFET protection resistor 14, current amount limiting circuit starting MOSFET 76, control unit 11, capacitor voltage detecting unit 12.

本実施の形態では、一例として二次電池5とキャパシタ6とを蓄電装置として搭載しているが、蓄電装置であればどのような組み合わせでも本発明は適用可能である。なお、キャパシタ6は複数のキャパシタセルが多直列多並列に接続されて構成され、二次電池5についても複数の二次電池セルが多直列多並列に接続されて構成される。   In the present embodiment, as an example, secondary battery 5 and capacitor 6 are mounted as a power storage device, but the present invention can be applied to any combination of power storage devices. The capacitor 6 is configured by connecting a plurality of capacitor cells in a multi-series multi-parallel configuration, and the secondary battery 5 is also configured by a plurality of secondary battery cells connected in a multi-series multi-parallel configuration.

キャパシタ6から二次電池5へのプラス(+)側の電力経路は、放電遮断用MOSFET71と充電遮断用MOSFET72とが直列に接続された第一の電流ラインと、キャパシタ側電流量制限用MOSFET73と二次電池側電流量制限用MOSFET74とが直列に接続された第二の電流ラインとの二つの電流ラインが並列に接続されて構成されている。   The power path on the plus (+) side from the capacitor 6 to the secondary battery 5 includes a first current line in which a discharge cutoff MOSFET 71 and a charge cutoff MOSFET 72 are connected in series, and a capacitor-side current amount limiting MOSFET 73. Two current lines are connected in parallel to a second current line in which a secondary battery side current amount limiting MOSFET 74 is connected in series.

なお、本実施の形態では、第一の電流ラインおよび第二の電流ラインの並列接続をプラス側に設けたが、必要に応じてこれらの構成をグランド(−)側の電流ラインに設けても良いし、プラス側とグランド側の両方に設けても構わない。   In this embodiment, the parallel connection of the first current line and the second current line is provided on the plus side. However, if necessary, these configurations may be provided on the ground (−) side current line. It may be provided on both the plus side and the ground side.

放電遮断用MOSFET71と充電遮断用MOSFET72とは、それぞれが内蔵するボディダイオード711,721が互いに逆向きとなるように接続される。図1に示す例では、ボディダイオード711,721のアノード同士が接続されるように、MOSFET71,72のソース側同士を接続している。このように、二つのMOSFET71,72を逆向きに直列接続することで、MOSFET71,72の両方をオフ状態とすると、双方向の電流に対して遮断状態となる。また、MOSFET71,72の両方をオン状態とすると、キャパシタ6側から二次電池5側へ流れる電流とその逆向きに流れる電流との、双方向の電流に対して非遮断状態となる。   Discharge cut-off MOSFET 71 and charge cut-off MOSFET 72 are connected such that body diodes 711 and 721 contained therein are opposite to each other. In the example shown in FIG. 1, the source sides of the MOSFETs 71 and 72 are connected so that the anodes of the body diodes 711 and 721 are connected. In this way, by connecting the two MOSFETs 71 and 72 in series in the opposite directions, when both the MOSFETs 71 and 72 are turned off, a bidirectional current is cut off. Further, when both MOSFETs 71 and 72 are turned on, a non-cut-off state is established with respect to a bidirectional current of a current flowing from the capacitor 6 side to the secondary battery 5 side and a current flowing in the opposite direction.

なお、本実施の形態では、キャパシタ6と二次電池5とをつなぐ電流経路が低抵抗な構成となるように、放電遮断用MOSFET71、放電遮断用MOSFET72にはオン抵抗が小さいエンハンスメント形NチャネルMOSFETを使用している。しかし、各MOSFETの全てもしくはいずれか一つにエンハンスメント形PチャネルMOSFETを使用しても構わないし、また、ノーマリオフタイプのGaN-FET、IGBTとダイオードとを組み合わせたものなど、同様のスイッチング機能を実現できるものであれば同様に適用可能である。   In the present embodiment, an enhancement-type N-channel MOSFET having a low on-resistance is used as the discharge cutoff MOSFET 71 and the discharge cutoff MOSFET 72 so that the current path connecting the capacitor 6 and the secondary battery 5 has a low resistance configuration. Is used. However, enhancement-type P-channel MOSFETs may be used for all or any one of the MOSFETs, and the same switching function is realized such as normally-off type GaN-FETs and combinations of IGBTs and diodes. The same applies if possible.

また、放電遮断用MOSFET71および充電遮断用MOSFET72にNチャネルMOSFETを使用する場合、MOSFET71,72のゲートを駆動するための昇圧型ゲートドライバ(図示しせず)が用いられる。ゲートドライバはチャージポンプ型等、NチャネルMOSFETのゲート駆動が可能なものであればどのようなものでも構わない。   Further, when N-channel MOSFETs are used as the discharge cutoff MOSFET 71 and the charge cutoff MOSFET 72, a boost gate driver (not shown) for driving the gates of the MOSFETs 71 and 72 is used. Any gate driver can be used as long as it can drive the gate of the N-channel MOSFET, such as a charge pump type.

図1に示す例では放電遮断用MOSFET71をキャパシタ6側、充電遮断用MOSFET72を二次電池5側に配置したが、各MOSFETが制御可能なように周辺回路を構成すれば、逆に配置しても構わない。   In the example shown in FIG. 1, the discharge cut-off MOSFET 71 is arranged on the capacitor 6 side and the charge cut-off MOSFET 72 is arranged on the secondary battery 5 side. However, if the peripheral circuit is configured so that each MOSFET can be controlled, it is arranged in reverse. It doesn't matter.

一方、第二の電流ラインの電流量制限用MOSFET73と電流量制限用MOSFET74との接続に関しても、それぞれのボディダイオード731,741が逆向きとなるように接続される。そのため、MOSFET73,74の両方をオン状態とすると、キャパシタ6側から二次電池5側へ流れる電流とその逆向きに流れる電流との、双方向の電流に対して非遮断状態となり、MOSFET73,74の両方をオフ状態とすると、双方向の電流に対して遮断状態となる。なお、電流量制限用MOSFET73、74の場合もMOSFET71,72の場合と同様に、電流量制限用MOSFET73、74を図1と逆の位置に配置しても構わない。   On the other hand, regarding the connection between the current amount limiting MOSFET 73 and the current amount limiting MOSFET 74 of the second current line, the body diodes 731 and 741 are connected in opposite directions. Therefore, when both of the MOSFETs 73 and 74 are turned on, the bidirectional current between the current flowing from the capacitor 6 side to the secondary battery 5 side and the current flowing in the opposite direction is not cut off. When both are turned off, a bidirectional current is cut off. In the case of the current amount limiting MOSFETs 73 and 74, the current amount limiting MOSFETs 73 and 74 may be disposed at positions opposite to those in FIG.

電流量制限用MOSFET73、74にはエンハンスメント形PチャネルMOSFETが使用され、電流量制限用MOSFET73、74の出力電流量は電流量制限回路起動用MOSFET76をPWM(Pulse Width Modulation)制御することにより調整される。電流量制限回路起動用MOSFET76にはエンハンスメント形NチャネルMOSFETが使用される。   Enhancement type P-channel MOSFETs are used for the current amount limiting MOSFETs 73 and 74, and the output current amount of the current amount limiting MOSFETs 73 and 74 is adjusted by controlling the current amount limiting circuit starting MOSFET 76 by PWM (Pulse Width Modulation). The An enhancement type N-channel MOSFET is used as the current amount limiting circuit starting MOSFET 76.

抵抗14は、電流量制限用MOSFET73,74をオン・オフさせたときに、半導体素子であるMOSFET76に大電流が流れて破損しないようにするための保護用抵抗である。電流量制限用MOSFET73,74をオンさせる場合にはこれらのゲート電圧をグランドレベルに落とす必要があるので、抵抗14の抵抗定数は、抵抗13の抵抗定数よりも十分小さいもの(例えば3ケタ小さいもの)を選ぶことが望ましい。   The resistor 14 is a protective resistor for preventing a large current from flowing through the MOSFET 76, which is a semiconductor element, from being damaged when the current amount limiting MOSFETs 73 and 74 are turned on / off. When the current amount limiting MOSFETs 73 and 74 are turned on, it is necessary to drop these gate voltages to the ground level. Therefore, the resistance constant of the resistor 14 is sufficiently smaller than the resistance constant of the resistor 13 (for example, three digits smaller). ) Is desirable.

図1に示す例では、電流量制限用MOSFET73、74にエンハンスメント形PチャネルMOSFETを使用しているが、同様の機能を実現できるように周辺回路を構成すれば、各電流量制限用MOSFETの全てもしくはいずれか一つにエンハンスメント形NチャネルMOSFETを使用しても構わない。   In the example shown in FIG. 1, enhancement-type P-channel MOSFETs are used for the current amount limiting MOSFETs 73 and 74. However, if the peripheral circuit is configured so as to realize the same function, all of the current amount limiting MOSFETs can be used. Alternatively, an enhancement type N-channel MOSFET may be used for any one of them.

放電遮断用MOSFET71および充電遮断用MOSFET72のオン・オフ制御、および、電流量制限回路起動用MOSFET76のPWM制御は、制御部11によって行われる。また、制御部11は、二次電池5の総電圧、電圧検出部12によって検出されるキャパシタ6の各セル電圧や総電圧などを監視している。   The controller 11 performs on / off control of the discharge cutoff MOSFET 71 and the charge cutoff MOSFET 72 and PWM control of the current amount limiting circuit starting MOSFET 76. In addition, the control unit 11 monitors the total voltage of the secondary battery 5, each cell voltage of the capacitor 6 detected by the voltage detection unit 12, the total voltage, and the like.

図2は制御部11の構成概略を示すブロック図である。制御部11は電源装置全体の制御を行うものであり、専用のICや汎用マイコンが用いられるが、同様の機能が実現できるものであればこれらに限らない。制御部11は、スイッチ駆動手段111、電位差判定手段112、および上位との通信を行う通信手段113を備えている。   FIG. 2 is a block diagram showing a schematic configuration of the control unit 11. The control unit 11 controls the entire power supply device, and a dedicated IC or general-purpose microcomputer is used. However, the control unit 11 is not limited to this as long as the same function can be realized. The control unit 11 includes a switch drive unit 111, a potential difference determination unit 112, and a communication unit 113 that performs communication with a host.

スイッチ駆動手段111は、スイッチ駆動信号のゲートや電流量制限回路起動用MOSFET76を駆動する。電位差判定手段112は、二次電池5およびキャパシタ6の電圧を監視すると共に、後述する電位差判定を行う。キャパシタ電圧や二次電池電圧は、電位差判定手段112に設けられたA/Dコンバータ(不図示)によりA/D変換されて取り込まれる。   The switch driving unit 111 drives the gate of the switch driving signal and the MOSFET 76 for starting the current amount limiting circuit. The potential difference determination unit 112 monitors the voltages of the secondary battery 5 and the capacitor 6 and performs potential difference determination described later. The capacitor voltage and the secondary battery voltage are A / D converted and captured by an A / D converter (not shown) provided in the potential difference determination unit 112.

通信手段113の上位への通信機能としては、CAN(Controller Area Network)、IC(Inter-Integrated Circuit)、SPI(System Packet Interface)など、必要な機能を満たすものであればどのようなものでも構わない。本実施の形態では、回転電機4を起動する際の起動信号(IGN信号)が、通信機能を介して上位システム(図示せず)から通信手段113へ入力される。 Any communication function to the upper level of the communication means 113 may be used as long as it satisfies the necessary functions such as CAN (Controller Area Network), I 2 C (Inter-Integrated Circuit), SPI (System Packet Interface). It doesn't matter. In the present embodiment, a start signal (IGN signal) for starting the rotating electrical machine 4 is input from the host system (not shown) to the communication means 113 via the communication function.

通信手段113にIGN信号が入力されると、通信手段113から電圧測定および電位差判定の指令が電位差判定手段112に出力され、電位差判定手段112は、キャパシタ6および二次電池5の電圧を測定するとともに、その測定結果に基づいて後述する電位差判定を行う。電位差判定手段112は、測定結果および判定結果に基づいてスイッチ駆動信号をスイッチ駆動手段111へ出力する。スイッチ駆動手段111は、スイッチ駆動信号に基づいてMOSFET71,72および電流量制限回路起動用MOSFET76を駆動する。   When the IGN signal is input to the communication unit 113, a command for voltage measurement and potential difference determination is output from the communication unit 113 to the potential difference determination unit 112, and the potential difference determination unit 112 measures the voltage of the capacitor 6 and the secondary battery 5. At the same time, potential difference determination described later is performed based on the measurement result. The potential difference determination unit 112 outputs a switch drive signal to the switch drive unit 111 based on the measurement result and the determination result. The switch driving means 111 drives the MOSFETs 71 and 72 and the current amount limiting circuit starting MOSFET 76 based on the switch driving signal.

二次電池5とキャパシタ6との間の電位差が大きい状態で、第一の電流ラインのMOSFET71,72の両方をオンして二次電池5とキャパシタ6と接続すると、電位差に応じてキャパシタ側から二次電池側へ、または、二次電池側からキャパシタ側へ突入電流が流れることになる。そのため、予めプリチャージ用の第二の電流ラインを接続して、電位差が所定の電位差閾値になるまでプリチャージを行ってから、MOSFET71,72の両方をオン状態とする。   When both the MOSFETs 71 and 72 of the first current line are turned on and connected to the secondary battery 5 and the capacitor 6 in a state where the potential difference between the secondary battery 5 and the capacitor 6 is large, from the capacitor side according to the potential difference. An inrush current flows to the secondary battery side or from the secondary battery side to the capacitor side. Therefore, a second current line for precharging is connected in advance and precharging is performed until the potential difference reaches a predetermined potential difference threshold, and then both MOSFETs 71 and 72 are turned on.

次に、IGN起動時における制御方法について説明する。図3は、IGN起動時における制御手順を示すフローチャートである。この制御プログラムは制御部11において実行される。図3に示すフローチャートは、通信手段113にIGN信号が入力されてから、二次電池5とキャパシタ6との間にほぼ電位差がない状態とされて、リレー2a,2bがオンされる前までの制御を示したものである。   Next, a control method at the time of IGN activation will be described. FIG. 3 is a flowchart showing a control procedure at the time of IGN activation. This control program is executed in the control unit 11. In the flowchart shown in FIG. 3, there is almost no potential difference between the secondary battery 5 and the capacitor 6 after the IGN signal is input to the communication means 113, and before the relays 2a and 2b are turned on. The control is shown.

上位システムから制御部11の通信手段113にIGN信号が入力されると、図3に示す制御がスタートしステップS100へ進む。ステップS100において、制御部11の電位差判定手段112は、二次電池5の総電圧とキャパシタ6の総電圧とを比較し、それらの電位差|ΔV|が予め設定された電位差閾値V以上か否かを判定する。すなわち、二次電池5とキャパシタ6とを接続する際、電流量制限処理が必要か否かを判定する。電位差閾値Vの一例としては、MOSFET71,72のボディダイオード711、721の順方向電圧(例えば0.5V)が考えられるが、必ずしもこれに限らない。 When an IGN signal is input from the host system to the communication means 113 of the control unit 11, the control shown in FIG. 3 starts and the process proceeds to step S100. In step S100, the difference determining unit 112 of the control unit 11 compares the total voltage and total voltage of the capacitor 6 of the secondary battery 5, their difference | [Delta] V | or potential difference threshold greater than or equal to V 0 set in advance whether Determine whether. That is, when the secondary battery 5 and the capacitor 6 are connected, it is determined whether or not a current amount limiting process is necessary. As an example of the potential difference threshold V 0 , the forward voltage (for example, 0.5 V) of the body diodes 711 and 721 of the MOSFETs 71 and 72 is conceivable, but is not necessarily limited thereto.

ステップS100において、電位差判定手段112が、二次電池5の総電圧とキャパシタ6の総電圧との電位差|ΔV|が電位差閾値Vよりも小さいと判定すると、ステップS120へ進む。電位差|ΔV|が電位差閾値Vよりも小さい場合には突入電流のおそれがないので、ステップS120において、スイッチ駆動手段111の設定は、電流量制限回路起動用MOSFET76がオフ状態、MOSFET71およびMOSFET72がオン状態とされる。その結果、第一の電流ラインが双方向導通状態となる。すなわち、電源装置1は、キャパシタ6の充放電を自由に行うことができる通常状態となり、図3に示す制御処理が終了する。 In step S100, if the potential difference determination unit 112 determines that the potential difference | ΔV | between the total voltage of the secondary battery 5 and the total voltage of the capacitor 6 is smaller than the potential difference threshold V 0 , the process proceeds to step S120. When the potential difference | ΔV | is smaller than the potential difference threshold V 0 , there is no fear of an inrush current. Therefore, in step S120, the switch drive means 111 is set such that the current amount limiting circuit starting MOSFET 76 is off, the MOSFET 71 and the MOSFET 72 are It is turned on. As a result, the first current line is in a bidirectional conductive state. That is, the power supply device 1 is in a normal state in which the capacitor 6 can be freely charged and discharged, and the control process shown in FIG. 3 ends.

図3の制御処理が終了すると、電源装置1とインバータ装置3との間に設けられたリレー2a,2bがオンされ、IGN起動動作が実行される。なお、IGN起動時には回転電機4に大電流が流れるため、放電遮断用MOSFET71および充電遮断用MOSFET72には大電流に対応したMOSFETが用いられる。   When the control process of FIG. 3 is completed, the relays 2a and 2b provided between the power supply device 1 and the inverter device 3 are turned on, and the IGN activation operation is executed. Since a large current flows through the rotating electrical machine 4 when the IGN is activated, MOSFETs corresponding to the large current are used as the discharge cutoff MOSFET 71 and the charge cutoff MOSFET 72.

一方、ステップS100において、電位差|ΔV|が電位差閾値V以上と判定されると、ステップS115へと進んで、スイッチ駆動手段111の設定が電流量制限処理を行うための設定とされる。電流量制限処理とは、二次電池5とキャパシタ6との電位差|ΔV|を解消するための処理であり、MOSFET71、72がオフとなるように設定されるとともに、電流量制限回路起動用MOSFET76についてはPWM制御されるように設定される。電流量制限回路起動用MOSFET76のPWM制御については後述する。 On the other hand, if it is determined in step S100 that the potential difference | ΔV | is equal to or greater than the potential difference threshold V 0 , the process proceeds to step S115, and the setting of the switch driving unit 111 is set to perform the current amount limiting process. The current amount limiting process is a process for eliminating the potential difference | ΔV | between the secondary battery 5 and the capacitor 6. The MOSFETs 71 and 72 are set to be turned off, and the current amount limiting circuit starting MOSFET 76 is set. Is set to be PWM controlled. PWM control of the current amount limiting circuit starting MOSFET 76 will be described later.

ステップS115の処理が終了したならば、ステップS100へ戻って電位差|ΔV|が電位差閾値V以上過否かの判定処理を再び行う。ステップS115の設定処理により二次電池5によるキャパシタ6の充電が開始されると、電位差|ΔV|は徐々に減少し、電位差|ΔV|が電位差閾値Vを下回るまでステップS110とステップS115の処理が繰り返される。そして、電位差|ΔV|が電位差閾値Vよりも小さくなると、ステップS100でYESと判定されてステップS120へ進む。 If the process of step S115 is completed, the potential difference is returned to the step S100 | [Delta] V | again the determination process whether the potential difference threshold greater than or equal to V 0 over not performed. When the charging of the capacitor 6 by setting processing by the secondary battery 5 in step S115 is started, a potential difference | [Delta] V | gradually decreases, the potential difference | [Delta] V | is the processing of step S110 and step S115 to below a potential difference threshold V 0 Is repeated. When the potential difference | ΔV | becomes smaller than the potential difference threshold V 0 , YES is determined in the step S100, and the process proceeds to a step S120.

図4は電流量制限処理時の電流量制限電流経路を示す図であり、制御方法の説明に必要なキャパシタ6、二次電池5、MOSFET71〜74、電流量制限回路起動用MOSFET76を示したものである。ステップS115のスイッチ状態に設定された電流量制限時においては、図4に示すように第二の電流ラインのみが双方向導通状態とされ、破線で示すような電流量制限電流経路が形成される。   FIG. 4 is a diagram showing a current amount limiting current path at the time of current amount limiting processing, showing the capacitor 6, the secondary battery 5, the MOSFETs 71 to 74, and the current amount limiting circuit starting MOSFET 76 necessary for explaining the control method. It is. At the time of limiting the amount of current set in the switch state in step S115, only the second current line is in a bidirectionally conductive state as shown in FIG. 4, and a current amount limiting current path as shown by a broken line is formed. .

図5は、電流量制限処理時の電流制限方法を説明する図である。図5において、(a)は電流量制限回路起動用MOSFET76が周期的にオン・オフ動作しているときのタイムチャートであり、(b)はPWM制御時のデューティー比Dと電流量制限用MOSFET73、74のゲート−ソース間電圧との関係を示す図である。   FIG. 5 is a diagram for explaining a current limiting method during the current amount limiting process. 5A is a time chart when the current amount limiting circuit starting MOSFET 76 is periodically turned on and off. FIG. 5B is a time chart showing the duty ratio D and the current amount limiting MOSFET 73 during PWM control. , 74 shows the relationship between the gate-source voltages.

図5(a)に示すように、PWM制御時には電流量制限回路起動用MOSFET76は周囲的にオン・オフされる。電流量制限回路起動用MOSFET76は周期T2でオン・オフ動作し、T1はオンしている時間である。このとき、デューティー比Dは、D = T1/T2 で表わされる。デューティー比Dは、図2に示した制御部11のスイッチ駆動手段111により0≦D≦1の範囲で調整できるものとする。D=0の場合には電流量制限回路起動用MOSFET76は常にオフの状態となっており、D=1の場合には電流量制限回路起動用MOSFET76は常にオンの状態となっている。   As shown in FIG. 5A, the current amount limiting circuit starting MOSFET 76 is turned on and off peripherally during PWM control. The current amount limiting circuit starting MOSFET 76 is turned on / off in a cycle T2, and T1 is a time during which the current amount limiting circuit starting MOSFET 76 is on. At this time, the duty ratio D is expressed by D = T1 / T2. The duty ratio D can be adjusted in the range of 0 ≦ D ≦ 1 by the switch driving means 111 of the control unit 11 shown in FIG. When D = 0, the current amount limiting circuit starting MOSFET 76 is always off, and when D = 1, the current amount limiting circuit starting MOSFET 76 is always on.

デューティー比Dの値が変化すると、電流量制限回路起動用MOSFET76のドレイン−ソース間は可変抵抗のようにふるまう。そのため、図5(b)に示すようにデューティー比Dの値に応じて電流量制限用MOSFET73、74のゲート−ソース間電圧が変動する。なお、電流量制限用MOSFET73、74はPチャネルMOSFETであるから、ソースに対してゲート電圧が低下していくことで飽和領域からオン抵抗領域へと推移していく。   When the value of the duty ratio D changes, the drain-source of the current limiting circuit starting MOSFET 76 behaves like a variable resistor. Therefore, as shown in FIG. 5B, the gate-source voltages of the current amount limiting MOSFETs 73 and 74 vary according to the value of the duty ratio D. Since the current amount limiting MOSFETs 73 and 74 are P-channel MOSFETs, the gate voltage is lowered from the source to the on-resistance region as the source voltage decreases.

VGS0は電流量制限用MOSFET73,74が飽和領域からオン抵抗領域へと変わるときのゲート−ソース間電圧であるが、デューティー比DがD=D0のときにゲート−ソース間電圧はVGS0となる。そのため、デューティー比Dを0からD0の範囲で調整することにより、電流量制限用MOSFET73、74に流れるドレイン電流量(すなわち、第二の電流ラインを流れる電流量)を制限することができる。   VGS0 is a gate-source voltage when the current amount limiting MOSFETs 73 and 74 change from the saturation region to the on-resistance region. However, when the duty ratio D is D = D0, the gate-source voltage is VGS0. Therefore, by adjusting the duty ratio D in the range of 0 to D0, it is possible to limit the amount of drain current flowing through the current amount limiting MOSFETs 73 and 74 (that is, the amount of current flowing through the second current line).

図6は、電流量制限処理時におけるタイムチャートを示す図であり、(a)はキャパシタ6と二次電池5との電位差|ΔV|を示し、(b)は電流量制限回路起動用MOSFET76の制御状態を示し、(c)はMOSFET71,72のオン・オフ状態を示す。時刻t1はステップS115の設定処理が行われ、電流量制限処理が開始される時刻である。   6A and 6B are time charts during the current amount limiting process. FIG. 6A shows the potential difference | ΔV | between the capacitor 6 and the secondary battery 5, and FIG. 6B shows the current amount limiting circuit starting MOSFET 76. The control state is shown, and (c) shows the on / off states of the MOSFETs 71 and 72. Time t1 is the time when the setting process of step S115 is performed and the current amount limiting process is started.

t<t1においては、電流量制限回路起動用MOSFET76およびMOSFET71,72はオフ状態となっている。また、時刻t1における電位差|ΔV|は電位差閾値Vよりも大きくなっている。さらに、MOSFET71,72のボディダイオード711,721、および電流量制限用MOSFET73,74のボディダイオード731,741は、ダイオード同士が各々対向しているため、二次電池5とキャパシタ6の電圧の大小関係に関係なく、第一の電流ラインおよび第二の電流ラインのいずれにも電流は流れない。 At t <t1, the current amount limiting circuit starting MOSFET 76 and the MOSFETs 71 and 72 are off. Further, the potential difference at time t1 | [Delta] V | is larger than the potential difference threshold V 0. Furthermore, since the body diodes 711 and 721 of the MOSFETs 71 and 72 and the body diodes 731 and 741 of the current amount limiting MOSFETs 73 and 74 are opposed to each other, the magnitude relationship between the voltages of the secondary battery 5 and the capacitor 6 is determined. Regardless, no current flows through either the first current line or the second current line.

時刻t1において、電流量制限回路起動用MOSFET76をPWM制御して電流量制限用MOSFET73,74のドレイン電流を制御し、図4に示すような電流量制限電流を流す。なお、接続前におけるキャパシタ6の電位と二次電池5の電位との大小関係によって電流量制限電流の流れる向きは異なる。   At time t1, the current amount limiting circuit starting MOSFET 76 is PWM controlled to control the drain currents of the current amount limiting MOSFETs 73 and 74, and a current amount limiting current as shown in FIG. The direction in which the current limiting current flows depends on the magnitude relationship between the potential of the capacitor 6 and the potential of the secondary battery 5 before connection.

t>t1の電流量制限処理時においては、電流量制限電流が流れることによって、キャパシタ6と二次電池5との間の電位差|ΔV|が徐々に小さくなっていく。この電位差|ΔV|の変化を示す直線の傾き(すなわち電流量制限の程度)は、PWM制御のデューティー比Dを変更することにより調整することができる。   In the current amount limiting process of t> t1, the current amount limiting current flows, whereby the potential difference | ΔV | between the capacitor 6 and the secondary battery 5 gradually decreases. The slope of the straight line indicating the change in the potential difference | ΔV | (that is, the degree of current amount limitation) can be adjusted by changing the duty ratio D of the PWM control.

電流量制限処理によりキャパシタ6と二次電池5との電位差|ΔV|が減少し、時刻t2において電位差|ΔV|が電位差閾値Vを下回ると、図3のステップS100からステップS120へ進み、電流量制限回路起動用MOSFET76をオフするとともに、MOSFET71およびMOSFET72をオン状態とする。その結果、第一の電流ラインは双方向導電状態になり、電位差|ΔV|は速やかに0Vへと低下する。なお、ステップS120では電流量制限回路起動用MOSFET76をオフして電流量制限用MOSFET73,74をオフ状態(遮断状態)としたが、電流量制限用MOSFET73,74をオン状態(非遮断状態)となるように電流量制限回路起動用MOSFET76を制御しても良い。 When the potential difference | ΔV | between the capacitor 6 and the secondary battery 5 decreases due to the current amount limiting process and the potential difference | ΔV | falls below the potential difference threshold V 0 at time t2, the process proceeds from step S100 to step S120 in FIG. The amount limiting circuit starting MOSFET 76 is turned off, and the MOSFET 71 and the MOSFET 72 are turned on. As a result, the first current line becomes bidirectionally conductive, and the potential difference | ΔV | quickly decreases to 0V. In step S120, the current amount limiting circuit starting MOSFET 76 is turned off and the current amount limiting MOSFETs 73 and 74 are turned off (cut-off state). However, the current amount limiting MOSFETs 73 and 74 are turned on (non-cut-off state). The current amount limiting circuit starting MOSFET 76 may be controlled as described above.

上述した第1の実施の形態では、プリチャージ回路である第二の電流ラインに、図4に示すようにボディダイオード731,741が対向するように電流量制限用MOSFET73,74を直列配置したので、電位差解消のためのプリチャージ時の突入電流を双方向に関して防止することができる。このようなプリチャージ時における双方向の突入電流防止について、図7を参照して説明する   In the first embodiment described above, the current amount limiting MOSFETs 73 and 74 are arranged in series so that the body diodes 731 and 741 face the second current line as a precharge circuit as shown in FIG. Inrush current during precharging for eliminating the potential difference can be prevented in both directions. Such bidirectional bidirectional inrush current prevention during precharging will be described with reference to FIG.

図7(a)は従来の構成の一例(特許文献4に記載の構成に対応)を示したものであり、プリチャージ回路には半導体スイッチング素子40が一つしか設けられていない。メインスイッチにはリレーSMR1,SMR2が用いられている。二次電池5とキャパシタ6とを切断する場合には、リレーSMR1,SMR2を開状態とする。この従来の構成では、キャパシタ6の電圧VCAPが二次電池5の電圧VBATよりも大きくなる場合が考慮されておらず、そのような状況(VCAP>VBAT)でプリチャージのためにリレーSMR1を閉じると、半導体スイッチング素子40のボディダイオード401を介して突入電流が流れることになる。   FIG. 7A shows an example of a conventional configuration (corresponding to the configuration described in Patent Document 4), and only one semiconductor switching element 40 is provided in the precharge circuit. Relays SMR1 and SMR2 are used for the main switch. When the secondary battery 5 and the capacitor 6 are disconnected, the relays SMR1 and SMR2 are opened. In this conventional configuration, the case where the voltage VCAP of the capacitor 6 becomes larger than the voltage VBAT of the secondary battery 5 is not considered, and the relay SMR1 is closed for precharging in such a situation (VCAP> VBAT). As a result, an inrush current flows through the body diode 401 of the semiconductor switching element 40.

図7(b)は本実施の形態の場合を示す図であり、比較しやすいように図7(a)の場合と同様にメインスイッチとしてリレーSMR1,SMR2を配置した。この構成の場合、電流量制限用MOSFET73,74のボディダイオード731,741が対向するように構成されているため、リレーSMR2を閉じてプリチャージを行う際に、ボディダイオード731,741を介して突入電流が流れることはない。リレーSMR2を閉じたならば電流量制限回路起動用MOSFET76をPWM制御し、制限された電流を流して電位差解消を行う。   FIG. 7B shows the case of the present embodiment, and relays SMR1 and SMR2 are arranged as main switches in the same manner as in FIG. 7A for easy comparison. In this configuration, since the body diodes 731 and 741 of the current amount limiting MOSFETs 73 and 74 are opposed to each other, when the relay SMR2 is closed and precharging is performed, the body diodes 731 and 741 are used to enter. No current flows. If the relay SMR2 is closed, the current amount limiting circuit starting MOSFET 76 is PWM-controlled, and the potential difference is eliminated by flowing the limited current.

さらに、図1,4に示す構成では、図7(b)の機械的可動部分を含むリレーSMR1,SMR2に代えて、一組のMOSFET71,72を用いるため、メインスイッチの耐久性の向上を図ることができる。MOSFET71,72についてもボディダイオード711,721が対向するように配置されているため、MOSFET71およびMOSFET72の両方をオフすることにより、二次電池5とキャパシタ6との間を完全遮断状態とすることができる。   Further, in the configuration shown in FIGS. 1 and 4, since a set of MOSFETs 71 and 72 are used instead of the relays SMR1 and SMR2 including the mechanically movable portion in FIG. 7B, the durability of the main switch is improved. be able to. Since the MOSFETs 71 and 72 are also arranged so that the body diodes 711 and 721 are opposed to each other, by turning off both the MOSFET 71 and the MOSFET 72, the secondary battery 5 and the capacitor 6 can be completely cut off. it can.

なお、上述した実施の形態では、電流量制限回路起動用MOSFET76をPWM制御することで電流量制限用MOSFET73,74のゲート電圧を調整し、電流量を制限した。しかし、電流量制限回路起動用MOSFET76を用いる代わりに、電流量制限用MOSFET73,74のゲートを直接PWM制御するようにしてもかまわない。また、PWM制御にかかわらず、電流量制限用MOSFET73,74のゲート電圧を調整できるものであれば本実施の形態は適用可能である。   In the above-described embodiment, the amount of current is limited by adjusting the gate voltage of the current amount limiting MOSFETs 73 and 74 by PWM control of the current amount limiting circuit starting MOSFET 76. However, instead of using the current amount limiting circuit starting MOSFET 76, the gates of the current amount limiting MOSFETs 73 and 74 may be directly PWM controlled. Further, the present embodiment can be applied as long as the gate voltage of the current amount limiting MOSFETs 73 and 74 can be adjusted regardless of the PWM control.

−第2の実施の形態−
図8は本発明の第2の実施の形態による電源装置を説明する図であり、第1の実施の形態における図4に対応するものである。図8に示す第2の実施の形態では、電流量制限回路起動用MOSFET76の代わりに、電流量制限用MOSFET73,74をオン・オフするための電流量制限回路起動用スイッチ75を設けるとともに、電流量制限用MOSFET73,74と直列に制限抵抗8を設けて第二の電流ラインを流れる電流量を制限するようにした。なお、図8においては電流量制限回路起動用スイッチ75に通常のリレーを用いているが、半導体スイッチ(例えば、MOSFET)など同等の機能を有するものであればどのようなものでも構わない。
-Second Embodiment-
FIG. 8 is a diagram for explaining a power supply device according to the second embodiment of the present invention, and corresponds to FIG. 4 in the first embodiment. In the second embodiment shown in FIG. 8, instead of the current amount limiting circuit starting MOSFET 76, a current amount limiting circuit starting switch 75 for turning on and off the current amount limiting MOSFETs 73 and 74 is provided, A limiting resistor 8 is provided in series with the amount limiting MOSFETs 73 and 74 to limit the amount of current flowing through the second current line. In FIG. 8, a normal relay is used as the current amount limiting circuit starting switch 75, but any other device having an equivalent function such as a semiconductor switch (eg, MOSFET) may be used.

図9は、図8の構成の場合の制御手順を示すフローチャートである。図3のステップS115およびステップS120の各処理は、図9のステップS215およびステップS220で置き換えられている。IGN信号を受信する前は、電流量制限回路起動用スイッチ75,MOSFET71,72は全てオフ状態とされている。電流量制限回路起動用スイッチ75がオフのときは、電流量制限用MOSFET73、74のゲート電圧は、ゲート電圧固定用抵抗13によってソース電圧と等しくなっている。そのため、電流量制限用MOSFET73、74はオフ状態となる。その結果、第一および第二の電流ラインは遮断状態とされる。   FIG. 9 is a flowchart showing a control procedure in the case of the configuration of FIG. Each process of step S115 and step S120 of FIG. 3 is replaced by step S215 and step S220 of FIG. Prior to receiving the IGN signal, the current amount limiting circuit starting switch 75 and the MOSFETs 71 and 72 are all turned off. When the current amount limiting circuit starting switch 75 is off, the gate voltages of the current amount limiting MOSFETs 73 and 74 are equal to the source voltage by the gate voltage fixing resistor 13. Therefore, the current amount limiting MOSFETs 73 and 74 are turned off. As a result, the first and second current lines are cut off.

ステップS215では、電流量制限回路起動用スイッチ75はオン状態とされ、MOSFET71,72はオフ状態とされる。電流量制限回路起動用スイッチ75をオンすると、電流量制限用MOSFET73、74のゲート電圧がグランドレベルに落ち、電流量制限用MOSFET73、74はオン状態となる。その結果、制限抵抗8によって電流量が制限された電流が第二の電流ラインに流れて、二次電池5とキャパシタ6との電位差|ΔV|が減少する。なお、接続前におけるキャパシタ6の電位と二次電池5の電位との大小関係によって電流量制限電流の流れる向きは異なる。   In step S215, the current amount limiting circuit starting switch 75 is turned on, and the MOSFETs 71 and 72 are turned off. When the current amount limiting circuit starting switch 75 is turned on, the gate voltages of the current amount limiting MOSFETs 73 and 74 drop to the ground level, and the current amount limiting MOSFETs 73 and 74 are turned on. As a result, the current whose current amount is limited by the limiting resistor 8 flows to the second current line, and the potential difference | ΔV | between the secondary battery 5 and the capacitor 6 decreases. The direction in which the current limiting current flows depends on the magnitude relationship between the potential of the capacitor 6 and the potential of the secondary battery 5 before connection.

ステップS220においては、電流量制限回路起動用スイッチ75およびMOSFET71,72の全てがオン状態とされる。その結果、第一および第二の電流ラインは双方向導通状態となり、電源装置1は、キャパシタ6の充放電を自由に行うことができる通常状態となる。   In step S220, all of the current amount limiting circuit starting switch 75 and MOSFETs 71 and 72 are turned on. As a result, the first and second current lines are in a bidirectionally conductive state, and the power supply device 1 is in a normal state in which the capacitor 6 can be freely charged and discharged.

本実施の形態では、二次電池5とキャパシタ6との電位差|ΔV|が電位差閾値Vを下回った時点で、ステップS120において第一および第二の電流ラインを双方向導通状態とした。しかし、第一および第二の電流ラインを双方向導通状態とした場合でも、第二の電流ラインには電流制限抵抗8が設けられているので、電流は主に第一の電流ラインを流れる。そのため、電流量制限回路起動用スイッチ75をオフにして第二の電流ラインに設けられた電流量制限用MOSFET73,74をオフ状態として、第一の電流ラインのみを双方向導通状態としても構わない。 In the present embodiment, when the potential difference | ΔV | between the secondary battery 5 and the capacitor 6 falls below the potential difference threshold V 0 , the first and second current lines are set in the bidirectionally conductive state in step S120. However, even when the first and second current lines are in a bidirectionally conductive state, the current mainly flows through the first current line because the current limiting resistor 8 is provided in the second current line. For this reason, the current amount limiting circuit starting switch 75 may be turned off to turn off the current amount limiting MOSFETs 73 and 74 provided on the second current line, and only the first current line may be in a bidirectionally conductive state. .

電流量制限用MOSFET73、74にはエンハンスメント形PチャネルMOSFETを使用しているが、同様の機能を実現できるように周辺回路を構成すれば、各電流量制限用MOSFETの全てもしくはいずれか一つにエンハンスメント形NチャネルMOSFETを使用しても構わない。電流量制限用MOSFET73、74にエンハンスメント形PチャネルMOSFETを使用した場合、電流量制限回路起動用スイッチ75をオンして電流量制限用MOSFET73、74のゲート電圧をグランドレベルとするだけで電流量制限用MOSFET73、74を容易にオンさせることができる。   Enhancement-type P-channel MOSFETs are used for the current amount limiting MOSFETs 73 and 74. However, if a peripheral circuit is configured so that the same function can be realized, all or any one of the current amount limiting MOSFETs can be used. An enhancement type N-channel MOSFET may be used. When enhancement type P-channel MOSFETs are used for the current amount limiting MOSFETs 73 and 74, the current amount limiting is performed only by turning on the current amount limiting circuit starting switch 75 and setting the gate voltage of the current amount limiting MOSFETs 73 and 74 to the ground level. The MOSFETs 73 and 74 can be easily turned on.

−第3の実施の形態−
第3の実施の形態は、キャパシタ6の下限電圧を考慮した制御である。下限電圧を有するキャパシタとしては、例えば、過放電閾値を持つリチウムイオンキャパシタなどがある。
-Third embodiment-
The third embodiment is control in consideration of the lower limit voltage of the capacitor 6. Examples of the capacitor having the lower limit voltage include a lithium ion capacitor having an overdischarge threshold.

リチウムイオンキャパシタは過放電の状態が維持されると、内部でガス発生等が生じることがあり、キャパシタの性能が著しく劣化する。そこで、本実施の形態では、キャパシタ6のセル電圧が過放電閾値を下回っているかどうかを、制御部11において判定する。そして、セル電圧が過放電閾値を下回っていると判定された場合には、第一の電流ラインの放電遮断用MOSFET71をオフするとともに、第二の電源ラインに設けられた電流量制限用MOSFET73,74をオフする。これにより、キャパシタ6に対しては、第一の電流ラインによる充電のみが許可されることになる。このような構成とすることで、キャパシタ6の放電が阻止され過放電によるセルの劣化を防止でき、リチウムイオンキャパシタの安全性向上および長寿命化に効果的である。   If an overdischarged state is maintained in a lithium ion capacitor, gas generation or the like may occur inside, and the performance of the capacitor is significantly deteriorated. Therefore, in the present embodiment, the control unit 11 determines whether the cell voltage of the capacitor 6 is below the overdischarge threshold. When it is determined that the cell voltage is lower than the overdischarge threshold, the discharge cutoff MOSFET 71 of the first current line is turned off, and the current amount limiting MOSFET 73 provided on the second power supply line, 74 is turned off. Thereby, only charging by the first current line is permitted for the capacitor 6. With such a configuration, the capacitor 6 is prevented from being discharged and cell deterioration due to overdischarge can be prevented, which is effective in improving the safety and extending the life of the lithium ion capacitor.

このような制御は、キャパシタ6と二次電池5とを接続する場合に行っても良いが、接続状態から切断状態にする場合や、リレー2a,2bがオン状態とされている電源装置1と負荷(インバータ装置3)とが接続されている状態において好適である。例えば、キャパシタ6が過放電閾値を下回った状態で接続状態から切断状態とされると、切断されている間は常に過放電状態に放置されることになり、キャパシタ6の性能劣化を招いてしまう。そのため、このような場合においては上記制御の適用は効果的である。   Such control may be performed when the capacitor 6 and the secondary battery 5 are connected. However, when the connection state is changed to the disconnected state, the relay 2a and 2b are turned on and the power supply device 1 is turned on. This is suitable in a state where a load (inverter device 3) is connected. For example, if the capacitor 6 is switched from the connected state to the disconnected state when the capacitor 6 is below the overdischarge threshold value, the capacitor 6 is always left in the overdischarged state during the disconnection, and the performance of the capacitor 6 is deteriorated. . Therefore, in such a case, the application of the control is effective.

なお、上述した実施の形態では、例えば、図1に示すように放電遮断用MOSFET71、充電遮断用MOSFET72にそれぞれ1個の素子を用いた。しかしながら、より大電流に対応するために、図10に示すように、放電遮断用MOSFET71および充電遮断用MOSFET72をそれぞれ同方向に並列接続された複数のMOSFETで構成するようにしてもよい。このように構成することで、通常使用時に流れる電流が並列接続された各MOSFETに分散するため、より大電流に対応させることができる。なお、電流量制限用MOSFET73,74についても、並列接続された複数のMOSFETで構成させてもよい。   In the embodiment described above, for example, one element is used for each of the discharge cutoff MOSFET 71 and the charge cutoff MOSFET 72 as shown in FIG. However, in order to cope with a larger current, as shown in FIG. 10, the discharge cutoff MOSFET 71 and the charge cutoff MOSFET 72 may be configured by a plurality of MOSFETs connected in parallel in the same direction. With this configuration, the current that flows during normal use is distributed among the MOSFETs connected in parallel, so that a larger current can be accommodated. Note that the current amount limiting MOSFETs 73 and 74 may also be constituted by a plurality of MOSFETs connected in parallel.

上述した実施の形態では、電源装置1は、インバータ装置3に対して並列接続される二次電池5およびキャパシタ6と、二次電池5とキャパシタ6とを結ぶ電流経路上に設けられて、経路切断状態と経路接続状態とを切り換えるMOSFET71,72と、MOSFET71,72と並列に接続され、直列接続された電流量制限用MOSFET73,74を有する電位差調整回路と、制御部11とを備えている。電流量制限用MOSFET73,74のボディダイオード731,741は対向するように設けられているので、電流量制限用MOSFET73,74が設けられた第二の電流ラインを介したプリチャージの際に、いずれの方向に対しても突入電流が発生するのを防止することができる。このように、プリチャージ時に突入電流を発生させることなく、二次電池5とキャパシタ6との電位差を解消させることができる。   In the embodiment described above, the power supply device 1 is provided on the current path connecting the secondary battery 5 and the capacitor 6 to the secondary battery 5 and the capacitor 6 that are connected in parallel to the inverter device 3. The control unit 11 includes MOSFETs 71 and 72 that switch between a disconnected state and a path connection state, a potential difference adjusting circuit that is connected in parallel with the MOSFETs 71 and 72 and includes the current amount limiting MOSFETs 73 and 74 connected in series. Since the body diodes 731 and 741 of the current amount limiting MOSFETs 73 and 74 are provided so as to face each other, at the time of precharging via the second current line provided with the current amount limiting MOSFETs 73 and 74, It is possible to prevent an inrush current from occurring in the direction of. Thus, the potential difference between the secondary battery 5 and the capacitor 6 can be eliminated without generating an inrush current during precharging.

また、MOSFET71,72を経路切断状態から経路接続状態へ切り換える際に、二次電池5とキャパシタ6との間の電位差が所定の閾値以上か否かを判定し、閾値以上と判定されると電位差の低減を行い、電位差が閾値より小さいと判定されると電位差の低減を行わずに経路接続状態へ切り換えるようにした。そのため、MOSFET71,72をオン状態にして経路接続状態へ切り換えた際に、突入電流が発生することはない。   Further, when the MOSFETs 71 and 72 are switched from the path cut state to the path connected state, it is determined whether or not the potential difference between the secondary battery 5 and the capacitor 6 is equal to or greater than a predetermined threshold value. When it is determined that the potential difference is smaller than the threshold value, switching to the path connection state is performed without reducing the potential difference. Therefore, inrush current does not occur when the MOSFETs 71 and 72 are turned on and switched to the path connection state.

なお、上述した実施の形態では、二次電池とキャパシタとの並列接続する構成の電源を例に説明したが、本発明はこれに限らず、自己放電率の異なる異種の蓄電素子を並列に組み合わせた電源装置に適用することができる。すなわち、キャパシタとキャパシタ、二次電池と二次電池のような組み合わせに関しても適用できる。また、キャパシタ6としては、正極材および負極材に異なる電極材料を用いたハイブリッドキャパシタ、例えば、負極にリチウムイオンがドープされたリチウムイオンキャパシタなどが適用できる。   In the above-described embodiment, the power source having a configuration in which the secondary battery and the capacitor are connected in parallel has been described as an example. However, the present invention is not limited thereto, and different types of power storage elements having different self-discharge rates are combined in parallel. It can be applied to other power supply devices. That is, the present invention can also be applied to combinations such as capacitors and capacitors and secondary batteries and secondary batteries. Further, as the capacitor 6, a hybrid capacitor using different electrode materials for the positive electrode material and the negative electrode material, for example, a lithium ion capacitor in which the negative electrode is doped with lithium ions can be applied.

このように、本実施の形態は、自己放電率の異なる異種の蓄電装置を並列に組み合わせた電源装置であれば、いかなる種類の蓄電装置の組み合わせでも適用でき、そのような電源装置において、切断状態から接続を行う際に、双方の電圧の大小関係に関係なく、双方向の突入電流を防止して安全に接続処理を行うことができる。その結果、蓄電装置として二次電池を用いた場合、大電流が流れることによる負担が軽減されるので、二次電池の小型化、低価格化、長寿命化、電源装置全体の高信頼化にも効果的である。   As described above, this embodiment can be applied to any type of power storage device combination as long as it is a power supply device in which different types of power storage devices having different self-discharge rates are combined in parallel. When making a connection, the connection process can be performed safely by preventing a bidirectional inrush current regardless of the magnitude relationship between the two voltages. As a result, when a secondary battery is used as a power storage device, the burden caused by the flow of a large current is reduced. Therefore, the secondary battery can be reduced in size, reduced in price, extended in life, and highly reliable in the entire power supply device. Is also effective.

なお、上述した実施の形態では、車両のアイドリングストップシステムに適用した場合を例に説明したが、これに限らず、種々の負荷への電力を供給する電源装置に適用することができる。なお、以上の説明はあくまでも一例であり、本発明の特徴を損なわない限り、本発明は上記実施の形態になんら限定されるものではない。また、実施の形態と変形例の一つ、もしくは複数を組み合わせることも可能であり、それぞれの実施形態での効果を単独あるいは相乗して奏することができる。   In the above-described embodiment, the case where the present invention is applied to a vehicle idling stop system has been described as an example. However, the present invention is not limited to this, and the present invention can be applied to a power supply apparatus that supplies power to various loads. The above description is merely an example, and the present invention is not limited to the above embodiment as long as the characteristics of the present invention are not impaired. Moreover, it is also possible to combine one or a plurality of embodiments and modification examples, and the effects of each embodiment can be achieved independently or synergistically.

1:電源装置、2:リレー、3:インバータ装置、4:回転電機、5:二次電池、6:キャパシタ、8:電流制限抵抗、11:制御部、12:キャパシタ電圧検出部、13:ゲート電圧固定用抵抗、71:放電遮断用MOSFET、72:充電遮断用MOSFET、73:キャパシタ側電流量制限用MOSFET、74:二次電池側電流量制限用MOSFET、75:電流量制限回路起動用スイッチ、76:電流量制限回路起動用MOSFET、111:スイッチ駆動手段、112:電位差判定手段、113:通信手段、14:MOSFET保護用抵抗、711,721,731,741:ボディダイオード   1: power supply device, 2: relay, 3: inverter device, 4: rotating electric machine, 5: secondary battery, 6: capacitor, 8: current limiting resistor, 11: control unit, 12: capacitor voltage detection unit, 13: gate Voltage fixing resistor, 71: MOSFET for discharging interruption, 72: MOSFET for charging interruption, 73: MOSFET for limiting current amount on the capacitor side, 74: MOSFET for limiting current amount on the secondary battery side, 75: Switch for starting current amount limiting circuit 76: Current amount limiting circuit starting MOSFET, 111: Switch driving means, 112: Potential difference judging means, 113: Communication means, 14: MOSFET protection resistor, 711, 721, 731, 741: Body diode

Claims (13)

負荷に対して並列接続される第一の蓄電装置および第二の蓄電装置と、
前記第一の蓄電装置と前記第二の蓄電装置とを結ぶ電流経路上に設けられて、経路切断状態と経路接続状態とを切り換える主スイッチング回路と、
直列接続された第一および第二のスイッチング回路を有し、前記主スイッチング回路と並列に接続される電位差調整回路とを備え、
前記第一のスイッチング回路は、前記第一の蓄電装置から前記第二の蓄電装置へ流れる電流を遮断する向きのボディダイオードを内蔵する少なくとも一つの第一の半導体スイッチング素子を有し、
前記第二のスイッチング回路は、前記第二の蓄電装置から前記第一の蓄電装置へ流れる電流を遮断する向きのボディダイオードを内蔵する少なくとも一つの第二の半導体スイッチング素子を有し、
前記第一の蓄電装置と前記第二の蓄電装置との間の電位差を低減させるように前記第一および第二の半導体スイッチング素子を制御し、電位差低減後に前記主スイッチング回路を前記経路切断状態から前記経路接続状態へ切り換える制御部をさらに備えた電源装置。
A first power storage device and a second power storage device connected in parallel to the load;
A main switching circuit that is provided on a current path connecting the first power storage device and the second power storage device, and switches between a path disconnection state and a path connection state;
A first and second switching circuit connected in series, and a potential difference adjusting circuit connected in parallel with the main switching circuit;
The first switching circuit has at least one first semiconductor switching element including a body diode oriented to cut off a current flowing from the first power storage device to the second power storage device,
The second switching circuit has at least one second semiconductor switching element containing a body diode oriented to cut off a current flowing from the second power storage device to the first power storage device,
The first and second semiconductor switching elements are controlled to reduce a potential difference between the first power storage device and the second power storage device, and the main switching circuit is moved from the path disconnected state after the potential difference is reduced. A power supply apparatus further comprising a control unit for switching to the path connection state.
請求項1に記載の電源装置において、
前記第一のスイッチング回路は、前記第一の半導体スイッチング素子を複数並列接続したスイッチング素子群を有し、
前記第二のスイッチング回路は、前記第二の半導体スイッチング素子を複数並列接続したスイッチング素子群を有することを特徴とする電源装置。
The power supply device according to claim 1,
The first switching circuit includes a switching element group in which a plurality of the first semiconductor switching elements are connected in parallel.
The second switching circuit has a switching element group in which a plurality of the second semiconductor switching elements are connected in parallel.
請求項1または2に記載の電源装置において、
前記第一の蓄電装置と前記第二の蓄電装置との間の電位差が所定の閾値以上か否かを判定する電位差判定部を備え、
前記制御部は、前記電位差判定部により閾値以上と判定されると前記電位差の低減を行った後に前記経路接続状態へ切り換え、前記電位差判定部により電位差が閾値より小さいと判定されると前記電位差の低減を行わずに前記経路接続状態へ切り換えることを特徴とする電源装置。
The power supply device according to claim 1 or 2,
A potential difference determination unit that determines whether a potential difference between the first power storage device and the second power storage device is equal to or greater than a predetermined threshold;
The control unit switches to the path connection state after reducing the potential difference when the potential difference determination unit determines that the potential difference is greater than or equal to the threshold value, and when the potential difference determination unit determines that the potential difference is smaller than the threshold value, A power supply apparatus that switches to the path connection state without performing reduction.
請求項1乃至3のいずれか一項に記載の電源装置において、
前記制御部は、前記第一および第二の半導体スイッチング素子の出力電流量を調整する電流量調整回路をさらに有し、前記第一の蓄電装置と前記第二の蓄電装置との間の電位差に応じて前記出力電流量を調整して前記電位差を低減させることを特徴とする電源装置。
The power supply device according to any one of claims 1 to 3,
The control unit further includes a current amount adjustment circuit that adjusts an output current amount of the first and second semiconductor switching elements, and controls a potential difference between the first power storage device and the second power storage device. In response, the output current amount is adjusted to reduce the potential difference.
請求項4に記載の電源装置において、
前記第一および第二の半導体スイッチング素子はMOSFETで構成され、
前記電流量調整回路は、前記MOSFETのゲート電圧を調整して前記第一および第二の半導体スイッチング素子の出力電流量を調整することを特徴とする電源装置。
The power supply device according to claim 4,
The first and second semiconductor switching elements are composed of MOSFETs,
The power supply device, wherein the current amount adjusting circuit adjusts an output current amount of the first and second semiconductor switching elements by adjusting a gate voltage of the MOSFET.
請求項1乃至3のいずれか一項に記載の電源装置において、
前記電位差調整回路は、第一および第二のスイッチング回路に直列接続された抵抗素子を有し、
前記制御部は、前記第一および第二の半導体スイッチング素子をそれぞれオン状態とすることで前記電位差を低減させることを特徴とする電源装置。
The power supply device according to any one of claims 1 to 3,
The potential difference adjusting circuit has a resistance element connected in series to the first and second switching circuits,
The control unit reduces the potential difference by turning on the first and second semiconductor switching elements, respectively.
請求項1乃至3のいずれか一項に記載の電源装置において、
前記制御部は、前記第一の蓄電装置と前記第二の蓄電装置との間の電位差に応じて前記第一および第二の半導体スイッチング素子をPWM(Pulse Width Modulation)制御して出力電流量を調整し、前記電位差を低減させることを特徴とする電源装置。
The power supply device according to any one of claims 1 to 3,
The control unit performs PWM (Pulse Width Modulation) control on the first and second semiconductor switching elements in accordance with a potential difference between the first power storage device and the second power storage device, thereby controlling an output current amount. A power supply device that adjusts and reduces the potential difference.
請求項1乃至7のいずれか一項に記載の電源装置において、
前記主スイッチング回路は、
前記第一の蓄電装置から前記第二の蓄電装置へ流れる電流を遮断する向きのボディダイオードを内蔵する少なくとも一つの第三の半導体スイッチング素子を有する第三のスイッチング回路と、
前記第二の蓄電装置から前記第一の蓄電装置へ流れる電流を遮断する向きのボディダイオードを内蔵する少なくとも一つの第四の半導体スイッチング素子を有する第四のスイッチング回路と、を直列接続して形成したものであることを特徴とする電源装置。
The power supply device according to any one of claims 1 to 7,
The main switching circuit is
A third switching circuit having at least one third semiconductor switching element containing a body diode oriented to cut off a current flowing from the first power storage device to the second power storage device;
Formed by connecting in series a fourth switching circuit having at least one fourth semiconductor switching element containing a body diode oriented to cut off the current flowing from the second power storage device to the first power storage device A power supply device characterized by that.
請求項8に記載の電源装置において、
前記第三のスイッチング回路は、前記第三の半導体スイッチング素子を複数並列接続したスイッチング素子群を有し、
前記第四のスイッチング回路は、前記第四の半導体スイッチング素子を複数並列接続したスイッチング素子群を有することを特徴とする電源装置。
The power supply device according to claim 8, wherein
The third switching circuit has a switching element group in which a plurality of the third semiconductor switching elements are connected in parallel,
The fourth switching circuit includes a switching element group in which a plurality of the fourth semiconductor switching elements are connected in parallel.
請求項8または9に記載の電源装置において、
前記第一および第二の半導体スイッチング素子はエンハンスメント形PチャネルMOSFETで構成され、
前記第三および第四の半導体スイッチング素子はエンハンスメント形NチャネルMOSFETで構成されることを特徴とする電源装置。
The power supply device according to claim 8 or 9,
The first and second semiconductor switching elements are composed of enhancement type P-channel MOSFETs,
The power supply apparatus, wherein the third and fourth semiconductor switching elements are composed of enhancement type N-channel MOSFETs.
請求項8乃至10のいずれか一項に記載の電源装置において、
前記第一の蓄電装置はキャパシタセルで構成されるとともに、前記第二の蓄電装置は二次電池セルで構成され、
前記キャパシタセルの電圧が過放電閾値を下回っているか否かを判定する過放電判定部をさらに備え、
前記制御部は、前記過放電判定部により過放電閾値を下回っていると判定されると、前記第一、第二および第三のスイッチング素子をオフ状態にし、かつ、前記第四のスイッチング素子をオン状態とすることを特徴とする電源装置。
The power supply device according to any one of claims 8 to 10,
The first power storage device is configured with a capacitor cell, and the second power storage device is configured with a secondary battery cell,
An overdischarge determination unit for determining whether the voltage of the capacitor cell is below an overdischarge threshold;
When the overdischarge determination unit determines that the control unit is below an overdischarge threshold, the control unit turns off the first, second, and third switching elements, and sets the fourth switching element. A power supply device which is turned on.
請求項1乃至10のいずれか一項に記載の電源装置において、
前記第一および第二の蓄電装置の少なくとも一方は、正極材および負極材に異なる電極材料を用いたハイブリッドキャパシタで構成されていることを特徴とする電源装置。
The power supply device according to any one of claims 1 to 10,
At least one of said 1st and 2nd electrical storage apparatus is comprised with the hybrid capacitor using a different electrode material for a positive electrode material and a negative electrode material, The power supply device characterized by the above-mentioned.
請求項12に記載の電源装置において、
前記ハイブリッドキャパシタは、負極にリチウムイオンがドープされたリチウムイオンキャパシタであることを特徴とする電源装置。
The power supply device according to claim 12,
The hybrid capacitor is a lithium ion capacitor having a negative electrode doped with lithium ions.
JP2010127689A 2010-06-03 2010-06-03 Power supply Expired - Fee Related JP5440400B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010127689A JP5440400B2 (en) 2010-06-03 2010-06-03 Power supply
PCT/JP2011/053263 WO2011152086A1 (en) 2010-06-03 2011-02-16 Power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010127689A JP5440400B2 (en) 2010-06-03 2010-06-03 Power supply

Publications (2)

Publication Number Publication Date
JP2011254650A true JP2011254650A (en) 2011-12-15
JP5440400B2 JP5440400B2 (en) 2014-03-12

Family

ID=45066475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010127689A Expired - Fee Related JP5440400B2 (en) 2010-06-03 2010-06-03 Power supply

Country Status (2)

Country Link
JP (1) JP5440400B2 (en)
WO (1) WO2011152086A1 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012075280A (en) * 2010-09-29 2012-04-12 Panasonic Corp Power supply device for vehicle
WO2013114697A1 (en) * 2012-01-30 2013-08-08 Necエナジーデバイス株式会社 Electricity storage system, method for controlling secondary battery pack, and secondary battery pack
JP2013192410A (en) * 2012-03-15 2013-09-26 Hitachi Ltd Battery system
JP2013252016A (en) * 2012-06-01 2013-12-12 Mazda Motor Corp Power supply control method and device for vehicle
JP2013252015A (en) * 2012-06-01 2013-12-12 Mazda Motor Corp Power supply control method and device for vehicle
JP2013252017A (en) * 2012-06-01 2013-12-12 Mazda Motor Corp Power supply control method and device for vehicle
JP2014143808A (en) * 2013-01-23 2014-08-07 Renesas Electronics Corp Semiconductor device and battery pack
JP2014193040A (en) * 2013-03-27 2014-10-06 Toshiba Corp Charge/discharge device and charge/discharge method for power storage system
KR101460845B1 (en) 2011-12-21 2014-11-11 주식회사 엘지화학 Battery pack voltage valancing method and apparatus
WO2014200195A1 (en) * 2013-06-14 2014-12-18 Jung Duckyoung Circuit for controlling overcharging and overdischarging of battery
JP2015154618A (en) * 2014-02-14 2015-08-24 株式会社デンソー battery unit
JP2015167430A (en) * 2014-03-03 2015-09-24 株式会社リコー Electrical apparatus and residual charge discharging method
JP2016052186A (en) * 2014-08-29 2016-04-11 株式会社マキタ Charging type electric apparatus
WO2016137230A1 (en) * 2015-02-24 2016-09-01 주식회사 엘지화학 Battery device
JP2017532743A (en) * 2014-10-02 2017-11-02 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Power switch, battery system, and method for driving power switch
EP3319201A1 (en) * 2016-11-07 2018-05-09 Samsung SDI Co., Ltd. Battery pack and vacuum cleaner including the same
KR20180049457A (en) * 2016-11-02 2018-05-11 주식회사 엘지화학 Method and system for controling driving current of load
JP2019030165A (en) * 2017-08-02 2019-02-21 株式会社豊田自動織機 Battery pack
WO2019044657A1 (en) * 2017-08-31 2019-03-07 株式会社オートネットワーク技術研究所 Energization control device
KR20190066376A (en) * 2017-12-05 2019-06-13 한국단자공업 주식회사 Smart pra pre-charging system
CN109963738A (en) * 2016-10-25 2019-07-02 江森自控科技公司 Battery module paralleling switch apparatus system and method
JP2019134610A (en) * 2018-01-31 2019-08-08 ミネベアミツミ株式会社 Load drive circuit
US10714972B2 (en) 2018-02-05 2020-07-14 Denso Ten Limited Power supply control apparatus
WO2020153161A1 (en) * 2019-01-23 2020-07-30 株式会社デンソー Power supply control circuit
JPWO2019087974A1 (en) * 2017-10-30 2020-11-12 ヌヴォトンテクノロジージャパン株式会社 Power protection circuit
JP2021507658A (en) * 2017-12-28 2021-02-22 ユラ コーポレーション カンパニー リミテッド Power Relay Assembly Drives and Methods for Electric Vehicles
KR20210095756A (en) * 2020-01-23 2021-08-03 (주)인피니티웍스 High-speed battery charger for electric vehicle having parallel controller
JP2022001845A (en) * 2020-06-22 2022-01-06 プライムアースEvエナジー株式会社 Battery voltage measuring device
JP2022095364A (en) * 2020-12-16 2022-06-28 本田技研工業株式会社 Power supply system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2991461B1 (en) * 2012-05-30 2015-06-12 Valeo Equip Electr Moteur METHOD FOR DIAGNOSING A SECURITY SWITCH OF A SECURE ELECTRIC POWER SUPPLY DEVICE OF A HYBRID MOTOR VEHICLE AND SECURE ELECTRICAL SUPPLY DEVICE THEREFOR
EP2821274B1 (en) * 2013-06-28 2019-05-08 LG Electronics Inc. Driving apparatus for electric vehicle
JP6669097B2 (en) 2017-02-14 2020-03-18 株式会社オートネットワーク技術研究所 Power supply control device
WO2019040526A1 (en) * 2017-08-22 2019-02-28 Maxwell Technologies, Inc. System and method for providing bidirectional transient voltage support and power
JP2020031486A (en) * 2018-08-22 2020-02-27 株式会社マキタ Voltage supply device
JP6935437B2 (en) * 2019-01-23 2021-09-15 矢崎総業株式会社 Power supply
JP7474994B2 (en) 2019-05-24 2024-04-26 パナソニックIpマネジメント株式会社 Energy transfer circuit and energy storage system
KR20210047142A (en) * 2019-10-21 2021-04-29 주식회사 엘지화학 Pre-Charge Circuit and Battery System having the same
KR20210113875A (en) 2020-03-09 2021-09-17 삼성전자주식회사 Charger integrated circuit for charging battery device and electronic device including the same
JP7225179B2 (en) * 2020-10-07 2023-02-20 矢崎総業株式会社 SWITCH CONTROL DEVICE, SWITCH CONTROL METHOD, AND VEHICLE POWER SUPPLY SYSTEM

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0956167A (en) * 1995-08-11 1997-02-25 Denso Corp Motor controller
JP2007104865A (en) * 2005-10-07 2007-04-19 Toyota Motor Corp Power source system for vehicle
JP2008151745A (en) * 2006-12-20 2008-07-03 Fuji Heavy Ind Ltd Residual capacity computing device for charge accumulating device
JP2009290920A (en) * 2008-05-27 2009-12-10 Keihin Corp Power supply controller for electric vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0956167A (en) * 1995-08-11 1997-02-25 Denso Corp Motor controller
JP2007104865A (en) * 2005-10-07 2007-04-19 Toyota Motor Corp Power source system for vehicle
JP2008151745A (en) * 2006-12-20 2008-07-03 Fuji Heavy Ind Ltd Residual capacity computing device for charge accumulating device
JP2009290920A (en) * 2008-05-27 2009-12-10 Keihin Corp Power supply controller for electric vehicle

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012075280A (en) * 2010-09-29 2012-04-12 Panasonic Corp Power supply device for vehicle
KR101460845B1 (en) 2011-12-21 2014-11-11 주식회사 엘지화학 Battery pack voltage valancing method and apparatus
WO2013114697A1 (en) * 2012-01-30 2013-08-08 Necエナジーデバイス株式会社 Electricity storage system, method for controlling secondary battery pack, and secondary battery pack
US9461484B2 (en) 2012-01-30 2016-10-04 Nec Energy Devices, Ltd. Electricity storage system, method for controlling secondary battery packs, and secondary battery pack
JPWO2013114697A1 (en) * 2012-01-30 2015-05-11 Necエナジーデバイス株式会社 Power storage system, secondary battery pack control method, and secondary battery pack
JP2013192410A (en) * 2012-03-15 2013-09-26 Hitachi Ltd Battery system
JP2013252015A (en) * 2012-06-01 2013-12-12 Mazda Motor Corp Power supply control method and device for vehicle
JP2013252017A (en) * 2012-06-01 2013-12-12 Mazda Motor Corp Power supply control method and device for vehicle
JP2013252016A (en) * 2012-06-01 2013-12-12 Mazda Motor Corp Power supply control method and device for vehicle
JP2014143808A (en) * 2013-01-23 2014-08-07 Renesas Electronics Corp Semiconductor device and battery pack
JP2014193040A (en) * 2013-03-27 2014-10-06 Toshiba Corp Charge/discharge device and charge/discharge method for power storage system
WO2014200195A1 (en) * 2013-06-14 2014-12-18 Jung Duckyoung Circuit for controlling overcharging and overdischarging of battery
JP2015154618A (en) * 2014-02-14 2015-08-24 株式会社デンソー battery unit
JP2015167430A (en) * 2014-03-03 2015-09-24 株式会社リコー Electrical apparatus and residual charge discharging method
JP2016052186A (en) * 2014-08-29 2016-04-11 株式会社マキタ Charging type electric apparatus
JP2017532743A (en) * 2014-10-02 2017-11-02 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Power switch, battery system, and method for driving power switch
US10348107B2 (en) 2015-02-24 2019-07-09 Lg Chem, Ltd. Battery device
WO2016137230A1 (en) * 2015-02-24 2016-09-01 주식회사 엘지화학 Battery device
US11427105B2 (en) 2016-10-25 2022-08-30 Cps Technology Holdings Llc Battery module parallel switching device systems and methods
CN109963738B (en) * 2016-10-25 2023-01-13 Cps科技控股有限公司 Battery module parallel switch device system and method
CN109963738A (en) * 2016-10-25 2019-07-02 江森自控科技公司 Battery module paralleling switch apparatus system and method
US11945331B2 (en) 2016-10-25 2024-04-02 Cps Technology Holdings Llc Battery module parallel switching device systems and methods
KR102082380B1 (en) 2016-11-02 2020-02-28 주식회사 엘지화학 Method and system for controling driving current of load
KR20180049457A (en) * 2016-11-02 2018-05-11 주식회사 엘지화학 Method and system for controling driving current of load
EP3319201A1 (en) * 2016-11-07 2018-05-09 Samsung SDI Co., Ltd. Battery pack and vacuum cleaner including the same
US10381847B2 (en) 2016-11-07 2019-08-13 Samsung Sdi Co., Ltd. Battery pack and vacuum cleaner including the same
JP2019030165A (en) * 2017-08-02 2019-02-21 株式会社豊田自動織機 Battery pack
JP2019047301A (en) * 2017-08-31 2019-03-22 株式会社オートネットワーク技術研究所 Electrification control arrangement
CN111034043A (en) * 2017-08-31 2020-04-17 株式会社自动网络技术研究所 Energization control device
CN111034043B (en) * 2017-08-31 2024-03-12 株式会社自动网络技术研究所 Power-on control device
US11323113B2 (en) 2017-08-31 2022-05-03 Autonetworks Technologies, Ltd. Current flow control device
WO2019044657A1 (en) * 2017-08-31 2019-03-07 株式会社オートネットワーク技術研究所 Energization control device
JP7246315B2 (en) 2017-10-30 2023-03-27 ヌヴォトンテクノロジージャパン株式会社 power protection circuit
JPWO2019087974A1 (en) * 2017-10-30 2020-11-12 ヌヴォトンテクノロジージャパン株式会社 Power protection circuit
KR102045404B1 (en) * 2017-12-05 2019-11-15 한국단자공업 주식회사 Smart pra pre-charging system
KR20190066376A (en) * 2017-12-05 2019-06-13 한국단자공업 주식회사 Smart pra pre-charging system
JP7064592B2 (en) 2017-12-28 2022-05-10 ユラ コーポレーション カンパニー リミテッド Power Relay Assembly Drives and Methods for Electric Vehicles
US11251790B2 (en) 2017-12-28 2022-02-15 Yura Corporation Co., Ltd. Power relay assembly for an electric vehicle and driving method thereof
JP2021507658A (en) * 2017-12-28 2021-02-22 ユラ コーポレーション カンパニー リミテッド Power Relay Assembly Drives and Methods for Electric Vehicles
JP2019134610A (en) * 2018-01-31 2019-08-08 ミネベアミツミ株式会社 Load drive circuit
US10714972B2 (en) 2018-02-05 2020-07-14 Denso Ten Limited Power supply control apparatus
JP7059946B2 (en) 2019-01-23 2022-04-26 株式会社デンソー Power control circuit
JP2020120501A (en) * 2019-01-23 2020-08-06 株式会社デンソー Power supply control circuit
WO2020153161A1 (en) * 2019-01-23 2020-07-30 株式会社デンソー Power supply control circuit
KR102326825B1 (en) * 2020-01-23 2021-11-17 (주)인피니티웍스 High-speed battery charger for electric vehicle having parallel controller
KR20210095756A (en) * 2020-01-23 2021-08-03 (주)인피니티웍스 High-speed battery charger for electric vehicle having parallel controller
JP2022001845A (en) * 2020-06-22 2022-01-06 プライムアースEvエナジー株式会社 Battery voltage measuring device
JP2022095364A (en) * 2020-12-16 2022-06-28 本田技研工業株式会社 Power supply system
JP7433204B2 (en) 2020-12-16 2024-02-19 本田技研工業株式会社 power system

Also Published As

Publication number Publication date
WO2011152086A1 (en) 2011-12-08
JP5440400B2 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
JP5440400B2 (en) Power supply
KR101273820B1 (en) Power supply device
EP2272722B1 (en) Power source apparatus for vehicle
CN110168842B (en) Battery system
CN101740839B (en) Battery system
JP5865013B2 (en) Power supply device for vehicle and vehicle provided with this power supply device
US10236776B2 (en) Inter-supply bidirectional DC-DC converter of a non-insulation type
US9431850B2 (en) Power supply unit having plurality of secondary batteries
US6995480B2 (en) Power supply equipment for motor vehicle with inverter for controlling motor generator
JP6174876B2 (en) Dual power load drive system and fuel cell vehicle
JP5428708B2 (en) In-vehicle power supply
US8994208B2 (en) Backup power for overvoltage protection for electric vehicle
JP5104648B2 (en) Vehicle power supply apparatus and control method thereof
CN111746279B (en) Power supply system
US10625622B2 (en) Power supply device of vehicle
JP2004023803A (en) Voltage controller for battery pack
KR102066413B1 (en) Safety control system of battery
JP2015180140A (en) Power supply system for vehicle
WO2024116752A1 (en) On-vehicle power supply device
CN115051451A (en) Multi-stage battery combiner and control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees