JPH06342044A - Battery measuring apparatus - Google Patents

Battery measuring apparatus

Info

Publication number
JPH06342044A
JPH06342044A JP5149704A JP14970493A JPH06342044A JP H06342044 A JPH06342044 A JP H06342044A JP 5149704 A JP5149704 A JP 5149704A JP 14970493 A JP14970493 A JP 14970493A JP H06342044 A JPH06342044 A JP H06342044A
Authority
JP
Japan
Prior art keywords
battery
capacity
inflection point
correction
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5149704A
Other languages
Japanese (ja)
Inventor
Ikuo Minamino
郁夫 南野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP5149704A priority Critical patent/JPH06342044A/en
Publication of JPH06342044A publication Critical patent/JPH06342044A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)

Abstract

PURPOSE:To provide a battery measuring apparatus wherein a cumulative error due to the integration of a current is eliminated by a simple constitution and the residual capacity can be measured precisely. CONSTITUTION:Electric power is supplied to a battery 11 and a load 12 from a solar cell 10, the battery 11 is charged, and electric power is supplied to the load from the battery at night or the like. The current value of a charging current for the battery is sent to an integrator 14, it is integrated, and the residual capacity is computed. In addition, the charging current and a terminal voltage are sent to an inflection-point detection part 15, and the inflection point of an internal resistance which is changed due to a charging operation is detected at the detection part. The residual capacity (correction capacity) of the battery at the inflection point is found in advance. When the inflection point is detected, the output of the integrator is corrected to the correction capacity by a correction-capacity setting part 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、バッテリー計測装置に
関するもので、より具体的にはバッテリーの残存容量や
寿命判定等の各種特性(性能)等を測定するための装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery measuring device, and more specifically to a device for measuring various characteristics (performance) such as remaining capacity and life judgment of a battery.

【0002】[0002]

【従来の技術】充電が行えるバッテリー(蓄電池)は、
無停電電源システムや、車載並びに太陽光発電システム
等様々な分野に利用されている。そして、そのバッテリ
ーは、容器本体内に電解液を充填するとともにその電解
液内に電極を挿入配置した構成となっている。
2. Description of the Related Art A rechargeable battery (storage battery) is
It is used in various fields such as uninterruptible power supply systems, vehicle-mounted and solar power generation systems. The battery is configured such that the container main body is filled with the electrolytic solution and the electrodes are inserted and arranged in the electrolytic solution.

【0003】ところで、バッテリーの残存容量を知るこ
とは、充電の必要性の有無並びにその充電量(時間)
や、寿命判定等を知る上で重要なことであり、係る残存
容量計測装置として、従来種々のタイプのものが提案さ
れている。そして、その一例を示すと、例えば特開昭6
3−208773号公報に開示されるように、バッテリ
ーへの充電電流並びにバッテリーから負荷へ供給される
時の放電電流を積算し、その電流の積分量から現在のバ
ッテリーの残存容量を求めるものがある。すなわち、残
存容量は、現在のバッテリー内に貯留されている電荷の
総量に相当し、電流を積算する(充電電流は正,放電電
流は負)ことによりバッテリーへの電荷の供給量と放出
量の総和が求められるからである。
By the way, it is necessary to know the remaining capacity of the battery to determine whether or not the battery needs to be charged and the amount of charge (time).
Also, it is important for knowing the life judgment and the like, and various types of residual capacity measuring devices have been conventionally proposed. And, as an example, for example, Japanese Unexamined Patent Publication No.
As disclosed in Japanese Patent Laid-Open No. 3-208773, there is a method in which a charging current to a battery and a discharging current when being supplied from a battery to a load are integrated, and a current remaining capacity of the battery is obtained from an integrated amount of the current. . That is, the remaining capacity corresponds to the total amount of electric charge stored in the battery at present, and by integrating the electric current (charge current is positive, discharge current is negative), the charge supply amount and the discharge amount to the battery are calculated. This is because the sum is required.

【0004】また、寿命判定装置としては、例えば特開
平2−55536号公報に開示されるように、まず平常
時(商用電源から負荷に対して電力供給している時)に
バッテリーに対しても浮動充電等の方法で充電し、満充
電状態(残存容量100%)にする。そして、疑似停電
を発生させてバッテリーから負荷に電力を供給する。こ
の放電中の電池の端子電圧を測定し、その電圧が所定の
電圧に降下した時までの出力電流の積分量を求め、その
積分量が所定量に達していたか否かにより寿命か否かの
判定をするようにしている。
As a life determining device, as disclosed in, for example, Japanese Patent Laid-Open No. 2-55536, first, a battery is also normally used (when power is supplied from a commercial power source to a load). The battery is charged by a method such as floating charging to bring it into a fully charged state (remaining capacity 100%). Then, a pseudo power failure is generated to supply power from the battery to the load. Measure the terminal voltage of the battery during discharge, find the integrated amount of the output current until the voltage drops to a predetermined voltage, and determine if the integrated amount has reached the predetermined amount to determine whether the battery has reached the end of life. I try to make a decision.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記した従来
のものでは、以下に示す問題を有する。すなわち、いず
れも電流を積算するようにしたため、積算するもととな
る算出値に誤差を生じると、係る誤差が累積され正確な
計測ができない。また、充電電流のすべてのエネルギー
が充電(電荷の蓄積)に用いられるのではなく、充電効
率に従って所定量が充電に使用される。そして、その充
電効率は残存容量によっても変動し、さらに、温度によ
っても変化するので正確に把握することができず、累積
する誤差の発生の要因となる。
However, the above-mentioned conventional ones have the following problems. That is, since the currents are integrated in all cases, if an error occurs in the calculated value that is the basis of the integration, the error is accumulated and accurate measurement cannot be performed. Moreover, not all the energy of the charging current is used for charging (charge accumulation), but a predetermined amount is used for charging according to the charging efficiency. The charging efficiency varies depending on the remaining capacity and also changes depending on the temperature, so that it cannot be accurately grasped, which causes a cumulative error.

【0006】ところで、上記した従来の特開昭63−2
08773号公報の中には、上記累積誤差の問題を提言
し、その解決手段として比重計を併用することが示され
ているが、係る比重計計測を行うためには、通常の電流
積分のためのセンサ類とは別に複雑なセンサの追加並び
に係るセンサを電解液中に浸漬させるとともに、その電
解液からバッテリー外部への配線を引き出す等、装置構
成が複雑となる。さらに、電解液はその場所により濃度
が異なるため(充放電中は化学反応に伴う拡散の影響か
ら電極板附近の濃度が高く、また、平衡状態では、電解
質と水の比重の差から上方にいくほど濃度が低くな
る)、比重も場所により異なる。したがって、電解液全
体の比重(平均値)を求めることはできずやはり正確な
残存容量を計測できないので、比重に基づく補正も正確
ではない。
By the way, the above-mentioned conventional Japanese Patent Laid-Open No. 63-2 is used.
Japanese Patent Publication No. 08773 proposes the above-mentioned problem of accumulated error and uses a hydrometer in combination as a means for solving the problem. However, in order to carry out such hydrometer measurement, it is necessary to use normal current integration. In addition to the above-mentioned sensors, a complicated sensor is added and the sensor is immersed in an electrolyte solution, and wiring from the electrolyte solution to the outside of the battery is drawn out, resulting in a complicated device configuration. Furthermore, the concentration of the electrolyte varies depending on its location (during charge and discharge, the concentration near the electrode plate is high due to the effect of diffusion due to chemical reactions, and in the equilibrium state, it goes upward due to the difference in the specific gravity of the electrolyte and water. The lower the concentration), the specific gravity also varies from place to place. Therefore, the specific gravity (average value) of the entire electrolytic solution cannot be obtained and the accurate remaining capacity cannot be measured, so that the correction based on the specific gravity is not accurate.

【0007】本発明は、上記した背景に鑑みてなされた
もので、その目的とするところは、簡単な構成でもって
バッテリーが所定の残存容量であることを正確に検知
し、電流積分に伴う累積誤差をなくす補正をしたりする
ことにより、残存容量や寿命判定等の各種の特性を瞬時
かつ正確に計測することのできるバッテリー計測装置を
提供することにある。
The present invention has been made in view of the above background, and an object of the present invention is to accurately detect that a battery has a predetermined remaining capacity with a simple structure and to accumulate the current with current integration. It is an object of the present invention to provide a battery measuring device capable of instantaneously and accurately measuring various characteristics such as remaining capacity and life judgment by correcting the error.

【0008】[0008]

【課題を解決するための手段】上記した目的を達成する
ために、本発明に係るバッテリー計測装置では、バッテ
リーの充/放電電流を検出するとともにその積算量を求
め、その積算量に基づいて残存容量を計測するバッテリ
ー計測装置において、充電にともない変動する前記バッ
テリーの端子電圧及びまたは内部抵抗の変曲点を検出す
る変曲点検出手段と、上記変曲点検出手段により前記変
曲点を検出した時に、前記積算量に基づいて算出した残
存容量を前記変曲点が発生する補正容量に修正する補正
手段とから構成した。
In order to achieve the above-mentioned object, in the battery measuring device according to the present invention, the charge / discharge current of the battery is detected and the integrated amount thereof is obtained, and the remaining amount is calculated based on the integrated amount. In a battery measuring device for measuring capacity, an inflection point detecting means for detecting an inflection point of a terminal voltage and / or an internal resistance of the battery which fluctuates with charging, and the inflection point is detected by the inflection point detecting means. In this case, the remaining capacity calculated based on the integrated amount is corrected to a correction capacity at which the inflection point occurs.

【0009】また、バッテリーを強制的に充分放電させ
た後充電させる充放電制御手段と、前記充電にともない
変動する前記バッテリーの端子電圧及びまたは内部抵抗
の変曲点を検出する変曲点検出手段と、前記変曲点から
満充電までにバッテリーに蓄積された容量を算出する容
量算出手段と、その容量算出手段により算出された前記
容量に基づいて、そのバッテリーの蓄電能力を求め、そ
の蓄電能力の大小により寿命判定を行う寿命判定手段と
から構成するようにしてもよい。
Also, charge / discharge control means for forcibly discharging the battery and then charging it, and inflection point detection means for detecting an inflection point of the terminal voltage and / or internal resistance of the battery which fluctuates with the charging. And a capacity calculation means for calculating the capacity accumulated in the battery from the inflection point to full charge, and the storage capacity of the battery is calculated based on the capacity calculated by the capacity calculation means. It may be configured by a life determining unit that determines the life depending on the size of the.

【0010】[0010]

【作用】充電時の端子電圧(内部抵抗)の変化は、充電
状態(残存容量)の増加にともない一定に上昇するので
はなくある地点で急に上昇する変曲点を有する。そし
て、かかる変曲点の附近では、電圧(内部抵抗)の変化
のわりに充電状態(残存容量)は変化しない。したがっ
て、通常は電流積分を行い放出或いは蓄積された電荷
(容量)を計測して残存容量を求めるが、充電中に変曲
点を通過したならそれを検知し、予め求めておいた変曲
点の時の残存容量に補正し、累積誤差をリセットする。
The change in the terminal voltage (internal resistance) during charging has an inflection point that does not rise constantly with an increase in the state of charge (remaining capacity) but rises sharply at a certain point. Then, near the inflection point, the charge state (remaining capacity) does not change in spite of the change in voltage (internal resistance). Therefore, normally, current integration is performed to measure the released or accumulated charge (capacity) to obtain the remaining capacity, but if it passes through the inflection point during charging, it is detected and the inflection point obtained in advance is detected. The remaining capacity at the time of is corrected and the accumulated error is reset.

【0011】また、寿命判定を行う場合には、変曲点を
求めることにより残存容量を正確にすることができるた
め、その変曲点を利用して変曲点から満充電になるまで
にバッテリーに蓄えた電荷を算出する。これは、例えば
充電電流の積分により行える(但し充電効率を考慮す
る)。そして、その算出した電荷に基づいてそのバッテ
リーに現在蓄えられる100%分の電荷を求める。これ
が蓄電能力となり、この値が低いと劣化の程度が進んで
いることを意味するので、その値の大小により寿命を判
定する。
Further, when the life is judged, the remaining capacity can be made accurate by obtaining the inflection point. Therefore, the inflection point is used to charge the battery from the inflection point to full charge. Calculate the electric charge stored in. This can be done, for example, by integrating the charging current (however, charging efficiency is taken into consideration). Then, based on the calculated electric charge, the electric charge of 100% currently stored in the battery is obtained. This is the power storage capacity, and if this value is low, it means that the degree of deterioration has progressed, so the life is determined by the magnitude of that value.

【0012】[0012]

【実施例】以下、本発明に係るバッテリー計測装置の好
適な実施例を添付図面を参照にして詳述する。図1は本
発明の第1実施例を示している。同図に示すように、本
例では、太陽光発電システムに適用されたバッテリーの
残存容量を求めるための計測装置を示している。すなわ
ち電源(太陽電池)10からバッテリー11並びに負荷
12に電力供給がされて、バッテリー11が充電され
る。そして夜間等の太陽電池10から負荷へ電力供給で
きない時には、昼間バッテリー11に蓄えられた電荷が
放出され、このバッテリー11から負荷12へ電力供給
をするようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the battery measuring device according to the present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 shows a first embodiment of the present invention. As shown in the figure, in this example, a measuring device for obtaining the remaining capacity of the battery applied to the solar power generation system is shown. That is, power is supplied from the power source (solar cell) 10 to the battery 11 and the load 12, and the battery 11 is charged. When electric power cannot be supplied from the solar cell 10 to the load at night, electric charges stored in the daytime battery 11 are discharged, and electric power is supplied from the battery 11 to the load 12.

【0013】さらに、バッテリー11への充電電流iを
電流検出器13を介して検出し、それを残存容量算出部
たる積分器14に送り、電流を積算することにより残存
容量を求め、出力する。この積分器14は、図2に示す
ように、例えばOPアンプを用いその帰還ループにコン
デンサを設けた一般的な構造のものを用いることができ
る。そしてこの積分器14における残存容量の算出は、
上記した従来のもの(特開昭63−208773号公報
に示された残存容量計)と同様であるため、詳細な説明
は省略する。
Further, the charging current i to the battery 11 is detected through the current detector 13, and the detected current i is sent to the integrator 14 which is a remaining capacity calculating section to calculate and output the remaining capacity by integrating the current. As shown in FIG. 2, the integrator 14 may be of a general structure in which an OP amplifier is used and a capacitor is provided in its feedback loop. And the calculation of the remaining capacity in the integrator 14 is
Since it is the same as the above-mentioned conventional one (remaining capacity meter disclosed in Japanese Patent Laid-Open No. 63-208773), detailed description thereof will be omitted.

【0014】ところで、係る太陽光発電システムの場
合、日中は太陽電池10が発電を行うため、バッテリー
11に対して充電電流iが流れ込む。そして、その電流
の大きさは、日照量の増減ともない増減するため、ある
時刻(日の出後発電に必要な日照量となった時)から上
昇し、正午附近で最大となりその後減少する。そして日
没後等の発電に必要な日照量が得られない時には、バッ
テリーから放電電流が流れる。この放電電流は、上記充
電電流と逆向きであるため、充電電流を正とすると負に
なりしかも一定電流が流れる。なお、負荷に電力供給が
不要の時には電流は流れない。したがって、図3(A)
に示すようになる。
By the way, in the case of such a solar power generation system, since the solar cell 10 generates power during the daytime, the charging current i flows into the battery 11. Then, the magnitude of the current increases and decreases with the increase and decrease in the amount of sunshine, and therefore increases from a certain time (when the amount of sunshine required for power generation after sunrise) increases, reaches a maximum around noon, and then decreases. When the amount of sunlight required for power generation cannot be obtained after sunset, discharge current flows from the battery. Since this discharge current is in the opposite direction to the above charge current, if the charge current is positive, it becomes negative and a constant current flows. Note that current does not flow when power supply to the load is unnecessary. Therefore, FIG.
As shown in.

【0015】そして、上記充電電流を積分器14で積算
して得られる残存容量(電荷)は、同図(B)に示すよ
うに充電電流が流れている間は徐々に上昇し、放電電流
が流れている時には減少することになる。しかし、上述
したごとく積算により累積誤差が生じるため、例えば本
当の残存容量は同図中一点鎖線で示すように変化してい
るにも拘らず、積分器14で求められた残存容量は実線
で示すようになり、しかも両者の誤差は時間経過にとも
ない拡大されている。
The remaining capacity (charge) obtained by integrating the charging current by the integrator 14 gradually increases while the charging current is flowing, as shown in FIG. It will decrease when it is flowing. However, since the cumulative error occurs due to the integration as described above, the remaining capacity obtained by the integrator 14 is shown by the solid line, although the actual remaining capacity changes as shown by the alternate long and short dash line in FIG. However, the error between the two has expanded with the passage of time.

【0016】そこで本発明では、上記累積誤差をなくす
ために、以下のような補正手段を設けた。すなわちまず
充電時の残存容量の増加に伴うバッテリー11の端子電
圧の変化は、充電電流を一定とすると、図5に示すよう
に充電開始当初は徐々に上昇し、ある残存容量になった
時に急に増加し、その後緩やかに増加する。そして、上
記増加の割合が急変する変曲点Pは、充放電の深さDO
Dに関係なく同一となる。ここでDODとは、充電開始
する時までに満充電から放電された容量をいい、例えば
DOD80%というと、すでに80%分の電荷が放電さ
れており充電開始時の充電状態(残存容量)は20%で
あることを意味する。さらに、係る変曲点P近辺では電
圧の変動に比べ充電状態の変動量は少なく比較的ラフな
検出でも充電状態を正確に予測できる。
Therefore, in the present invention, the following correcting means is provided in order to eliminate the above accumulated error. That is, first, the change in the terminal voltage of the battery 11 with the increase in the remaining capacity at the time of charging gradually increases at the beginning of charging as shown in FIG. Then gradually increases. The inflection point P at which the rate of increase suddenly changes is the depth DO of charge / discharge.
It is the same regardless of D. Here, DOD refers to the capacity discharged from full charge by the time charging is started. For example, DOD 80% means that 80% of the charge has already been discharged and the charge state (remaining capacity) at the start of charging is This means 20%. Further, in the vicinity of the inflection point P, the amount of change in the charge state is smaller than the change in the voltage, and the charge state can be accurately predicted even with a relatively rough detection.

【0017】したがって、本発明は係る充電時の電圧上
昇の変曲点Pを検知し、検知した時が所定の充電状態
(残存容量QP )にあるとみなし、積分器14で求めら
れた結果に関係なく積分器出力を上記残存容量QP にセ
ットする(補正を行うようにした)。これにより、仮に
累積誤差があったとしても、少なくとも充電時に変曲点
Pを通過する都度補正され、誤差分がリセットされる。
なお、このように放電電流を一定にした状態で電圧が変
動するのは、充電状態に応じてバッテリー11の内部抵
抗が変動するためで、上記電圧の変動特性はそのまま内
部抵抗の変動特性を意味する。
Therefore, according to the present invention, the inflection point P of the voltage rise at the time of charging is detected, and it is considered that the predetermined charging state (remaining capacity QP) exists at the time of detection, and the result obtained by the integrator 14 is used. The output of the integrator is set to the remaining capacity QP regardless of the correction (correction is made). As a result, even if there is a cumulative error, it is corrected at least every time the inflection point P is passed during charging, and the error is reset.
The reason why the voltage fluctuates in the state where the discharge current is constant is that the internal resistance of the battery 11 fluctuates according to the charging state. To do.

【0018】また、上記変曲点Pは、図6に示すよう
に、温度が変わることにより変化する。従って、本例で
は変曲点Pを検出した時の温度もあわせて計測し、その
変曲点Pが示す残存容量QP(T)を求め、係る値QP(T)で
もって上記補正を行うようにしている。
Further, the inflection point P changes as the temperature changes, as shown in FIG. Therefore, in this example, the temperature at the time of detecting the inflection point P is also measured, the remaining capacity QP (T) indicated by the inflection point P is obtained, and the above correction is performed with the value QP (T). I have to.

【0019】すなわち、図1に示すように、バッテリー
11の端子電圧並びに充電電流を変曲点検出部15に入
力し、そこにおいて電圧(内部抵抗)の変曲点Pを検出
し、検知信号を補正容量設定部16に送る。そして、補
正容量設定部16は、検知信号を受けたなら、積分器1
4に対して所定の補正容量値をセットし、積分器14の
出力を係る補正容量値に変更するようになっている。
That is, as shown in FIG. 1, the terminal voltage and the charging current of the battery 11 are input to the inflection point detecting section 15, where the inflection point P of the voltage (internal resistance) is detected, and the detection signal is sent. It is sent to the correction capacity setting unit 16. Then, when the correction capacity setting unit 16 receives the detection signal, the correction capacity setting unit 16
4 is set to a predetermined correction capacity value, and the output of the integrator 14 is changed to the correction capacity value.

【0020】次に各部について詳述すると、まず変曲点
検出部15は、本例では充電電流が一定でないため、係
る電流の変動の影響を受けない内部抵抗の変曲点Pを検
出するようになっている。すなわち、まずバッテリー1
1の端子電圧と充電電流を内部抵抗算出部17に送り、
そこにおいて下記式により内部抵抗Rを求める。
Explaining each part in detail, first, the inflection point detecting section 15 detects the inflection point P of the internal resistance which is not affected by the fluctuation of the current because the charging current is not constant in this example. It has become. That is, first, battery 1
The terminal voltage and charging current of 1 are sent to the internal resistance calculation unit 17,
Then, the internal resistance R is calculated by the following formula.

【0021】内部抵抗R=端子電圧/充電電流 内部抵抗算出部17の出力を微分器18に送り、ここに
おいて内部抵抗Rの時間微分を求める。すなわち、上記
変曲点Pは、内部抵抗が急激に変化する点であるため、
変化量(微分値)が最も大きくなる箇所が変曲点となる
からである。但し、充/放電開始当初はオープン状態か
ら負荷等に接続されたり、電流の向きが逆転することに
より内部抵抗を算出するための端子電圧が開放電圧から
内部抵抗の電圧降下が現われてその降下分だけ増加また
は減少するために短時間で急激に変化する(図3(C)
参照)が、この変化は求める変曲点ではない。そこで、
上記微分器18の出力をローパスフィルター19に送
り、係る短時間での変化分を除去するようにしている。
Internal resistance R = terminal voltage / charging current The output of the internal resistance calculating section 17 is sent to a differentiator 18, where the time derivative of the internal resistance R is obtained. That is, since the inflection point P is a point where the internal resistance changes rapidly,
This is because the point where the amount of change (differential value) is the largest becomes the inflection point. However, at the beginning of charging / discharging, the terminal voltage for calculating the internal resistance is changed from the open voltage due to the voltage drop of the internal resistance due to the connection of the load etc. from the open state or the reversal of the direction of the current. Change rapidly in a short time to increase or decrease (Fig. 3 (C))
However, this change is not the desired inflection point. Therefore,
The output of the differentiator 18 is sent to the low-pass filter 19 so as to remove such a variation in a short time.

【0022】そして、ローパスフィルター19の出力を
ピーク検出部20に接続している。このピーク検出部2
0は、ローパスフィルター19により短時間の不要な変
化分を除去して得られた微分値の変化カーブの中である
しきい値以上を越える山のピークを検出し、それを変曲
点Pと決定し、係る変曲点を検出した場合に検出信号を
出力するようになっている。そして、充電電流の変化
(図3(A))に伴う上記変曲点検出部15の各部の出
力の変化をそれぞれ図4(A)〜(C)の各図に示す。
The output of the low-pass filter 19 is connected to the peak detector 20. This peak detector 2
In the case of 0, a peak of a mountain exceeding a certain threshold value is detected in the differential value change curve obtained by removing unnecessary changes for a short time by the low-pass filter 19, and it is designated as an inflection point P. A detection signal is output when it is determined and the inflection point is detected. Then, changes in the outputs of the respective parts of the inflection point detection unit 15 due to changes in the charging current (FIG. 3 (A)) are shown in FIGS. 4 (A) to 4 (C).

【0023】一方、補正容量設定部16は、上記ピーク
検出部20から出力される検知信号を受けた時に接点を
閉じるリレー21と、このリレー21が閉じた時に温度
センサ22から与えられる温度に基づいて積分器14に
セットする補正容量を決定する温度容量変換部23とか
ら構成される。この温度容量変換部23は、温度Tに対
する変曲点の残存容量QP の関係を上記図6に示すよう
なグラフまたはテーブル式に格納したデータベースを有
し、検出した温度Tに対応する変曲点の残存容量QP を
決定して積分器14に送るようになっている。これによ
り図4(D)に示すように、所定のタイミング(矢印で
示す)で積分器14の出力(実線で示す)が補正され、
実際の残存容量(一点鎖線で示す)と一致する。なお、
積分器14が図2に示すような構成の場合には、上記補
正容量QP のセットとしては、例えば検知信号があった
時に一旦積分器14を構成するOPアンプの帰還用のコ
ンデンサの電荷を放電すると共に、所定の残存容量QP
に応じた電荷を上記帰還用のコンデンサに充電すれば良
い。
On the other hand, the correction capacity setting unit 16 is based on the relay 21 that closes the contact when receiving the detection signal output from the peak detection unit 20 and the temperature given from the temperature sensor 22 when the relay 21 is closed. And a temperature-capacity converter 23 that determines a correction capacity to be set in the integrator 14. The temperature-capacity conversion unit 23 has a database that stores the relationship of the remaining capacity QP of the inflection point with respect to the temperature T in the form of a graph or table as shown in FIG. 6, and the inflection point corresponding to the detected temperature T. The remaining capacity QP of the above is determined and sent to the integrator 14. As a result, as shown in FIG. 4D, the output of the integrator 14 (shown by the solid line) is corrected at a predetermined timing (shown by the arrow),
It matches the actual remaining capacity (indicated by the one-dot chain line). In addition,
In the case where the integrator 14 is configured as shown in FIG. 2, the correction capacitance QP is set, for example, by temporarily discharging the electric charge of the feedback capacitor of the OP amplifier which constitutes the integrator 14 when there is a detection signal. And the specified remaining capacity QP
It suffices to charge the feedback capacitor with a charge according to the above.

【0024】これにより本例では、バッテリー11の端
子電圧並びに充電電流というもともと残存容量の検出に
必要で、しかも比較的簡単な構成からなるセンサで検出
できる情報に基づいて残存容量の累積誤差の補正を行う
ことができる。なお、充電電流が一定(例えば電源が商
用電源等の比較的安定し、しかも実負荷等に接続せずシ
ステムから切り離して充電する)であれば、上記した実
施例の内部抵抗算出部17を設けること無く、検出した
端子電圧を微分器18に入力するようにしても良い。
Thus, in this embodiment, the accumulated error of the remaining capacity is corrected based on the information such as the terminal voltage and the charging current of the battery 11 which is originally necessary for detecting the remaining capacity and which can be detected by the sensor having a relatively simple structure. It can be performed. If the charging current is constant (for example, the power source is relatively stable, such as a commercial power source, and is charged separately from the system without being connected to an actual load), the internal resistance calculator 17 of the above-described embodiment is provided. Alternatively, the detected terminal voltage may be input to the differentiator 18.

【0025】また、温度変化が少ない場所では、温度セ
ンサ22並びに温度容量変換部23を設けることなく、
リレー21がオンの時に固定の補正容量をセットするよ
うにすれば良い等、種々の変更実施が可能である。
In a place where the temperature change is small, the temperature sensor 22 and the temperature capacity converter 23 are not provided,
Various modifications can be made, such as setting a fixed correction capacitance when the relay 21 is on.

【0026】図7は本発明の第2実施例を示している。
この例では、上記した第1実施例を基本とし、さらに、
別の補助用の補正容量設定部24を設けた。すなわち、
例えば図8に示すように、バッテリーの充/放電が変曲
点P以下の低い充電状態の領域で繰り返し行われる場
合、上記第1実施例の装置では変曲点を通過しないため
に補正がされず、累積誤差が拡大されてしまう。
FIG. 7 shows a second embodiment of the present invention.
In this example, based on the first embodiment described above,
Another auxiliary correction capacity setting unit 24 is provided. That is,
For example, as shown in FIG. 8, when charging / discharging of the battery is repeatedly performed in a region of a low state of charge below the inflection point P, the apparatus of the first embodiment does not pass through the inflection point and is thus corrected. However, the cumulative error is enlarged.

【0027】そこで本例では、残存容量の少ない低い充
電状態の時には、係る状態を低容量検出部25で検出し
てリレー26の接点を閉じ、その時の電圧容量変換部2
7で決定される所定の補正容量を積分器14にセットす
るようになる。すなわち、放電カーブは、図8中二点鎖
線で示すように残存容量の高い時には緩やかに低下する
が、残存容量が低くなると急激に低下する。しかし、充
電カーブ(同図中一点鎖線で示す)のように変曲点はな
い。また、この放電カーブは温度によっても変化する。
そこで、予め端子電圧,放電電流,温度から残存容量を
求める変換表を作成しておき、電圧容量変換部27に入
力される3つの情報から上記変換表をアクセスし、現在
の残存容量を求め補正するようになる。
Therefore, in the present example, when the state of charge is low and the remaining capacity is small, the low capacity detecting section 25 detects such a state and closes the contact of the relay 26, and the voltage capacity converting section 2 at that time.
The predetermined correction capacity determined in 7 is set in the integrator 14. That is, the discharge curve gradually decreases when the remaining capacity is high, as shown by the chain double-dashed line in FIG. 8, but sharply decreases when the remaining capacity becomes low. However, there is no inflection point like the charging curve (shown by the one-dot chain line in the figure). The discharge curve also changes with temperature.
Therefore, a conversion table for obtaining the remaining capacity from the terminal voltage, the discharge current, and the temperature is created in advance, and the conversion table is accessed from the three pieces of information input to the voltage / capacity conversion unit 27 to obtain the current remaining capacity and correct it. Come to do.

【0028】但し、この補正の方式では、放電カーブは
充電カーブのように変曲点がないと共に、補正容量を3
つのデータに基づいて算出しているため誤差が大きいの
で、仮の補正とし正式な補正は充電カーブの変曲点をも
って行うようにする。また、低容量検出部25は、残存
容量が所定のしきい値以下になった場合に検出信号を出
力し続けるため、このままでは上記仮の補正は残存容量
が低い間は常時行なわれ、積分器14での電流積算は常
に無効とされることになる。したがって、例えば低容量
状態が続く場合、所定のタイミングで上記仮の補正を行
うようにしても良い。なお、その他の構成並びに作用
(充電カーブの変曲点を用いて行う補正)は、上記した
第1実施例と同様であるため、同一符号を付しその説明
を省略する。
However, in this correction method, the discharge curve has no inflection point like the charge curve, and the correction capacity is 3
Since the error is large because it is calculated based on one piece of data, a temporary correction should be made at the inflection point of the charging curve. Further, since the low capacity detection unit 25 continues to output the detection signal when the remaining capacity becomes equal to or less than the predetermined threshold value, the temporary correction is always performed while the remaining capacity is low and the integrator is operated as it is. The current integration at 14 will always be invalid. Therefore, for example, when the low capacity state continues, the temporary correction may be performed at a predetermined timing. Since the other configurations and operations (correction performed by using the inflection point of the charging curve) are the same as those in the first embodiment described above, the same reference numerals are given and the description thereof is omitted.

【0029】図9は、本発明の第3実施例を示してお
り、本例では上記各実施例と相違して、バッテリーの寿
命判定を行うための計測装置の一例を示している。同図
に示すようにバッテリー11は、充電用の電源10′と
放電負荷(抵抗)12′に対してスイッチSを介して接
続可能となっている。なお、図示省略するが、このバッ
テリーは、他の接続手段等を用いて、上記した各実施例
と同様に実負荷や必要に応じて電源等に接続可能となっ
ている。
FIG. 9 shows a third embodiment of the present invention. In this embodiment, unlike the above embodiments, an example of a measuring device for determining the life of a battery is shown. As shown in the figure, the battery 11 can be connected to a charging power source 10 'and a discharging load (resistor) 12' via a switch S. Although not shown, this battery can be connected to an actual load or a power source or the like as needed by using other connecting means as in the above-described embodiments.

【0030】そして、上記各実施例と同様に、電流検出
器13を介して検出した充電電流を積分器14′並びに
変曲点検出部15に送り、またこの変曲点検出部15に
は、バッテリー11の端子電圧も入力されるように構成
する。そして、この変曲点検出部15では、与えられた
電流,電圧に基づいて充電時の内部抵抗の変化の変曲点
を検出するようなっている。
Then, similarly to each of the above-mentioned embodiments, the charging current detected through the current detector 13 is sent to the integrator 14 'and the inflection point detecting section 15, and this inflection point detecting section 15 is The terminal voltage of the battery 11 is also input. Then, the inflection point detection unit 15 detects the inflection point of the change in the internal resistance during charging based on the given current and voltage.

【0031】ここで本例では上記した各実施例と相違し
て、変曲点検出部15の出力(検知信号)を積分器1
4′に送るようになっている。そして、積分器14′で
は、係る検知信号が入力されてから、与えられる充電電
流を積算するようになっている。
In this example, unlike the above-described embodiments, the output (detection signal) of the inflection point detecting section 15 is changed to the integrator 1.
It is supposed to be sent to 4 '. Then, the integrator 14 'is adapted to integrate the charging current given after the detection signal is inputted.

【0032】さらに、上記スイッチSの接続を制御する
充放電制御部28を備え、寿命判定を行う場合にはまず
スイッチSを放電負荷12′に接続してバッテリー11
に蓄積された電荷を放電し、その後スイッチSを充電電
源10′に接続してバッテリー11が満充電状態になる
まで充電するようにしている。そして、この充放電制御
部28にも計測したバッテリー11の端子電圧が入力さ
れるようになっており、この端子電圧が所定電圧になっ
た時に満充電と判断しスイッチSを図示するようにオフ
にする。また、この時積分器14′に対して制御信号
(終了)を送るようになっている。
Further, the charging / discharging control section 28 for controlling the connection of the switch S is provided, and when the life is judged, first, the switch S is connected to the discharge load 12 'and the battery 11 is connected.
The electric charge stored in the battery 11 is discharged, and then the switch S is connected to the charging power source 10 'to charge the battery 11 until the battery 11 is fully charged. Then, the measured terminal voltage of the battery 11 is also input to the charge / discharge control unit 28. When the terminal voltage reaches a predetermined voltage, it is determined that the battery is fully charged, and the switch S is turned off as shown in the figure. To At this time, a control signal (end) is sent to the integrator 14 '.

【0033】そして積分器14′では、その制御信号が
入力されたなら上記充電電流の積算を終了し、その時ま
でに積算して得られた電荷Qを寿命判定部29に送るよ
うになっている。すなわち、積分器14′で求められた
電荷Qは、変曲点から100%までに蓄えた電荷を意味
する。但し、ロス分があるため、実際に蓄えられた電荷
は、電流の積分値から所定のロス分を引いた値となる
(図10(C)参照)。そして、係るロス分は予めデー
タとして持っておく。
When the control signal is input, the integrator 14 'terminates the integration of the charging current and sends the charge Q obtained by the integration up to that time to the life determining unit 29. . That is, the charge Q obtained by the integrator 14 'means the charge accumulated up to 100% from the inflection point. However, since there is a loss component, the actually stored charge has a value obtained by subtracting a predetermined loss component from the integrated value of the current (see FIG. 10C). Then, the loss amount is held in advance as data.

【0034】寿命判定部29では、上記積分器14′で
求めた実際に蓄えられた電荷に基づいて、100%分の
容量を算出することにより、このバッテリーの蓄電能力
を求め、係る蓄電能力が所定値以下となった場合に寿命
がきたと判断するようになる。具体的には、温度センサ
22で検出した温度に基づいて変曲点の充電状態(X)
を求め、下記式により蓄電能力を求める。
In the life determining unit 29, the storage capacity of this battery is calculated by calculating the capacity for 100% based on the electric charges actually stored by the integrator 14 ', and the storage capacity is calculated. When it becomes less than the predetermined value, it is judged that the life has expired. Specifically, based on the temperature detected by the temperature sensor 22, the charging state (X) at the inflection point
Then, the storage capacity is calculated by the following formula.

【0035】蓄電能力=(100/(100−X))Q ここで、本例の作用について説明すると、まず充放電制
御部28を動作させてスイッチSを放電負荷12′に接
続し、充分放電させて変曲点以下にさせる。次いでスイ
ッチSを充電電源10′に接続し、バッテリー11を充
電する。この時、変曲点検出部15を作動させ、充電カ
ーブの変曲点を検出する。そして、積分器14′にてそ
の変曲点から満充電になるまで充電電流を積算し、その
間に蓄積した電荷Qを求める。なお、この時のバッテリ
ー11の端子電圧の変化の履歴は、図10(A),
(B)に示すようになる。その様にして求めた電荷Qを
寿命判定部19に送り、そこにおいて寿命がきたか否か
を判断し、その判定結果を図示省略の表示部に表示す
る。
Power storage capacity = (100 / (100-X)) Q Here, the operation of this example will be described. First, the charge / discharge control unit 28 is operated to connect the switch S to the discharge load 12 'and fully discharge. Let it be below the point of inflection. Next, the switch S is connected to the charging power source 10 'to charge the battery 11. At this time, the inflection point detection unit 15 is activated to detect the inflection point of the charging curve. Then, the integrator 14 'integrates the charging current from the inflection point to full charge, and obtains the charge Q accumulated during that time. The history of changes in the terminal voltage of the battery 11 at this time is shown in FIG.
As shown in (B). The charge Q thus obtained is sent to the life determining unit 19, where it is determined whether or not the life has expired, and the determination result is displayed on a display unit (not shown).

【0036】係る構成にすることにより、本例では少な
い放電でもってバッテリーの寿命を計測することができ
ると共に、満充電から放電させる必要がなく、任意の残
存容量のバッテリーに対して計測(寿命判定)が行え
る。
With this configuration, the life of the battery can be measured with a small amount of discharge in this example, and it is not necessary to discharge the battery from full charge, and the battery can be measured (life judgment based on life). ) Can be done.

【0037】[0037]

【発明の効果】以上のように、本発明に係るバッテリー
計測装置では、充電カーブの変曲点を利用して種々の計
測を行うようにしたため、簡単な構成でもって累積誤差
を補正して正しい残存容量を求めたり、寿命の判定を行
うことができる。
As described above, in the battery measuring device according to the present invention, various measurements are performed using the inflection point of the charging curve, so that the cumulative error is corrected and corrected with a simple structure. The remaining capacity can be obtained and the life can be determined.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るバッテリー計測装置の第1実施例
を示す図である。
FIG. 1 is a diagram showing a first embodiment of a battery measuring device according to the present invention.

【図2】積分器の内部構造を示す図である。FIG. 2 is a diagram showing an internal structure of an integrator.

【図3】作用を説明する図である。FIG. 3 is a diagram illustrating an operation.

【図4】作用を説明する図である。FIG. 4 is a diagram illustrating an operation.

【図5】充電状態に対する端子電圧の特性を示す図であ
る(電流,温度一定)。
FIG. 5 is a diagram showing a characteristic of a terminal voltage with respect to a charging state (current and temperature are constant).

【図6】充電状態に対する端子電圧の特性を示す図であ
る。
FIG. 6 is a diagram showing a characteristic of a terminal voltage with respect to a charging state.

【図7】本発明に係るバッテリー計測装置の第2実施例
を示す図である。
FIG. 7 is a diagram showing a second embodiment of the battery measuring device according to the present invention.

【図8】充/放電状態に対する端子電圧の特性を示す図
である。
FIG. 8 is a diagram showing a characteristic of a terminal voltage with respect to a charge / discharge state.

【図9】本発明に係るバッテリー計測装置の第3実施例
を示す図である。
FIG. 9 is a diagram showing a third embodiment of the battery measuring device according to the present invention.

【図10】作用を説明する図である。FIG. 10 is a diagram illustrating an operation.

【符号の説明】[Explanation of symbols]

11 バッテリー 14 積分器(充電電流を積算する手段) 14′積分器(容量算出手段) 15 変曲点検出部 16 補正容量設定部 22 温度センサ 25 低容量検出部 26 電圧容量変換部(補正容量算出手段) 28 充放電制御部 29 寿命判定部 11 Battery 14 Integrator (means for integrating charging current) 14 'Integrator (capacity calculating means) 15 Inflection point detection part 16 Correction capacity setting part 22 Temperature sensor 25 Low capacity detection part 26 Voltage capacity conversion part (correction capacity calculation) Means) 28 charge / discharge control section 29 life judgment section

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 バッテリーの充/放電電流を検出すると
ともにその積算量を求め、その積算量に基づいて残存容
量を計測するバッテリー計測装置において、 充電にともない変動する前記バッテリーの端子電圧及び
または内部抵抗の変曲点を検出する変曲点検出手段と、 上記変曲点検出手段により前記変曲点を検出した時に、
前記積算量に基づいて算出した残存容量を前記変曲点が
発生する補正容量に修正する補正手段を備えたバッテリ
ー計測装置。
1. A battery measuring device for detecting a charging / discharging current of a battery, obtaining an integrated amount thereof, and measuring a remaining capacity on the basis of the integrated amount, wherein a terminal voltage of the battery and / or an internal voltage which varies with charging. Inflection point detection means for detecting the inflection point of the resistance, and when the inflection point is detected by the inflection point detection means,
A battery measuring device comprising: a correction unit that corrects the remaining capacity calculated based on the integrated amount to a correction capacity at which the inflection point occurs.
【請求項2】 前記補正手段が、温度検出手段と、その
温度検出手段により検出された温度の前記変曲点に対応
する前記補正容量を決定する手段とを備え、その決定し
た補正容量に基づいて前記補正を行うようにした請求項
1に記載のバッテリー計測装置。
2. The correction means comprises temperature detection means and means for determining the correction capacity corresponding to the inflection point of the temperature detected by the temperature detection means, and based on the determined correction capacity. The battery measurement device according to claim 1, wherein the correction is performed by using the battery measurement device.
【請求項3】 残存容量の低い領域で充/放電が行われ
ていることを検出する低容量検出手段と、 前記低容量検出手段の出力を受け、前記バッテリーの端
子電圧及びまたは内部抵抗の放電特性に基づいて補助の
補正容量を算出する補正容量算出手段とを備え、 その算出した補助の補正容量を用いて前記積算量に基づ
いて算出した残存容量を修正するようにした請求項1ま
たは2に記載のバッテリー計測装置。
3. A low capacity detecting means for detecting that charging / discharging is performed in a region having a low remaining capacity, and a discharge of a terminal voltage and / or an internal resistance of the battery which receives an output of the low capacity detecting means. 3. A correction capacity calculating means for calculating an auxiliary correction capacity based on a characteristic, wherein the calculated auxiliary correction capacity is used to correct the remaining capacity calculated based on the integrated amount. Battery measuring device described in.
【請求項4】 バッテリーを強制的に充分放電させた後
充電させる充放電制御手段と、 前記充電にともない変動する前記バッテリーの端子電圧
及びまたは内部抵抗の変曲点を検出する変曲点検出手段
と、 前記変曲点から満充電までにバッテリーに蓄積された容
量を算出する容量算出手段と、 その容量算出手段により算出された前記容量に基づい
て、そのバッテリーの蓄電能力を求め、その蓄電能力の
大小により寿命判定を行う寿命判定手段を備えたバッテ
リー計測装置。
4. A charge / discharge control means for forcibly discharging the battery and then charging it, and an inflection point detection means for detecting an inflection point of the terminal voltage and / or internal resistance of the battery which fluctuates with the charging. And a capacity calculation means for calculating the capacity accumulated in the battery from the inflection point to full charge, and the storage capacity of the battery is calculated based on the capacity calculated by the capacity calculation means. A battery measuring device equipped with a life judging means for judging the life according to the size of the battery.
JP5149704A 1993-05-31 1993-05-31 Battery measuring apparatus Withdrawn JPH06342044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5149704A JPH06342044A (en) 1993-05-31 1993-05-31 Battery measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5149704A JPH06342044A (en) 1993-05-31 1993-05-31 Battery measuring apparatus

Publications (1)

Publication Number Publication Date
JPH06342044A true JPH06342044A (en) 1994-12-13

Family

ID=15480994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5149704A Withdrawn JPH06342044A (en) 1993-05-31 1993-05-31 Battery measuring apparatus

Country Status (1)

Country Link
JP (1) JPH06342044A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10002848B4 (en) * 1999-01-26 2006-11-02 Honda Giken Kogyo K.K. Device and method for detecting the residual charge of a battery
US7474950B2 (en) 2001-12-21 2009-01-06 Zf Friedrichshafen Ag Method for determining the clutch application point
JP2011043460A (en) * 2009-08-24 2011-03-03 Sanyo Electric Co Ltd Characteristic detection method of secondary battery, and secondary battery device
JP2014196967A (en) * 2013-03-29 2014-10-16 日立オートモティブシステムズ株式会社 Battery control device and power storage device
JP2016508215A (en) * 2012-12-04 2016-03-17 エルジー・ケム・リミテッド Apparatus and method for estimating depth of discharge of secondary battery
CN109870655A (en) * 2019-03-26 2019-06-11 上海工程技术大学 A kind of evaluation method for lithium battery SOC
WO2022001977A1 (en) * 2020-06-30 2022-01-06 比亚迪股份有限公司 Battery state calculation method and calculation device, and storage medium
WO2022224681A1 (en) * 2021-04-21 2022-10-27 株式会社デンソー Battery monitoring device and electric vehicle having same installed therein
WO2023093225A1 (en) * 2021-11-26 2023-06-01 比亚迪股份有限公司 Battery capacity estimation method and apparatus, and computer storage medium

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10002848B4 (en) * 1999-01-26 2006-11-02 Honda Giken Kogyo K.K. Device and method for detecting the residual charge of a battery
US7474950B2 (en) 2001-12-21 2009-01-06 Zf Friedrichshafen Ag Method for determining the clutch application point
JP2011043460A (en) * 2009-08-24 2011-03-03 Sanyo Electric Co Ltd Characteristic detection method of secondary battery, and secondary battery device
JP2016508215A (en) * 2012-12-04 2016-03-17 エルジー・ケム・リミテッド Apparatus and method for estimating depth of discharge of secondary battery
US9678165B2 (en) 2012-12-04 2017-06-13 Lg Chem, Ltd. Apparatus for estimating depth of discharge (DOD) of secondary battery
JP2014196967A (en) * 2013-03-29 2014-10-16 日立オートモティブシステムズ株式会社 Battery control device and power storage device
CN109870655A (en) * 2019-03-26 2019-06-11 上海工程技术大学 A kind of evaluation method for lithium battery SOC
WO2022001977A1 (en) * 2020-06-30 2022-01-06 比亚迪股份有限公司 Battery state calculation method and calculation device, and storage medium
EP4148439A4 (en) * 2020-06-30 2023-11-15 BYD Company Limited Battery state calculation method and calculation device, and storage medium
WO2022224681A1 (en) * 2021-04-21 2022-10-27 株式会社デンソー Battery monitoring device and electric vehicle having same installed therein
WO2023093225A1 (en) * 2021-11-26 2023-06-01 比亚迪股份有限公司 Battery capacity estimation method and apparatus, and computer storage medium

Similar Documents

Publication Publication Date Title
US7071654B2 (en) Battery charging/discharging apparatus and battery charging/discharging method
US5545969A (en) Battery residual capacity displaying system with discharged electrical quantity computation section
JP3285720B2 (en) Method and apparatus for detecting deterioration of assembled battery
US5027294A (en) Method and apparatus for battery-power management using load-compensation monitoring of battery discharge
US8198863B1 (en) Model-based battery fuel gauges and methods
EP0407522A1 (en) State-of-charge indications
US5723971A (en) Apparatus for charging a battery for a charge time determined based on the depth of discharge
CN101339230A (en) Method and apparatus for measuring battery internal resistance
US6091246A (en) Battery remaining capacity measuring apparatus
JPH08254573A (en) Battery measuring apparatus
JP2003035755A (en) Method for detecting stored power in battery
JP2002008732A (en) Voltage compensating device for battery assembly in electric vehicle
JP4880451B2 (en) Secondary battery remaining capacity estimation method and apparatus
JPH06342044A (en) Battery measuring apparatus
JP4016881B2 (en) Battery level measuring device
JP2001110459A (en) Battery pack having capacity correcting function
JP2007327971A (en) Measuring device of remaining battery life
JPH0829505A (en) Method for estimating residual capacity of battery
US6828761B1 (en) Battery charging/discharging apparatus and battery charging/discharging method
JPH11135159A (en) Detecting method of remaining capacity of secondary battery and its device
JP2002325362A (en) Secondary battery capacity measurement system, secondary battery full capacity compensating method, charging efficiency compensating method and discharge efficiency compensating method
JPH06281711A (en) Device for detecting residual capacity of battery
JPH01288784A (en) Detecting device of residual capacity of accumulator
JP4802414B2 (en) Battery remaining capacity meter
JP3317184B2 (en) Power supply device and method for detecting deterioration of power supply device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000801