JP5995029B2 - 工具用硬質被膜、その製造方法、および硬質被膜被覆金属加工工具 - Google Patents

工具用硬質被膜、その製造方法、および硬質被膜被覆金属加工工具 Download PDF

Info

Publication number
JP5995029B2
JP5995029B2 JP2015507822A JP2015507822A JP5995029B2 JP 5995029 B2 JP5995029 B2 JP 5995029B2 JP 2015507822 A JP2015507822 A JP 2015507822A JP 2015507822 A JP2015507822 A JP 2015507822A JP 5995029 B2 JP5995029 B2 JP 5995029B2
Authority
JP
Japan
Prior art keywords
hard coating
tool
hardness
hard
friction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015507822A
Other languages
English (en)
Other versions
JPWO2014155632A1 (ja
Inventor
正俊 櫻井
正俊 櫻井
メイ ワン
メイ ワン
須藤 祐司
祐司 須藤
小池 淳一
淳一 小池
翔子 小宮山
翔子 小宮山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
OSG Corp
Original Assignee
Tohoku University NUC
OSG Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, OSG Corp filed Critical Tohoku University NUC
Application granted granted Critical
Publication of JP5995029B2 publication Critical patent/JP5995029B2/ja
Publication of JPWO2014155632A1 publication Critical patent/JPWO2014155632A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0042Controlling partial pressure or flow rate of reactive or inert gases with feedback of measurements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Physical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Drilling Tools (AREA)
  • Milling, Broaching, Filing, Reaming, And Others (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Description

本発明は、金属加工工具の表面に被覆して設けられる工具用硬質被膜、その製造方法、および硬質被膜被覆金属加工工具に関し、特に、高硬度、低摩擦性、耐溶着性、耐酸化性に優れた硬質被膜に関する。
ドリルやタップ等の切削により被加工材を加工する切削加工工具、転造タップ等の塑性変形させることにより被加工材を加工する転造加工工具などの金属加工工具の表面には、耐摩耗性を向上させるために工具用硬質被膜が被覆されている。この工具用硬質被膜としては、TiN系、TiAlN系、及びAlCrN系のコーティングが広く用いられており、その性能を更に向上させるために改良が図られている。例えば、特許文献1に記載された硬質積層被膜がそれである。しかし、被削材の種類や切削条件によっては耐溶着性については未だ十分ではなく、比較的早期に工具寿命に至る場合があった。
これに対して、特許文献2において、TiCrAlMo1−a−b−cの窒化物又は炭窒化物からなる単層の切削工具用硬質被膜が提案されている。これによれば、原子比において、0.2≦a≦0.7、0.01≦b≦0.2、0.01≦c≦0.2、0.1≦(1−a−b−c)という範囲内とされ、総膜厚が0.2μm≦総膜厚≦10.0μmという範囲内とされることにより、耐摩耗性および耐溶着性を兼ね備えた切削工具用硬質被膜が得られるとされている。
特開2006−336032号公報 特開2012−115923号公報
しかし、上記特許文献2に記載された従来の硬質被膜においても、金属加工工具の耐久性について未だ十分に得られない場合があり、未だ改良の余地があった。このような従来の硬質被膜は、耐摩耗性および耐溶着性は得られるものの、結晶粒が比較的大きくて表面の平滑性すなわち低摩擦性が十分に得られないという問題があった。すなわち、高硬度、低摩擦性耐溶着性、耐酸化性を兼ね備えた工具用硬質被膜の開発が求められていた。
本発明は、以上の事情を背景として為されたものであり、その目的とするところは、高硬度、低摩擦性、耐溶着性、耐酸化性を兼ね備えた工具用硬質被膜、その製造方法、および金属加工工具を提供することにある。
本発明者等は、以上の事情を背景として種々研究を重ねた結果、Mo、V、Wから選ばれた少なくとも1種の金属を含む炭化物或いは窒化物から成る硬質被膜の生成時に酸素を導入すると、Mo、V、Wのうちの少なくとも1種の金属の酸炭化物或いは酸窒化物が得られること、および、Mo、V、Wから選ばれた少なくとも1種の金属とTi、Crから選ばれた少なくとも1種の金属とを含む炭化物或いは窒化物から成る硬質被膜の生成時に酸素を導入すると、Mo、V、Wのうちの少なくとも1種の金属およびTi、Crのうちの少なくとも1種の金属を含むの酸炭化物或いは酸窒化物が得られること、そして、それらの酸炭化物或いは酸窒化物からなる硬質被膜は、優れた高硬度、低摩擦性耐溶着性、耐酸化性を兼ね備えることを見出した。本発明は、このような知見に基づいて得られたものである。
すなわち、第1発明の要旨とするところは、工具の表面に被覆して設けられる工具用硬質被膜であって、(X1−c1−a−b(但し、XはMo、V、Wの中から選択された少なくとも1種の金属元素を示し、YはTi、Crの中から選択された少なくとも1種の金属元素を示し、ZはN、Cの中から選ばれた少なくとも1種の非金属元素を示す)から成り、前記(X1−c1−a−bは、原子比で、aおよびbは、0.3≦a+b≦0.6、0<b<0.3、0.1≦c≦0.4であり、前記工具用硬質被膜は、微細な結晶から成る微細結晶相と非結晶のアモルファス相とを有する微細な複相組織構造を備え、さらに、前記工具用硬質被膜は、工具母材の表面を0.2乃至10.0μmの厚みの単層で被覆したものであることを特徴とする。
第1発明の工具用硬質被膜によれば、(X1−c1−a−b(但し、XはMo、V、Wの中から選択された少なくとも1種の金属元素を示し、YはTi、Crの中から選択された少なくとも1種の金属元素を示し、ZはN、Cの中から選ばれた少なくとも1種の非金属元素を示す)で示される、Mo、W、Vのうちの少なくとも1種の金属およびTi、Crの中から選択された少なくとも1種の金属を含む酸炭化物および/または酸窒化物から成るものであるので、高硬度、低摩擦性、耐溶着性、耐酸化性に優れた工具用硬質被膜が得られる。特に、酸素の導入により、固体潤滑性に優れるMo、W、Vを主体とする酸炭化物や酸窒化物が生成されることで、潤滑性、低摩擦性に優れ摩擦係数が低く、耐酸化性が高められ、工具寿命が長くなる。また、酸素の導入により、Mo、W、Vの酸炭化物や酸窒化物のアモルファス相が形成されるため、硬質被膜の結晶相における結晶粒径が微細となって平滑性および耐溶着性に優れ、摩擦係数が低いので、一層工具寿命が長くなる。更に、TiやCrを含むことで、耐酸化性がより一層高められる。また、(X1−c1−a−bは、原子比で、aおよびbは、0.3≦a+b≦0.6、0<b<0.3、0.1≦c≦0.4である。このような適切な原子比とされることで、高硬度、低摩擦性、耐溶着性、耐酸化性に優れた工具用硬質被膜が得られる。原子比において、(a+b)が0.6を越えると、アモルファス相が多くなって硬質被膜が軟らかくなり、0.3を下回ると、非金属元素が少なすぎて十分な硬度が得られず、また、潤滑性、低摩擦性も十分に得られない。酸素は硬質被膜を硬くし且つ結晶粒を小さくする上で必須のものであるが、その原子比bが0.3以上となるとアモルファス相が多くなって硬質被膜が軟らかくなり、また、Z(CおよびN)が少なくなり硬質被膜が硬くならない。原子比cは、0.1を下回ると耐酸化性の効果が十分に得られず、0.4を上回ると、TiやCrを主体とする酸窒化物、酸炭化物が形成され低摩擦係数および高い潤滑性が得られない。さらに、前記工具用硬質被膜は、酸素の導入により、微細な結晶から成る微細結晶相と非結晶のアモルファス相とを有する微細な複相組織構造を有するものである。このように構成されることにより、低摩擦係数を有する高硬度の工具用硬質被膜が得られる。さらに、前記工具用硬質被膜は、工具母材の表面を0.2μm乃至10.0μmの厚みの単層で被膜したものである。このようにすれば、高い耐摩耗性及び耐溶着性と平滑性とを有する工具用硬質被膜が少ない工程で得られるので、工具が安価となる。この工具用硬質被膜の膜厚が0.2μm未満である場合には十分な耐摩耗性及び耐溶着性が得られなくなるおそれがある一方、10.0μmを超える場合には靱性が低下して欠けや剥離等が発生し易くなるおそれがある。膜厚を0.2μm以上10.0μm以下の範囲内とすることで、耐摩耗性及び耐溶着性を保証するのに必要十分な厚さを有し、欠けや剥離等が発生し難い硬質被膜を構成することができる。
また、好適には、本発明の工具用硬質被膜は、金属を塑性加工する転造タップの他に、切削により金属を加工するエンドミル、ドリル、正面フライス、総型フライス、リーマ、切削タップ等の回転切削工具の他、バイト等の非回転式の切削工具、ダイス等、種々の金属加工工具の表面コーティングに好適に適用される。また、工具母材すなわち硬質被膜が設けられる部材の材質としては、超硬合金や高速度工具鋼が好適に用いられるが、他の材料でもよく、本発明の工具用硬質被膜は種々の材料から構成された金属加工工具に広く適用される。
また、好適には、本発明の工具用硬質被膜は、工具の一部乃至全部の表面に被覆して設けられるものであり、好適には、その工具において金属加工に関与する刃部又は塑性加工部に設けられる。
また、好適には、本発明の工具用硬質被膜の製造方法としては、スパッタリング法が好適に用いられるが、アークイオンプレーティング法等の他の物理蒸着法(PVD法)や、電子ビーム蒸着法、プラズマCVD法、熱CVD法等の化学蒸着法(CVD法)、を用いることもできる。このような製造方法では、硬質被膜が被着される工具母材を収容するチャンバー内に供給される全反応ガスに対する酸素ガスの流量比GRは、0.005≦GR≦0.45の範囲内とされる。流量比GRが0.005を下まわると優れた潤滑性が得られず、0.45を越えると硬質被膜組織がアモルファス相のみとなって硬度が得られなくなる。
本発明の一実施例の硬質被膜被覆が被覆された工具の一実施例である転造タップを軸心に垂直な方向から見た正面図である。 図1の転造タップのうち本発明の一例の工具用硬質被膜がコーティングされている加工部の断面形状を示す断面図である。 図2の工具用硬質被膜がコーティングされている加工部の表面を拡大して説明する拡大図である。 図1乃至図3の工具用硬質被膜を形成する際に好適に用いられるスパッタリング装置を説明する概略構成図である。 テストピースの一面に固着された硬質被膜の摩擦係数を測定する装置を説明する図である。 Mo、V、Wの中から選択された少なくとも1種の金属元素を含む酸窒化物、酸炭窒化物であって相互に異なる原子組成で膜生成時の酸素ガス流量比で酸素を含むように作成した硬質被膜を固着した複数種類のテストピース(実施例1〜実施例39)の硬さ、摩擦係数、結晶粒径の測定値をそれぞれ示す図表である。 Mo、V、Wの中から選択された少なくとも1種の金属元素を含む酸窒化物であって相互に異なる原子組成で膜生成時の酸素ガス流量比で酸素を含まないように作成した硬質被膜を固着した複数種類のテストピース(比較例1〜比較例6)の硬さ、摩擦係数、結晶粒径の測定値をそれぞれ示す図表である。 図6および図7で示された各テストピースに固着された硬質被膜の硬さおよび摩擦係数と、その硬質被膜の生成時の酸素ガス流量比との関係を表す図表である。 図7の比較例1のテストピースに固着された硬質被膜(Ti−Mo)Nの断面を撮像したTEM写真を示す図である。 図7の比較例1のテストピースに固着された硬質被膜(Ti−Mo)NのTEMにより得られた電子回折パターンを示す図である。 図7の実施例1のテストピースに固着された硬質被膜が、多数の比較的大きなTiN結晶が粒界Bを隔てて存在している結晶相CPから構成されることを説明する模式図である。 図6の実施例7の テストピースに固着された硬質被膜(Ti−Mo)ONの断面を撮像したTEM写真を示す図である。 図6の実施例7のテストピースに固着された硬質被膜 (Ti−Mo)OのTEMにより得られた電子回折パターンを示す図である。 図6の実施例7のテストピースに固着された硬質被膜が、粒界Bに位置するアモルファス相APとその内側の微細結晶からなる結晶相CPとの複相組織から構成されていることを説明する模式図である。 図6の実施例5のテストピースに固着された硬質被膜の断面を撮像した高倍率・高解像度TEM写真を示す図である。 図6の実施例5のテストピースに固着された硬質被膜中のアモルファス相APについて、電子線エネルギ損失分光法(EELS)を用いて組成分析を行なった結果を示す特性表を示す図である。 図6の実施例5のテストピースに固着された硬質被膜中の結晶相CPについて、電子線エネルギ損失分光法(EELS)を用いて組成分析を行なった結果を示す特性表を示す図である。 Mo、V、Wから選択された少なくとも1種の金属元素とTiCrから選択された少なくとも1種の金属元素とを含む酸窒化物、酸炭窒化物であって相互に異なる原子組成で膜生成時の酸素ガス流量比で酸素を含むように作成した硬質被膜を固着した複数種類のテストピース(実施例1〜実施例47)の硬さ、摩擦係数、結晶粒径の測定値をそれぞれ示す図表である。 Mo、V、Wから選択された少なくとも1種の金属元素とTiCrから選択された少なくとも1種の金属元素とを含む酸窒化物であって相互に異なる原子組成で膜生成時の酸素ガス流量比で酸素を含まないように作成した硬質被膜を固着した複数種類のテストピース(比較例1〜比較例11)の硬さ、摩擦係数、結晶粒径の測定値をそれぞれ示す図表である。 図18および図19で示された各テストピースに固着された硬質被膜の硬さおよび摩擦係数と、その硬質被膜の生成時の酸素ガス流量比との関係を表す図表である。
以下、本発明の好適な実施例を図面に基づいて詳細に説明する。
図1は、本発明の工具用硬質被膜30が適用された被覆金属加工工具の一例である転造タップ10を軸心に垂直な方向から見た正面図である。また、図2は図1のII−II視断面を拡大して示す横断面図である。図1および図2に示すように、本実施例の転造タップ10は、図示しないチャックを介して主軸に取り付けられるシャンク12と、下穴内にねじ込まれることによりめねじを形成する加工部16とを同軸上に一体に備えており、工具母材(基材)18は高速度工具鋼にて構成されている。この高速度工具鋼は、たとえばJISに規定のSKH58相当の高速度工具鋼が用いられており、その含有成分および割合はC:1.0、Cr:4.0、Mo:8.8、W:1.8、V:2.0で、残りが実質的にFeである。
加工部16は、外側へ湾曲した辺からなる多角柱形状、本実施例では略四角柱形状の断面を成しているとともに、その外周面には、金属製被加工物の下穴の表層部に食い込んで塑性変形させることによりめねじを盛上げ加工すなわち転造加工するおねじ22が設けられている。おねじ22のねじ山は、形成すべきめねじの溝の形状に対応した断面形状を成しており、そのめねじに対応するリード角のつる巻き線に沿って一定の高さ寸法で設けられている。すなわち、加工部16には、おねじ22のねじ山が径方向の外側へ突き出してめねじを加工する4箇所のマージン部Mと、そのマージン部Mよりも小径の4箇所の逃げ部24とが、それぞれ軸心Oと平行に軸方向へ連なるように、軸心Oまわりにおいて交互に且つ等角度間隔で設けられているのである。マージン部Mの寸法は、形成すべきめねじと同じ寸法か、或いは塑性変形に対する弾性復帰を考慮して、めねじよりも大き目に設定される。また、この加工部16は、軸方向においてねじ山の径寸法が一定の完全山部26と、先端側へ向かうに従って径寸法が小さくなる食付き部28とを備えている。なお、図2は、おねじ22の溝の谷底においてつる巻き線に沿って切断した断面図である。
このような転造タップ10の加工部16は、優れた耐摩耗性、耐溶着性、および平滑性を有する硬質被膜30により0.2乃至10μmの厚みで単層で被覆されている。図3は、硬質被膜30が転造タップ10の加工部16の表面にコーティングされた転造タップ10の表面部分を拡大して示す断面図を示している。図1の斜線部は、転造タップ10において硬質被膜30が設けられた部分を示している。この硬質被膜30は、転造タップ10により下穴の内周面に雌ねじを形成する転造加工に際して、下穴の内周面を塑性変形させる比較的高い圧力下で金属製被加工材と摩擦させられる。
硬質被膜30は、酸素の導入により100nm以下の微細結晶を有する結晶相とアモルファス相とを有し、X1−a−b(但し、XはMo、V、Wの中から選択された少なくとも1種の金属元素を示し、ZはN、Cの中から選ばれた少なくとも1種の非金属元素を示す)、または、(X1−c1−a−b(但し、XはMo、V、Wの中から選択された少なくとも1種の金属元素を示し、YはTi、Crの中から選択された少なくとも1種の金属元素を示し、ZはN、Cの中から選ばれた少なくとも1種の非金属元素を示す)から0.2μm乃至10.0μmの厚みの単層で構成されている。
図4は、本実施例の硬質被膜30を形成する際に好適に用いられるスパッタリング装置40を説明する概略構成図(模式図)である。このスパッタリング装置40によるスパッタリング工程では、硬質被膜30を構成している元素Ti、Cr、Mo、W、Vのうちの硬質被膜30に必要な元素を含むターゲット48に電源50により負の一定のバイアス電圧(例えば−50〜−60V程度)を印加するとともに、バイアス電源44により工具母材18に負の一定のバイアス電圧(例えば−100V程度)を印加することにより、アルゴンイオンAr+を上記ターゲット48に衝突させてTi、Cr、Mo、W、V等の構成元素を叩き出し、工具母材18に衝突させる。上記電源50及びバイアス電源44により印加される電圧はコントローラ46により制御される。チャンバ42内はたとえば0.2Pa程度に圧力制御され、そのチャンパ42内には、アルゴンガスの他に、窒素ガス(N)、炭化水素ガス(CH、C)、酸素ガス(O)等の反応ガスがたとえば100ml/min程度の所定の流量で選択的に導入され、その窒素原子N、炭素原子C或いは酸素原子Oがターゲット38から叩き出されたTi、Cr、Mo、W、Vのいずれかと結合してTiN、TiCN、TiO、MoO等の窒化物、炭化物、酸化物、酸窒化物、酸炭化物となり、工具母材18の表面に硬質被膜30として所定厚みで固着させられる。この硬質被膜30の成膜時において、全反応ガスに対する酸素ガスの流量比GR(たとえば酸素ガス以外の反応ガスが窒素ガスであるとすると、酸素ガス流量fO2/(窒素ガス流量fN2+酸素ガス流量fO2)と定義される)は、0.005以上且つ0.45以下の範囲(0.005≦GR≦0.45)に設定される。酸素ガスの流量比GRは、0.2Paに圧力制御されたチャンバ42内へ供給される体積流量比である。
[硬さ・摩擦係数・粒径評価試験1]
続いて、酸素の導入により100nm以下の微細結晶を有する結晶相CPとアモルファス相APとを含む複相組織を有し、X1−a−bの酸窒化物、酸炭化物、酸炭窒化物から成る硬質被膜30の硬さ・摩擦係数・粒径を検証するために本発明者等が行なった硬さ・摩擦係数・粒径評価試験1について以下に説明する。本発明者等は、原子組成および膜厚の異なる複数種類の硬質被膜30を超硬合金製のテストピースTP(φ25×3.5mm)の一面に10μmの厚みの単層でコーティングした試験品(実施例1〜39、比較例1〜6)を、複数種類の酸素ガスの流量比GRを用いて作成し、硬質被膜30の硬さ、摩擦係数、粒径を以下の測定条件を用いて測定した。
(硬さ測定条件)
・測定装置:株式会社フィッシャー・インストルメンツ製のPICODENTOR HM500
・測定方法:ナノインデンテーション法に従って、先端がダイヤモンドチップからなる三角錐型(バーコビッチ型)の圧子を、テストピースTPの一面に固着された硬質被膜30の表面に荷重Pで押し込み、圧子の下の射影面積Aを算出し、硬さH(=P/A)を算出する。この硬さHの単位はGPaである。
(摩擦係数測定条件)
・測定装置:RHESCA CO.,LTD製のFPR-2100型摩耗摩擦試験機
・測定方法:上記摩耗摩擦試験機(フリクションプレーヤ)は、図5に示すように構成されており、回転ステージ70の中央部に固定されたテストピースTPの一面に固着された硬質被膜30の回転中心からずらした位置に、負荷ウエイト74の印加荷重W(本測定では100g)が付加される摺動ボール76を押し付け、線速度が100mm/secとなるようにその状態で回転ステージ70を回転させたときに摺動ボール76が受ける引張り力Fを応力センサ78を用いて検出し、その引張り力Fを印加荷重Wで割ることにより摩擦係数μ(=W/F)を算出する。
(結晶の粒径測定条件)
・測定装置:TEM(透過型電子顕微鏡)
・測定方法:テストピースTPの表面に形成された硬質被膜30の結晶相組織を構成する微細結晶粒は母材の表面に対して垂直方向に伸びた形状を呈することが多い。そのため、テストピースTPの表面に形成された硬質被膜30の断面をTEMを用いて撮像し、その垂直方向に伸びた結晶の母材表面に平行な幅の寸法を10点測定し、それから算出された平均値を、各テストピースTPの硬質被膜30の結晶相の結晶粒径D(単位:nm)として測定する。
図6は、上記硬さ・摩擦係数・粒径評価試験1における各テストピースのうちの実施例1〜実施例39に固着された硬質被膜30の元素組成、その硬質被膜30の生成に用いられた酸素流量比GR、その硬質被膜30の硬さH、摩擦係数μ、結晶相を構成する微細結晶の粒径Dを、それぞれ併せて示す図表である。また、図7は、テストピースのうちの比較例1乃至6に固着された硬質被膜30の元素組成、その硬質被膜30の生成に用いられた酸素流量比GR、その硬質被膜30硬さH、摩擦係数μ、結晶相を構成する微細結晶の粒径Dを、それぞれ併せて示す図表である。比較例1乃至6は、X(Mo、V又はW)およびZ(N又はC)を含むが、酸素Oを含まない硬質被膜が用いられたものである。
図8は、図6および図7の測定値を、酸素ガス流量比GR(=酸素ガス流量fO2/(窒素ガス流量fN2+酸素ガス流量fO2)を示す横軸と、硬さHおよび摩擦係数μをそれぞれ表わす左右の縦軸とを有する二次元座標に示したものである。黒丸印は実施例1〜39の硬さHの値を示し、白丸印は比較例1〜6の硬さHの値を示し、黒角印は実施例1〜39の摩擦係数μの値を示し、白角印は比較例1〜6の摩擦係数μの値を示している。硬さHの予め定められた品質基準値は20GPa以上、摩擦係数μの予め定められた品質基準値は0.5以下、結晶粒径Dの予め定められた品質基準値は100nm以下である。
図6に示す実施例1〜39は上記硬さH、摩擦係数μ、結晶粒径Dについての各品質基準値をクリアしている。これら実施例1〜39の硬質被膜は、酸素ガス流量比GRが0.005≦GR≦0.45の範囲内で生成されている。それら実施例1〜39の硬質被膜の化学組成は、X1−a−b(但し、XはMo、V、Wの中から選択された少なくとも1種の金属元素を示し、ZはN、Cの中から選ばれた少なくとも1種の非金属元素を示す)であって、その原子比において、aおよびbは、0.3≦a+b≦0.6、0<b<0.3である。これに対して、図7に示すように、比較例1〜6の硬質被膜は、その化学組成の原子比が上記実施例1〜39の硬質被膜の化学組成の原子比の範囲を越えたものであるか、或いは酸素ガス流量比GRが0.005≦GR≦0.45の範囲外で生成されたものであり、硬さHの品質基準値(20GPa以上)、摩擦係数μの品質基準値(0.5以下)、結晶粒径Dの品質基準値(100nm以下)のいずれかを満足できていない。
このような硬さ・摩擦係数・粒径評価試験1の評価結果は、硬質被膜30の生成時に酸素Oが導入されることにより、硬度の高い硬質被膜30が酸窒化物、酸炭窒化物とされると同時に優れた固体潤滑剤であるMo、W、Vの酸炭化物や酸窒化物が硬質被膜30内に自己生成され、硬質被膜30中にアモルファス相APおよび結晶相CPを有する複相構造とされ、その結晶相CP中の結晶径Dが100nm以下と格段に小さくなる。このため、硬さHが高く、摩擦係数μが低く、硬さ、耐摩耗性、耐溶着性、耐酸化性に優れた硬質被膜30が得られたと考えられる。
上記の結果を導いている各テストピースTPの硬質被膜の性状を、TEM、X線回折を用いて分析した。図9は比較例1の(Ti−Mo)N硬質被膜の断面のTEM写真を示し、図10はその比較例1の硬質被膜のTEMにより得られた電子回折パターンを示している。図9から明らかなように、比較例1の硬質被膜の組織は、コムラー状結晶粒で、130nm以上の粗粒である柱状結晶を有する結晶相CPのみの単相構造である。このことは、図10において、(Ti−Mo)N結晶相の明瞭な回折ピークが観察されることからも明らかである。この結果、硬質被膜の表面の摩擦係数μが0.5以上に大きくなったと推定される。図11は、多数の比較的大きなTiN結晶が粒界Bを隔てて存在している結晶相CPを示す模式図である。
これに対して、図12は実施例7の(Ti−Mo)O硬質被膜の断面のTEM写真を示し、図13はその実施例7の硬質被膜のTEMにより得られた電子回折パターンを示している。図12から明らかなように、実施例7の硬質被膜の組織は、非常に微細な結晶粒からなる結晶相を有することが明らかである。また、図13において、回折パターンは明確な回折ピークが示されず、非晶質相すなわちアモルファス相を含むことが明らかである。すなわち、図14の模式図のように、硬質被膜は、粒界Bに位置するアモルファス相APとその内側の結晶からなる結晶相CPとの複相組織から構成されている。図15は、実施例5の硬質被膜の断面を撮像した高倍率・高解像度TEM写真を示している。この図15では、アモルファス相APおよび結晶相CPが観察される。
上記実施例5の硬質被膜を構成するアモルファス相APおよび結晶相CPについて、走査透過電子顕微鏡(STEM)に付属した電子線エネルギ損失分光法(EELS:Electron Energy-Loss Spectroscopy)を用いて組成分析を行なった。EELSは、電子が薄膜試料を通過する際に、原子との相互作用により失うエネルギを測定することによって、物質の構成元素を分析する手法である。この結果、図16および図17に示すように、実施例5の硬質被膜を構成するアモルファス相APおよび結晶相CPには、酸素が含まれることが明らかなった。図16では、実施例5の硬質被膜中のアモルファス相AP中からは、Mo、Ti、NおよびOに対応するピークが観察された。また、図17では、実施例5の硬質被膜中の結晶相CPからも、Mo、Ti、NおよびOに対応するピークが観察された。なお、図16および図17から明らかなように、Mo−M2及びN−Kが重なっているため、定量分析は困難であった。また、ピークに付した元素記号の左側の記号は殻を示している。
[硬さ・摩擦係数・粒径評価試験2]
次に、酸素の導入により100nm以下の微細結晶を有する結晶相CPとアモルファス相APとを含む複相組織を有し、(X1−c1−a−bの酸窒化物、酸炭化物、酸炭窒化物から成る硬質被膜30の硬さ・摩擦係数・粒径を検証するために本発明者等が行なった硬さ・摩擦係数・粒径評価試験2について以下に説明する。本発明者等は、原子組成および膜厚の異なる複数種類の硬質被膜30を超硬合金製のテストピースTP(φ25×3.5mm)の一面に10μmの厚みの単層でコーティングした試験品(実施例1〜39、比較例1〜6)を、複数種類の酸素ガスの流量比GRを用いて作成し、硬質被膜30の硬さ、摩擦係数、粒径は前述と同様の測定条件を用いて測定した。
図18は、上記硬さ・摩擦係数・粒径評価試験2における各テストピースのうちの実施例1〜実施例47に固着された硬質被膜30の元素組成、その硬質被膜30の生成に用いられた酸素流量比GR、その硬質被膜30の硬さH、摩擦係数μ、結晶相を構成する微細結晶の粒径Dを、それぞれ併せて示す図表である。また、図19は、テストピースのうちの比較例1乃至11に固着された硬質被膜30の元素組成、その硬質被膜30の生成に用いられた酸素流量比GR、その硬質被膜30の硬さH、摩擦係数μ、結晶相を構成する微細結晶の粒径Dを、それぞれ併せて示す図表である。比較例1乃至11は、X(Mo、V、又はW)、Y(Ti又はCr)、およびZ(N又はC)を含むが、酸素Oを含まない硬質被膜が用いられたものである。
図20は、図18および図19の測定値を、酸素ガス流量比GR(=酸素ガス流量fO2/(窒素ガス流量fN2+酸素ガス流量fO2)を示す横軸と、硬さHおよび摩擦係数μをそれぞれ表わす左右の縦軸とを有する二次元座標に示したものである。黒丸印は実施例1〜47の硬さHの値を示し、白丸印は比較例1〜11の硬さHの値を示し、黒角印は実施例1〜47の摩擦係数μの値を示し、白角印は比較例1〜11の摩擦係数μの値を示している。前述と同様、硬さHの予め定められた品質基準値は20GPa以上、摩擦係数μの予め定められた品質基準値は0.5以下、結晶粒径Dの予め定められた品質基準値は100nm以下である。
図18に示す実施例1〜47は上記硬さH、摩擦係数μ、結晶粒径Dについての各品質基準値をクリアしている。これら実施例1〜47の硬質被膜は、酸素ガス流量比GRが0.005≦GR≦0.45の範囲内で生成されている。それら実施例1〜47の硬質被膜の化学組成は、(X1−c1−a−b(但し、XはMo、V、Wの中から選択された少なくとも1種の金属元素を示し、YはTi、Crの中から選択された少なくとも1種の金属元素を示し、ZはN、Cの中から選ばれた少なくとも1種の非金属元素を示す)であって、その原子比において、aおよびbは、0.3≦a+b≦0.6、0<b<0.3、0.1≦c≦0.4である。これに対し、図19に示すように、比較例1〜11の硬質被膜は、その化学組成の原子比が上記実施例1〜47の硬質被膜の化学組成の原子比の範囲を越えたものであるか、或いは酸素ガス流量比GRが0.005≦GR≦0.45の範囲外で生成されたものであり、硬さHの品質基準値(20GPa以上)、摩擦係数μの品質基準値(0.5以下)、結晶粒径Dの品質基準値(100nm以下)のいずれかを満足できていない。
この硬さ・摩擦係数・粒径評価試験2により示される上記の結果は、前記の硬さ・摩擦係数・粒径評価試験1と同様に、硬質被膜30の生成時に酸素が導入されることにより、硬度が高く、かつ優れた固体潤滑性を有するMo、W、Vの酸炭化物や酸窒化物が形成される。また、同時に硬質被膜30は、アモルファス相APおよび結晶相CPを有する複相構造とされ、その結晶相CP中の結晶径Dが100nm以下と格段に小さくなる。このため、硬さHが高く、摩擦係数μが低く、硬さ、耐摩耗性、耐溶着性、耐酸化性に優れた硬質被膜30が得られたと考えられる。
上述のように、本実施例の工具用の硬質被膜30は、X1−a−b(但し、XはMo、V、Wの中から選択された少なくとも1種の金属元素を示し、ZはN、Cの中から選ばれた少なくとも1種の非金属元素を示す)で示される、Mo、W、Vのうちの少なくとも1つの金属の酸炭化物および/または酸炭窒化物から成るものである。または、本実施例の工具用の硬質被膜30は、(X1−c1−a−b(但し、XはMo、V、Wの中から選択された少なくとも1種の金属元素を示し、YはTi、Crの中から選択された少なくとも1種の金属元素を示し、ZはN、Cの中から選ばれた少なくとも1種の非金属元素を示す)X1−a−b(但し、XはMo、V、Wの中から選択された少なくとも1種の金属元素を示し、ZはN、Cの中から選ばれた少なくとも1種の非金属元素を示す)で示される、Mo、W、Vのうちの少なくとも1種の金属およびTi、Crの中から選択された少なくとも1種の金属を含む酸炭化物および/または酸炭窒化物から成るものである。このため、硬質被膜30によれば、高硬度、低摩擦性、耐溶着性、耐酸化性に優れた工具用硬質被膜が得られる。特に、酸素の導入により、優れた固体潤滑性を有するMo、W、Vを主体とする酸炭化物や酸窒化物が形成されることで、潤滑性、低摩擦性に優れ摩擦係数が低いので、工具寿命が長くなる。また、Ti、Crを含むことにより、硬質被膜30の耐酸化性が高められる。更に、酸素の導入により、Mo、W、Vを主体とする酸炭化物や酸窒化物のアモルファス相APが形成されるため、硬質被膜の結晶相CPにおける結晶粒径が微細となって平滑性および耐溶着性に優れ、摩擦係数が低いので、一層工具寿命が長くなる
また、本実施例の硬質被膜30は、酸素の導入により、微細な結晶から成る微細結晶相CPと非結晶のアモルファス相APとを有する微細な複相組織構造を有するものであるので、低摩擦係数を有する高硬度の金属加工工具が得られる。
また、本実施例において、硬質被膜30が、X1−a−bから構成される場合は、原子比で、aおよびbは、0.3≦a+b≦0.6、0<b<0.3である。このような適切な原子比とされることで、高硬度、低摩擦性、耐溶着性、耐酸化性に優れた工具用硬質被膜が得られる。
また、本実施例において、硬質被膜30が、(X1−c1−a−bから構成される場合は、原子比で、aおよびbは、0.3≦a+b≦0.6、0<b<0.3、0.1≦c≦0.4である。このような適切な原子比とされることで、高硬度、低摩擦性、耐溶着性、耐酸化性に優れた工具用硬質被膜が得られる。
また、本実施例の工具用硬質被膜30の製造方法では、図4のスパッタリング装置40において、硬質被膜30の生成に際して、その硬質被膜30が被着される工具母材18を収容するチャンバー42内に対して供給する反応ガスは、全反応ガスに対する酸素ガスの流量比GRは、0.005≦GR≦0.45の範囲内とされるので、硬度、耐酸化性に優れた硬質被膜30が得られる。すなわち、硬質被膜30が酸素を十分に含まないため優れた潤滑性を得られなかったり、硬質被膜30の組織がアモルファス相のみとなって硬度が得られなくなることが防止される。
以上、本発明の好適な実施例を図面に基づいて詳細に説明したが、本発明はこれに限定されるものではなく、その趣旨を逸脱しない範囲内において種々の変更が加えられて実施されるものである。
10:転造タップ(硬質被膜被覆金属加工工具)
18:工具母材
30:硬質被膜(工具用硬質被膜)

Claims (4)

  1. 工具の表面に被覆して設けられる工具用硬質被膜であって、
    (X1−c1−a−b(但し、XはMo、V、Wの中から選択された少なくとも1種の金属元素を示し、YはTi、Crの中から選択された少なくとも1種の金属元素を示し、ZはN、Cの中から選ばれた少なくとも1種の非金属元素を示す)から成り、
    前記(X1−c1−a−bは、原子比で、aおよびbは、0.3≦a+b≦0.6、0<b<0.3、0.1≦c≦0.4であり、
    前記工具用硬質被膜は、微細な結晶から成る微細結晶相と非結晶のアモルファス相とを有する微細な複相組織構造を備え、
    前記工具用硬質被膜は、工具母材の表面を0.2乃至10.0μmの厚みの単層で被覆したものである
    ことを特徴とする工具用硬質被膜。
  2. 前記工具用硬質被膜は、100nm以下の結晶相粒径を有する
    ことを特徴とする請求項の工具用硬質被膜。
  3. 請求項またはの工具用硬質被膜の製造方法であって、
    チャンバー内において前記工具用硬質被膜を構成する金属元素を飛散させて母材に被着させるに際して、該チャンバー内に酸素ガスを含む反応ガスを供給し、該反応ガスに対する該酸素ガスの流量比GRは、0.005≦GR≦0.45の範囲内とする
    ことを特徴とする工具用硬質被膜の製造方法。
  4. 請求項またはに記載の工具用硬質被膜が表面に被覆して設けられた
    ことを特徴とする硬質被膜被覆金属加工工具。
JP2015507822A 2013-03-28 2013-03-28 工具用硬質被膜、その製造方法、および硬質被膜被覆金属加工工具 Active JP5995029B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/059399 WO2014155632A1 (ja) 2013-03-28 2013-03-28 工具用硬質被膜、その製造方法、および硬質被膜被覆金属加工工具

Publications (2)

Publication Number Publication Date
JP5995029B2 true JP5995029B2 (ja) 2016-09-28
JPWO2014155632A1 JPWO2014155632A1 (ja) 2017-02-16

Family

ID=51622700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015507822A Active JP5995029B2 (ja) 2013-03-28 2013-03-28 工具用硬質被膜、その製造方法、および硬質被膜被覆金属加工工具

Country Status (2)

Country Link
JP (1) JP5995029B2 (ja)
WO (1) WO2014155632A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346077A (ja) * 1993-06-08 1994-12-20 Riken Corp 摺動部材
JPH08144046A (ja) * 1994-11-21 1996-06-04 Teikoku Piston Ring Co Ltd 摺動部材およびその製造方法
JPH10237628A (ja) * 1997-02-20 1998-09-08 Sumitomo Electric Ind Ltd 被覆工具およびその製造方法
JPH111763A (ja) * 1997-06-09 1999-01-06 Teikoku Piston Ring Co Ltd 硬質被覆材およびそれを被覆した摺動部材ならびにその製造方法
JP2005256081A (ja) * 2004-03-11 2005-09-22 Kobe Steel Ltd 硬質積層皮膜および硬質積層皮膜の形成方法
JP2006051510A (ja) * 2004-08-10 2006-02-23 Hitachi Metals Ltd 鋳造用部材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346077A (ja) * 1993-06-08 1994-12-20 Riken Corp 摺動部材
JPH08144046A (ja) * 1994-11-21 1996-06-04 Teikoku Piston Ring Co Ltd 摺動部材およびその製造方法
JPH10237628A (ja) * 1997-02-20 1998-09-08 Sumitomo Electric Ind Ltd 被覆工具およびその製造方法
JPH111763A (ja) * 1997-06-09 1999-01-06 Teikoku Piston Ring Co Ltd 硬質被覆材およびそれを被覆した摺動部材ならびにその製造方法
JP2005256081A (ja) * 2004-03-11 2005-09-22 Kobe Steel Ltd 硬質積層皮膜および硬質積層皮膜の形成方法
JP2006051510A (ja) * 2004-08-10 2006-02-23 Hitachi Metals Ltd 鋳造用部材

Also Published As

Publication number Publication date
JPWO2014155632A1 (ja) 2017-02-16
WO2014155632A1 (ja) 2014-10-02

Similar Documents

Publication Publication Date Title
WO2014163081A1 (ja) 表面被覆切削工具
JP6391045B2 (ja) 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP2007260851A (ja) 表面被覆切削工具
JP2018202533A (ja) 表面被覆切削工具
WO2018105403A9 (ja) 表面被覆切削工具
JP4991244B2 (ja) 表面被覆切削工具
JP2018202505A (ja) 表面被覆切削工具
WO2016167032A1 (ja) 硬質皮膜
JP6120430B2 (ja) 加工工具用硬質被膜および硬質被膜被覆金属加工工具
JP2005126736A (ja) 硬質皮膜
JP6168539B2 (ja) 硬質潤滑被膜および硬質潤滑被膜被覆工具
JP5995029B2 (ja) 工具用硬質被膜、その製造方法、および硬質被膜被覆金属加工工具
JP6959577B2 (ja) 表面被覆切削工具
JP6959578B2 (ja) 表面被覆切削工具
JP2007307652A (ja) 被覆工具及びその製造方法
WO2023162683A1 (ja) 被覆工具および切削工具
JP6168540B2 (ja) 硬質潤滑被膜および硬質潤滑被膜被覆工具
WO2023162682A1 (ja) 被覆工具および切削工具
JP2019171482A (ja) 表面被覆切削工具
JP2019171483A (ja) 表面被覆切削工具
WO2023162685A1 (ja) 被覆工具および切削工具
US11524339B2 (en) Cutting tool
WO2023008189A1 (ja) 被覆工具および切削工具
JP2019063900A (ja) 硬質被覆層がすぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具
JP7125013B2 (ja) 硬質被覆層が優れた耐チッピング性を発揮する表面被覆切削工具

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160809

R150 Certificate of patent or registration of utility model

Ref document number: 5995029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250