JP5991574B2 - Manufacturing method of three-dimensional shaped object - Google Patents

Manufacturing method of three-dimensional shaped object Download PDF

Info

Publication number
JP5991574B2
JP5991574B2 JP2012060896A JP2012060896A JP5991574B2 JP 5991574 B2 JP5991574 B2 JP 5991574B2 JP 2012060896 A JP2012060896 A JP 2012060896A JP 2012060896 A JP2012060896 A JP 2012060896A JP 5991574 B2 JP5991574 B2 JP 5991574B2
Authority
JP
Japan
Prior art keywords
powder
fluid
fluid path
abrasive
dimensional shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012060896A
Other languages
Japanese (ja)
Other versions
JP2013194263A (en
Inventor
不破 勲
勲 不破
阿部 諭
諭 阿部
吉田 徳雄
徳雄 吉田
東 喜万
喜万 東
内野々 良幸
良幸 内野々
武南 正孝
正孝 武南
武 松本
武 松本
上田 隆司
隆司 上田
達明 古本
達明 古本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2012060896A priority Critical patent/JP5991574B2/en
Publication of JP2013194263A publication Critical patent/JP2013194263A/en
Application granted granted Critical
Publication of JP5991574B2 publication Critical patent/JP5991574B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、三次元形状造形物の製造方法に関する。より詳細には、本発明は、粉末層の所定箇所に光ビームを照射して固化層を形成することを繰り返し実施することによって複数の固化層が積層一体化した三次元形状造形物を製造する方法に関する。   The present invention relates to a method for manufacturing a three-dimensional shaped object. More specifically, the present invention manufactures a three-dimensional shaped object in which a plurality of solidified layers are laminated and integrated by repeatedly performing formation of a solidified layer by irradiating a predetermined portion of the powder layer with a light beam. Regarding the method.

従来より、粉末材料に光ビームを照射して三次元形状造形物を製造する方法(一般的には「粉末焼結積層法」と称される)が知られている。かかる方法では、「(i)粉末層の所定箇所に光ビームを照射することよって、かかる所定箇所の粉末を焼結又は溶融固化させて固化層を形成し、(ii)得られた固化層の上に新たな粉末層を敷いて同様に光ビームを照射して更に固化層を形成する」といったことを繰り返して三次元形状造形物を製造している(特許文献1または特許文献2参照)。粉末材料として金属粉末やセラミック粉末などの無機質の粉末材料を用いた場合では、得られた三次元形状造形物を金型として用いることができ、樹脂粉末やプラスチック粉末などの有機質の粉末材料を用いた場合では、得られた三次元形状造形物をモデルとして用いることができる。このような製造技術によれば、複雑な三次元形状造形物を短時間で製造することが可能である。   Conventionally, a method of manufacturing a three-dimensional shaped object by irradiating a powder material with a light beam (generally referred to as “powder sintering lamination method”) is known. In such a method, “(i) by irradiating a predetermined portion of the powder layer with a light beam, the powder at the predetermined portion is sintered or melt-solidified to form a solidified layer, and (ii) of the obtained solidified layer A three-dimensional shaped article is manufactured by repeating the process of “laying a new powder layer on the top and irradiating the same with a light beam to form a solidified layer” (see Patent Document 1 or Patent Document 2). When inorganic powder materials such as metal powder and ceramic powder are used as the powder material, the obtained three-dimensional shaped object can be used as a mold, and organic powder materials such as resin powder and plastic powder can be used. In such a case, the obtained three-dimensional shaped object can be used as a model. According to such a manufacturing technique, it is possible to manufacture a complicated three-dimensional shaped object in a short time.

粉末材料として金属粉末を用い、得られる三次元形状造形物を金型として用いる場合を例にとると、図1に示すように、まず、所定の厚みt1の粉末層22を造形プレート21上に形成した後(図1(a)参照)、光ビームを粉末層22の所定箇所に照射して、造形プレート21上において固化層24を形成する。そして、形成された固化層24の上に新たな粉末層22を敷いて再度光ビームを照射して新たな固化層を形成する。このように固化層を繰り返し形成すると、複数の固化層24が積層一体化した三次元形状造形物を得ることができる(図1(b)参照)。最下層に相当する固化層は造形プレート面に接着した状態で形成され得るので、三次元形状造形物と造形プレートとは相互に一体化した状態となる。一体化した三次元形状造形物と造形プレートとは、そのまま金型として用いることができる。   Taking a case where a metal powder is used as a powder material and the obtained three-dimensional shaped object is used as a mold, as shown in FIG. 1, first, a powder layer 22 having a predetermined thickness t1 is placed on a modeling plate 21, as shown in FIG. After the formation (see FIG. 1A), the solidified layer 24 is formed on the modeling plate 21 by irradiating a predetermined portion of the powder layer 22 with a light beam. Then, a new powder layer 22 is laid on the formed solidified layer 24 and irradiated again with a light beam to form a new solidified layer. When the solidified layer is repeatedly formed in this way, a three-dimensional shaped object in which a plurality of solidified layers 24 are laminated and integrated can be obtained (see FIG. 1B). Since the solidified layer corresponding to the lowermost layer can be formed in a state of being adhered to the modeling plate surface, the three-dimensional modeled object and the modeling plate are integrated with each other. The integrated three-dimensional shaped object and the modeling plate can be used as a mold as they are.

特表平1−502890号公報JP-T-1-502890 特開2000−73108号公報JP 2000-73108 A

本願発明者らは、上記のような粉末焼結積層法(即ち、光ビームによる積層造形法)において特有な問題が生じ得ることを見出した。具体的には下記の問題が生じることが分かった。   The inventors of the present application have found that a problem peculiar to the above-described powder sintering lamination method (that is, the additive manufacturing method using a light beam) can occur. Specifically, it has been found that the following problems occur.

粉末焼結積層法の特徴の1つは、三次元形状造形物の内部に任意形状(任意の全体的形態および断面形状)の流体経路を配置できることである(造形物をプラスチック成形金型として用いる場合、流体経路は温度調整用の水管として用いることができる)。例えば造形物内部に断面形状が円形の水管を配置する場合を想定すると、その円形部分に相当する箇所には光ビームを照射しなければよい。光ビームが照射されない局所的部分では粉末が残ったままとなるので、造形後にその粉末を除去すると空洞ができ、流体経路として、即ち水管として利用できる。しかしながら、このような粉末焼結積層法では、溶融箇所の周囲に未溶融の粉末が付着するので、流体経路を作製しても、経路内径や経路断面積などが意図したものよりも小さくなってしまう(図19および20参照)。その結果、造形物の流体経路に流せる水量は少なくなり、温度コントロール性が低下してしまう、という問題が生じることが分かった。また、温度調整用水管の壁面(流体経路の形成面)に付着粉末を有する金型造形物品は、使用後には水を水管から抜いて保管されることになるが、付着粉末箇所に残る水分は完全には取りきれず、この残存水分が原因で水管内部の腐食が進行してしまう、といった問題点もあることが分かった。   One of the features of the powder sintering lamination method is that a fluid path having an arbitrary shape (arbitrary overall shape and cross-sectional shape) can be arranged inside the three-dimensional shaped object (the shaped object is used as a plastic mold). In this case, the fluid path can be used as a water pipe for temperature adjustment). For example, assuming a case where a water pipe having a circular cross-sectional shape is arranged inside a modeled object, a portion corresponding to the circular portion may not be irradiated with a light beam. Since the powder remains in a local portion where the light beam is not irradiated, a cavity is formed when the powder is removed after shaping, and it can be used as a fluid path, that is, as a water pipe. However, in such a powder sinter lamination method, unmelted powder adheres around the melting point, so even if a fluid path is produced, the path inner diameter and path cross-sectional area become smaller than intended. (See FIGS. 19 and 20). As a result, it has been found that there is a problem that the amount of water that can be flowed into the fluid path of the modeled object is reduced and the temperature controllability is lowered. In addition, a mold-molded article having attached powder on the wall surface (fluid path forming surface) of the temperature adjusting water pipe is stored after removing water from the water pipe after use. It was found that there was also a problem that corrosion inside the water pipe progressed due to this residual moisture.

付着粉末を除去することが望ましいものの、造形物内部の流体経路に付着した粉末を除去するのは容易ではない。直線的な配管であれば機械加工や電気加工で実施可能であるものの、粉末焼結積層法の特徴である“任意に3次元配置された水管”に対しては実施が困難である。更に、断面形状が円形の水管であれば、造形の途中で、“オーバーハングしていない下側半面”に対して切削加工を施すことで付着粉末除去を行うことができるが、“オーバーハングしている上側半面”に対しては立体的障害により切削除去を施すのが困難である(図21参照)。   Although it is desirable to remove the adhering powder, it is not easy to remove the powder adhering to the fluid path inside the molded article. Although straight pipes can be implemented by machining or electrical machining, it is difficult to carry out “arbitrary three-dimensionally arranged water pipes” that are characteristic of the powder sintering lamination method. Furthermore, if the water tube has a circular cross-sectional shape, the attached powder can be removed by cutting the “lower half surface that is not overhanging” in the middle of modeling. It is difficult to cut and remove the upper half surface "due to a steric hindrance (see FIG. 21).

本発明は、かかる事情に鑑みて為されたものである。即ち、本発明の課題は、粉末焼結積層法で得られた“任意に3次元配置された流体経路”から好適に付着粉末を除去する手法を提供することである。   The present invention has been made in view of such circumstances. That is, an object of the present invention is to provide a technique for suitably removing the adhered powder from the “fluid path arbitrarily arranged in three dimensions” obtained by the powder sintering lamination method.

上記課題を解決するために、本発明では、
(i)粉末層の所定箇所に光ビームを照射して当該所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程、および
(ii)得られた固化層の上に新たな粉末層を形成し、その新たな粉末層の所定箇所に光ビームを照射して更なる固化層を形成する工程
を繰り返して行う三次元形状造形物の製造方法であって、
工程(i)および(ii)では三次元形状造形物の内部領域の一部に相当する局所的領域を粉末状態部分として残しておき、その粉末状態部分の粉末を最終的に除去することによって、三次元形状造形物の内部に流体経路を形成し、
三次元形状造形物が得られた後、“研磨剤を含んで成る流体”を流体経路内に旋回流として流すことによって流体経路を研磨処理する、三次元形状造形物の製造方法が提供される。
In order to solve the above problems, in the present invention,
(I) a step of irradiating a predetermined portion of the powder layer with a light beam to sinter or melt-solidify the powder at the predetermined portion to form a solidified layer; and (ii) a new powder on the obtained solidified layer Forming a layer, irradiating a predetermined portion of the new powder layer with a light beam to form a further solidified layer, and repeating the step of forming a three-dimensional shaped object,
In the steps (i) and (ii), by leaving a local region corresponding to a part of the internal region of the three-dimensional shaped object as a powder state portion, and finally removing the powder in the powder state portion, Form a fluid path inside the 3D shaped object,
Provided is a method for manufacturing a three-dimensional shaped object, in which after the three-dimensional shaped object is obtained, the fluid path is polished by flowing a “fluid containing an abrasive” as a swirling flow in the fluid path. .

ある好適な態様として、工程(i)および(ii)では流体経路の経路形成面において突起部を形成しておき、研磨処理ではその突起部に起因して流体経路内に旋回流が発生するようにしてよい。かかる場合、“突起部”はらせん状に形成することが好ましい。   As a preferred aspect, in steps (i) and (ii), a protrusion is formed on the path forming surface of the fluid path, and in the polishing process, a swirl flow is generated in the fluid path due to the protrusion. You can do it. In such a case, the “projection” is preferably formed in a spiral shape.

別のある好適な態様では、研磨剤を含んだ流体を流体経路に導入するに先立って、当該流体に旋回流を予め発生させておいてもよい。   In another preferred embodiment, a swirl flow may be generated in advance in the fluid prior to introducing the fluid containing the abrasive into the fluid path.

更に別のある好適な態様では、研磨処理にインターナル部材を用いてよい。例えば、研磨剤を含んだ流体の流れに伴って旋回流を発生させることができるインターナル部材を流体経路内に設けておいてよい。また、流体経路内にインターナル部材を回転自在に設け、そのインターナル部材の回転により旋回流を発生させてもよい。   In yet another preferred embodiment, an internal member may be used for the polishing process. For example, an internal member that can generate a swirling flow in accordance with the flow of a fluid containing an abrasive may be provided in the fluid path. Further, an internal member may be rotatably provided in the fluid path, and the swirling flow may be generated by the rotation of the internal member.

研磨処理に用いる研磨剤としては、例えば粒径が150μm〜300μmの粒状物を用いることが好ましい。また、研磨処理に用いる流体の研磨剤濃度は3vol%〜20vol%であることが好ましい。尚、研磨剤を含んだ媒体の流体自体は、例えば水であってよい。   As an abrasive | polishing agent used for a grinding | polishing process, it is preferable to use the granular material whose particle size is 150 micrometers-300 micrometers, for example. Moreover, it is preferable that the abrasive | polishing agent density | concentration of the fluid used for a grinding | polishing process is 3 vol%-20 vol%. Note that the fluid itself of the medium containing the abrasive may be water, for example.

本発明では、流体経路が造形物内部に任意に3次元配置された形態であっても、その経路面(経路形成面)をきれいに磨くことができる。特に本発明においては、流体経路が3次元的に湾曲した形態であっても、その経路面を実質的に均一に研磨処理できる。ここで本願発明者らが鋭意検討した結果、普通に研磨剤流体を流しただけでは流体速度の違いに起因して、きれいに磨ける箇所と、そうでない箇所が出てくることを見出している(図22参照)。それゆえ、本発明では旋回流を好適に利用し、それによって、研磨ムラを減じて流体経路内面を実質的に均一に磨くことを行う。つまり、本発明に従えば、“大きく又は複雑に湾曲した流体経路”であっても、きれいに磨ける箇所と、そうでない箇所との差をなくすことができる。   In the present invention, even if the fluid path is arbitrarily three-dimensionally arranged inside the modeled object, the path surface (path forming surface) can be polished finely. Particularly in the present invention, even if the fluid path is three-dimensionally curved, the path surface can be polished substantially uniformly. Here, as a result of intensive studies by the inventors of the present application, it has been found that, by simply flowing an abrasive fluid, a portion that can be cleanly polished and a portion that is not cleanly appear due to a difference in fluid velocity (see FIG. 22). Therefore, in the present invention, the swirl flow is preferably used, thereby reducing the polishing unevenness and polishing the inner surface of the fluid path substantially uniformly. In other words, according to the present invention, even in the case of a “large or complicated curved fluid path”, it is possible to eliminate a difference between a portion that can be cleaned finely and a portion that does not.

本発明は、流体経路の経路面を実質的に均一に研磨処理できるので、かかる流体経路が細い形態であっても(流路径が小さい水管径に相当するものであったとしても)、造形物を金型として使用する際、温調水量を多く確保することができる。また、均一に研磨処理できるということは、経路面に残留粉末が実質的に存在しないことを意味しており、それゆえ、流体経路を水管(例えば、金型の冷却水管)として用いた後に残る残存水分は減じられることになる。つまり、本発明では“金型使用後に水が付着粉末部分に残留して腐食が進行する”といった不都合を好適に回避することができる。   Since the present invention can polish the path surface of the fluid path substantially uniformly, even if the fluid path has a narrow shape (even if it corresponds to a water pipe diameter with a small channel diameter) When using an object as a mold, a large amount of temperature-controlled water can be secured. Also, being able to uniformly polish means that there is substantially no residual powder on the path surface and therefore remains after the fluid path is used as a water pipe (eg, a mold cooling water pipe). Residual moisture will be reduced. That is, in the present invention, it is possible to preferably avoid the inconvenience such as “water remains in the adhered powder portion after the mold is used and corrosion proceeds”.

更にいえば、機械加工や電気加工によって研磨処理を行う場合では造形物を切断などで予め分割する必要があるものの、本発明では、研磨剤流体を旋回流で流すといった簡易な操作で研磨処理を実施できる。そして、旋回流の発生に寄与する“突起部(例えばらせん形状突起部)”などは、粉末焼結積層法に際して簡単かつ任意形状に形成できるので、製造時間や製造コストを大幅に上げることなく均一な研磨処理を効率良く実施することができるといえる。   Furthermore, in the case where the polishing process is performed by mechanical processing or electrical processing, it is necessary to divide the modeled object in advance by cutting or the like, but in the present invention, the polishing process is performed by a simple operation such as flowing the abrasive fluid in a swirl flow. Can be implemented. In addition, “projections (for example, spiral projections)” that contribute to the generation of swirling flow can be easily and arbitrarily formed in the powder sintering lamination method, so they are uniform without significantly increasing production time and production costs. Thus, it can be said that efficient polishing treatment can be carried out efficiently.

光造形複合加工機の動作を模式的に示した断面図Sectional view schematically showing the operation of the stereolithography combined processing machine 粉末焼結積層法が行われる態様を模式的に示した斜視図(図2(a):切削機構を備えた複合装置、図2(b):切削機構を備えていない装置)。FIG. 2A is a perspective view schematically showing a mode in which the powder sintering lamination method is performed (FIG. 2A: a composite apparatus including a cutting mechanism, FIG. 2B: an apparatus not including a cutting mechanism). 粉末焼結積層法が実施される光造形複合加工機の構成を模式的に示した斜視図The perspective view which showed typically the structure of the optical shaping complex processing machine by which a powder sintering lamination method is implemented 粉末焼結積層法が行われる態様を模式的に示した斜視図The perspective view which showed typically the aspect by which the powder sintering lamination method is performed 光造形複合加工機の動作のフローチャートFlow chart of operation of stereolithography combined processing machine 光造形複合加工プロセスを経時的に表した模式図Schematic representation of the optical modeling complex processing process over time 本願発明における“旋回流を用いた研磨処理”の態様を表した模式図Schematic diagram showing the aspect of "polishing process using swirl flow" in the present invention 流体経路の湾曲部分/コーナ部の下流部分にのみ旋回流を形成する態様を表した模式図The schematic diagram showing the aspect which forms a swirl flow only in the curved part of a fluid path / downstream part of a corner part 流体経路の経路形成面に突起部(例えばらせん状の突起部)を形成して旋回流を発生させる態様を表した模式図(図9(a):断面図、図9(b):斜視断面図)Schematic diagram showing a mode of generating a swirling flow by forming protrusions (for example, spiral protrusions) on the path forming surface of the fluid path (FIG. 9A: sectional view, FIG. 9B: perspective section) (Figure) らせん状の突起部を経路形成面の半分割面Aまたは半分割面Bのいずれかにのみ設ける態様を表した模式図(図10(a):半分割面Aにのみ設ける態様、図10(b):半分割面Bにのみ設ける態様)FIG. 10A is a schematic diagram showing an aspect in which the spiral protrusion is provided only on either the half-divided surface A or the half-divided surface B of the path forming surface (FIG. 10A: an aspect provided only on the half-divided surface A, FIG. b): Mode provided only on the half-divided surface B) インターナル部材を設けて旋回流を発生させる態様を表した模式図(図11(a):旋回流の発生に寄与するインターナル部材を固定状態で設けた態様、図11(b):固定状態のインターナル部材の存在により、流体の流れに伴って旋回流が発生する態様)Schematic diagram showing an aspect in which a swirling flow is generated by providing an internal member (FIG. 11 (a): an aspect in which an internal member contributing to the generation of swirling flow is provided in a fixed state, FIG. 11 (b): a fixed state A mode in which a swirling flow is generated with the fluid flow due to the presence of the internal member) インターナル部材を設けて旋回流を発生させる態様を表した模式図(図12(a):流体の流れに伴ってインターナル部材が回転して旋回流が発生する場合、図12(b):インターナル部材を強制的に回転させて旋回流を発生させる場合、図12(c):インターナル部材の回転に起因して旋回流が発生する態様)Schematic diagram showing a mode in which a swirling flow is generated by providing an internal member (FIG. 12A: FIG. 12B when the swirling flow is generated by the rotation of the internal member with the fluid flow: When the swirling flow is generated by forcibly rotating the internal member, FIG. 12C: A mode in which swirling flow is generated due to the rotation of the internal member) 研磨剤流体を流体経路に導入するに先立って、その流体に旋回流を予め発生させておく態様(経路入り口部で旋回流を発生させる態様)を表した模式図Prior to the introduction of the abrasive fluid into the fluid path, a schematic diagram showing a mode in which a swirling flow is generated in advance in the fluid (a mode in which a swirling flow is generated at the path entrance). 実施例で使用した試験装置の概観を示した模式図Schematic diagram showing an overview of the test equipment used in the examples 実施例で使用した被加工管の半分割形態を示した模式図Schematic showing the half-divided form of the work tube used in the example 実施例における試験結果を示すグラフ図(ストレート管及びらせん管につき研磨時間tと表面粗さRaとの関係を示すグラフ)。The graph which shows the test result in an Example (graph which shows the relationship between polishing time t and surface roughness Ra about a straight pipe | tube and a spiral pipe | tube). 実施例で撮取されたらせん管内部の写真図Photograph inside the spiral tube taken in the example 実施例におけるらせん管内部の模式図Schematic diagram of the inside of the spiral tube in the example 流体経路に付着粉末が存在して経路径や断面積が小さくなる態様を示した模式的断面図および写真図Schematic cross-sectional view and photograph showing an aspect where the adhering powder is present in the fluid path and the path diameter and cross-sectional area are reduced 流体経路の経路形成面に付着粉末が存在する態様を示した模式図Schematic diagram showing a mode in which the adhering powder exists on the path forming surface of the fluid path オーバーハング部分の切削除去が困難であることを示した模式図Schematic showing that it is difficult to remove the overhang part by cutting 研磨剤流体を流しただけでは流体速度の違いに起因して「きれいに磨ける箇所」と「そうでない箇所」とが生じる態様を表した模式図Schematic diagram showing a mode in which "clean spots" and "other spots" occur due to the difference in fluid velocity when only abrasive fluid is flowed

以下では、図面を参照して本発明をより詳細に説明する(図面における寸法関係は、あくまでも例示であって、実際の寸法関係を反映するものではない)。   Hereinafter, the present invention will be described in more detail with reference to the drawings (the dimensional relationships in the drawings are merely examples and do not reflect actual dimensional relationships).

本明細書において「粉末層」とは、例えば「金属粉末から成る金属粉末層」または「樹脂粉末から成る樹脂粉末層」などを指している。また「粉末層の所定箇所」とは、製造される三次元形状造形物の領域を実質的に意味している。従って、かかる所定箇所に存在する粉末に光ビームを照射することによって、その粉末が焼結又は溶融固化して三次元形状造形物の形状を構成することになる。更に「固化層」とは、粉末層が金属粉末層である場合には「焼結層」を実質的に意味しており、粉末層が樹脂粉末層である場合には「硬化層」を実質的に意味している。そして、「(光ビームが照射されない)局所的領域」は、製造される三次元形状造形物の“流体経路に相当する部分の粉末層領域”を実質的に指している。   In this specification, “powder layer” refers to, for example, “a metal powder layer made of metal powder” or “a resin powder layer made of resin powder”. The “predetermined portion of the powder layer” substantially means a region of the three-dimensional shaped article to be manufactured. Therefore, by irradiating the powder existing at the predetermined location with a light beam, the powder is sintered or melted and solidified to form the shape of the three-dimensional shaped object. Further, the “solidified layer” substantially means “sintered layer” when the powder layer is a metal powder layer, and substantially means “cured layer” when the powder layer is a resin powder layer. Meaning. The “local region (which is not irradiated with the light beam)” substantially refers to the “powder layer region corresponding to the fluid path” of the manufactured three-dimensional shaped object.

あくまでも例示にすぎないが、本発明に用いることができる金属粉末は、鉄系粉末を主成分とした粉末であって、場合によってニッケル粉末、ニッケル系合金粉末、銅粉末、銅系合金粉末および黒鉛粉末などから成る群から選択される少なくとも1種類を更に含んで成る粉末であってよい。一例として、平均粒径20μm程度の鉄系粉末の配合量が60〜90重量%、ニッケル粉末及びニッケル系合金粉末の両方又はいずれか一方の配合量が5〜35重量%、銅粉末および/または銅系合金粉末の両方又はいずれか一方の配合量が5〜15重量%、ならびに、黒鉛粉末の配合量が0.2〜0.8重量%となった金属粉末を挙げることができる。   The metal powder that can be used in the present invention is merely a powder mainly composed of iron-based powder, and may be nickel powder, nickel-based alloy powder, copper powder, copper-based alloy powder, and graphite. It may be a powder further comprising at least one selected from the group consisting of powder and the like. As an example, the amount of iron-based powder having an average particle size of about 20 μm is 60 to 90% by weight, the amount of nickel powder and / or nickel-based alloy powder is 5 to 35% by weight, copper powder and / or Examples thereof include metal powders in which the blending amount of both or any one of the copper-based alloy powders is 5 to 15% by weight and the blending amount of the graphite powder is 0.2 to 0.8% by weight.

[粉末焼結積層法]
まず、本発明の製造方法の前提となる粉末焼結積層法について説明する。説明の便宜上、材料粉末タンクから材料粉末を供給し、スキージング・ブレードを用いて材料粉末を均して粉末層を形成する態様を前提として粉末焼結積層法を説明する。また、粉末焼結積層法に際しては造形物の切削加工をも併せて行う複合加工の態様を例に挙げて説明する(つまり、図2(b)ではなく図2(a)に表す態様を前提とする)。図1,3および4には、粉末焼結積層法と切削加工とを実施できる光造形複合加工機の機能および構成が示されている。光造形複合加工機1は、「金属粉末および樹脂粉末などの粉末を所定の厚みで敷くことによって粉末層を形成する粉末層形成手段2」と「外周が壁27で囲まれた造形タンク29内において上下に昇降する造形テーブル20」と「造形テーブル20上に配され造形物の土台となる造形プレート21」と「光ビームLを任意の位置に照射する光ビーム照射手段3」と「造形物の周囲を削る切削手段4」とを主として備えている。粉末層形成手段2は、図1に示すように、「外周が壁26で囲まれた材料粉末タンク28内において上下に昇降する粉末テーブル25」と「造形プレート上に粉末層22を形成するためのスキージング・ブレード23」とを主として有して成る。光ビーム照射手段3は、図3および図4に示すように、「光ビームLを発する光ビーム発振器30」と「光ビームLを粉末層22の上にスキャニング(走査)するガルバノミラー31(スキャン光学系)」とを主として有して成る。必要に応じて、光ビーム照射手段3には、光ビームスポットの形状を補正するビーム形状補正手段(例えば一対のシリンドリカルレンズと、かかるレンズを光ビームの軸線回りに回転させる回転駆動機構とを有して成る手段)やfθレンズなどが具備されている。切削手段4は、「造形物の周囲を削るミーリングヘッド40」と「ミーリングヘッド40を切削箇所へと移動させるXY駆動機構41(41a,41b)」とを主として有して成る(図3および図4参照)。
[Powder sintering lamination method]
First, the powder sintering lamination method as a premise of the production method of the present invention will be described. For convenience of explanation, the powder sintering lamination method will be described on the premise that the material powder is supplied from the material powder tank and the powder material is formed by leveling the material powder using a squeezing blade. Further, in the case of the powder sinter lamination method, a description will be given by taking as an example a mode of composite processing in which cutting of a molded article is also performed (that is, assuming the mode shown in FIG. 2A instead of FIG. 2B) And). 1, 3 and 4 show the function and configuration of an optical modeling composite processing machine capable of performing the powder sintering lamination method and cutting. The optical modeling composite processing machine 1 includes “a powder layer forming means 2 for forming a powder layer by spreading a powder such as a metal powder and a resin powder with a predetermined thickness” and “in a modeling tank 29 whose outer periphery is surrounded by a wall 27. In FIG. 2, “a modeling table 20 that moves up and down”, “a modeling plate 21 that is arranged on the modeling table 20 and serves as a foundation of the modeling object”, “a light beam irradiation means 3 that irradiates a light beam L to an arbitrary position”, and “a modeling object” Cutting means 4 ”for cutting the periphery of the main body. As shown in FIG. 1, the powder layer forming means 2 includes “a powder table 25 that moves up and down in a material powder tank 28 whose outer periphery is surrounded by a wall 26” and “to form a powder layer 22 on a modeling plate”. The squeezing blade 23 ". As shown in FIGS. 3 and 4, the light beam irradiation means 3 includes a “light beam oscillator 30 that emits a light beam L” and a “galvanomirror 31 that scans (scans) the light beam L onto the powder layer 22 (scanning). Optical system) ”. If necessary, the light beam irradiation means 3 has beam shape correction means (for example, a pair of cylindrical lenses and a rotation drive mechanism for rotating the lenses around the axis of the light beam) for correcting the shape of the light beam spot. And an fθ lens. The cutting means 4 mainly includes “a milling head 40 that cuts the periphery of the modeled object” and “an XY drive mechanism 41 (41a, 41b) that moves the milling head 40 to a cutting position” (FIGS. 3 and 3). 4).

光造形複合加工機1の動作を図1、図5および図6を参照して詳述する。図5は、光造形複合加工機の一般的な動作フローを示しており、図6は、光造形複合加工プロセスを模式的に簡易に示している。   The operation of the optical modeling complex machine 1 will be described in detail with reference to FIGS. 1, 5, and 6. FIG. 5 shows a general operation flow of the stereolithography combined processing machine, and FIG. 6 schematically shows the stereolithography combined processing process schematically.

光造形複合加工機の動作は、粉末層22を形成する粉末層形成ステップ(S1)と、粉末層22に光ビームLを照射して固化層24を形成する固化層形成ステップ(S2)と、造形物の表面を切削する切削ステップ(S3)とから主に構成されている。粉末層形成ステップ(S1)では、最初に造形テーブル20をΔt1下げる(S11)。次いで、粉末テーブル25をΔt1上げた後、図1(a)に示すように、スキージング・ブレード23を、矢印A方向に移動させ、粉末テーブル25に配されていた粉末を造形プレート21上へと移送させつつ(S12)、所定厚みΔt1に均して粉末層22を形成する(S13)。次に、固化層形成ステップ(S2)に移行し、光ビーム発振器30から光ビームL(例えば炭酸ガスレーザ(500W程度)、Nd:YAGレーザ(500W程度)、ファイバレーザ(500W程度)または紫外線など)を発し(S21)、光ビームLをガルバノミラー31によって粉末層22上の任意の位置にスキャニングし(S22)、粉末を溶融させ、固化させて造形プレート21と一体化した固化層24を形成する(S23)。光ビームは、空気中を伝達させることに限定されず、光ファイバーなどで伝送させてもよい。   The operation of the optical modeling composite processing machine includes a powder layer forming step (S1) for forming the powder layer 22, a solidified layer forming step (S2) for forming the solidified layer 24 by irradiating the powder layer 22 with the light beam L, It is mainly composed of a cutting step (S3) for cutting the surface of the modeled object. In the powder layer forming step (S1), the modeling table 20 is first lowered by Δt1 (S11). Next, after raising the powder table 25 by Δt1, as shown in FIG. 1A, the squeezing blade 23 is moved in the direction of arrow A, and the powder disposed on the powder table 25 is moved onto the modeling plate 21. (S12), the powder layer 22 is formed to be equal to the predetermined thickness Δt1 (S13). Next, the process proceeds to the solidified layer forming step (S2), and the light beam L (for example, carbon dioxide laser (about 500 W), Nd: YAG laser (about 500 W), fiber laser (about 500 W), ultraviolet light, etc.) from the light beam oscillator 30) (S21), the light beam L is scanned to an arbitrary position on the powder layer 22 by the galvanometer mirror 31 (S22), and the powder is melted and solidified to form the solidified layer 24 integrated with the modeling plate 21. (S23). The light beam is not limited to being transmitted in the air, but may be transmitted by an optical fiber or the like.

固化層24の厚みがミーリングヘッド40の工具長さ等から求めた所定厚みになるまで粉末層形成ステップ(S1)と固化層形成ステップ(S2)とを繰り返し、固化層24を積層する(図1(b)参照)。尚、新たに積層される固化層は、焼結又は溶融固化に際して、既に形成された下層を成す固化層と一体化することになる。   The powder layer forming step (S1) and the solidified layer forming step (S2) are repeated until the thickness of the solidified layer 24 reaches a predetermined thickness obtained from the tool length of the milling head 40, and the solidified layer 24 is laminated (FIG. 1). (See (b)). In addition, the solidified layer newly laminated | stacked will be integrated with the solidified layer which comprises the already formed lower layer in the case of sintering or melt-solidification.

積層した固化層24の厚みが所定の厚みになると、切削ステップ(S3)へと移行する。図1および図6に示すような態様ではミーリングヘッド40を駆動させることによって切削ステップの実施を開始している(S31)。例えば、ミーリングヘッド40の工具(ボールエンドミル)が直径1mm、有効刃長さ3mmである場合、深さ3mmの切削加工ができるので、Δt1が0.05mmであれば、60層の固化層を形成した時点でミーリングヘッド40を駆動させる。XY駆動機構41(41a,41b)によってミーリングヘッド40を矢印X及び矢印Y方向に移動させ、積層した固化層24から成る造形物の表面を切削加工する(S32)。そして、三次元形状造形物の製造が依然終了していない場合では、粉末層形成ステップ(S1)へ戻ることになる。以後、S1乃至S3を繰り返して更なる固化層24を積層することによって、三次元形状造形物の製造を行う(図6参照)。   When the thickness of the laminated solidified layer 24 reaches a predetermined thickness, the process proceeds to the cutting step (S3). In the embodiment as shown in FIG. 1 and FIG. 6, the cutting step is started by driving the milling head 40 (S31). For example, when the tool (ball end mill) of the milling head 40 has a diameter of 1 mm and an effective blade length of 3 mm, a cutting process with a depth of 3 mm can be performed. Therefore, if Δt1 is 0.05 mm, 60 solidified layers are formed. At that time, the milling head 40 is driven. The milling head 40 is moved in the directions of the arrow X and the arrow Y by the XY drive mechanism 41 (41a, 41b), and the surface of the shaped object composed of the laminated solidified layer 24 is cut (S32). And when manufacture of a three-dimensional shape molded article has not ended yet, it will return to a powder layer formation step (S1). Thereafter, the three-dimensional shaped object is manufactured by repeating S1 to S3 and laminating a further solidified layer 24 (see FIG. 6).

固化層形成ステップ(S2)における光ビームLの照射経路と、切削ステップ(S3)における切削加工経路とは、予め三次元CADデータから作成しておく。この時、等高線加工を適用して加工経路を決定する。例えば、固化層形成ステップ(S2)では、三次元CADモデルから生成したSTLデータを等ピッチ(例えばΔt1を0.05mmとした場合では0.05mmピッチ)でスライスした各断面の輪郭形状データを用いる。   The irradiation path of the light beam L in the solidified layer forming step (S2) and the cutting path in the cutting step (S3) are previously created from three-dimensional CAD data. At this time, a machining path is determined by applying contour line machining. For example, in the solidified layer forming step (S2), contour shape data of each cross section obtained by slicing STL data generated from a three-dimensional CAD model at an equal pitch (for example, 0.05 mm pitch when Δt1 is 0.05 mm) is used. .

[本発明の製造方法]
本発明は、上述した粉末焼結積層法で得られる造形物の処理態様に特徴を有している。具体的には、図7に示すように、三次元形状造形物の内部に形成された流体経路に対して、“研磨剤を含んで成る流体”を旋回流として流すことによって流体経路の研磨処理を行う。
[Production method of the present invention]
The present invention is characterized in the processing mode of a shaped article obtained by the above-described powder sintering lamination method. Specifically, as shown in FIG. 7, the fluid path polishing process is performed by causing “fluid containing an abrasive” to flow as a swirl flow with respect to the fluid path formed inside the three-dimensional shaped object. I do.

流体経路(造形物を金型に用いる場合では“水管”に相当し得る)は、三次元形状造形物の積層造形の過程で形成される。具体的には、三次元形状造形物の内部領域の一部に相当する局所的領域を“光ビームを照射しない粉末状態部分”として残しておき、その粉末状態部分の粉末を造形後又は固化層形成後に除去することによって、流体経路を形成できる。かかる流体経路は、粉末焼結積層法により形成されるので、全体形状や断面形状などは任意に得ることができるものの、“流体経路形成面(流体経路を形作っている面)”には造形物形成に寄与しなかった粉末が付着している(つまり、流体経路面に対して“未焼結粉末”が付着している)。したがって、本発明では、このような付着粉末を除去すべく、研磨剤を含んで成る流体を流体経路内に旋回流として流して研磨処理を実施する(尚、以後では「研磨剤を含んで成る流体」を「研磨剤流体」または単に「流体」とも称する)。   The fluid path (which may correspond to a “water pipe” in the case of using a modeled object for the mold) is formed in the process of the layered modeling of the three-dimensional modeled object. Specifically, a local region corresponding to a part of the internal region of the three-dimensional shaped object is left as a “powder state portion that is not irradiated with a light beam”, and the powder in the powder state portion is formed after molding or a solidified layer. By removing after formation, the fluid path can be formed. Since the fluid path is formed by a powder sintering lamination method, the overall shape and cross-sectional shape can be obtained arbitrarily, but the "fluid path forming surface (surface that forms the fluid path)" has a shaped object. The powder that did not contribute to the formation is adhered (that is, the “unsintered powder” is adhered to the fluid path surface). Therefore, in the present invention, in order to remove such adhering powder, a polishing process is performed by flowing a fluid containing an abrasive as a swirling flow in the fluid path (hereinafter, “comprising an abrasive”. "Fluid" is also referred to as "abrasive fluid" or simply "fluid").

本明細書でいう「旋回流」とは、円を描くように回るような流体流れのことを実質的に意味している。より具体的には、例えば、流体経路内における流体の移動方向を軸中心として回転しながら流れる流れのことを指している(図7の下側詳細図を参照のこと)。つまり、本発明では、研磨剤流体を流体経路に単に流すのではなく、流体の流れが回転した流れとなるように流している。   The “swirl flow” as used in the present specification substantially means a fluid flow that rotates in a circle. More specifically, for example, it refers to a flow that flows while rotating about the moving direction of the fluid in the fluid path (see the lower detailed view of FIG. 7). That is, in the present invention, the abrasive fluid is not simply caused to flow in the fluid path, but is caused to flow in a rotating flow.

“旋回流”は、流体経路の全領域で生じている必要はない。少なくとも「研磨剤流体を流体経路に単に流すだけでは、きれいに磨ける箇所と、そうでない箇所とが出てくる領域」に対して旋回流が生じていればよい。例えば、流体経路が湾曲している場合では、図8に示すように、少なくとも湾曲領域および/またはその近傍領域、特に流路コーナー部の下流側領域などに旋回流が形成されていればよい。   “Swirl flow” need not occur in the entire region of the fluid path. It is sufficient that a swirl flow is generated at least with respect to a region where a portion where the abrasive fluid can be simply polished and a portion where the abrasive fluid cannot be polished is generated. For example, when the fluid path is curved, as shown in FIG. 8, it is sufficient that a swirl flow is formed at least in the curved region and / or the vicinity thereof, particularly the downstream region of the channel corner portion.

旋回流は種々の態様で研磨剤流体に発生させることができる。例えば、図9に示すように、流体経路80の経路形成面に突起部85を形成しておき、その突起部85によって研磨剤流体に旋回流を発生させてよい。つまり、研磨剤流体が流体経路80を流れる際、その流れと突起部85との相互作用によって、研磨剤流体に旋回流が発生するようにしてよい。換言すれば、研磨剤流体は、突起部85と干渉しながら流れ、その干渉に伴って研磨剤流体に旋回流が発生するようにしてよい。   The swirl can be generated in the abrasive fluid in various ways. For example, as shown in FIG. 9, a protrusion 85 may be formed on the path forming surface of the fluid path 80, and a swirl flow may be generated in the abrasive fluid by the protrusion 85. In other words, when the abrasive fluid flows through the fluid path 80, a swirl flow may be generated in the abrasive fluid due to the interaction between the flow and the protrusions 85. In other words, the abrasive fluid may flow while interfering with the protrusions 85, and a swirl flow may be generated in the abrasive fluid with the interference.

かかる突起部85は、粉末焼結積層法に際して形成することができる。つまり、粉末層の一部に光ビームが照射されて、その照射部分が焼結又は溶融固化することによって突起部85が形成される。これは、突起部85が造形物と同じ材質から一体的に得られることを意味している。突起部85の断面形状は、特に制限されず、例えば半円形状(図9参照)、矩形状、正方形状または三角形状などであってよい。   Such protrusions 85 can be formed during the powder sintering lamination method. That is, the projection 85 is formed by irradiating a part of the powder layer with a light beam and sintering or melting and solidifying the irradiated part. This means that the protrusion 85 is integrally obtained from the same material as the modeled object. The cross-sectional shape of the protrusion 85 is not particularly limited, and may be, for example, a semicircular shape (see FIG. 9), a rectangular shape, a square shape, or a triangular shape.

突起部85は必ずしも流路形成面の全領域に形成されている必要はなく、「研磨剤流体を流体経路に単に流すだけではきれいに磨ける箇所と、そうでない箇所とが出てくる領域」に形成しておくことが好ましい。例えば、流体経路が湾曲している場合、その湾曲領域および/またはその近傍部分(特に「流路コーナー部の下流側領域」など)にのみ突起部85を設けてもよい(図8参照)。   The protrusions 85 do not necessarily have to be formed in the entire region of the flow path forming surface, but are formed in “regions where portions that can be polished cleanly by simply flowing the abrasive fluid through the fluid path, and regions that do not.” It is preferable to keep it. For example, when the fluid path is curved, the protrusion 85 may be provided only in the curved region and / or in the vicinity thereof (particularly, the “downstream region of the channel corner portion”) (see FIG. 8).

突起部85は、図9に示されるように、らせん形態(らせん状)を有していることが好ましい。つまり、スパイラル形態、渦巻き形態またはヘリカル形態などを有するように突起部85が形成されていることが好ましい。   As shown in FIG. 9, the protrusion 85 preferably has a spiral shape (spiral shape). That is, it is preferable that the protrusion 85 is formed so as to have a spiral shape, a spiral shape, a helical shape, or the like.

らせん形態の突起部85について突出高さHは、経路径をDとすると、D/10〜3D/10程度であることが好ましい(図9(b)参照)。同様にらせん形態の突起部85につき、突起部ピッチPは、例えば1D〜5D程度であることが好ましい(図9(a)参照)。尚、らせん形態の突起部85は、図9に示すように半円形状の断面を有するものであってよい。   The protrusion height H of the spiral protrusion 85 is preferably about D / 10 to 3D / 10, where D is the path diameter (see FIG. 9B). Similarly, for the spiral projection 85, the projection pitch P is preferably about 1D to 5D, for example (see FIG. 9A). Note that the spiral protrusion 85 may have a semicircular cross section as shown in FIG.

らせん形態の突起部85は、上述したように、必ずしも流路形成面の全体に設ける必要はなく、流体経路が湾曲している場合、湾曲部分および/またはその近傍部分の流路形成面(例えば「流路コーナー部の下流側領域」)にのみ設けてよい(図9(a)参照)。また、らせん形態の突起部85は、流体経路の断面周方向に全て形成されている必要はなく、その一部にのみ形成されていてよい。例えば、流路形成面を流路の長手方向軸に沿って半分割した半分割面Aと半分割面Bとを想定した場合、らせん状の突起部85は半分割面Aまたは半分割面Bのいずれかにのみ設けてよい(図10参照)。かかる場合であっても、研磨剤流体は、半分割面に設けられた突起部85と干渉しながら流れることによって、研磨剤流体に旋回流が発生することになる。   As described above, the spiral protrusion 85 does not necessarily have to be provided on the entire flow path formation surface. When the fluid path is curved, the flow path formation surface (for example, the curved portion and / or its vicinity) (for example, You may provide only in "the downstream area of a flow-path corner part" (refer Fig.9 (a)). Further, the spiral-shaped protrusions 85 need not be formed entirely in the circumferential direction of the cross section of the fluid path, and may be formed only on a part thereof. For example, assuming a half-divided surface A and a half-divided surface B that are half-divided along the longitudinal axis of the channel, the spiral protrusion 85 is formed by the half-divided surface A or the half-divided surface B. It may be provided only in either of them (see FIG. 10). Even in such a case, the abrasive fluid flows while interfering with the projections 85 provided on the half-divided surface, so that a swirl flow is generated in the abrasive fluid.

旋回流は、インターナル部材86を用いることによって発生させてもよい。つまり、研磨剤流体を流したときに、その流体に旋回流が発生するような部材を流体経路内部に挿入しておいてよい。図11に示すように、研磨剤流体がインターナル部材86を通過する際、インターナル部材86の立体的形態に起因して、研磨剤流体の流れが影響を受けることになり、その結果、研磨剤流体に旋回流が発生することになる。つまり、研磨剤流体は、流体経路内部に設置されたインターナル部材86と干渉しながら流れることによって、研磨剤流体に旋回流が発生する。   The swirling flow may be generated by using the internal member 86. That is, a member that generates a swirling flow in the fluid when the abrasive fluid flows may be inserted into the fluid path. As shown in FIG. 11, when the abrasive fluid passes through the internal member 86, the flow of the abrasive fluid is affected due to the three-dimensional form of the internal member 86. As a result, the polishing fluid is polished. A swirling flow is generated in the agent fluid. That is, the abrasive fluid flows while interfering with the internal member 86 installed in the fluid path, thereby generating a swirling flow in the abrasive fluid.

インターナル部材86の形態は、図11に示されるように、例えばらせん形態(らせん状)を有していることが好ましい。別の表現でいえば、インターナル部材は、バネのようならせん形状部材となっていることが好ましい。つまり、インターナル部材86の好ましい形態は、スパイラル形態、渦巻き形態またはヘリカル形態などとなっている。但し、インターナル部材の形態は、旋回流が発生する限り特に制限されず、種々の形態を採用してよい。   As shown in FIG. 11, the internal member 86 preferably has, for example, a spiral shape (spiral shape). In other words, the internal member is preferably a helical member like a spring. That is, a preferable form of the internal member 86 is a spiral form, a spiral form, a helical form, or the like. However, the form of the internal member is not particularly limited as long as the swirling flow is generated, and various forms may be adopted.

インターナル部材は固定状態で設ける態様のみならず、それを回転自在に設けてもよい。かかる場合、旋回流はインターナル部材の回転に伴って発生する。つまり、研磨剤を含んだ流体を流した際、旋回流が発生するように挿入部材の回転が行われるような態様であってよい。例えば、図12(a)に示すように、研磨剤流体の流れを受けてインターナル部材87が回転し、それによって、旋回流が発生するような態様であってよい(図12(c)参照)。あるいは、図12(b)に示すように、インターナル部材87に外部から力を及ぼしてそれを強制的に回転させてよく、そのような強制的なインターナル部材87の回転によって旋回流が発生するようにしてもよい(図12(c)参照)。   The internal member may be provided not only in a fixed state but also in a rotatable state. In such a case, the swirl flow is generated as the internal member rotates. That is, when the fluid containing the abrasive is flowed, the insertion member may be rotated so that a swirling flow is generated. For example, as shown in FIG. 12 (a), the internal member 87 may be rotated by receiving the flow of the abrasive fluid, thereby generating a swirling flow (see FIG. 12 (c)). ). Alternatively, as shown in FIG. 12 (b), an external force may be applied to the internal member 87 to forcibly rotate it, and a swirling flow is generated by such forced rotation of the internal member 87. You may make it do (refer FIG.12 (c)).

上述の態様と同様、インターナル部材87は必ずしも流体経路内の全領域に設けられている必要はなく、少なくとも、「研磨剤流体を流体経路に単に流すだけではきれいに磨ける箇所と、そうでない箇所とが出てくる領域」に設けられていればよい。例えば、流体経路が湾曲している場合、その湾曲領域および/またはその近傍領域、例えば「流路コーナー部の下流側領域」などにのみインターナル部材87が設けられていてよい(図8参照)。尚、インターナル部材87は、固化層の積層過程で「光ビームを照射しない局所的な粉末状態部分」を適宜除去しつつ、その除去部分にインターナル部材を配置することによって設けることができる。   Similar to the above-described embodiment, the internal member 87 does not necessarily have to be provided in the entire region of the fluid path. At least, “the point where the abrasive fluid can be polished cleanly by simply flowing the abrasive fluid in the fluid path, It is only necessary to be provided in the “region from which” appears. For example, when the fluid path is curved, the internal member 87 may be provided only in the curved region and / or the vicinity thereof, for example, the “downstream region of the channel corner” (see FIG. 8). . The internal member 87 can be provided by appropriately removing the “local powder state portion not irradiated with the light beam” in the lamination process of the solidified layer and disposing the internal member in the removed portion.

本発明においては流体経路の少なくとも一部に旋回流を発生させるが、発生箇所は流体経路の内部に限らず、その外部であってもよい。つまり、例えば図13に示すように、研磨剤流体を流体経路に導入するに先立って、旋回流を流体に予め発生させておいてもよい。予め旋回流を発生させる手段は、特に制限されず、上述の「らせん形態の突起部85」および「インターナル部材86,87」などを用いてよい。かかる態様では、造形物の製造後に付属手段を設けるだけで旋回流を発生させることができるので、造形物の製造自体に影響を及ぼすことなく研磨処理を実施できる。   In the present invention, the swirl flow is generated in at least a part of the fluid path, but the generation location is not limited to the inside of the fluid path but may be the outside thereof. That is, for example, as shown in FIG. 13, prior to introducing the abrasive fluid into the fluid path, a swirling flow may be generated in the fluid in advance. The means for generating the swirl flow in advance is not particularly limited, and the above-described “helical projection 85”, “internal members 86 and 87”, and the like may be used. In this aspect, since a swirling flow can be generated simply by providing an attached means after manufacturing the modeled object, the polishing process can be performed without affecting the manufacturing of the modeled product itself.

ここで、研磨剤流体についていうと、研磨剤として機能する砥粒が液体中に含まれたものであれば特に制限はない。このような研磨剤流体においては砥粒が液体中に分散・遊離した状態で存在している。かかる点に鑑みると、本発明は、遊離砥粒を流体経路内に旋回流として供給することによって流体経路の研磨処理を実施するともいえる。   Here, the abrasive fluid is not particularly limited as long as abrasive grains that function as an abrasive are contained in the liquid. In such an abrasive fluid, the abrasive grains are present in a dispersed / free state in the liquid. In view of this point, it can be said that the present invention performs the polishing process of the fluid path by supplying loose abrasive grains as a swirling flow into the fluid path.

研磨剤自体は、例えばその粒径(特に平均粒径)が好ましくは150μm〜300μm、より好ましくは200μm〜250μmの粒状物となっている。このような粒径の研磨剤を用いると、付着粉末の除去(即ち、研磨剤流体の研磨作用による除去)にとって特に望ましいものとなる。尚、本明細書にいう「平均粒径」とは、粒状物(即ち粒子)の電子顕微鏡写真または光学顕微鏡写真に基づいて例えば300個の粒子の粒径を測定し、その数平均として算出したものを実質的に意味している(尚、“粒径”は、粒子のあらゆる方向における長さのうち最大となる長さのことを実質的に指している)。   The abrasive itself is, for example, a granular material having a particle size (particularly an average particle size) of preferably 150 μm to 300 μm, more preferably 200 μm to 250 μm. Use of an abrasive having such a particle size is particularly desirable for removal of adhered powder (i.e., removal by the abrasive action of the abrasive fluid). The “average particle size” as used in the present specification was calculated as the number average of, for example, the particle size of 300 particles based on an electron micrograph or an optical micrograph of a granular material (ie, particles). (The "particle size" substantially refers to the maximum length among all the lengths of the particles in all directions).

研磨剤の材質は、セラミックまたは金属などであることが好ましい。例えば、研磨剤は、アルミナ、ダイヤモンド、窒化ホウ素、ジルコニアおよび炭化ケイ素から成る群から選択される少なくとも1種以上の材質から成るものであってよい。   The material of the abrasive is preferably ceramic or metal. For example, the abrasive may be made of at least one material selected from the group consisting of alumina, diamond, boron nitride, zirconia, and silicon carbide.

研磨剤が分散・遊離するための媒体液体は、例えば水であってよい。水を用いるとコスト的に有利であるだけでなく、常温下にて適度な流動性を有するので、研磨剤を好適に分散・遊離させることができる。   The medium liquid for dispersing and releasing the abrasive may be water, for example. Use of water is not only advantageous in terms of cost but also has an appropriate fluidity at room temperature, so that the abrasive can be suitably dispersed and released.

研磨処理に用いる流体の研磨剤濃度は、好ましくは3vol%〜20vol%程度であり、より好ましくは4vol%〜15vol%程度、更に好ましくは5vol%〜10vol%程度であることが好ましい(研磨剤流体の全体積基準)。   The abrasive concentration of the fluid used for the polishing treatment is preferably about 3 vol% to 20 vol%, more preferably about 4 vol% to 15 vol%, still more preferably about 5 vol% to 10 vol% (abrasive fluid) Of total volume).

以上、本発明の実施形態について説明してきたが、本発明の適用範囲のうちの典型例を例示したに過ぎない。従って、本発明はこれに限定されず、種々の改変がなされ得ることを当業者は容易に理解されよう。   As mentioned above, although embodiment of this invention has been described, it has only illustrated the typical example of the application scope of this invention. Therefore, those skilled in the art will readily understand that the present invention is not limited thereto and various modifications can be made.

例えば、「らせん形態の突起部85」、「インターナル部材86,87」および「予め旋回流を発生させる手段」などはそれぞれ単独で用いる態様に限らず、それらを適宜組み合わせて用いる態様であっても構わない。   For example, the “helical protrusions 85”, “internal members 86 and 87”, and “means for generating a swirl flow beforehand” are not limited to being used alone, but may be used in an appropriate combination. It doesn't matter.

本発明の研磨処理効果を確認すべく、以下の試験を実施した。   In order to confirm the polishing treatment effect of the present invention, the following tests were conducted.

試験方法
(試験装置)
試験装置の概観を図14に示す。試験装置は、油圧ポンプ、ピストン、シリンダおよびカートリッジなどから構成されている。カートリッジII、IIIには水と砥粒が充填されており、その間に被加工管(冷却管)が設置されている。カートリッジI,IVには水のみが充填されており、充填した砥粒がシリンダ内まで流入しないための緩衝部の役割を果たす。シリンダ内に充填された水を押し出すことで、充填された砥粒が懸濁液として被加工管内を通り、反対側のカートリッジに沈殿する。このとき懸濁液中の砥粒によって被加工管内面が研磨されることになる。電磁弁を用いてピストンの運動方向を切り替えると、連続的に被加工管に懸濁液を注送することができる。
Test method (test equipment)
An overview of the test apparatus is shown in FIG. The test apparatus includes a hydraulic pump, a piston, a cylinder, a cartridge, and the like. The cartridges II and III are filled with water and abrasive grains, and a work tube (cooling tube) is installed between them. The cartridges I and IV are filled only with water, and serve as a buffer portion for preventing the filled abrasive grains from flowing into the cylinder. By pushing out the water filled in the cylinder, the filled abrasive grains pass through the work tube as a suspension and settle on the cartridge on the opposite side. At this time, the inner surface of the tube to be processed is polished by the abrasive grains in the suspension. When the moving direction of the piston is switched using the electromagnetic valve, the suspension can be continuously poured into the work tube.

(被加工管)
三次元形状造形物の製造に用いた粉末は、鉄系粉末、銅系粉末およびニッケル系粉末などを含んで成る混合粉末を使用した。それによって得られた造形物の表面硬さはビッカース硬さでHv=330であった。
(Processed pipe)
The powder used for the manufacture of the three-dimensional shaped object was a mixed powder containing iron-based powder, copper-based powder, nickel-based powder, and the like. The surface hardness of the shaped article obtained thereby was Vickers hardness of Hv = 330.

被加工管の内面を評価するため、造形後に放電加工によってベースプレートと平行に被加工管を分割した。分割後の被加工管のモデル図を図15に示す。下半面に突起のないものを“ストレート管”、らせん形態の突起があるものを“らせん管”とした。図15(a)にそれらの上半面、図15(b)にストレート管の下半面、図15(c)にらせん管の下半面を示す。上半面の形態はストリート管とらせん管とで共通しており、それゆえ、ストレート管としては図15(a)と図15(b)とを組合わせたものを使用し、らせん管としては図15(a)と図15(c)を組合わせたものを使用して研磨処理を行った。   In order to evaluate the inner surface of the tube to be processed, the tube to be processed was divided in parallel with the base plate by electric discharge machining after forming. A model diagram of the pipe to be processed after the division is shown in FIG. Those with no protrusions on the lower half were called “straight pipes”, and those with helical protrusions were called “spiral pipes”. FIG. 15A shows the upper half of them, FIG. 15B shows the lower half of the straight tube, and FIG. 15C shows the lower half of the spiral tube. The shape of the upper half is common to the street tube and the spiral tube. Therefore, the straight tube is a combination of FIG. 15 (a) and FIG. 15 (b), and the spiral tube is the figure. Polishing was performed using a combination of 15 (a) and FIG. 15 (c).

実験条件および被加工管の寸法につき以下の表1に示す。砥粒には粒度♯60のホワイトアルミナ砥粒を使用し、懸濁液実濃度が7.2vol%になるようにカートリッジII,IIIに砥粒を充填した。また、被加工管の直径は5mm、長さを80mmとした。らせん管には直径2mmの半円状の突起を、ピッチ10mmmとして下半面にのみ形成した。これらの被加工管につき、3次元粗さ計で表面粗さを測定した。   The experimental conditions and dimensions of the pipe to be processed are shown in Table 1 below. As the abrasive grains, white alumina abrasive grains having a grain size of # 60 were used, and the cartridges II and III were filled with the abrasive grains so that the actual suspension concentration was 7.2 vol%. The diameter of the tube to be processed was 5 mm and the length was 80 mm. A semicircular protrusion having a diameter of 2 mm was formed on the spiral tube only on the lower half surface with a pitch of 10 mm. The surface roughness of these processed pipes was measured with a three-dimensional roughness meter.

(試験結果)
“ストレート管”および“らせん管”につき研磨時間tと表面粗さRaとの関係を図16に示す。両被加工管とも研磨時間の経過に伴い表面粗さが減少し、特に200秒までに表面粗さが急激に減少した。200秒を経過後では減少変化は緩やかになっている。そして、試験終了時の2000秒の表面粗さに着目すると、“らせん管”の表面粗さの方が“ストレート管”よりも小さくなっている。
(Test results)
FIG. 16 shows the relationship between the polishing time t and the surface roughness Ra for the “straight tube” and the “spiral tube”. The surface roughness of both the processed pipes decreased with the lapse of the polishing time, and in particular, the surface roughness rapidly decreased by 200 seconds. After 200 seconds, the decreasing change is moderate. Focusing on the surface roughness of 2000 seconds at the end of the test, the surface roughness of the “spiral tube” is smaller than that of the “straight tube”.

このような試験結果から、らせん管を用いて旋回流を発生させると、研磨性を向上できることが分かった。   From such a test result, it was found that if a swirl flow was generated using a spiral tube, the polishing property could be improved.

図17および18には、同様の試験より得られたらせん管内部の写真図および模式図を示す。かかる写真図などから見られるように、“旋回流の研磨処理”では、研磨ムラを減じて実質的に均一に磨くことができることも分かった。   17 and 18 show a photograph and a schematic diagram of the inside of a spiral tube obtained from the same test. As can be seen from the photograph and the like, it has also been found that the “swirl-flow polishing process” can reduce polishing unevenness and achieve a substantially uniform polishing.

1 光造形複合加工機
2 粉末層形成手段
3 光ビーム照射手段
4 切削手段
19 粉末/粉末層(例えば金属粉末/金属粉末層または樹脂粉末/樹脂粉末層)
20 造形テーブル
21 造形プレート
22 粉末層(例えば金属粉末層または樹脂粉末層)
23 スキージング・ブレード(均し板/均しブレード)
24 固化層(例えば焼結層または硬化層)またはそれから得られる三次元形状造形物
25 粉末テーブル
26 粉末材料タンクの壁部分
27 造形タンクの壁部分
28 粉末材料タンク
29 造形タンク
30 光ビーム発振器
31 ガルバノミラー
32 反射ミラー
33 集光レンズ
40 ミーリングヘッド
41 XY駆動機構
41a X軸駆動部
41b Y軸駆動部
42 ツールマガジン
50 チャンバー
52 光透過窓
80 流体経路(流路)
85 突起部
86 インターナル部材(経路内部挿入物)
87 回転可能に設けられたインターナル部材(経路内部挿入物)
100 三次元形状造形物(特に流体経路を備えた三次元形状造形物)
L 光ビーム
DESCRIPTION OF SYMBOLS 1 Optical modeling combined processing machine 2 Powder layer formation means 3 Light beam irradiation means 4 Cutting means 19 Powder / powder layer (For example, metal powder / metal powder layer or resin powder / resin powder layer)
20 modeling table 21 modeling plate 22 powder layer (for example, metal powder layer or resin powder layer)
23 Squeezing blade (leveling plate / leveling blade)
24 Solidified layer (for example, sintered layer or hardened layer) or three-dimensional shaped object 25 obtained therefrom Powder table 26 Wall part 27 of powder material tank Wall part 28 of tank for forming material 28 Powder material tank 29 Modeling tank 30 Light beam oscillator 31 Galvano Mirror 32 Reflecting mirror 33 Condensing lens 40 Milling head 41 XY drive mechanism 41a X-axis drive unit 41b Y-axis drive unit 42 Tool magazine 50 Chamber 52 Light transmission window 80 Fluid path (flow path)
85 Protrusion 86 Internal member (path internal insert)
87 Internal member that can be rotated (insert inside the path)
100 Three-dimensional shaped objects (especially three-dimensional shaped objects with fluid paths)
L Light beam

Claims (7)

(i)粉末層の所定箇所に光ビームを照射して前記所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程、および
(ii)得られた固化層の上に新たな粉末層を形成し、前記新たな粉末層の所定箇所に光ビームを照射して更なる固化層を形成する工程
を繰り返して行う三次元形状造形物の製造方法であって、
前記工程(i)および(ii)では前記造形物の内部領域の一部に相当する局所的領域を粉末状態部分として残しておき、該粉末状態部分の粉末を最終的に除去することによって、前記造形物の内部に流体経路を形成し、
前記造形物が得られた後、研磨剤を含んで成る流体を前記流体経路内に旋回流として流して該流体経路を研磨処理し、
前記工程(i)および(ii)では前記流体経路の経路形成面に突起部を形成しておき、前記研磨処理では該突起部に起因して前記旋回流が発生する、三次元形状造形物の製造方法。
(I) irradiating a predetermined portion of the powder layer with a light beam to sinter or melt-solidify the powder at the predetermined portion to form a solidified layer; and (ii) a new powder on the obtained solidified layer. Forming a layer, irradiating a predetermined portion of the new powder layer with a light beam to form a further solidified layer, a method for producing a three-dimensional shaped object,
In the steps (i) and (ii), a local region corresponding to a part of the internal region of the shaped article is left as a powder state portion, and the powder in the powder state portion is finally removed, thereby Form a fluid path inside the model,
After the shaped object is obtained, a fluid containing an abrasive is flowed as a swirling flow into the fluid path to polish the fluid path ,
In the steps (i) and (ii), a protrusion is formed on the path forming surface of the fluid path, and the swirling flow is generated due to the protrusion in the polishing process . Production method.
前記突起部をらせん状に形成することを特徴とする、請求項に記載の三次元形状造形物の製造方法。 The method for producing a three-dimensional shaped article according to claim 1 , wherein the protrusion is formed in a spiral shape. 前記研磨処理においては、前記流体を前記流体経路に導入するに先立って、前記旋回流を該流体に予め発生させておくことを特徴とする、請求項1に記載の三次元形状造形物の製造方法。   In the said grinding | polishing process, prior to introduce | transducing the said fluid into the said fluid path | route, the said swirl | flow is previously generated in this fluid, The three-dimensional shaped molded article of Claim 1 characterized by the above-mentioned. Method. 前記研磨処理では、前記流体の流れに伴って前記旋回流を発生させるインターナル部材を前記流体経路内に設けておくことを特徴とする、請求項1に記載の三次元形状造形物の製造方法。   The method for producing a three-dimensional shaped object according to claim 1, wherein an internal member that generates the swirling flow in accordance with the flow of the fluid is provided in the fluid path in the polishing process. . 前記研磨処理では、前記流体経路内にインターナル部材を回転自在に設け、該インターナル部材の回転によって前記旋回流を発生させることを特徴とする、請求項1に記載の三次元形状造形物の製造方法。   In the said grinding | polishing process, an internal member is rotatably provided in the said fluid path | route, The said swirl | vortex flow is generated by rotation of this internal member, The three-dimensional shaped molded article of Claim 1 characterized by the above-mentioned. Production method. 前記研磨処理に用いる前記研磨剤として、粒径が150μm〜300μmの粒状物を用いることを特徴とする、請求項1〜のいずれかに記載の三次元形状造形物の製造方法。 The method for producing a three-dimensional shaped article according to any one of claims 1 to 5 , wherein a granular material having a particle size of 150 µm to 300 µm is used as the abrasive used in the polishing treatment. 前記研磨処理に用いる前記流体の研磨剤濃度が3vol%〜20vol%であることを特徴とする、請求項1〜のいずれかに記載の三次元形状造形物の製造方法。 The method for producing a three-dimensional shaped object according to any one of claims 1 to 6 , wherein the fluid used in the polishing treatment has an abrasive concentration of 3 vol% to 20 vol%.
JP2012060896A 2012-03-16 2012-03-16 Manufacturing method of three-dimensional shaped object Active JP5991574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012060896A JP5991574B2 (en) 2012-03-16 2012-03-16 Manufacturing method of three-dimensional shaped object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012060896A JP5991574B2 (en) 2012-03-16 2012-03-16 Manufacturing method of three-dimensional shaped object

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016113812A Division JP2016191154A (en) 2016-06-07 2016-06-07 Method for manufacturing three-dimensional molded object

Publications (2)

Publication Number Publication Date
JP2013194263A JP2013194263A (en) 2013-09-30
JP5991574B2 true JP5991574B2 (en) 2016-09-14

Family

ID=49393590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012060896A Active JP5991574B2 (en) 2012-03-16 2012-03-16 Manufacturing method of three-dimensional shaped object

Country Status (1)

Country Link
JP (1) JP5991574B2 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3186304A1 (en) * 2012-09-05 2014-03-13 Aprecia Pharmaceuticals LLC Three-dimensional printing system and equipment assembly
EP2898967B9 (en) * 2014-01-27 2021-08-11 Rosswag GmbH Cutting tool holder, production method and use of a generative manufacturing device for manufacturing the cutting tool holder
JP6133223B2 (en) * 2014-02-19 2017-05-24 株式会社モリタ製作所 MEDICAL DEVICE ELEMENT, MEDICAL DEVICE, MEDICAL DEVICE COMPONENT, MEDICAL HAND PIECE, AND METHOD FOR MANUFACTURING MEDICAL DEVICE ELEMENT
JP6133222B2 (en) * 2014-02-19 2017-05-24 株式会社モリタ製作所 Medical cutting device
CN103962557B (en) * 2014-05-05 2016-08-17 上海电气(集团)总公司 A kind of separable constituency quickly shaping device
JP6219228B2 (en) 2014-05-12 2017-10-25 光洋サーモシステム株式会社 Induction heating coil and method of manufacturing induction heating coil
WO2016043033A1 (en) * 2014-09-17 2016-03-24 東京エレクトロン株式会社 Shower head and deposition system
CN104900469A (en) * 2015-06-25 2015-09-09 武汉大学 Real-time monitoring and rapidly-prototyped equipment based on electron beam and ion beam composite technology and method for manufacturing component using the same
GB201514977D0 (en) 2015-08-24 2015-10-07 Rolls Royce Plc Additive layer manufacturing
US20170197284A1 (en) * 2016-01-13 2017-07-13 United Technologies Corporation Method for removing partially sintered powder from internal passages in electron beam additive manufactured parts
CN105563832B (en) * 2016-01-16 2018-01-19 曾志文 The printing principle and 3D printer of a kind of print rotated body
US10583606B2 (en) * 2016-02-11 2020-03-10 General Electric Company Method and supports with powder removal ports for additive manufacturing
JP6702901B2 (en) * 2016-04-13 2020-06-03 三菱重工業株式会社 Additive manufacturing support member, manufacturing method and manufacturing apparatus for three-dimensional object by additive manufacturing, modeling model generating apparatus, control apparatus, and modeling method of molded object
WO2017179587A1 (en) * 2016-04-13 2017-10-19 三菱重工業株式会社 Support member for additive manufacturing, production method and production device for three-dimensional object by additive manufacturing, object model creation device, control device, and manufacturing method for object
US10556383B2 (en) 2016-05-12 2020-02-11 General Electric Company Methods and rail supports for additive manufacturing
EP3257660A1 (en) * 2016-06-13 2017-12-20 Siemens Aktiengesellschaft Method of providing an abrasive means and of additively manufacturing a component
US11511340B2 (en) * 2016-07-01 2022-11-29 General Electric Company Methods and multi-purpose powder removal features for additive manufacturing
JP6778887B2 (en) * 2016-11-28 2020-11-04 パナソニックIpマネジメント株式会社 Manufacturing method of 3D shaped object
FR3059920B1 (en) * 2016-12-09 2022-06-17 Zodiac Hydraulics FINISHING OF COMMUNICATION CHANNELS OBTAINED BY ADDITIVE MANUFACTURING
US20180345600A1 (en) * 2017-05-31 2018-12-06 General Electric Company Method for real-time simultaneous additive and subtractive manufacturing with a dynamically grown build wall
CN109079143B (en) * 2017-06-13 2020-12-29 中国航发商用航空发动机有限责任公司 Method for removing cracks on inner cavity surface of selective laser melting formed part
GB2569349A (en) * 2017-12-14 2019-06-19 Airbus Operations Ltd Post-processing of additive layer manufactured part
JP6950583B2 (en) 2018-03-02 2021-10-13 トヨタ自動車株式会社 Mold manufacturing method
JP2021178983A (en) * 2018-07-30 2021-11-18 パナソニックIpマネジメント株式会社 Method for producing three-dimensional-shaped molding having internal space
US11440097B2 (en) 2019-02-12 2022-09-13 General Electric Company Methods for additively manufacturing components using lattice support structures
JP7132285B2 (en) * 2020-07-10 2022-09-06 株式会社ジェイテクトサーモシステム Manufacturing method of induction heating coil

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3446618B2 (en) * 1998-08-26 2003-09-16 松下電工株式会社 Surface finishing method for metal powder sintered parts
JP4110856B2 (en) * 2002-06-28 2008-07-02 松下電工株式会社 Manufacturing method of mold
JP4239652B2 (en) * 2003-03-31 2009-03-18 パナソニック電工株式会社 Surface finishing method for metal powder sintered parts
JP4744200B2 (en) * 2005-06-20 2011-08-10 シーメット株式会社 Solid modeling object with smoothed modeling end face
JP2012000572A (en) * 2010-06-17 2012-01-05 Pcg Technica:Kk Apparatus and method for cleaning pipeline

Also Published As

Publication number Publication date
JP2013194263A (en) 2013-09-30

Similar Documents

Publication Publication Date Title
JP5991574B2 (en) Manufacturing method of three-dimensional shaped object
WO2013137283A1 (en) Production method for three-dimensionally shaped object, and three-dimensionally shaped object
JP5776004B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object
JP5519766B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object
KR101521481B1 (en) Method for producing three-dimensionally shaped structure, and three-dimensionally shaped structure obtained by same
JP5555222B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
JP5764753B2 (en) Manufacturing method of three-dimensional shaped object
JP5539347B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
JP5599957B2 (en) Manufacturing method of three-dimensional shaped object
WO2012160811A1 (en) Method for producing three-dimensional shape structure
WO2011155568A1 (en) Method for producing three-dimensionally shaped structure, three-dimensionally shaped structure obtained by same, and method for producing molded article
JP6512407B2 (en) Method of manufacturing three-dimensional shaped object
Abdel Ghany et al. Comparison between the products of four RPM systems for metals
JP4655063B2 (en) Manufacturing method of three-dimensional shaped object
JP2010121187A (en) Three-dimensional shaped article and method for producing the same
JP4640216B2 (en) Metal powder for metal stereolithography
JP5612530B2 (en) Manufacturing method of three-dimensional shaped object
JP2008291317A (en) Method for producing three-dimensionally shaped object
JP5588925B2 (en) Manufacturing method of three-dimensional shaped object
JP2015157405A (en) Laminate molding method and laminate molding device
JP2004277877A (en) Metal powder for metal light mold molding, method of producing the same, method of producing molding with three-dimensional shape by metal light molding and metal light molding
JP3687667B2 (en) Metal powder for metal stereolithography
JP2016191154A (en) Method for manufacturing three-dimensional molded object
JP6785478B2 (en) Mold and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150113

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150224

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150227

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160607

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160804

R151 Written notification of patent or utility model registration

Ref document number: 5991574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151