JP2005048234A - Metallic powder for metal light beam fabrication - Google Patents

Metallic powder for metal light beam fabrication Download PDF

Info

Publication number
JP2005048234A
JP2005048234A JP2003281261A JP2003281261A JP2005048234A JP 2005048234 A JP2005048234 A JP 2005048234A JP 2003281261 A JP2003281261 A JP 2003281261A JP 2003281261 A JP2003281261 A JP 2003281261A JP 2005048234 A JP2005048234 A JP 2005048234A
Authority
JP
Japan
Prior art keywords
powder
metal
light beam
ferrous
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003281261A
Other languages
Japanese (ja)
Other versions
JP3687667B2 (en
Inventor
Isao Fuwa
勲 不破
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003281261A priority Critical patent/JP3687667B2/en
Publication of JP2005048234A publication Critical patent/JP2005048234A/en
Application granted granted Critical
Publication of JP3687667B2 publication Critical patent/JP3687667B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shape-formed material which has superior shape formability when being shape-formed by metal light beam (directed energy beam) fabrication, excellent machinability of the obtained shape-formed article, and no microcrack. <P>SOLUTION: A metallic powder for metal light beam fabrication is a powdery material used in a method for manufacturing a shaped material having a desired three-dimensional shape by irradiating a light beam on the powdery material to form a hardened layer, and stacking it; and includes 60-80 wt.% ferrous powder made from chrome molybdenum steel, 5-25 wt.% non-ferrous powder made from phosphor copper or copper-manganese, and more than 10 wt.% non-ferrous powder made from nickel. The metallic powder includes an increased amount of the non-ferrous powder made from nickel, so that it provides a shape-formed article having superior machinability, few microcracks, high strength and high toughness, though having hardness slightly decreased. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は金属粉末からなる粉末層に光ビームを照射して焼結層を形成するとともにこの焼結層を積層することで所望の三次元形状造形物を得る金属光造形に用いる金属粉末に関するものである。   The present invention relates to a metal powder for use in metal stereolithography to form a sintered layer by irradiating a powder layer made of metal powder with a light beam and laminating this sintered layer. It is.

金属粉末で形成した粉末層の特定エリアに光ビーム(指向性エネルギービーム、例えばレーザ)を照射して焼結層を形成し、この焼結層の上に新たな粉末層を形成してその特定エリアに光ビームを照射することで焼結層を形成するということを繰り返して焼結層の積層物としての三次元形状造形物を製造する技術が知られている。   A sintered layer is formed by irradiating a specific area of the powder layer formed of metal powder with a light beam (directed energy beam, for example, a laser), and a new powder layer is formed on the sintered layer to identify the powder layer. There is known a technique for manufacturing a three-dimensional shaped article as a laminate of sintered layers by repeatedly forming a sintered layer by irradiating an area with a light beam.

金属光造形と称されているこの技術においては、光ビームのエネルギー密度の調整により、造形物に隙間(空孔)が多く存在している状態から、金属粉末がほぼ完全に溶融した後に固化した状態、つまり造形密度(焼結密度)がほぼ100%の状態まで得ることができるものであり、このために表面が滑らかな面となっていることが求められる成形用金型なども形成することもできる。また、表面は高密度、内部は低密度、その間は中密度に形成することも可能であるとともに、このように密度を変化させる場合、滑らかな表面を持つものを造形速度を犠牲にすることなく得ることができる。   In this technology, which is called metal stereolithography, by adjusting the energy density of the light beam, the metal powder is solidified after almost completely melting from the state in which there are many gaps (holes) in the modeled object. It is possible to obtain a state, that is, a modeling density (sintered density) of almost 100%, and for this purpose, a molding die or the like that is required to have a smooth surface is also formed. You can also. In addition, it is possible to form the surface with a high density, the inside with a low density, and a medium density in the meantime, and when changing the density in this way, a smooth surface without sacrificing the modeling speed. Obtainable.

しかし、このような密度差が表面と内部とにある造形物を金属光造形で得るにあたっては、通常の粉末焼結に用いられる金属粉末とは異なった特性のものが必要となる。   However, in order to obtain a shaped object having such a density difference between the surface and the interior by metal stereolithography, a metal powder having characteristics different from those of metal powder used for normal powder sintering is required.

たとえば、金属粉末の粒径は、粉末層の厚みよりも小さくする必要があり、この時、粒子径は細かい方が粉末の充填密度が高く、造形時の光ビーム(レーザ)吸収率も良いために造形密度も高くすることができるとともに表面粗さも小さくすることができるが、粉末が細かすぎて凝集を起こしてしまうと、逆に粉末の充填密度は小さくなり、薄く均一に敷けなくなってしまう。   For example, the particle size of the metal powder needs to be smaller than the thickness of the powder layer. At this time, the smaller the particle size, the higher the packing density of the powder, and the better the light beam (laser) absorption during modeling. In addition, the modeling density can be increased and the surface roughness can be decreased. However, if the powder is too fine and agglomerates, the packing density of the powder is decreased, and the powder cannot be spread uniformly and thinly.

また、ある程度の造形強度を得るためには、レーザ照射された造形部とその下層の焼結層との接合面積が大きく、かつその密着強度が高いものである必要がある。   Further, in order to obtain a certain degree of modeling strength, it is necessary that the bonding area between the laser-irradiated modeling part and the underlying sintered layer is large and that the adhesion strength is high.

さらに、レーザ照射された箇所の上面があまり大きく盛り上がってはならない。次の層を造形するために次の粉末層を敷く際に、盛り上がり量が粉末層の厚み以上となると、粉末層の形成そのものが困難となってしまうからである。   Furthermore, the upper surface of the laser-irradiated portion should not rise so much. This is because, when the next powder layer is laid to form the next layer, if the bulge amount is equal to or greater than the thickness of the powder layer, the formation of the powder layer itself becomes difficult.

また、造形された造形物の表面には金属粉末が付着してしまっていることから、この不要な金属粉末を落として高密度な表面を露出させるための切削仕上げ等の加工を行う時の加工性が良いことが望まれる。   In addition, since the metal powder has adhered to the surface of the modeled object, the processing when performing processing such as cutting finish to remove this unnecessary metal powder and expose the high-density surface It is desirable that the property is good.

もちろん、外観に大きな割れが生じてはならないし、射出成形用金型などの内部に流体(冷却水)を流す場合のことなども考慮すると、内部組織にマイクロクラックが無いことが望まれる。   Of course, there should be no large cracks in the appearance, and it is desirable that the internal structure should be free of microcracks in consideration of the case of flowing a fluid (cooling water) inside an injection mold or the like.

ここにおいて、レーザ照射された金属粉末は、その一部または全部が一旦溶融し、その後急冷凝固されて焼結品となるが、この溶融した時の濡れ性が大きいと隣接する焼結部との接合面積が大きくなり、流動性が大きければ盛り上がりが小さくなることから、溶融した時の流動性が大きく且つ濡れ性も良いことが望まれる。   Here, a part or all of the metal powder irradiated with the laser is once melted and then rapidly solidified to form a sintered product. If the bonding area is large and the fluidity is large, the rise is small. Therefore, it is desirable that the fluidity when melted is large and the wettability is good.

このような観点から、本出願人は特願平11−335178号(特開2001−152204号公報:特許文献1)において、クロムモリブデン鋼からなる鉄系粉末70〜90重量%と、リン銅またはマンガン銅からなる非鉄系粉末5〜30重量%と、ニッケルからなる非鉄系粉末0〜10重量%とを含む金属光造形用金属粉末を提案した。クロムモリブデン鋼はその強度や靭性の点から、リン銅またはマンガン銅は濡れ性及び流動性の点から、ニッケルは強度及び加工性の点から採用している。
特開2001−152204号公報
From this point of view, the present applicant has disclosed in Japanese Patent Application No. 11-335178 (Japanese Patent Laid-Open No. 2001-152204: Patent Document 1) an iron-based powder of 70 to 90% by weight made of chromium molybdenum steel, phosphorous copper or A metal powder for metal stereolithography was proposed that includes 5 to 30% by weight of non-ferrous powder made of manganese copper and 0 to 10% by weight of non-ferrous powder made of nickel. Chrome molybdenum steel is adopted from the viewpoint of strength and toughness, phosphorous copper or manganese copper is adopted from the viewpoint of wettability and fluidity, and nickel is adopted from the viewpoint of strength and workability.
JP 2001-152204 A

上記配合の金属光造形用金属粉末は、金属光造形によって表面と内部とに密度差がある造形物を金属光造形で得るという点において、概ね好ましい結果を得ることができているが、上記濡れ性及び流動性の点で造形時にやや問題があるほか、切削加工が困難で超硬エンドミルの刃先にチッピングが生じてしまうという問題が生じている。これは造形後の硬度がHv400と高いことが原因ではなく、非常に硬い金属粉末粒子が造形物中に残存していることが原因と思われ、硬度を下げるだけでは解決することができない。また、高密度焼結させた部分にマイクロクラックが多数生じてしまうものであり、このマイクロクラックは、強度及び靭性の低下の原因となっているとともに得られた造形物を成型用金型として用いる場合において特に問題となる。   Although the metal powder for metal stereolithography of the above composition can obtain a generally preferable result in terms of obtaining a model having a density difference between the surface and the interior by metal stereolithography, the wet In addition to the problem of forming and fluidity, there are some problems during modeling, and cutting is difficult and chipping occurs at the cutting edge of the carbide end mill. This is not due to the fact that the hardness after modeling is as high as Hv400, but is considered to be caused by extremely hard metal powder particles remaining in the modeled object, and cannot be solved only by reducing the hardness. In addition, many microcracks are generated in the high-density sintered portion, and the microcracks cause a decrease in strength and toughness, and the obtained shaped article is used as a molding die. This is especially a problem.

本発明はこのような点に鑑みなされたものであって、その目的とするところは金属光造形に際しての造形性及び得られた造形物の切削加工性に優れているとともにマイクロクラックのない造形物を得ることができる金属粉末を提供するにある。   The present invention has been made in view of these points, and the object of the present invention is a modeled article that is excellent in the moldability in metal stereolithography and the cutting workability of the resulting modeled article, and has no microcracks. It is in providing the metal powder which can obtain.

本発明に係る金属光造形用金属粉末は、粉末材料に光ビームを照射して硬化層を形成し、この硬化層を積み重ねて所望の三次元形状を有する造形物を製造する方法に用いられる粉末材料であって、クロムモリブデン鋼からなる鉄系粉末を60〜80重量%、リン銅またはマンガン銅からなる非鉄系粉末を5〜25重量%、ニッケルからなる非鉄系粉末を10重量%超を含んでいることに特徴を有している。前記従来例に比してニッケルからなる非鉄系粉末の配合量を増やしたことにより、得られた造形物の硬度が少々低下するものの切削加工性に優れる上にマイクロクラックが少なくて強度及び靭性の高いものを得ることができる。ただし、ニッケルからなる非鉄系粉末の量を多くし過ぎると、造形用の基台との密着強度が低下して造形物が基台から剥がれる現象が起こることから、30重量%以内としておくことが好ましく、更にはクロムモリブデン鋼粉末の配合量を60〜80重量パーセント、リン銅または銅マンガン合金粉末からなる非鉄系粉末の配合量を5〜15重量パーセント、ニッケルからなる非鉄系粉末の配合量を15〜25重量パーセントとする時、特に好ましい結果を得ることができる。   The metal powder for metal stereolithography according to the present invention is a powder used in a method for producing a shaped article having a desired three-dimensional shape by irradiating a powder material with a light beam to form a cured layer and stacking the cured layers. 60 to 80% by weight of iron-based powder made of chromium molybdenum steel, 5 to 25% by weight of non-ferrous powder made of phosphorous copper or manganese copper, and more than 10% by weight of non-ferrous powder made of nickel It has the feature in being. By increasing the blending amount of the non-ferrous powder made of nickel as compared with the conventional example, the hardness of the resulting molded article is slightly reduced, but it has excellent cutting workability and has few microcracks and has high strength and toughness. You can get something expensive. However, if the amount of non-ferrous powder made of nickel is too large, the adhesion strength with the base for modeling will decrease and the model will peel off from the base, so it should be kept within 30% by weight. Preferably, the blending amount of the chromium molybdenum steel powder is 60 to 80% by weight, the blending amount of the non-ferrous powder composed of phosphor copper or copper manganese alloy powder is 5 to 15% by weight, and the blending amount of the non-ferrous powder composed of nickel. When the content is 15 to 25 weight percent, particularly preferable results can be obtained.

上記鉄系粉末と上記非鉄系粉末の各平均粒子径は5〜50μmであり且つ鉄系粉末の平均粒子径が非鉄系粉末の平均粒子径よりも小さいことがマイクロクラックの低減に関して望ましい。   The average particle diameter of the iron-based powder and the non-ferrous powder is preferably 5 to 50 μm, and the average particle diameter of the iron-based powder is preferably smaller than the average particle diameter of the non-ferrous powder in terms of reducing microcracks.

また、鉄系粉末として浸炭されたものを用いると、溶融時の濡れ性の向上及び凝固時におけるマイクロクラックの発生の更なる低減を得ることができる。   Further, when carburized iron-based powder is used, it is possible to improve wettability during melting and further reduce the occurrence of microcracks during solidification.

本発明の金属光造形用金属粉末においては、ニッケルからなる非鉄系粉末を10重量%超としたことで、溶融時の濡れ性の向上及び凝固時におけるマイクロクラックの発生の低減に有効であった。   In the metal stereolithography metal powder of the present invention, the non-ferrous powder made of nickel was more than 10% by weight, which was effective in improving wettability during melting and reducing the occurrence of microcracks during solidification. .

以下本発明を実施の形態の一例に基づいて詳述する。なお、図示例では造形途中での切削加工のための除去手段4を備えて、造形途中にそれまでに造形した造形物表面の切削加工を行うものを示しているが、本発明は、この除去手段4を有しておらず、造形途中での切削加工を行わない通常の金属光造形に対しても適用することができる。   Hereinafter, the present invention will be described in detail based on an embodiment. In addition, although the example of illustration shows what has the removal means 4 for the cutting process in the middle of modeling, and performs the cutting process of the surface of the modeled object modeled so far in the middle of the modeling, this invention is this removal The present invention can also be applied to normal metal stereolithography that does not have the means 4 and does not perform cutting work during modeling.

図2は金属光造形のための装置の一例を示しており、外周が囲まれた空間内をシリンダーで上下に昇降する昇降テーブル20上に供給した金属粉末をスキージング用ブレード21でならすことで所定厚みΔt1の粉末層10を形成する粉末層形成手段2と、レーザー発振器30から出力されたレーザーをガルバノミラー31等のスキャン光学系を介して上記粉末層10に照射することで金属粉末を焼結して焼結層11を形成する焼結層形成手段3と、上記粉末層形成手段2のベース部にXY駆動機構40を介してミーリングヘッド41を設けることで形成した除去手段4とを備えている。   FIG. 2 shows an example of an apparatus for metal stereolithography. By using a squeezing blade 21, the metal powder supplied on a lifting table 20 that moves up and down by a cylinder in a space surrounded by an outer periphery is smoothed. The powder layer forming means 2 for forming the powder layer 10 having a predetermined thickness Δt1 and the powder outputted from the laser oscillator 30 are irradiated onto the powder layer 10 through a scanning optical system such as a galvano mirror 31 to burn the metal powder. And a removal layer 4 formed by providing a milling head 41 via an XY drive mechanism 40 at the base portion of the powder layer formation unit 2. ing.

このものにおける三次元形状造形物の製造は、図3に示すように、焼結層形成手段と焼結層との相対距離を調整する調整手段であるところの昇降テーブル20上面の造形用ベース22表面に金属粉末をブレード21で供給すると同時にブレード21でならすことで第1層目の粉末層10を形成し、この粉末層10の硬化させたい箇所に光ビーム(レーザー)Lを照射して粉末を焼結させてベース22と一体化した焼結層11を形成する。   As shown in FIG. 3, the manufacture of the three-dimensional shaped article in this product is a modeling base 22 on the upper surface of the lifting table 20 which is an adjusting means for adjusting the relative distance between the sintered layer forming means and the sintered layer. The first powder layer 10 is formed by supplying metal powder to the surface with the blade 21 and at the same time with the blade 21, and a portion of the powder layer 10 to be cured is irradiated with a light beam (laser) L to produce powder. Is sintered to form the sintered layer 11 integrated with the base 22.

この後、昇降テーブル20を少し下げて再度金属粉末を供給してブレード21でならすことで第2層目の粉末層10を形成し、この粉末層10の硬化させたい箇所に光ビーム(レーザー)Lを照射して粉末を焼結させて下層の焼結層11と一体化した焼結層11を形成する。   After that, the lifting table 20 is slightly lowered, the metal powder is supplied again, and the blade 21 is used to form the second powder layer 10. A light beam (laser) is applied to the portion of the powder layer 10 to be cured. L is irradiated to sinter the powder to form the sintered layer 11 integrated with the lower sintered layer 11.

昇降テーブル20を下降させて新たな粉末層10を形成し、光ビームを照射して所要箇所を焼結層11とする工程を繰り返すことで、目的とする三次元形状造形物を製造するものであり、光ビームとしては炭酸ガスレーザーを好適に用いることができ、粉末層10の厚みΔt1としては、得られた三次元形状造形物を成形用金型などに利用する場合、0.05mm程度とするのが好ましい。   By lowering the elevating table 20 to form a new powder layer 10 and irradiating a light beam to make the required portion a sintered layer 11, a desired three-dimensional shaped object is manufactured. Yes, a carbon dioxide laser can be suitably used as the light beam, and the thickness Δt1 of the powder layer 10 is about 0.05 mm when the obtained three-dimensional shaped object is used for a molding die or the like. It is preferable to do this.

光ビームの照射経路は、予め三次元CADデータから作成しておく。すなわち、三次元CADモデルから生成したSTLデータを等ピッチ(Δt1を0.05mmとした場合、0.05mmピッチ)でスライスした各断面の輪郭形状データを用いる。この時、三次元形状造形物の少なくとも最表面が高密度(気孔率5%以下)となるように焼結させることができるように光ビームの照射を行い、内部は低密度となるように焼結させることで、つまりは形状モデルデータを予め、表層部と内部とに分割しておき、内部についてはポーラスとなるような焼結条件、表層部はほぼ粉末が溶融して高密度となる条件で光ビームを照射することで、緻密な表面を持つ造形物を高速に得ることができる。   The irradiation path of the light beam is created in advance from three-dimensional CAD data. That is, the contour shape data of each cross section obtained by slicing STL data generated from a three-dimensional CAD model at an equal pitch (0.05 mm pitch when Δt1 is 0.05 mm) is used. At this time, irradiation with a light beam is performed so that at least the outermost surface of the three-dimensional shaped object can be sintered at a high density (porosity of 5% or less), and the inside is baked to a low density. In other words, the shape model data is preliminarily divided into the surface layer part and the inside, and the inside is a sintering condition that becomes porous, and the surface layer part is a condition that the powder almost melts and becomes high density By irradiating with a light beam, a shaped object having a dense surface can be obtained at high speed.

そして、上記粉末層10を形成しては光ビームを照射して焼結層11を形成することを繰り返していくのであるが、焼結層11の全厚みがたとえばミーリングヘッド41の工具長さなどから求めた所要の値になれば、いったん除去手段4を作動させてそれまでに造形した造形物の表面を切削する。たとえば、ミーリングヘッド41の工具(ボールエンドミル)が直径1mm、有効刃長3mmで深さ3mmの切削加工が可能であり、粉末層10の厚みΔt1が0.05mmであるならば、60層の焼結層11を形成した時点で、除去手段4を作動させる。   Then, the powder layer 10 is formed and the light beam is irradiated to repeatedly form the sintered layer 11. The total thickness of the sintered layer 11 is, for example, the tool length of the milling head 41. When the required value obtained from the above is reached, the removal means 4 is once activated to cut the surface of the shaped object that has been shaped so far. For example, if the tool (ball end mill) of the milling head 41 is capable of cutting with a diameter of 1 mm, an effective blade length of 3 mm and a depth of 3 mm, and the thickness Δt1 of the powder layer 10 is 0.05 mm, 60 layers of fired When the binder layer 11 is formed, the removing means 4 is operated.

この除去手段4による切削加工により、造形物表面に付着した粉末による低密度表面層を除去すると同時に、高密度部まで削り込むことで、造形物表面に高密度部を全面的に露出させる。   By removing the low-density surface layer of the powder adhering to the surface of the modeled object by cutting by the removing means 4, the high-density part is entirely exposed on the surface of the modeled object by cutting into the high-density part.

この除去手段4による切削加工経路は、光ビームの照射経路と同様に予め三次元CADデータから作成しておく。この時、等高線加工を適用して加工経路を決定するが、Z方向ピッチは焼結時の積層ピッチにこだわる必要はなく、緩い傾斜の場合はZ方向ピッチをより細かくして補間することで、滑らかな表面を得られるようにしておく。   The cutting path by the removing means 4 is created in advance from three-dimensional CAD data in the same manner as the light beam irradiation path. At this time, the machining path is determined by applying contour processing, but the Z-direction pitch does not need to stick to the lamination pitch at the time of sintering, and in the case of a gentle inclination, by interpolating with a finer Z-direction pitch, Keep a smooth surface.

このような金属光造形での三次元形状造形物の製造にあたっては、前述のように金属粉末としてどのようなものを用いるかが、造形性の点や造形物の出来上がり具合に大きな影響を及ぼすのであるが、この金属光造形用金属粉末として要求されている前述の点から、クロムモリブデン鋼からなる鉄系粉末と、リン銅またはマンガン銅からなる非鉄系粉末と、ニッケルからなる非鉄系粉末とからなるなるものを用いているとともに、本発明においては、クロムモリブデン鋼からなる鉄系粉末を60〜80重量%、リン銅またはマンガン銅からなる非鉄系粉末を5〜25重量%、ニッケルからなる非鉄系粉末を10重量%超の配合のものを用いている。   In manufacturing a three-dimensional shaped object in such metal stereolithography, what kind of metal powder is used as described above has a great influence on the point of formability and the quality of the object. However, from the aforementioned points required as metal powder for metal stereolithography, iron-based powder made of chromium molybdenum steel, non-ferrous powder made of phosphorous copper or manganese copper, and non-ferrous powder made of nickel In the present invention, 60 to 80% by weight of iron-based powder made of chromium molybdenum steel, 5 to 25% by weight of non-ferrous powder made of phosphorous copper or manganese copper, and non-ferrous made of nickel A system powder containing more than 10% by weight is used.

また、鉄系粉末と非鉄系粉末の各平均粒子径は5〜50μmであることが望ましいが、粒子径が小さすぎる場合は凝集を起こしてしまうことから、粉末層10の厚みΔt1を0.05mmとする場合、平均粒子径をほぼ30μmとしておくとよい。高密度部分にマイクロクラックの発生が少なく、しかも高密度部分及び低密度部分のいずれについても良好な造形性を得ることができた。   The average particle diameter of the iron-based powder and the non-ferrous powder is preferably 5 to 50 μm. However, if the particle diameter is too small, aggregation occurs, so that the thickness Δt1 of the powder layer 10 is 0.05 mm. In this case, the average particle size is preferably about 30 μm. The generation of microcracks in the high density portion was small, and good formability could be obtained in both the high density portion and the low density portion.

また鉄系粉末として、浸炭させたものを用いた場合、溶融時の濡れ性の向上及び凝固時におけるマイクロクラックの発生の更なる低減を得ることができた。なお、浸炭はCOとCO2の混合ガス雰囲気での浸炭(促進のためにメタンガスやブタンガスを数%(3〜15%)添加することも好ましい)等の常法を用いればよい。 Further, when carburized iron-based powder was used, it was possible to improve wettability during melting and further reduce the occurrence of microcracks during solidification. Carburizing may be performed by a conventional method such as carburizing in a mixed gas atmosphere of CO and CO 2 (preferably adding several percent (3 to 15%) of methane gas or butane gas for promotion).

[実施例]
非球形粒子状で平均粒子径20μmのクロムモリブデン鋼SCM440粉末(図4参照)と、球形粒子状で平均粒子径が30μmのニッケルNi粉末(図5参照)と、球形粒子状で平均粒子径が30μmの銅マンガン合金CuMnNi(たとえばCu−10%Mn−3%Ni)粉末(図6参照)とを用意し、
a 70%SCM440−21%Ni−9%CuMnNi
b 80%SCM440−10%Ni−10%CuMnNi
の配合量で金属光造形用金属粉末を形成した。なお、各%はいずれも重量%である。
[Example]
Chrome-molybdenum steel SCM440 powder (see FIG. 4) with non-spherical particles and an average particle size of 20 μm, nickel Ni powder (see FIG. 5) with spherical particles and an average particle size of 30 μm, and spherical particles with an average particle size of 30 μm of copper manganese alloy CuMnNi (for example, Cu-10% Mn-3% Ni) powder (see FIG. 6) is prepared,
a 70% SCM440-21% Ni-9% CuMnNi
b 80% SCM440-10% Ni-10% CuMnNi
The metal powder for metal stereolithography was formed with the compounding amount. Each% is% by weight.

この金属粉末を用いて金属光造形を行った。粉末層の厚みは0.05mmとし、使用したレーザは炭酸ガスレーザ(出力200Wの90%出力)であり、レーザスキャン速度75mm/sec、スキャンピッチ0.25mmで焼結させたところ、ニッケルNiの配合量を20%としたaのもの(図1参照)は、ニッケルNiの配合量を10%としたbのものよりもマイクロクラックの発生量が少なく、またbのものは切削加工に際して超硬エンドミルの刃先にチッピングが発生したが、aのものではチッピングが発生するようなことはなく、切削加工性も良好であった。   Metal stereolithography was performed using this metal powder. The thickness of the powder layer was 0.05 mm, and the laser used was a carbon dioxide laser (90% output of 200 W output). When sintered at a laser scan speed of 75 mm / sec and a scan pitch of 0.25 mm, the nickel Ni compound was added. The amount of 20% a (see Fig. 1) is less microcracked than the amount of nickel Ni blended to 10% b. Chipping occurred at the cutting edge of No. 1, but chipping did not occur with the tool a, and the machinability was good.

また上記配合における銅マンガン合金に代えて銅リン(CuP)合金粉末(球形粒子状で平均粒子径は30μm)を用いてやはり同じ条件で焼結させたところ、上記a,bのものと同じ結果であった。   In addition, when sintered in the same conditions using copper phosphorus (CuP) alloy powder (spherical particles with an average particle size of 30 μm) instead of the copper manganese alloy in the above composition, the same results as in the above a and b were obtained. Met.

また、上記aにおけるクロムモリブデン鋼として前述の浸炭処理で浸炭を行ったものを用いて同じ条件で焼結させたところ、上記aのものよりもマイクロクラックの発生量が少ない造形物を得ることができた。   Moreover, when sintered under the same conditions as the chromium molybdenum steel in a above, which has been carburized by the above-mentioned carburizing treatment, it is possible to obtain a shaped product with less microcrack generation than in the above a. did it.

以上の各例における金属粉末は、造粒粉として形成されたものであってもよい。取り扱いが容易なものとなる。   The metal powder in each of the above examples may be formed as a granulated powder. It becomes easy to handle.

本発明の実施の形態の一例の金属粉末で製造した金属光造形物の倍率25倍の断面写真である。It is a cross-sectional photograph of magnification 25 times of the metal stereolithography thing manufactured with the metal powder of an example of embodiment of this invention. 同上の金属粉末を用いて金属光造形を行う装置の一例の概略斜視図である。It is a schematic perspective view of an example of the apparatus which performs metal stereolithography using the metal powder same as the above. 同上の説明図である。It is explanatory drawing same as the above. 同上の非球形粒子状のクロムモリブデン鋼粉末のSEM写真である。It is a SEM photograph of the non-spherical particle-like chromium molybdenum steel powder same as the above. 同上の球形粒子状のニッケル粉末のSEM写真である。It is a SEM photograph of the spherical particle-like nickel powder same as the above. 同上の球形粒子状の銅マンガン合金粉末のSEM写真である。It is a SEM photograph of the spherical particulate copper manganese alloy powder same as the above.

Claims (3)

粉末材料に光ビームを照射して硬化層を形成し、この硬化層を積み重ねて所望の三次元形状を有する造形物を製造する方法に用いられる粉末材料であって、
クロムモリブデン鋼からなる鉄系粉末を60〜80重量%、
リン銅またはマンガン銅からなる非鉄系粉末を5〜25重量%、
ニッケルからなる非鉄系粉末を10重量%超
を含んでいることを特徴とする金属光造形用金属粉末。
A powder material used for a method of forming a hardened layer by irradiating a powder material with a light beam and stacking the hardened layer to produce a shaped article having a desired three-dimensional shape,
60-80% by weight of iron-based powder made of chromium molybdenum steel,
5 to 25% by weight of non-ferrous powder composed of phosphorous copper or manganese copper,
A metal powder for metal stereolithography, characterized by containing more than 10% by weight of non-ferrous powder made of nickel.
上記鉄系粉末と上記非鉄系粉末の各平均粒子径が5〜50μmであるとともに、鉄系粉末の平均粒子径が非鉄系粉末の平均粒子径よりも小さいことを特徴とする請求項1記載の金属光造形用金属粉末。   The average particle size of each of the iron-based powder and the non-ferrous powder is 5 to 50 µm, and the average particle size of the iron-based powder is smaller than the average particle size of the non-ferrous powder. Metal powder for metal stereolithography. 鉄系粉末は浸炭されたものであることを特徴とする請求項1または2記載の金属光造形用金属粉末。   The metal powder for metal stereolithography according to claim 1 or 2, wherein the iron-based powder is carburized.
JP2003281261A 2003-07-28 2003-07-28 Metal powder for metal stereolithography Expired - Fee Related JP3687667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003281261A JP3687667B2 (en) 2003-07-28 2003-07-28 Metal powder for metal stereolithography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003281261A JP3687667B2 (en) 2003-07-28 2003-07-28 Metal powder for metal stereolithography

Publications (2)

Publication Number Publication Date
JP2005048234A true JP2005048234A (en) 2005-02-24
JP3687667B2 JP3687667B2 (en) 2005-08-24

Family

ID=34266829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003281261A Expired - Fee Related JP3687667B2 (en) 2003-07-28 2003-07-28 Metal powder for metal stereolithography

Country Status (1)

Country Link
JP (1) JP3687667B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026500A1 (en) 2006-08-28 2008-03-06 Panasonic Electric Works Co., Ltd. Metal powder for metal photofabrication and method of metal photofabrication using the same
JP2008184622A (en) * 2007-01-26 2008-08-14 Matsushita Electric Works Ltd Method for producing three-dimensional molding
JP2008184623A (en) * 2007-01-26 2008-08-14 Matsushita Electric Works Ltd Method for producing three-dimensional molding, and material
US8221850B2 (en) 2006-12-22 2012-07-17 Panasonic Corporation Manufacturing method of three-dimensionally shaped object
JP2014105373A (en) * 2012-11-29 2014-06-09 Canon Inc Metal powder for metal photofabrication, method of manufacturing molding die for injection molding, and molded article
WO2014120264A1 (en) * 2013-02-01 2014-08-07 Pratt & Whitney Rocketdyne, Inc. Additive manufacturing for elevated-temperature ductility and stress rupture life
WO2016106607A1 (en) * 2014-12-30 2016-07-07 深圳市圆梦精密技术研究院 Laser melting and laser milling composite 3d printing apparatus
WO2016106610A1 (en) * 2014-12-30 2016-07-07 深圳市圆梦精密技术研究院 Multi-axis milling and laser melting composite 3d printing apparatus
KR101726833B1 (en) * 2015-10-28 2017-04-14 조선대학교산학협력단 Rapid manufacturing process of ferrous and non-ferrous parts using plasma electron beam
CN111822710A (en) * 2020-09-14 2020-10-27 陕西斯瑞新材料股份有限公司 Preparation method of SLM (Selective laser melting) type 3D printing CuFe alloy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2696434B2 (en) 1991-01-23 1998-01-14 富士写真フイルム株式会社 Image forming method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026500A1 (en) 2006-08-28 2008-03-06 Panasonic Electric Works Co., Ltd. Metal powder for metal photofabrication and method of metal photofabrication using the same
EP2060343A1 (en) * 2006-08-28 2009-05-20 Panasonic Electric Works Co., Ltd Metal powder for metal photofabrication and method of metal photofabrication using the same
EP2060343A4 (en) * 2006-08-28 2012-06-20 Panasonic Corp Metal powder for metal photofabrication and method of metal photofabrication using the same
US8329092B2 (en) 2006-08-28 2012-12-11 Panasonic Corporation Metal powder for metal laser-sintering and metal laser-sintering process using the same
US8221850B2 (en) 2006-12-22 2012-07-17 Panasonic Corporation Manufacturing method of three-dimensionally shaped object
JP2008184622A (en) * 2007-01-26 2008-08-14 Matsushita Electric Works Ltd Method for producing three-dimensional molding
JP2008184623A (en) * 2007-01-26 2008-08-14 Matsushita Electric Works Ltd Method for producing three-dimensional molding, and material
JP2014105373A (en) * 2012-11-29 2014-06-09 Canon Inc Metal powder for metal photofabrication, method of manufacturing molding die for injection molding, and molded article
WO2014120264A1 (en) * 2013-02-01 2014-08-07 Pratt & Whitney Rocketdyne, Inc. Additive manufacturing for elevated-temperature ductility and stress rupture life
RU2670827C2 (en) * 2013-02-01 2018-10-25 Аэроджет Рокетдайн оф ДЕ, Инк. Additive manufacturing for elevated-temperature ductility and stress rupture life
RU2670827C9 (en) * 2013-02-01 2018-11-29 Аэроджет Рокетдайн оф ДЕ, Инк. Additive manufacturing for elevated-temperature ductility and stress rupture life
US10259043B2 (en) 2013-02-01 2019-04-16 Aerojet Rocketdyne Of De, Inc. Additive manufacturing for elevated-temperature ductility and stress rupture life
WO2016106607A1 (en) * 2014-12-30 2016-07-07 深圳市圆梦精密技术研究院 Laser melting and laser milling composite 3d printing apparatus
WO2016106610A1 (en) * 2014-12-30 2016-07-07 深圳市圆梦精密技术研究院 Multi-axis milling and laser melting composite 3d printing apparatus
KR101726833B1 (en) * 2015-10-28 2017-04-14 조선대학교산학협력단 Rapid manufacturing process of ferrous and non-ferrous parts using plasma electron beam
US10279420B2 (en) 2015-10-28 2019-05-07 Industry-Academic Cooperation Foundation, Chosun University Rapid manufacturing process of ferrous and non-ferrous parts using plasma electron beam
CN111822710A (en) * 2020-09-14 2020-10-27 陕西斯瑞新材料股份有限公司 Preparation method of SLM (Selective laser melting) type 3D printing CuFe alloy

Also Published As

Publication number Publication date
JP3687667B2 (en) 2005-08-24

Similar Documents

Publication Publication Date Title
JP4661842B2 (en) Method for producing metal powder for metal stereolithography and metal stereolithography
Kumar et al. Selective laser sintering
JP5579839B2 (en) Metal powder for powder sintering lamination, manufacturing method of three-dimensional shaped article using the same, and three-dimensional shaped article obtained
US7258720B2 (en) Metal powder composition for use in selective laser sintering
KR101076353B1 (en) Metal powder for metal-laser sintering and metal-laser sintering process using the same
US7255830B2 (en) Method of making a three-dimensional sintered product
JP5776004B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object
US8221850B2 (en) Manufacturing method of three-dimensionally shaped object
WO2010098479A1 (en) Process for producing three-dimensional shape and three-dimensional shape obtained thereby
Abdel Ghany et al. Comparison between the products of four RPM systems for metals
WO2010150805A1 (en) Method for producing three-dimensional formed shapes, and three-dimensional formed shapes obtained thereby
JP4640216B2 (en) Metal powder for metal stereolithography
EP3427870B1 (en) Three-dimensional molded object production method
JP4655063B2 (en) Manufacturing method of three-dimensional shaped object
JP3687667B2 (en) Metal powder for metal stereolithography
JP4737007B2 (en) Metal powder for metal stereolithography
JP2007016312A (en) Method for forming sintered compact
JP3633607B2 (en) Metal powder for metal stereolithography, method for producing the same, method for producing three-dimensional shaped article by metal stereolithography, and metal stereolithography
Su et al. Investigation of fully dense laser sintering of tool steel powder using a pulsed Nd: YAG (neodymium-doped yttrium aluminium garnet) laser
JP2008291317A (en) Method for producing three-dimensionally shaped object
CN112809022A (en) Novel method for preparing metal product by additive
CN105798294A (en) Rapid part prototyping method for refractory materials
JP2004050225A (en) Method for producing metal-made formed material
Dewidar Direct and indirect laser sintering of metals
Akhtar et al. The Effects of Pre-Alloyed Steels Powder Compositions on Build Quality in Direct Metal Laser Re-Melting

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20041201

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20041228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050112

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20050215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20050412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050530

R151 Written notification of patent or utility model registration

Ref document number: 3687667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees