JP5987766B2 - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
JP5987766B2
JP5987766B2 JP2013085358A JP2013085358A JP5987766B2 JP 5987766 B2 JP5987766 B2 JP 5987766B2 JP 2013085358 A JP2013085358 A JP 2013085358A JP 2013085358 A JP2013085358 A JP 2013085358A JP 5987766 B2 JP5987766 B2 JP 5987766B2
Authority
JP
Japan
Prior art keywords
catalyst layer
cathode
anode
fuel cell
sulfonic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013085358A
Other languages
English (en)
Other versions
JP2014207194A (ja
Inventor
大雄 吉川
大雄 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013085358A priority Critical patent/JP5987766B2/ja
Publication of JP2014207194A publication Critical patent/JP2014207194A/ja
Application granted granted Critical
Publication of JP5987766B2 publication Critical patent/JP5987766B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

この発明は、燃料電池に関し、特に燃料電池に用いられる触媒層に関する。
従来から、固体高分子型燃料電池(以下「燃料電池」と呼ぶ。)が知られている(特許文献1)。この燃料電池に使われる膜電極接合体は、電解質層と、電解質層の一面に接合された空気極反応層と、電解質層の他面に接合された水素極反応層とを有しており、水素極反応層のイオン交換容量は、空気極反応層のイオン交換容量よりも大きい。この結果、水素極反応層のイオン濃度が空気極反応層のイオン濃度よりも大きくなり、このイオン濃度の差に基づいて、空気極反応層側の水を水素極反応層に拡散させて、電解質膜の湿潤状態を維持している。
特開2005−174764号公報
しかしながら、本願の発明者は、イオン交換容量のみを調整しても、カソードからアノードへの拡散水の量が不十分であることを見いだした。また、この従来技術を水素と酸化ガス(空気)とが対向するカウンターフロー流路を有する燃料電池に適用した場合、生成水の循環が滞り、酸化ガスの入り口部では電解質膜が乾燥しながら、酸化ガスの出口部ではフラッディングが発生し、電池性能が低下する場合があった。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。
本発明の一形態によれば、燃料電池が提供される。この形態の燃料電池は、電解質膜と、前記電解質膜の一方の面に形成されたカソード触媒層と、前記電解質膜の他方の面に形成されたアノード触媒層と、前記カソード触媒層の表面に配置されたカソードガス流路と、前記アノード触媒層の表面に配置されたアノードガス流路と、を備える。前記カソードガス流路を流れるカソードガスの向きと、前記アノードガス流路を流れるアノードガスの向きは対向しており、前記カソード触媒層及び前記アノード触媒層を構成するアイオノマのスルホン酸基1モル当たりの乾燥膜重量は、730g/mol以上910g/mol以下であり、前記カソード触媒層中の単位面積当たりのスルホン酸量は、0.312mol/cm 以上0.419mol/cm 以下であり、前記アノード触媒層中の単位面積当たりのスルホン酸量は、0.154mol/cm 以上0.163mol/cm 以下であり、前記カソード触媒層中の単位面積当たりのスルホン酸量が前記アノード触媒層中の単位面積当たりのスルホン酸量の1.9倍より大きく2.8倍以下である。この形態によれば、単位面積当たりのスルホン酸量を調整することによって、カソード触媒層からアノード触媒層への水の拡散を促進することにより、カソードガス流路の上流部における乾燥を抑制し、カソードガス流路の上流部における水の過多を抑制し、燃料電池をバランスよく発電させることにより、燃料電池の出力を向上させることが可能となる。
(1)本発明の一形態によれば、燃料電池が提供される。この形態の燃料電池は、電解質膜と、前記電解質膜の一方の面に形成されたカソード触媒層と、前記電解質膜の他方の面に形成されたアノード触媒層と、前記カソード触媒層の表面に配置されたカソードガス流路と、前記アノード触媒層の表面に配置されたアノードガス流路と、を備え、前記カソードガス流路を流れるカソードガスの向きと、前記アノードガス流路を流れるアノードガスの向きは対向しており、前記カソード触媒層中の単位面積当たりのスルホン酸量がアノード触媒層中の単位面積当たりのスルホン酸量の1.9倍よりも大きい。この形態の燃料電池によれば、単位面積当たりのスルホン酸量を調整することによって、カソード触媒層からアノード触媒層への水の拡散を促進することにより、カソードガス流路の上流部における乾燥を抑制し、カソードガス流路の上流部における水の過多を抑制し、燃料電池をバランスよく発電させることにより、燃料電池の出力を向上させることが可能となる。
(2)上記形態の燃料電池において、前記カソード触媒層中の単位面積当たりのスルホン酸量はアノード触媒層中の単位面積当たりのスルホン酸量の2.6倍以上であってもよい。この形態の燃料電池によれば、カソード触媒層からアノード触媒層への水の拡散をより促進し、燃料電池をバランスよく発電させることにより、燃料電池の出力を向上させることが可能となる。
なお、本発明は種々の形態で実現することが可能であり、例えば、燃料電池のほか、燃料電池用触媒層等の形態で実現することができる。
本発明の一実施形態にかかる燃料電池の外観を示す斜視図である。 電池ユニットを図1に示す2−2切断線で切ったときの断面図である。 電解質膜における湿度分布を模式的に示す説明図である。 燃料電池の温度と出力との関係を示す説明図である。 触媒インクの製造および触媒層の形成フローチャートを示す説明図である。 図5の工程に従って作成したサンプルに関する各工程の値を示す説明図である。 S01〜S07に関するスルホン酸量比と燃料電池100の出力との関係を示す説明図である。 スルホン酸量比とカソード触媒層からアノード触媒層への水の拡散量との関係を示す説明図である。
図1は、本発明の一実施形態にかかる燃料電池100の外観を示す斜視図である。燃料電池100は、電池ユニット200とエンドプレート202、204を備える。本実施形態では、電池ユニット200は複数積層されているが、電池ユニット200は1個であってもよい。エンドプレート202、204は、電池ユニット200の積層方向の両端にそれぞれ配置されている。燃料電池100には、燃料ガス供給マニホールド110と、燃料ガス排出マニホールド120と、酸化ガス供給マニホールド130と、酸化ガス排出マニホールド140と、冷媒供給マニホールド150、151と、冷媒排出マニホールド160、161とが設けられており、これらのマニホールドは、燃料電池100を積層方向に貫通している。
図2は、電池ユニット200を図1に示す2−2切断線で切ったときの断面図である。電池ユニット200は、膜電極アッセンブリ20とセパレータ30とを備える。膜電極アッセンブリ20は、電解質膜210と、アノード触媒層220と、カソード触媒層230と、アノード側ガス拡散層240と、カソード側ガス拡散層250と、シールガスケット280とを備える。
本実施形態では、電解質膜210として、例えば、パーフルオロカーボンスルホン酸ポリマなどのフッ素系樹脂や炭化水素系樹脂からなるプロトン伝導性のイオン交換膜を用いている。アノード触媒層220及びカソード触媒層230は、電解質膜210の各面にそれぞれ配置されている。本実施形態では、アノード触媒層220及びカソード触媒層230として、例えば、白金触媒、あるいは白金と他の金属とからなる白金合金触媒を例えばカーボン粒子上に担持した触媒層を用いている。
アノード側ガス拡散層240、カソード側ガス拡散層250は、それぞれアノード触媒層220、カソード触媒層230の外面に配置されている。本実施形態では、アノード側ガス拡散層240およびカソード側ガス拡散層250として、カーボンペーパーやカーボン不織布を用いたカーボンクロスを用いている。
シールガスケット280は、電解質膜210、アノード側ガス拡散層240、およびカソード側ガス拡散層250の外縁を囲うように形成されている。シールガスケット280は、たとえば射出成形により、電解質膜210、アノード側ガス拡散層240、及びカソード側ガス拡散層250と一体に成形される。
セパレータ30は、カソードプレート300と、アノードプレート400と、中間フィルム500とを備える。カソードプレート300と、アノードプレート400との間に中間フィルム500が挟まれている。本実施形態では、膜電極アッセンブリ20とセパレータ30とが交互に配置されている構成を採用しているので、カソードプレート300は、膜電極アッセンブリ20のカソード側ガス拡散層250の外側に配置され、アノードプレート400は、膜電極アッセンブリ20のアノード側ガス拡散層240の外側に配置される構成となっている。なお、アノードプレート400とアノード側ガス拡散層240との間には、燃料ガス流路260が形成され、カソードプレート300とカソード側ガス拡散層250との間には、酸化ガス流路270が形成されている。本実施形態では、燃料ガス流路260としてアノードプレート400とアノード側ガス拡散層240との間の空間を用いているが、例えば、金属製等の多孔体を配置し、多孔体を燃料ガス流路260として用いてもよい。酸化ガス流路270についても同様である。本実施形態では、燃料ガス流路260を流れる燃料ガスの流れ方向と、酸化ガス流路270を流れる空気の流れ方向とは、逆向き(対向流)である。また、本実施形態では、カソードプレート300と、アノードプレート400との間に冷媒流路555が設けられている。
図3は、電解質膜210における湿度分布を模式的に示す説明図である。実線矢印で示すように、電解質膜210の手前側を酸化ガス(空気)が下から上に流れている。一方、破線矢印で示すように、電解質膜210の奥側を燃料ガス(水素)が上から下に流れている。アノード触媒層220、カソード触媒層230では、以下に示す電気化学反応が起こる。
アノード触媒層: H2 → 2H+ + 2e- (1)
カソード触媒層: (1/2)O2 + 2H+ + 2e- → H20 (2)
カソード触媒層230では、水が生成する。この水を「生成水」と呼ぶ。生成水は、一部が電解質膜210を通ってアノード触媒層220に拡散し、残部は、酸化ガスの流れにより下流に流される。そのため、生成水のカソード触媒層230からアノード触媒層220への拡散量が少ないと、電解質膜210およびアノード触媒層220は、酸化ガス流路270の上流側で乾燥し易く、酸化ガス流路270の下流側でフラッディングし易い。そのため、電池ユニット200の出力(発電量)は、全体として低くなる。
図4は、燃料電池100の温度と出力との関係を示す説明図である。燃料電池10では、過渡時に過去の動作の履歴の影響を受ける場合があり、図4に示すように、同じ出力であっても、温度が高いときと、低いときがある。このような温度の差異は、燃料電池100の効率に影響を与えるので、過渡時の出力のヒステリシスが大きく、ドライバビリティ(所望の出力が得られるという性能)が良くないという場合もあった。本実施形態では、アノード触媒層220とカソード触媒層のスルホン酸量の比を調整することにより、電池ユニット200の効率を高めて出力を向上させた。
スルホン酸量Ts[mol/cm2]とは、触媒層の単位面積当たりのスルホン酸量をモル数で算出したものであり、以下の式(3)で与えられる。
Ts=(1/EW)×(I/C)×Z×{(1−M)/M} (3)
ここで、EW[g/mol]はアイオノマのスルホン酸基1モル当たりの乾燥膜重量、I/C[−]は触媒を担持するカーボンの質量に対するアイオノマの質量、Z[g/cm2]はPt目付量を、M[−]は白金の担持密度である。
図5は、触媒インクの製造および触媒層の形成フローチャートを示す説明図である。ステップS100では、触媒金属を担持しているカーボンに、アイオノマ溶液と、溶媒を加えて撹拌する。この溶液を「混合溶液」と呼ぶ。触媒金属としては、例えば、白金、あるいは白金と他の金属との合金を用いることが可能である。以下、触媒金属を担持しているカーボンを「触媒担持カーボン」と呼ぶ。本実施形態では、アイオノマとしてパーフルオロカーボンスルホン酸ポリマを用いる。また、本実施形態では、溶媒として、イオン交換水(以下「水」と呼ぶ。)と、エタノールの混合溶媒を用いる。この工程では、まず、触媒担持カーボンに水を加え、その後エタノール、アイオノマ溶液の順に加えることが好ましい。最初に触媒担持カーボンに水を加えるのは、触媒担持カーボンは反応性が高いためであり、触媒担持カーボンを水に浸漬させておくことにより、エタノールが添加したときの発火を抑制することができる。
ステップS110では、超音波ホモジナイザーを用いて、混合溶液に対して分散処理を実行する。アイオノマは、親水基と疎水基を有している。アイオノマは、疎水基を触媒担持カーボン側に向け、親水基を触媒担持カーボンと反対側に向けて、触媒担持カーボンに吸着され、触媒インク粒子が形成される。触媒インク粒子は、外側に親水基を露出した親水コロイドであり、混合溶液中で安定する。この工程により、触媒インクが形成される。
ステップS120では、触媒インクを、基材上に塗布、乾燥することにより、触媒層を形成する。ステップS130では、触媒層を、基材から電解質膜210の各面にそれぞれ熱転写することで、アノード触媒層220と、カソード触媒層230とを形成する。
図6は、図5の工程に従って作成したサンプルに関する各工程の値を示す。これらのサンプルS01〜S07は、以下のように作成した。
サンプルS01(比較例)、サンプルS02:
アノード触媒層用インクの調製:
白金の担持密度Mが30%である触媒担持カーボンに、触媒担持カーボンの質量の1〜5倍程度の質量のイオン交換水を加え、さらに、触媒担持カーボンの質量の3〜5倍程度の質量のエタノールと、アイオノマを触媒担持カーボンの質量に対102wt%(IC=1.02)加えて、十分に撹拌することにより、アノード触媒層用の触媒インクを調製した。担持密度Mとは、触媒(白金)の質量を触媒担持カーボンの質量で割ったものである。アイオノマとして、スルホン酸基1モル当たりの乾燥膜重量(EW:Equivalent Weight)が730のものを用いた。
アノード触媒層の形成:
アノード触媒層用の触媒インクをPt目付が0.05mg/cm2となるように基材に塗工し、乾燥させてアノード触媒層220を作製した。その後、130℃のホットプレスにより、アノード触媒層220を基材から転写して電解質膜210に接合した。
カソード触媒層用インクの調製:
白金の担持密度Mが30%である触媒担持カーボンに、触媒担持カーボンの質量の1〜5倍程度の質量のイオン交換水を加え、さらに、触媒担持カーボンの質量の3〜5倍程度の質量のエタノールと、アイオノマを図6のI/Cの値に応じた量だけ加えて、十分に撹拌することにより、カソード触媒層用の触媒インクを調製した。アイオノマとして、スルホン酸基1モル当たりの乾燥膜重量(EW:Equivalent Weight)が730のものを用いた。
カソード触媒層の形成:
カソード触媒層用の触媒インクをPt目付が0.3mg/cm2となるように基材に塗工し、乾燥させてカソード触媒層230を作製した。その後、130℃のホットプレスにより、カソード触媒層230を基材から転写して電解質膜210に接合した。
サンプルS03〜S07:
サンプルS01、S02と同様にして、アノード触媒層220とカソード触媒層230を作製した。アノード触媒層220については、スルホン酸基1モル当たりの乾燥膜重量EWが910のアイオノマを用い、触媒を担持するカーボンの質量に対するアイオノマの質量(I/C)を1.20、Pt目付量Zを0.05[mg/cm2]、担持密度Mを30%とした。また、カソード触媒層230については、スルホン酸基1モル当たりの乾燥膜重量EWが910のアイオノマを用い、触媒を担持するカーボンの質量に対するアイオノマの質量(I/C)を0.89〜1.09の値とし、Pt目付量Zを0.35[mg/cm2]、担持密度Mを50%とした。
図6に、各サンプルについてのアノード触媒層220のスルホン酸量Ts−aと、カソード触媒層230のスルホン酸量Ts−cと、両者の比を示す。
図7は、S01〜S07に関するスルホン酸量比と燃料電池100の出力との関係を示す説明図である。スルホン酸量比が1.8を超えると燃料電池の出力は、急激に大きくなることがわかる。また、スルホン酸量比が1.9を超えると燃料電池の出力は、なだらかに上昇する。また、スルホン酸量比が2.6を超えると燃料電池の出力は、ほぼ飽和する。以上のことから、スルホン酸量比は、1.8を超えていればよく、1.9以上が好ましく、2.6以上が、さらに好ましいと言える。
図8は、スルホン酸量比と、カソード触媒層230からアノード触媒層220への水の拡散量との関係を示す説明図である。図8からわかるように、スルホン酸量比が大きくなると、カソード触媒層230からアノード触媒層220への水の拡散量が増大することがわかる。図7と図8を比較すれば、カソード触媒層230からアノード触媒層220への水の拡散を促進し、酸化ガス流路270の上流側での乾燥を抑制し、酸化ガス流路270の下流側で濡れすぎを抑制することにより、バランスよく発電させることが可能となり、燃料電池100の出力を向上させることが可能となった。
以上、いくつかの実施形態に基づいて本発明の実施の形態について説明してきたが、上記した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨並びに特許請求の範囲を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物が含まれることはもちろんである。
10…燃料電池
20…膜電極アッセンブリ
30…セパレータ
100…燃料電池
110…燃料ガス供給マニホールド
120…燃料ガス排出マニホールド
130…酸化ガス供給マニホールド
140…酸化ガス排出マニホールド
150…冷媒供給マニホールド
160…冷媒排出マニホールド
200…電池ユニット
202…エンドプレート
210…電解質膜
220…アノード触媒層
230…カソード触媒層
240…アノード側ガス拡散層
250…カソード側ガス拡散層
260…燃料ガス流路
270…酸化ガス流路
280…シールガスケット
300…カソードプレート
400…アノードプレート
500…中間フィルム
555…冷媒流路

Claims (2)

  1. 燃料電池であって、
    電解質膜と、
    前記電解質膜の一方の面に形成されたカソード触媒層と、
    前記電解質膜の他方の面に形成されたアノード触媒層と、
    前記カソード触媒層の表面に配置されたカソードガス流路と、
    前記アノード触媒層の表面に配置されたアノードガス流路と、
    を備え、
    前記カソードガス流路を流れるカソードガスの向きと、前記アノードガス流路を流れるアノードガスの向きは対向しており、
    前記カソード触媒層及び前記アノード触媒層を構成するアイオノマのスルホン酸基1モル当たりの乾燥膜重量は、730g/mol以上910g/mol以下であり、
    前記カソード触媒層中の単位面積当たりのスルホン酸量は、0.312mol/cm 以上0.419mol/cm 以下であり、
    前記アノード触媒層中の単位面積当たりのスルホン酸量は、0.154mol/cm 以上0.163mol/cm 以下であり、
    前記カソード触媒層中の単位面積当たりのスルホン酸量が前記アノード触媒層中の単位面積当たりのスルホン酸量の1.9倍より大きく2.8倍以下である、燃料電池。
  2. 請求項1に記載の燃料電池において、
    前記カソード触媒層中の単位面積当たりのスルホン酸量は前記アノード触媒層中の単位面積当たりのスルホン酸量の2.6倍以上2.8倍以下である、燃料電池。
JP2013085358A 2013-04-16 2013-04-16 燃料電池 Active JP5987766B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013085358A JP5987766B2 (ja) 2013-04-16 2013-04-16 燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013085358A JP5987766B2 (ja) 2013-04-16 2013-04-16 燃料電池

Publications (2)

Publication Number Publication Date
JP2014207194A JP2014207194A (ja) 2014-10-30
JP5987766B2 true JP5987766B2 (ja) 2016-09-07

Family

ID=52120588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013085358A Active JP5987766B2 (ja) 2013-04-16 2013-04-16 燃料電池

Country Status (1)

Country Link
JP (1) JP5987766B2 (ja)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3433171B2 (ja) * 2000-09-22 2003-08-04 本田技研工業株式会社 固体高分子型燃料電池
WO2004102713A1 (ja) * 2003-05-14 2004-11-25 Toray Industries Inc. 膜電極複合体およびそれを用いた固体高分子型燃料電池
JP2005322546A (ja) * 2004-05-11 2005-11-17 Honda Motor Co Ltd 固体高分子型燃料電池
JP2008204664A (ja) * 2007-02-16 2008-09-04 Nissan Motor Co Ltd 燃料電池用膜電極接合体、およびこれを用いた燃料電池
CN101689646A (zh) * 2007-06-15 2010-03-31 住友化学株式会社 膜-电极接合体及其制造方法、以及固体高分子型燃料电池
JP2011018525A (ja) * 2009-07-08 2011-01-27 Toyota Motor Corp 燃料電池および燃料電池システム
JP5417288B2 (ja) * 2010-09-06 2014-02-12 トヨタ自動車株式会社 アノード側およびカソード側の電極触媒と膜電極接合体および燃料電池セル
JP2012099379A (ja) * 2010-11-04 2012-05-24 Toyota Motor Corp 膜電極接合体の製造方法

Also Published As

Publication number Publication date
JP2014207194A (ja) 2014-10-30

Similar Documents

Publication Publication Date Title
JP4233208B2 (ja) 燃料電池
US7745063B2 (en) Fuel cell stack
JP4907894B2 (ja) 燃料電池スタック
JP2009176754A (ja) 燃料電池
WO2002073721A1 (en) Gas diffusion electrode and fuel cell using this
JP7304524B2 (ja) 燃料電池のカソード触媒層および燃料電池
JP2010021056A (ja) 燃料電池およびその製造方法
KR20180058571A (ko) 그래핀폼을 포함하는 가스유로/가스확산층 복합 기능 연료전지용 부재
JP3813406B2 (ja) 燃料電池
JP2002164057A (ja) 固体高分子型燃料電池とその製造方法
JP2007005126A (ja) 固体高分子型燃料電池スタック、および、これを用いた固体高分子型燃料電池
JP2008047395A (ja) 燃料電池
JP4880131B2 (ja) ガス拡散電極およびこれを用いた燃料電池
JP5987766B2 (ja) 燃料電池
WO2011118138A1 (ja) 直接酸化型燃料電池
JP3495668B2 (ja) 燃料電池の製造方法
JP2011018605A (ja) 燃料電池
JP3619826B2 (ja) 燃料電池用電極及び燃料電池
JP7354928B2 (ja) 燃料電池用のガス拡散層
JP7327373B2 (ja) 触媒層
JP5354956B2 (ja) 高分子電解質膜型燃料電池
JP5167858B2 (ja) 燃料電池
JP2006294313A (ja) 燃料電池用電極および燃料電池
JP2004319137A (ja) 固体高分子型燃料電池
JP2009187799A (ja) 膜電極複合体および燃料電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160725

R151 Written notification of patent or utility model registration

Ref document number: 5987766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151