JP5987345B2 - 内燃機関 - Google Patents

内燃機関 Download PDF

Info

Publication number
JP5987345B2
JP5987345B2 JP2012036163A JP2012036163A JP5987345B2 JP 5987345 B2 JP5987345 B2 JP 5987345B2 JP 2012036163 A JP2012036163 A JP 2012036163A JP 2012036163 A JP2012036163 A JP 2012036163A JP 5987345 B2 JP5987345 B2 JP 5987345B2
Authority
JP
Japan
Prior art keywords
fuel
passage
separator
reformed
sulfur concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012036163A
Other languages
English (en)
Other versions
JP2013170535A (ja
Inventor
星野 真樹
真樹 星野
隆夫 和泉
隆夫 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2012036163A priority Critical patent/JP5987345B2/ja
Publication of JP2013170535A publication Critical patent/JP2013170535A/ja
Application granted granted Critical
Publication of JP5987345B2 publication Critical patent/JP5987345B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は内燃機関に関する。
従来の内燃機関は、排気と改質用燃料との混合気を改質触媒によって改質して水素含有ガスを生成し、生成した水素含有ガスを吸気通路に還流させていた(特許文献1参照)。
特開2006−37879号公報
しかしながら、前述した従来の内燃機関は、改質用燃料に含まれる硫黄分によって改質触媒が被毒劣化するという問題点があった。
本発明はこのような問題点に着目してなされたものであり、改質触媒の被毒劣化を抑制することを目的とする。
本発明は、供給燃料を、その供給燃料よりも硫黄濃度が低い燃料とその供給燃料よりも硫黄濃度が高い燃料とに分離して排出する分離器と、排気の一部を吸気通路に還流させる還流通路と、還流通路に設けられ、分離器から排出された硫黄濃度が低い燃料を改質燃料として噴射する改質燃料噴射器と、還流通路に設けられ、排気と改質燃料との改質用混合気を改質して水素を含有する改質ガスを生成する改質触媒と、を備える内燃機関である。
本発明は、さらに、筒内又は吸気通路内に燃料を噴射する燃料噴射器と、分離器から排出された硫黄濃度が高い燃料を貯蔵するタンクと、内燃機関の高負荷時に駆動され、タンク内に貯蔵された硫黄濃度が高い燃料を高オクタン価燃料として燃料噴射器に圧送するポンプと、を備える内燃機関である。
本発明によれば、分離器によって供給燃料を硫黄濃度が低い燃料と硫黄濃度が高い燃料とに分離し、硫黄濃度が低い燃料を改質燃料として改質燃料噴射器から噴射することにした。これにより、燃料中に含まれる硫黄に起因する改質触媒の被毒劣化を抑制することができる。
本発明の第1実施形態による火花点火式内燃機関の概略構成図である。 本発明の第2実施形態による火花点火式内燃機関の概略構成図である。 本発明の第3実施形態による火花点火式内燃機関の概略構成図である。 本発明の第4実施形態による火花点火式内燃機関の概略構成図である。
以下、図面等を参照して本発明の実施形態について説明する。
(第1実施形態)
図1は、本発明の第1実施形態による火花点火式内燃機関(以下「エンジン」という。)1の概略構成図である。
エンジン1は、シリンダブロック2と、シリンダヘッド3と、吸気通路4と、排気通路5と、排気再循環(Exhaust Gas Recirculation;以下「EGR」という)装置6と、燃料供給装置7と、コントローラ8と、を備える。
シリンダブロック2は、シリンダ部2aとクランクケース部2bとを備える。
シリンダ部2aには、複数のシリンダ21が形成される。シリンダ21の内部には、燃焼圧力を受けてシリンダ21の内部を往復運動するピストン22が収められる。
クランクケース部2bは、シリンダ部2aの下方に形成される。クランクケース部2bは、クランクシャフト23を回転自在に支持する。クランクシャフト23は、ピストン22の往復運動をコンロッド24を介して回転運動に変換する。
シリンダヘッド3は、シリンダブロック2の上面に取り付けられ、シリンダ21及びピストン22とともに燃焼室31の一部を形成する。
シリンダヘッド3には、吸気通路4に接続され燃焼室31の頂壁に開口する吸気ポート32と、排気通路5に接続され燃焼室31の頂壁に開口する排気ポート33と、が形成され、燃焼室31の頂壁中央に臨むように点火栓34が設けられる。また、シリンダヘッド3には、燃焼室31と吸気ポート32との開口を開閉する吸気弁35と、燃焼室31と排気ポート33との開口を開閉する排気弁36と、が設けられる。さらに、シリンダヘッド3には、吸気弁35を開閉駆動する吸気カムシャフト37と、排気弁36を開閉駆動する排気カムシャフト38と、が設けられる。
吸気通路4には、上流から順に、エアクリーナ41と、エアフローメータ42と、電子制御式のスロットル弁43と、吸気コレクタ44と、燃料噴射弁45と、が設けられる。
エアクリーナ41は、吸気中に含まれる砂などの異物を除去する。
エアフローメータ42は、吸気の流量(以下「吸気量」という。)を検出する。
スロットル弁43は、吸気通路4の通路断面積を変化させることで、吸気コレクタ44に流入する吸気量を調整する。スロットル弁43は、スロットルアクチュエータ46によって開閉駆動され、スロットルセンサ47によってその開度(以下「スロットル開度」という。)が検出される。
吸気コレクタ44は、流入してきた空気を各シリンダ21に均等に分配する。
燃料噴射弁45は、エンジン1の運転状態に応じて吸気ポート32に向けて燃料を噴射する。
排気通路5には、排気中の炭化水素や窒素酸化物などの有害物質を取り除く三元触媒51が設けられる。
EGR装置6は、EGR通路61と、EGR弁62と、改質用燃料噴射弁63と、改質器64と、改質触媒温度センサ65と、EGRクーラ66と、を備える。
EGR通路61は、排気通路5と吸気通路4の吸気コレクタ44とを連通し、排気通路5を流れる排気の一部を圧力差によって吸気コレクタ44に戻すための通路である。以下、EGR通路61に流入した排気のことを「EGRガス」という。
EGR弁62は、EGR通路61に設けられる。EGR弁62は、連続的又は段階的に開度を調整することができる電磁弁であり、その開度はコントローラ8によって制御される。EGR弁62の開度を制御することで、EGRガスの流量が調節される。
改質用燃料噴射弁63は、EGR弁62よりも下流のEGR通路61に設けられ、EGRガスに改質用燃料を噴射する。これにより、EGRガスと改質用燃料との混合気(以下「改質用混合気」という。)が形成される。
改質器64は、内部にロジウム系の改質触媒641を担持しており、改質用燃料噴射弁63よりも下流のEGR通路61に設けられる。改質器64は、改質用混合気が通過したときは、改質触媒641によってその改質混合気を水素含有ガス(以下「改質ガス」という。)に改質して排出する。一方で改質器64は、EGRガスが通過したときは、そのままEGRガスとして排出する。
このように、改質ガスを吸気コレクタ44に還流させるEGR改質を実施することで、吸気コレクタ44内の負圧を低減でき、ポンプロスの低減効果が得られると共に、改質ガス中の水素による燃焼改善効果が得られる。その結果、エンジン出力を向上させることができ、燃費を向上させることができる。
一方、EGRガスを吸気コレクタ44に還流させる通常のEGRを実施することで、吸気コレクタ44内の負圧を低減でき、ポンプロスの低減効果が得られると共に、燃焼温度を低減させて窒素酸化物(NOx)の排出を抑えることができる。
改質触媒温度センサ65は、改質器64の入口側(EGR通路61の上流側)又は出口側(EGR通路61の下流側)に設けられ、の改質触媒641の温度を検出する。
EGRクーラ66は、改質器64よりも下流のEGR通路61に設けられる。EGRクーラ66は、改質器64から排出された改質ガス又はEGRガスを冷却する。
燃料供給装置7は、メインタンク71と、第1メイン燃料通路72と、第2メイン燃料通路73と、蒸発器74と、気化燃料通路75と、燃料分離器76と、改質用燃料通路77と、サブ燃料通路78と、を備える。
メインタンク71は、燃料噴射弁45及び改質用燃料噴射弁63から噴射される燃料を貯蔵する。メインタンク71内には、メイン燃料ポンプ711が設けられる。
メイン燃料ポンプ711は、メインタンク71内の燃料を第1メイン燃料通路72及び第2メイン燃料通路73へ圧送する。
第1メイン燃料通路72は、メインタンク71内の燃料を燃料噴射弁45に供給するための通路である。
第2メイン燃料通路73は、メインタンク71内の燃料を蒸発器74に供給するための通路である。
蒸発器74は、サブ燃料通路78を通ってメインタンク71から送られてきた燃料を、エンジンの廃熱によって気化させる。具体的には、蒸発器74に送られてきた燃料と、エンジンから排出された高温の排気の一部と、の間で熱交換を行うことよって、燃料を気化させる。燃料の気化には、燃料の種類にもよるが、概ね150℃から300℃の熱が必要である。
気化燃料通路75は、蒸発器74によって気化された気化燃料を燃料分離器76に供給するための通路である。
燃料分離器76は、内部に設けられた分子ふるい式の分離膜761によって、気化燃料を分子量の小さい直鎖系燃料と、分子量の大きい側鎖系燃料及び芳香族系燃料と、に分離する。このような機能を持つ分離膜761としてはシリカ系の分離膜が望ましく、シリカライト又はゼオライトからなる規則的な細孔を有する膜が望ましい。
メインタンク71内に貯蔵された燃料中の有機硫黄化合物の多くは分子量の大きな芳香族系燃料である。例えば燃料がガソリンであればチオフェン(CS)、軽油であればベンゾチオフェン(CS)、灯油であればジベンゾチオフェン(C12S)が主な有機硫黄化合物であることが知られている。
したがって、燃料分離器76によって分離された気化燃料のうち、直鎖系燃料を改質用燃料通路77に排出し、側鎖系燃料及び芳香族系燃料をサブ燃料通路78に排出することで、メインタンク71内に貯蔵された燃料よりも硫黄濃度の低い燃料を改質用燃料として改質用燃料噴射弁63から噴射することができる。
改質用燃料通路77は、燃料分離器76から排出された硫黄濃度の低い気化燃料を、改質用燃料噴射弁63に供給するための通路である。
サブ燃料通路78は、燃料分離器76から排出された硫黄濃度の高い気化燃料を、第1メイン燃料通路72に合流させるための通路である。
コントローラ8は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。コントローラ8には、前述したエアフローメータ42やスロットルセンサ47、改質触媒温度センサ65の他にも、エンジン回転速度を検出する回転速度センサ71やアクセルペダルの踏み込み量(エンジン負荷)を検出するアクセルストロークセンサ72などのエンジン1の運転状態を検出する種々のセンサ類からの信号が入力される。
コントローラ8は、改質触媒温度センサ65の検出値に基づいて、改質触媒641の温度が活性化温度以上になっていると判定したときは、エンジン1の運転状態に応じてEGR弁62の開度を制御すると共に、改質用燃料噴射弁6363の燃料噴射量を制御して、EGR改質を実施する。一方でコントローラ8は、改質器64の改質触媒641の温度が活性化温度未満であると判定したときは、改質用燃料噴射弁6363から改質用燃料を噴射することなく、エンジン1の運転状態に応じてEGR弁62の開度を制御して、通常のEGRを実施する。
以上説明した本実施形態によれば、メインタンク71内に貯蔵された燃料を、燃料分離器76によって、貯蔵燃料よりも硫黄濃度が低い燃料と硫黄濃度が高い燃料とに分離することにした。そして、貯蔵燃料よりも硫黄濃度が低い燃料を改質燃料として改質用燃料噴射弁63から噴射することにした。
これにより、メインタンク71内に貯蔵された燃料を改質用燃料噴射弁63から直接噴射する場合と比較して、燃料中に含まれる硫黄に起因する改質触媒641の被毒劣化を抑制することができ、改質器の耐久性を向上させることができる。改質用燃料噴射弁63から噴射される改質用燃料の硫黄濃度を十分の一にできれば改質触媒641の寿命を約10倍に、百分の一にできれば改質触媒641の寿命を約100倍にすることができる。
また、本実施形態によれば、分子ふるい式の分離膜761によって、メインタンク71内に貯蔵された燃料を貯蔵燃料よりも硫黄濃度が低い燃料と硫黄濃度が高い燃料とに分離することにした。
燃料中の硫黄を除去する手段としては、本実施形態とは別に、吸着剤によって燃料中の硫黄を吸着除去する方法(液相吸着脱硫)が挙げられる。しかしながら、吸着剤によって硫黄を除去する方法の場合、吸着剤が比較的大きな容量を占めるため燃料分離器76が大型化すると共に、定期的な交換も必要となる。そのため、車載を考慮すると、搭載スペースやメンテンナンスの問題が生じやすい。また、吸着剤に吸着した燃料を使用することができず、燃費も悪化する。
これに対し、本実施形態のように分子ふるい式の分離膜761を使用することで、小型化することができると共に、交換等も不要なのでメンテナンスが容易となる。また、燃料を無駄にすることもないので燃費が悪化することもない。
また、本実施形態によれば、排熱によって燃料を気化することとしたので、燃料を気化させるために必要な熱をヒータ等によって別に供給する必要がなく、燃費の悪化を抑制できる。
また、本実施形態によれば、気化燃料を燃料分離器76に供給し、気化した状態で硫黄濃度が低い燃料と硫黄濃度が高い燃料とに分離することとした。
これにより、改質用燃料噴射弁63から改質用燃料(硫黄濃度が低い燃料)を噴射するときに、改質用燃料を気化させる必要がない。そのため、改質用燃料の気化不足による炭素析出や、排気との混合不足による局所的なS/C(Steam by Carbon ratio)の低下による水素濃度の低下を抑制することができる。結果として、改質触媒641の劣化を抑制して改質器の耐久性を向上させることができると共に、エンジン出力を向上させることができる。
(第2実施形態)
次に、本発明の第2実施形態について説明する。本実施形態は、サブ燃料通路78に硫黄濃度の高い燃料を貯蔵しておくためのサブタンク79を設けた点で第1実施形態と相違する。以下、その相違点を中心に説明する。なお、以下の各実施形態では上述した第1実施形態と同様の機能を果たす部分には、同一の符号を用いて重複する説明を適宜省略する。
図2は、本発明の第2実施形態によるエンジン1の概略構成図である。
図2に示すように、本実施形態によるエンジン1は、サブ燃料通路78に、燃料分離器76から排出された硫黄濃度の高い燃料を貯蔵しておくためのサブタンク79を備える。サブタンク79内には、サブ燃料ポンプ791が設けられる。
サブ燃料ポンプ791は、エンジン1の低中負荷時には停止され、エンジン1の高負荷時に駆動される。これにより、エンジン1の高負荷時に、サブタンク79内に貯蔵された硫黄濃度の高い燃料が第1メイン燃料通路72に合流させられる。
以下、本実施形態によるエンジン1の効果について説明する。
燃料分離器76から排出された硫黄濃度の高い燃料には、側鎖系燃料に加えて、オクタン価の高い芳香族系燃料が含まれている。そのため、サブタンク79内に貯蔵された燃料のオクタン価は、メインタンク71内に貯蔵された燃料のオクタン価よりも高い。
したがって、エンジン1の高負荷時にサブタンク79内に貯蔵されたオクタン価の高い燃料を第1メイン燃料通路72に合流させて燃料噴射弁45から噴射することで、高負荷時におけるノックを抑えることができる。また、圧縮比を上げることができるので、燃費を向上させることができる。
(第3実施形態)
次に、本発明の第3実施形態について説明する。本実施形態は、エンジン負荷に応じて分離膜761を透過する燃料量を制御する点で第1実施形態と相違する。以下、その相違点を中心に説明する。
図3は、本発明の第3実施形態によるエンジン1の概略構成図である。
図3に示すように、本実施形態によるエンジン1は、熱交換のために蒸発器74に供給する排気の流量を制御する流量制御弁741と、燃料分離器76の改質用燃料通路77側の出口に設けられる背圧制御弁762と、を備える。
流量制御弁741は、連続的又は段階的に開度を調整することができる電磁弁であり、その開度はコントローラ8によって制御される。流量制御弁741の開度を制御することで、蒸発器74に供給される排気流量が調節される。
背圧制御弁762は、連続的又は段階的に開度を調整することができる電磁弁であり、その開度はコントローラ8によって制御される。背圧制御弁762の開度を制御することで、硫黄濃度が低い燃料が排出される側の燃料分離器76の内部圧力が制御される。
改質用燃料噴射弁63から噴射する燃料量(以下「改質燃料噴射量」という。)は、エンジン負荷に応じて変動させることが望ましい。エンジン負荷が高くなるほど改質燃料噴射量を増やすことで、エンジン出力を向上させつつ、結果的に使用する燃料を抑えて燃費の向上を図ることができる。
そこで本実施形態では、燃料分離器76の分離膜761の温度及び燃料分離膜761の前後差圧の一方又は双方を制御することで、分離膜761を透過する燃料量を制御し、エンジン負荷に応じて改質燃料噴射量を最適に制御する。
分離膜761を透過する燃料は、分離膜761の温度、ひいては、燃料分離器76に供給する燃料の温度が高くなるほど多くなる。したがって、流量制御弁741の開度をエンジン負荷に応じて制御し、蒸発器74に供給される排気の流量を制御することで、分離膜761の温度をエンジン負荷に応じて制御することができる。
また、分離膜761を透過する燃料は、分離膜761の前後差圧が高くなるほど多くなる。ここでいう前後差圧とは、分離膜761を基準として、硫黄濃度が高い燃料が排出される側の燃料分離器76の内部圧力と、硫黄濃度が低い燃料が排出される側の内部圧力と、の圧力差である。したがって、背圧制御弁762の開度をエンジン負荷に応じて制御することで分離膜761の前後差圧を制御することができるので、分離膜761の前後差圧をエンジン負荷に応じて制御することができる。
流量制御弁741の開度及び背圧制御弁762の開度は、改質用燃料噴射量がエンジン負荷に応じた最適値となるように、予め実験等によって求めておき、それをマップ化しておくことで算出すれば良い。具体的には、エンジン負荷が高いときほど、流量制御弁741の開度は大きくなる。また、エンジン負荷が高いときほど、背圧制御弁762の開度は大きくなる。
以上説明した本実施形態によれば、エンジン負荷に応じて改質燃料噴射量を最適に制御することができるので、分離した改質用燃料が改質用燃料噴射弁63から噴射されずに改質用燃料通路77内で液化して無駄になるのを抑制することができる。また、液化燃料が改質触媒641に付着して、炭素析出が発生するのを抑制することができる。さらに、改質用燃料噴射弁63から噴射される燃料が不足するのを抑制することができる。
(第4実施形態)
次に、本発明の第4実施形態について説明する。本実施形態は、改質用燃料通路77内で液化した燃料をサブタンク79に戻す点で第2実施形態と相違する。以下、その相違点を中心に説明する。
図4は、本発明の第4実施形態によるエンジン1の概略構成図である。
改質用燃料通路77内の気化燃料は、負荷変動後、例えば燃料カットの後などにエンジン1が停止されると、改質用燃料通路77の内部に残留して液化する場合がある。液化燃料が改質用燃料通路77の内部に残留していると、次に改質用燃料噴射弁63から改質用燃料を噴射するときに、気化燃料と共に液化燃料が噴射されることになるため、その分燃料が無駄となる。また、液化燃料が改質触媒641に付着して炭素析出が起きるおそれがある。
そこで本実施形態では、図4に示すように、改質用燃料通路77に液体を自動的に通路外へ排出するオートドレン771を設けるとともに、オートドレン771とサブタンク79よりも上流側のサブ燃料通路78とを接続する戻し通路772を設けた。
これにより、改質用燃料通路77内の液化燃料をサブタンク79に戻すことができるので、燃料の無駄を無くすことができる。また、液化燃料の噴射を抑制して炭素析出の発生を抑制することができる。
なお、本発明は上記の実施形態に限定されずに、その技術的な思想の範囲内において種々の変更がなしうることは明白である。
例えば、上記各実施形態では火花点火式内燃機関を例に説明したが、これに限られるものではなく、筒内噴射の火花点火式内燃機関や圧縮着火式内燃機関でも良い。
また、上記第3実施形態では、蒸発器74に供給する排気の流量を制御する流量制御弁741を設けていた。しかしながら、エンジン1から排出される排気の温度はエンジン負荷が高くなるほど高くなる。したがって、このような流量制御弁741を設けなくとも、蒸発器74において、蒸発器74に送られてきた燃料とエンジン1から排出された高温の排気との間で熱交換を行うことによって、基本的にエンジン負荷が高くなるほど分離膜761の温度を高くすることができる。
また、上記第3実施形態では、分離膜761の前後差圧を制御するために背圧制御弁762を設けたが、メインタンク71内のメイン燃料ポンプ711の吐出圧を制御しても良い。また、圧力制御弁762の替わりに流量の絞り量を調整することができる可変オリフィス弁を設けても良い。
また、上記第3実施形態では、背圧制御弁762を燃料分離器76の改質用燃料通路77側の出口に設けたが、改質用燃料通路77に設けても良い。
1 エンジン(内燃機関)
4 吸気通路
45 燃料噴射弁(燃料噴射器)
63 改質用燃料噴射弁(改質燃料噴射器)
641 改質触媒
74 蒸発器
741 流量制御弁
76 燃料分離器(分離器)
761 分離膜
762 圧力制御弁(圧力制御器)
77 改質用燃料通路
771 オートドレン(液体排出器)
772 戻し通路
79 サブタンク(タンク)
791 サブ燃料ポンプ(ポンプ)

Claims (6)

  1. 供給燃料を、その供給燃料よりも硫黄濃度が低い燃料と、その供給燃料よりも硫黄濃度が高い燃料と、に分離して排出する分離器と、
    排気の一部を吸気通路に還流させる還流通路と
    前記還流通路に設けられ、前記分離器から排出された硫黄濃度が低い燃料を改質燃料として噴射する改質燃料噴射器と、
    前記還流通路に設けられ、排気と前記改質燃料との改質用混合気を改質して水素を含有する改質ガスを生成する改質触媒と、
    筒内又は吸気通路内に燃料を噴射する燃料噴射器と、
    前記分離器から排出された硫黄濃度が高い燃料を貯蔵するタンクと、
    燃機関の高負荷時に駆動され、前記タンク内に貯蔵された硫黄濃度が高い燃料を高オクタン価燃料として前記燃料噴射器に圧送するポンプと、
    を備える内燃機関。
  2. 供給燃料を、その供給燃料よりも硫黄濃度が低い燃料と、その供給燃料よりも硫黄濃度が高い燃料と、に分離して排出する分離器と、
    排気の一部を吸気通路に還流させる還流通路と
    前記還流通路に設けられ、前記分離器から排出された硫黄濃度が低い燃料を改質燃料として噴射する改質燃料噴射器と、
    前記還流通路に設けられ、排気と前記改質燃料との改質用混合気を改質して水素を含有する改質ガスを生成する改質触媒と、
    前記分離器に供給する前記供給燃料を、内燃機関の排気の熱によって気化する蒸発器と、
    前記蒸発器に供給される排気の流量を制御する流量制御弁と、
    を備え、
    燃機関の負荷が高いときほど、前記流量制御弁の開度を大きくする、
    ことを特徴とする内燃機関。
  3. 供給燃料を、その供給燃料よりも硫黄濃度が低い燃料と、その供給燃料よりも硫黄濃度が高い燃料と、に分離して排出する分離器と、
    排気の一部を吸気通路に還流させる還流通路と
    前記還流通路に設けられ、前記分離器から排出された硫黄濃度が低い燃料を改質燃料として噴射する改質燃料噴射器と、
    前記還流通路に設けられ、排気と前記改質燃料との改質用混合気を改質して水素を含有する改質ガスを生成する改質触媒と、
    前記改質燃料噴射器と前記分離器との間に設けられ、硫黄濃度が低い燃料が排出される側の前記分離器の内部圧力を制御する圧力制御器を備え、
    燃機関の負荷が高いときほど、前記分離器の内部圧力を低くする、
    ことを特徴とする内燃機関。
  4. 供給燃料を、その供給燃料よりも硫黄濃度が低い燃料と、その供給燃料よりも硫黄濃度が高い燃料と、に分離して排出する分離器と、
    排気の一部を吸気通路に還流させる還流通路と
    前記還流通路に設けられ、前記分離器から排出された硫黄濃度が低い燃料を改質燃料として噴射する改質燃料噴射器と、
    前記還流通路に設けられ、排気と前記改質燃料との改質用混合気を改質して水素を含有する改質ガスを生成する改質触媒と、
    を備え、
    前記分離器に供給される前記供給燃料は、内燃機関の排熱によって気化された気化燃料である、
    ことを特徴とする内燃機関。
  5. 前記分離器から排出された硫黄濃度が低い燃料を、前記改質燃料噴射器に送るための改質用燃料通路と、
    前記改質用燃料通路内の液体燃料を通路外に排出する液体排出器と、
    前記液体排出器から排出された液体燃料を、前記タンクに戻す戻し通路と、
    を備えることを特徴とする請求項1に記載の内燃機関。
  6. 前記分離器は、分子ふるい式の分離膜によって前記供給燃料を分離する、
    ことを特徴とする請求項1から請求項5までのいずれか1つに記載の内燃機関。
JP2012036163A 2012-02-22 2012-02-22 内燃機関 Active JP5987345B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012036163A JP5987345B2 (ja) 2012-02-22 2012-02-22 内燃機関

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012036163A JP5987345B2 (ja) 2012-02-22 2012-02-22 内燃機関

Publications (2)

Publication Number Publication Date
JP2013170535A JP2013170535A (ja) 2013-09-02
JP5987345B2 true JP5987345B2 (ja) 2016-09-07

Family

ID=49264636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012036163A Active JP5987345B2 (ja) 2012-02-22 2012-02-22 内燃機関

Country Status (1)

Country Link
JP (1) JP5987345B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6031431B2 (ja) * 2013-11-25 2016-11-24 株式会社日本自動車部品総合研究所 内燃機関の吸気制御装置
JP6392548B2 (ja) * 2014-05-26 2018-09-19 株式会社Soken 改質器
JP6639345B2 (ja) 2016-07-14 2020-02-05 ヤンマー株式会社 内燃機関の制御装置および内燃機関の制御方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5192922A (en) * 1975-02-10 1976-08-14 Nainenkikanno nenryokaishitsusochi
US6711893B2 (en) * 2001-03-27 2004-03-30 Toyota Jidosha Kabushiki Kaisha Fuel supply apparatus for an internal combustion engine
JP2004281227A (ja) * 2003-03-14 2004-10-07 Nissan Motor Co Ltd 燃料電池用燃料改質システム及び水素リッチガス製造方法
JP4506335B2 (ja) * 2004-07-28 2010-07-21 トヨタ自動車株式会社 内燃機関及び内燃機関の運転制御装置
JP4506416B2 (ja) * 2004-11-02 2010-07-21 トヨタ自動車株式会社 内燃機関
JP5369747B2 (ja) * 2009-02-16 2013-12-18 トヨタ自動車株式会社 燃料供給装置

Also Published As

Publication number Publication date
JP2013170535A (ja) 2013-09-02

Similar Documents

Publication Publication Date Title
US8118009B2 (en) On-board fuel vapor separation for multi-fuel vehicle
JP4498384B2 (ja) ガソリンを高オクタン価燃料と低オクタン価燃料とに分離する膜を有する内燃機関用燃料供給装置
US7389751B2 (en) Control for knock suppression fluid separator in a motor vehicle
US7720592B2 (en) Approach for enhancing emissions control device warmup in a direct injection engine system
US9453465B2 (en) Direct injection of diluents or secondary fuels in gaseous fuel engines
JP2007187112A (ja) 予混合圧縮着火内燃機関
CN105705747A (zh) 缸内喷射式内燃机的冷凝水供给控制装置
WO2012137351A1 (ja) 多種燃料内燃機関の制御システム
JP5987345B2 (ja) 内燃機関
JP2007009925A (ja) 内燃機関
JP3882454B2 (ja) 内燃機関
JP5856530B2 (ja) 燃料供給装置
JP2009047002A (ja) 内燃機関の制御装置
JP5830917B2 (ja) 内燃機関の制御装置
JP4305150B2 (ja) 内燃機関
JP5225205B2 (ja) 内燃機関
JP4858422B2 (ja) 内燃機関の燃料供給制御装置
JP2021143629A (ja) 内燃機関
EP1980730B1 (en) Apparatus with mixed fuel separator and method of separating a mixed fuel
JP2014227896A (ja) 内燃機関の燃料分離システム
JP5912489B2 (ja) 内燃機関
KR101299688B1 (ko) 직접분사식 가솔린 엔진에서 노킹방지를 위한 온도성층화 방법
WO2012153424A1 (ja) 多種燃料内燃機関の制御システム
JP5310069B2 (ja) 燃料噴射装置およびこれを備える内燃機関
JP5485929B2 (ja) 燃料供給装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160725

R151 Written notification of patent or utility model registration

Ref document number: 5987345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151