JP5980657B2 - Combustion furnace - Google Patents

Combustion furnace Download PDF

Info

Publication number
JP5980657B2
JP5980657B2 JP2012247693A JP2012247693A JP5980657B2 JP 5980657 B2 JP5980657 B2 JP 5980657B2 JP 2012247693 A JP2012247693 A JP 2012247693A JP 2012247693 A JP2012247693 A JP 2012247693A JP 5980657 B2 JP5980657 B2 JP 5980657B2
Authority
JP
Japan
Prior art keywords
combustion
furnace
middle cylinder
furnace body
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012247693A
Other languages
Japanese (ja)
Other versions
JP2014095517A (en
Inventor
俊徳 松尾
俊徳 松尾
修一 鳥居
修一 鳥居
裕一郎 脇屋
裕一郎 脇屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saga Prefecture
Kumamoto University NUC
Original Assignee
Saga Prefecture
Kumamoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saga Prefecture, Kumamoto University NUC filed Critical Saga Prefecture
Priority to JP2012247693A priority Critical patent/JP5980657B2/en
Publication of JP2014095517A publication Critical patent/JP2014095517A/en
Application granted granted Critical
Publication of JP5980657B2 publication Critical patent/JP5980657B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Description

本発明は、燃焼炉に関するものである。更に詳しくは、家畜排泄物からつくった堆肥を悪臭が生じないよう完全燃焼させながら効率的に焼却処理することができる燃焼炉に関する。   The present invention relates to a combustion furnace. More specifically, the present invention relates to a combustion furnace that can efficiently incinerate compost made from livestock excrement while completely burning so as not to cause malodor.

畜産農家においては、家畜の排泄物から堆肥をつくり、これをできるだけ利用できるような農業環境を整えることで、家畜の排泄物の効率的な処理を図っている。しかし、現実的には、需要が不足していることにより、堆肥としての本来の使用とはならずに、焼却処分されている。堆肥等の焼却処分に使用される燃焼炉は、堆肥そのものをエネルギーとして利用できる自燃式のものが主流であり、このような自燃式の燃焼炉は大規模プラントでは実用化されている。   In livestock farmers, compost is made from livestock excrement, and the farming environment is set up so that it can be used as much as possible, so that livestock excrement is efficiently processed. However, in reality, due to the lack of demand, it has been incinerated without being used as compost. Combustion furnaces used for incineration of compost and the like are mainly self-combustion type furnaces that can use compost itself as energy, and such self-combustion type combustion furnaces have been put into practical use in large-scale plants.

大規模プラントの場合、設備費用や維持管理費用が高額となり、一般の畜産農家の規模では、導入は難しい。そこで、比較的小規模の需要家においても導入が可能な自燃式の燃焼炉として、例えば特許文献1に記載の旋回式燃焼炉が提案されている。
特許文献1記載の旋回式燃焼炉は、上部に燃料供給口が形成された円筒形の炉本体を備え、炉本体の天板に燃焼ガスの排気口が設けられ、天板からは排気口を囲み内側に燃焼室を形成する内筒が垂下され、内筒と炉本体の周面との間には、燃料供給口から供給された一次空気の旋回流により燃料が燃焼室の下部入口まで案内される旋回案内路が設けられている。
In the case of a large-scale plant, the equipment cost and the maintenance cost are high, and it is difficult to introduce it at the scale of general livestock farmers. Therefore, for example, a swirl type combustion furnace described in Patent Document 1 has been proposed as a self-combustion type combustion furnace that can be introduced even by relatively small customers.
The swirl type combustion furnace described in Patent Document 1 includes a cylindrical furnace body having a fuel supply port formed in an upper portion thereof, and an exhaust port for combustion gas is provided on the top plate of the furnace body. An inner cylinder forming a combustion chamber is suspended inside the enclosure, and fuel is guided to the lower inlet of the combustion chamber between the inner cylinder and the peripheral surface of the furnace body by the swirling flow of primary air supplied from the fuel supply port. A turning guideway is provided.

そして、旋回案内路には、ファンにより燃料供給口に燃料と一次空気を炉本体の内周面に対し接線方向に送り込む送風管が接続され、送風管には燃料投入口が設けられ、送風管の内部に送られる一次空気を高速化し燃料を燃料供給口に向けて吸い込むエゼクタが設けられ、炉本体の下部で底面と燃焼室の下部入口との間に、旋回案内路に沿って一次空気の旋回流に伴い下降する燃料を燃焼ガスにより熱分解する熱分解空間が形成され、熱分解ガスを燃焼室内で燃焼させる目的で外部から二次空気を取り入れる空気取入口が設けられている。また、燃焼ガスの熱により燃料の乾燥・粉砕が促進される。   The turning guide path is connected to a blower pipe that feeds fuel and primary air to the fuel supply port by a fan in a tangential direction with respect to the inner peripheral surface of the furnace body. The blower pipe is provided with a fuel inlet, and the blower pipe An ejector that speeds up the primary air sent to the interior of the engine and sucks the fuel toward the fuel supply port is provided at the bottom of the furnace body, between the bottom surface and the lower inlet of the combustion chamber, along the swirling guideway. A pyrolysis space for pyrolyzing the fuel that descends with the swirling flow is formed by the combustion gas, and an air intake for taking in secondary air from the outside is provided for the purpose of burning the pyrolysis gas in the combustion chamber. Further, the drying and pulverization of the fuel is promoted by the heat of the combustion gas.

特許第4689731号公報Japanese Patent No. 4687931

しかしながら、前記従来の旋回式燃焼炉には、次のような課題があった。
すなわち、一次空気として取り入れた外気は、炉内で排気側へ向かう経路を一通り旋回し移動した後、そのまま排気側へ誘導されるようになっている。
したがって、一次空気の導入初期の温度が低いことと、燃焼炉が比較的小型であり排出口までの燃焼ガスが通る経路が短いことや、燃焼炉が小型であるが故に炉内で燃焼させる流動性固体燃料等の燃料の量が比較的少ないこと等も相俟って、燃焼室内での燃焼温度が十分に上がりきれず、ダイオキシン特措法の新基準に定めてある800℃以上の高温での燃焼を維持することが困難であり、結果的に化石燃料の使用を増加させる要因となっていた。
また、堆肥燃料が自燃するにあたっては、少なくとも420℃程度の温度が必要であるが、燃焼温度が十分に上昇しないため、不完全燃焼を起こし易く、これによって悪臭が発生し、燃焼炉を設置した場所周辺への環境負荷が大きくなるおそれがあった。
However, the conventional swirl type combustion furnace has the following problems.
That is, the outside air taken in as primary air is swung through the path toward the exhaust side in the furnace and moved, and is then guided to the exhaust side as it is.
Therefore, the temperature at the initial stage of introduction of primary air is low, the combustion furnace is relatively small and the path through which the combustion gas passes to the exhaust port is short, and the flow of combustion in the furnace is small because the combustion furnace is small. Combustion temperature in the combustion chamber cannot be sufficiently increased due to the relatively small amount of fuel such as volatile solid fuel, etc., and combustion at a high temperature of 800 ° C or higher as defined in the new standard of the Dioxin Special Measures Law As a result, the use of fossil fuels has increased.
In addition, when compost fuel burns, a temperature of at least about 420 ° C. is necessary. However, since the combustion temperature does not rise sufficiently, incomplete combustion is likely to occur, and a bad odor is generated, and a combustion furnace is installed. There was a risk that the environmental load around the place would increase.

(本発明の目的)
本発明は、燃焼部に供給される一次空気の温度が、従来の旋回式燃焼炉より高くなるようにし、炉内における燃料の燃焼を促進することにより、より高い燃焼温度を維持できるようにして、ダイオキシン特措法の新基準に定めてある800℃以上の高温での燃焼の維持を可能とし、例えば一般の畜産農家のように比較的規模が小さい需要家でも導入できる比較的小型の燃焼炉であっても、燃料を自燃によって完全燃焼させることができる燃焼炉を提供することを目的とする。
(Object of the present invention)
In the present invention, the temperature of the primary air supplied to the combustion section is made higher than that of a conventional swirl combustion furnace, and the combustion of fuel in the furnace is promoted so that a higher combustion temperature can be maintained. It is a relatively small combustion furnace that can maintain combustion at a high temperature of 800 ° C or higher as set forth in the new standards of the Special Measures Law for Dioxins, and can be introduced even by relatively small-scale customers such as general livestock farmers. However, an object of the present invention is to provide a combustion furnace capable of completely burning fuel by self-combustion.

上記課題を解決するために本発明が講じた手段は次のとおりである。
(1)本発明は、
流動性固体燃料を燃焼させる自燃式の燃焼炉であって、
中空体であり、下部に燃焼部を有する炉本体と、
当該炉本体の内側にある中筒体と、
当該中筒体と前記炉本体を上部から貫通し、下端が中筒体の内部側にある排気筒と、
出口が前記中筒体内の上部に臨んでおり、前記中筒体内に一次空気と流動性固体燃料を供給する供給管と、
を有し、
前記炉本体の側部内面と前記中筒体の側部外面との間には、通気路が形成されており、
前記中筒体の側面上部又は上面には、前記通気路と前記中筒体内部を連通させ、燃焼ガスを通す通気口が形成されている、
燃焼炉である。
Means taken by the present invention to solve the above problems are as follows.
(1) The present invention
A self-combustion type combustion furnace for burning a fluid solid fuel,
A furnace body that is a hollow body and has a combustion part at the bottom;
A middle cylinder inside the furnace body;
An exhaust pipe that penetrates the middle cylinder body and the furnace body from above and has a lower end on the inner side of the middle cylinder body;
An outlet facing the upper part of the middle cylinder, and a supply pipe for supplying primary air and fluid solid fuel into the middle cylinder;
Have
Between the side inner surface of the furnace main body and the side outer surface of the middle cylindrical body, a ventilation path is formed,
On the upper or upper side surface of the middle cylinder, the ventilation passage is connected to the inside of the middle cylinder, and a vent hole through which combustion gas passes is formed.
It is a combustion furnace.

(2)本発明は、
流動性固体燃料を燃焼させる自燃式の燃焼炉であって、
中空体であり、下部に燃焼部を有する炉本体と、
当該炉本体の内側にある中筒体と、
当該中筒体と炉本体を貫通し、下端が中筒体の内部側にある排気筒と、
前記中筒体内部に一次空気と流動性固体燃料を供給する供給管と、
燃焼部内の流動性固体燃料に着火する着火手段と、
を有し、
前記中筒体は、
下部が開口し、上部に通気口が形成され、
前記炉本体内面との間に、燃焼ガスが上昇し前記通気口につながる上昇通気路を形成して、前記炉本体に支持手段で支持されており、
前記排気筒は、
下端が前記中筒体の内部に開口し、
上部側が前記中筒体と前記炉本体を貫通し、上端が外部に開口しており、
前記供給管は、
前記炉本体と前記中筒体の周壁を貫通し、出口が前記中筒体内の上部に臨むようにして接続されている、
燃焼炉である。
(2) The present invention
A self-combustion type combustion furnace for burning a fluid solid fuel,
A furnace body that is a hollow body and has a combustion part at the bottom;
A middle cylinder inside the furnace body;
An exhaust pipe that penetrates the middle cylinder and the furnace body, and whose lower end is on the inner side of the middle cylinder,
A supply pipe for supplying primary air and fluid solid fuel into the inner cylindrical body;
Ignition means for igniting the fluid solid fuel in the combustion section;
Have
The middle cylinder is
The bottom is open, the vent is formed in the top,
Between the inner surface of the furnace body, a rising air passage that leads to the vent is formed by rising combustion gas, and is supported by the furnace body by support means,
The exhaust stack is
The lower end opens inside the middle cylinder,
The upper side penetrates the middle cylinder and the furnace body, and the upper end opens to the outside,
The supply pipe is
Penetrating the peripheral wall of the furnace body and the middle cylinder, and connected so that the outlet faces the upper part in the middle cylinder,
It is a combustion furnace.

(3)本発明は、
炉本体の下部に二次空気を供給し、溜まっている燃焼灰を炉本体内で巻き上げる予備送風手段を備え、
当該予備送風手段は、炉本体を貫通し当該炉本体内に出口が臨む予備送風管を含む、のが好ましく、推奨される。
(3) The present invention
Supplying secondary air to the lower part of the furnace body, equipped with preliminary air blowing means to wind up the accumulated combustion ash in the furnace body,
It is preferable and recommended that the preliminary blowing means includes a preliminary blowing pipe that penetrates the furnace body and has an outlet facing the furnace body.

(4)本発明は、
運転開始前に燃焼炉の内部を加熱する予熱手段を備え、当該予熱手段は、炉本体を貫通し中筒体内に出口が臨むバーナー接続管を含む、のが好ましく、推奨される。
(4) The present invention
Preheating means for heating the inside of the combustion furnace before the start of operation is provided, and the preheating means preferably includes a burner connection pipe that penetrates the furnace main body and has an outlet facing the inner cylinder.

特許請求の範囲及び本明細書においては、運転開始により供給管から中筒体内に供給される外部からの空気を一次空気といい、予備送風管から適宜炉本体内に供給される空気を二次空気という。   In the claims and this specification, the air from the outside supplied from the supply pipe into the inner cylinder by the start of operation is referred to as primary air, and the air supplied appropriately from the preliminary air blow pipe into the furnace body is secondary. Air.

(作用)
本発明に係る燃焼炉の作用を説明する。
まず、予熱手段を使用して燃焼炉の予熱を行う。次に、燃焼炉の内部に堆肥等の流動性固体燃料を適量投入する。具体的には、流動性固体燃料は、供給管から中筒体の内部へ一次空気と共に供給され、炉本体の燃焼部に溜められる。燃焼部の流動性固体燃料に着火手段により着火し、これにより流動性固体燃料が燃焼する。着火手段は、燃焼が安定したら停止し、自燃が始まる。一次空気は、流動性固体燃料の自燃の状態に合わせて、供給管から中筒体の内部へ適度な風量で供給される。
(Function)
The operation of the combustion furnace according to the present invention will be described.
First, the combustion furnace is preheated using preheating means. Next, an appropriate amount of fluid solid fuel such as compost is introduced into the combustion furnace. Specifically, the fluid solid fuel is supplied from the supply pipe to the inside of the middle cylinder together with the primary air, and is stored in the combustion part of the furnace body. The fluid solid fuel in the combustion section is ignited by the igniting means, whereby the fluid solid fuel is combusted. The ignition means stops when combustion is stabilized, and self-combustion starts. The primary air is supplied from the supply pipe to the inside of the intermediate cylinder with an appropriate air volume in accordance with the self-combustion state of the fluid solid fuel.

中筒体の内面に対し、例えば接線方向に供給された一次空気は、内面の形状に沿って旋回しながら下降し、中筒体の下部開口部から出て、燃焼部の自燃している流動性固体燃料に酸素を供給し、燃焼を助ける。流動性固体燃料が燃焼(自燃)することにより生じる燃焼ガスの多くは、中筒体の内部に入り、排気筒を通り外部へ排出される。また、燃焼ガスの一部は、旋回する等して流動している一次空気の一部を加熱しながら、共に上昇通気路を通り上昇し、通気口から中筒体の内部に入る。   The primary air supplied, for example, in a tangential direction with respect to the inner surface of the intermediate cylindrical body, descends while swirling along the shape of the inner surface, exits from the lower opening of the intermediate cylindrical body, and flows through the combustion section by self-combustion. Supply oxygen to the volatile solid fuel and help combustion. Most of the combustion gas generated by the combustion (self-combustion) of the fluid solid fuel enters the inside of the middle cylinder, and is discharged outside through the exhaust cylinder. Further, a part of the combustion gas rises through the rising air passage while heating a part of the primary air that is flowing by swirling or the like, and enters the inside of the middle cylinder through the air vent.

通気口から入った燃焼ガスと一次空気の混合ガスは高温になっており、新たに供給管から中筒体の内部に入った一次空気と接触して熱交換を行い、燃焼部へ下降する一次空気を加熱する。このように、供給管から供給された一次空気が、中筒体に入った初期段階で、通気口から入った高温の燃焼ガスと一次空気の混合ガスで加熱され、燃焼部へ供給されることが継続して行われることにより、一次空気が導入初期段階で効果的に加熱されない従来の燃焼炉と比較して、流動性固体燃料の燃焼温度がより高温で維持される。なお、炉内の温度は熱電対等の温度センサによって検出・監視されており、温度が所定の温度に下がると、流動性固体燃料は供給管から一次空気と共に適宜供給される。   The mixed gas of combustion gas and primary air that has entered through the vent hole is hot, and newly exchanges heat with the primary air that has entered the inside of the middle cylinder from the supply pipe and descends to the combustion section. Heat the air. In this way, the primary air supplied from the supply pipe is heated by the mixed gas of the high-temperature combustion gas and the primary air entering from the vent at the initial stage of entering the middle cylinder and supplied to the combustion section. Is continuously performed, the combustion temperature of the fluid solid fuel is maintained at a higher temperature as compared with the conventional combustion furnace in which the primary air is not effectively heated in the initial stage of introduction. The temperature in the furnace is detected and monitored by a temperature sensor such as a thermocouple. When the temperature falls to a predetermined temperature, the fluid solid fuel is appropriately supplied from the supply pipe together with the primary air.

これにより、ダイオキシン特措法の新基準に定めてある800℃以上の高温での燃焼の維持が可能となり、ダイオキシンの発生を抑制することができ、例えば一般の畜産農家のように比較的規模が小さい需要家でも導入できる比較的小型の燃焼炉であっても、流動性固体燃料を自燃によって完全燃焼させることができる燃焼炉を提供することができる。   As a result, it is possible to maintain combustion at a high temperature of 800 ° C. or higher as defined in the new standard of the Special Measures Law for Dioxins, and it is possible to suppress the generation of dioxins. Even a relatively small combustion furnace that can be introduced at home can provide a combustion furnace capable of completely burning a fluid solid fuel by self-combustion.

炉本体の下部に二次空気を供給し、溜まっている燃焼灰を炉本体内で巻き上げる予備送風手段を備え、予備送風手段は、炉本体を貫通し炉本体内に出口が臨む予備送風管を含むものは、予備送風手段を適宜作動させると、燃焼部の下方に溜まっている燃焼灰に、例えば少量の空気が吹き付けられ、燃焼灰は巻き上げられ、又は吹き上げられて、燃焼灰に含まれる未燃焼部が炉内の高温に晒される。更に、未燃焼部に二次空気により酸素が供給されるので、燃焼が促され、完全燃焼しやすくなる。   Secondary air is supplied to the lower part of the furnace body, and a preliminary blower means for winding up the accumulated combustion ash in the furnace body is provided. When the preliminary blower means is operated as appropriate, for example, a small amount of air is blown to the combustion ash accumulated below the combustion section, and the combustion ash is rolled up or blown up, so that it is not contained in the combustion ash. The combustor is exposed to high temperatures in the furnace. Furthermore, since oxygen is supplied to the unburned portion by the secondary air, combustion is promoted and complete combustion is facilitated.

これにより、燃焼部へ供給される一次空気の温度と、新たに導入される一次空気の加熱に利用される燃焼ガスと一次空気の混合ガスの温度を、より安定的に高温で維持することができる。但し、予備送風の風量は、炉内の温度が低下するのを極力防ぐため少量で行うようにする。   As a result, the temperature of the primary air supplied to the combustion unit and the temperature of the mixed gas of the combustion gas and primary air used for heating the newly introduced primary air can be more stably maintained at a high temperature. it can. However, the preliminary air flow should be small in order to prevent the temperature in the furnace from decreasing.

運転開始前に燃焼炉の内部を加熱する予熱手段を有するものは、運転開始時において炉内を十分に加熱しておくことができるので、流動性固体燃料に対する着火と初期における燃焼継続を安定的に行うことができる。   Those that have preheating means to heat the inside of the combustion furnace before the start of operation can sufficiently heat the interior of the furnace at the start of operation, so stable ignition of fluid solid fuel and continuation of combustion at the initial stage are stable. Can be done.

本発明は、燃焼部に供給される一次空気の温度が、従来の旋回式燃焼炉より高くなるようにして、炉内における流動性固体燃料の燃焼を促進することにより、より高い燃焼温度を維持できる。これにより、ダイオキシン特措法の新基準に定めてある800℃以上の高温での燃焼の維持が可能となり、ダイオキシンの発生を抑制することができると共に、例えば一般の畜産農家のように比較的規模が小さい需要家でも導入できる比較的小型の燃焼炉であっても、流動性固体燃料を自燃によって完全燃焼させることができる燃焼炉を提供することができる。   The present invention maintains a higher combustion temperature by promoting the combustion of fluid solid fuel in the furnace so that the temperature of the primary air supplied to the combustion section is higher than that of a conventional swirl type combustion furnace. it can. This makes it possible to maintain combustion at a high temperature of 800 ° C. or higher, which is defined in the new standard for the Special Measures Law for Dioxins, and can suppress the generation of dioxins, and is relatively small, for example, as a general livestock farmer Even if it is a comparatively small combustion furnace which can be introduced even by a consumer, a combustion furnace capable of completely burning a fluid solid fuel by self-combustion can be provided.

本発明に係る燃焼炉の一実施例を示す斜視図。The perspective view which shows one Example of the combustion furnace which concerns on this invention. 図1に示す燃焼炉の正面図。The front view of the combustion furnace shown in FIG. 図1に示す燃焼炉の側面図。The side view of the combustion furnace shown in FIG. 図1に示す燃焼炉の平面図。The top view of the combustion furnace shown in FIG. 図1におけるA−A断面図。AA sectional drawing in FIG. 燃焼炉の内部におけるガスの流動を矢印で示した説明図。Explanatory drawing which showed the flow of the gas in the inside of a combustion furnace with the arrow. 燃焼炉の運転時における内部の温度の推移を示すグラフ。The graph which shows transition of the internal temperature at the time of a driving | operation of a combustion furnace. 燃焼炉の運転時における内部の温度の推移を示す表。The table | surface which shows transition of the internal temperature at the time of a driving | operation of a combustion furnace. 中筒体の通気口を塞いで比較例とした燃焼炉の運転時における内部の温度の推移を示すグラフ。The graph which shows transition of the internal temperature at the time of the driving | running of the combustion furnace made into the comparative example by plugging the ventilation hole of a middle cylinder. 中筒体の通気口を塞いで比較例とした燃焼炉の運転時における内部の温度の推移を示す表。The table | surface which shows transition of the internal temperature at the time of the driving | operation of the combustion furnace made into the comparative example by plugging the ventilation hole of a middle cylinder.

〔実施の形態〕 Embodiment

本発明を図面に示した実施の形態に基づき詳細に説明する。
図1乃至図5を参照する。
燃焼炉Bは、自燃式の燃焼炉であり、後記する断熱材113、123、133、143や耐火コンクリート114、124、134、144を除いて、ほぼ全体が鉄製である。燃焼炉Bは、炉本体1、炉本体1の内側にある中筒体2及び中筒体2の内側にある排気筒3を有している。
The present invention will be described in detail based on the embodiments shown in the drawings.
Please refer to FIG. 1 to FIG.
The combustion furnace B is a self-combustion type combustion furnace, and is almost entirely made of iron except for heat insulating materials 113, 123, 133, 143 and refractory concrete 114, 124, 134, 144 described later. The combustion furnace B includes a furnace body 1, a middle cylinder 2 inside the furnace body 1, and an exhaust cylinder 3 inside the middle cylinder 2.

炉本体1は、上下端部に全周にわたりフランジ111、112を有する円筒形状の上筒11と、同様に上下端部に全周にわたりフランジ121、122を有する円筒形状の下筒12を有している。上筒11と下筒12は、上筒11の下側のフランジ112と下筒12の上側のフランジ121をボルトで連結して接合されている。また、上筒11の上側のフランジ111には円形の上面板13が、下筒12の下側のフランジ122には円形の下面板14がボルトで連結して接合されている。下面板14の下面には、周方向へ等間隔で四箇所に、下面板14の外側面から一部が張り出すように四角形状の支持板140が取り付けられている。   The furnace body 1 has a cylindrical upper cylinder 11 having flanges 111 and 112 on the entire upper and lower ends, and a cylindrical lower cylinder 12 having flanges 121 and 122 on the entire upper and lower ends. ing. The upper cylinder 11 and the lower cylinder 12 are joined by connecting a lower flange 112 of the upper cylinder 11 and an upper flange 121 of the lower cylinder 12 with bolts. A circular upper surface plate 13 is joined to the upper flange 111 of the upper tube 11 and a circular lower surface plate 14 is joined to the lower flange 122 of the lower tube 12 by bolts. A rectangular support plate 140 is attached to the lower surface of the lower surface plate 14 at four positions at equal intervals in the circumferential direction so as to partially protrude from the outer surface of the lower surface plate 14.

上筒11と下筒12及び上面板13と下面板14のそれぞれの内面には、ほぼ全面にわたり適宜厚さの断熱材113、123、133、143が張設されている。また、断熱材113、123、133、143のそれぞれの内面には、ほぼ全面にわたり適宜厚さの耐火コンクリート114、124、134、144が張設されている。断熱材113、123、133、143と耐火コンクリート114、124、134、144は、複数の固定具19により、対応する上筒11と下筒12及び上面板13と下面板14に固定されている。   On the inner surfaces of the upper cylinder 11 and the lower cylinder 12 and the upper surface plate 13 and the lower surface plate 14, heat insulating materials 113, 123, 133, and 143 having appropriate thicknesses are stretched over almost the entire surface. Further, refractory concretes 114, 124, 134, and 144 having appropriate thicknesses are stretched over almost the entire inner surfaces of the heat insulating materials 113, 123, 133, and 143, respectively. The heat insulating materials 113, 123, 133, 143 and the refractory concrete 114, 124, 134, 144 are fixed to the corresponding upper cylinder 11, lower cylinder 12, upper surface plate 13, and lower surface plate 14 by a plurality of fixtures 19. .

炉本体1の内側にある中筒体2は、下端部が開口し下部開口部21を有しており、外径が前記耐火コンクリート114、124の内径よりやや径小な筒体である。中筒体2の下端に形成されている下部開口部21の縁部は、下方へやや窄まるように形成されている。中筒体2の上端には、円環形状の上板22が形成されており、上板22の中央部の円孔縁部には、円筒体を垂下した構造の通気口23が形成されている。   The middle cylinder 2 inside the furnace body 1 is a cylinder whose lower end is open and has a lower opening 21 and whose outer diameter is slightly smaller than the inner diameter of the refractory concrete 114, 124. The edge of the lower opening 21 formed at the lower end of the middle cylinder 2 is formed so as to be slightly narrowed downward. An annular upper plate 22 is formed at the upper end of the middle cylinder 2, and a vent 23 having a structure in which the cylindrical body is suspended is formed at the circular hole edge at the center of the upper plate 22. Yes.

中筒体2は、炉本体1の下筒12及び上筒11の耐火コンクリート124、114の内面と中筒体2の側板24との間、及び上面板13の耐火コンクリート134の内面と上板22との間に、燃焼ガスと一次空気の混合ガスが上昇しながら流動する上昇通気路15を形成するように鉛直方向に配置されている。なお、中筒体2は、図6に示すように、掛止部材16の先端の凹部160を上部の固定具19に上方から掛止して、簡単に着脱ができるように配置されている。   The middle cylinder 2 is formed between the inner surface of the refractory concrete 124, 114 of the lower cylinder 12 and the upper cylinder 11 of the furnace body 1 and the side plate 24 of the middle cylinder 2, and the inner surface of the refractory concrete 134 of the upper surface plate 13 and the upper plate. Between the combustion gas and the primary air so as to form a rising air passage 15 that flows while rising. As shown in FIG. 6, the intermediate cylinder 2 is disposed so that the recess 160 at the tip of the latching member 16 is latched on the upper fixture 19 from above and can be easily attached and detached.

中筒体2の内側にある排気筒3は、通気口23より径小な円筒形状であり、下端が中筒体2の内部において下端部の窄まっている部分よりやや上方に開口している。中筒体2の上部側は、中筒体2の通気口23の中心と炉本体1の上面板13、断熱材133及び耐火コンクリート134を気密状態で貫通し、上端が外部に開口するように、上面板13に対しボルトで鉛直方向に固定されている。   The exhaust cylinder 3 inside the intermediate cylinder 2 has a cylindrical shape smaller in diameter than the vent hole 23, and the lower end opens slightly above the portion where the lower end is narrowed inside the intermediate cylinder 2. . The upper side of the middle cylinder 2 penetrates the center of the vent 23 of the middle cylinder 2 and the top plate 13, the heat insulating material 133 and the refractory concrete 134 of the furnace body 1 in an airtight state, and the upper end opens to the outside. The upper surface plate 13 is fixed in the vertical direction with bolts.

下筒12のほぼ中間の高さ、且つ中筒体2の下端よりやや下方には、耐火コンクリート124の内径よりやや径小で円形の火格子(ロストル)17が複数の支持具125(図5に図示)を介し水平に支持されている。火格子17の上は、堆肥等の流動性固体燃料が燃焼する燃焼部170となる。また、下筒12において火格子17に対応する高さ、すなわち火格子17よりやや高い位置から耐火コンクリート144の内面の高さまでの範囲で、下筒12の背面側に、下筒12と断熱材123及び耐火コンクリート124の一部が一体となって開閉自在に形成された灰出し用蓋18を有している。   At a substantially intermediate height of the lower cylinder 12 and slightly below the lower end of the middle cylinder 2, a circular grate (rooster) 17 having a diameter slightly smaller than the inner diameter of the refractory concrete 124 is provided with a plurality of supports 125 (FIG. 5). And is supported horizontally. Above the grate 17 is a combustion section 170 in which fluid solid fuel such as compost burns. Further, the lower cylinder 12 and the heat insulating material are arranged on the back side of the lower cylinder 12 in a range from the height corresponding to the grate 17 in the lower cylinder 12, that is, in a range from a position slightly higher than the grate 17 to the height of the inner surface of the refractory concrete 144. 123 and a part of the refractory concrete 124 have an ash removal lid 18 that is integrally formed to be openable and closable.

上筒11の側面の上部側(通気口23とほぼ同じ高さ)、且つ背面寄りには、上筒11と断熱材113及び耐火コンクリート114を貫通し、更に中筒体2の側板24を貫通して、円管状の供給管4が水平方向に、且つ中筒体2上部の内面に対して接線方向に、出口が中筒体2内に臨むようにして接続されている。供給管4からは、一次空気と堆肥等の流動性固体燃料を中筒体2の内部に供給する。   The upper cylinder 11, the heat insulating material 113, and the refractory concrete 114 are penetrated through the upper side of the side surface of the upper cylinder 11 (almost the same height as the vent 23) and closer to the back surface, and further through the side plate 24 of the middle cylinder 2. The cylindrical supply pipe 4 is connected in the horizontal direction and in a tangential direction with respect to the inner surface of the upper part of the middle cylinder 2 so that the outlet faces the middle cylinder 2. From the supply pipe 4, primary air and fluid solid fuel such as compost are supplied into the middle cylinder 2.

下筒12の側面の下部側(耐火コンクリート144の内面よりやや上方)、且つ背面寄りには、下筒12と断熱材123及び耐火コンクリート124を貫通し、円管状の予備送風管4aが前記供給管4と平行、且つ平面視で重なる位置に接続されている。予備送風管4aには、ブロワ(図示省略)が接続される。   On the lower side of the side surface of the lower cylinder 12 (slightly above the inner surface of the refractory concrete 144) and closer to the back side, the lower cylinder 12, the heat insulating material 123, and the refractory concrete 124 are penetrated, and the circular auxiliary air blowing pipe 4a supplies the above-mentioned supply It is connected to a position parallel to the tube 4 and overlapping in plan view. A blower (not shown) is connected to the preliminary blower pipe 4a.

上筒11の側面の上部側(供給管4よりやや低い高さ)、且つ正面(図2を基準とする)寄りには、上筒11と断熱材113及び耐火コンクリート114を貫通し、更に中筒体2の側板24を貫通して、円管状のバーナー接続管5が水平方向、且つ中筒体2上部の内面に対して接線方向に接続されている。また、下筒12の側面の下部側(予備送風管4aよりやや上方)、且つ正面寄りには、下筒12と断熱材123及び耐火コンクリート124を貫通し、円管状のバーナー接続管5aが前記バーナー接続管5と平行、且つ平面視で重なる位置に接続されている。各バーナー接続管5、5aには、バーナー接続管5、5aと共に着火手段と予熱手段を兼ねるバーナー(図示省略)が接続される。   On the upper side (a little lower than the supply pipe 4) of the side surface of the upper cylinder 11 and closer to the front surface (based on FIG. 2), the upper cylinder 11, the heat insulating material 113, and the refractory concrete 114 are penetrated. Through the side plate 24 of the cylinder 2, a circular burner connection pipe 5 is connected in the horizontal direction and tangential to the inner surface of the upper part of the middle cylinder 2. Further, on the lower side of the side surface of the lower cylinder 12 (slightly above the preliminary blower pipe 4a) and closer to the front, the lower cylinder 12, the heat insulating material 123, and the refractory concrete 124 are penetrated, and the circular burner connection pipe 5a It is connected to a position parallel to the burner connection pipe 5 and overlapping in plan view. The burner connection pipes 5 and 5a are connected to the burner connection pipes 5 and 5a together with burners (not shown) that serve as ignition means and preheating means.

また、上筒11の外部の上下方向中間、且つ正面寄りには、覗き窓6が形成されており、下筒12の外部の上下方向中間、且つ正面寄りには、覗き窓6aが形成されている。上筒11の覗き窓6は、中筒体2の内部の状態(流動性固体燃料が供給され一次空気と共に旋回している状態等)を管理者が確認するためのものである。下筒12の覗き窓6aは、火格子17の上方の燃焼部170における流動性固体燃料の燃焼状態を確認するためのものである。   Further, a viewing window 6 is formed in the middle in the vertical direction outside the upper cylinder 11 and near the front, and a viewing window 6a is formed in the middle in the vertical direction outside the lower cylinder 12 and near the front. Yes. The viewing window 6 of the upper cylinder 11 is for the administrator to check the internal state of the intermediate cylinder 2 (such as a state where the fluid solid fuel is supplied and swirled with the primary air). The viewing window 6 a of the lower cylinder 12 is for confirming the combustion state of the fluid solid fuel in the combustion section 170 above the grate 17.

(作用)
図1ないし図10を参照して燃焼炉Bの作用を説明する。
まず、バーナー接続管5、5aに接続されたバーナーに点火し、供給管4に接続された供給器から中筒体2の内部へ一次空気を供給し、燃焼炉Bの予熱を必要時間行う。
(Function)
The operation of the combustion furnace B will be described with reference to FIGS.
First, the burner connected to the burner connection pipes 5 and 5a is ignited, primary air is supplied from the supply device connected to the supply pipe 4 to the inside of the intermediate cylinder 2, and the combustion furnace B is preheated for a necessary time.

予熱が終了したら、燃焼炉Bの内部に供給管4から流動性固体燃料である堆肥を適量投入する。具体的には、堆肥は、供給管4から中筒体2の内部へ一次空気と共に供給され、炉本体1の火格子17の上の燃焼部170に溜められる。燃焼部170にある堆肥には、バーナーの火が着火し、これにより堆肥が燃焼する。堆肥の燃焼が安定したら、バーナーを停止する。これにより、堆肥の自燃が始まる。なお、以降、一次空気は連続的に供給され、堆肥は、適宜間欠的に供給される。   When preheating is completed, an appropriate amount of compost, which is a fluid solid fuel, is introduced into the combustion furnace B from the supply pipe 4. Specifically, compost is supplied from the supply pipe 4 to the inside of the middle cylinder 2 together with the primary air, and is stored in the combustion section 170 on the grate 17 of the furnace body 1. The compost in the combustor 170 is ignited by a burner, and the compost burns. When compost combustion is stable, stop burner. As a result, compost self-combustion begins. In addition, after that, primary air is supplied continuously and compost is supplied intermittently as appropriate.

主に図6を参照する。
中筒体2の内面に対し接線方向に供給された一次空気は、内面の形状に沿って旋回しながら下降し、中筒体2の下部開口部21から出て、燃焼部の自燃している堆肥に酸素を供給し、燃焼を助ける。堆肥が燃焼することにより生じる燃焼ガスの多くは、中筒体2の内部に入り、排気筒3を通り外部へ排出される。また、燃焼ガスの一部は、旋回する等して流動している一次空気の一部を加熱しながら、共に上昇通気路15を通り上昇し、中筒体2の上部にある通気口23から中筒体2の内部に入る。
Refer mainly to FIG.
The primary air supplied in a tangential direction with respect to the inner surface of the intermediate cylinder 2 descends while turning along the shape of the inner surface, exits from the lower opening 21 of the intermediate cylinder 2, and burns in the combustion part. Supply oxygen to compost and help burn. Most of the combustion gas generated by combusting the compost enters the inside of the middle cylinder 2 and is discharged to the outside through the exhaust cylinder 3. Further, a part of the combustion gas rises through the ascending air passage 15 while heating a part of the primary air that is flowing by swirling or the like, and from the air vent 23 in the upper part of the middle cylinder 2. Enters the inside of the middle cylinder 2.

通気口23から入った燃焼ガスと一次空気の混合ガスは高温になっており、新たに供給管4から中筒体2の内部に入った一次空気と接触して熱交換を行い、燃焼部170へ下降する一次空気を加熱する。すなわち、供給管4から供給された一次空気が、中筒体2に入った初期段階で、通気口23から入った高温の燃焼ガスと一次空気の混合ガスで加熱され、燃焼部170へ供給されることが継続して繰り返し行われる。   The mixed gas of the combustion gas and the primary air that has entered from the air vent 23 is at a high temperature, and newly exchanges heat with the primary air that has entered the inside of the middle cylinder 2 from the supply pipe 4, and the combustion unit 170. The primary air descending to is heated. That is, the primary air supplied from the supply pipe 4 is heated by the mixed gas of the high-temperature combustion gas and the primary air that has entered from the vent 23 at the initial stage of entering the middle cylinder 2, and is supplied to the combustion unit 170. Is continuously repeated.

このように、一次空気が導入初期段階で効果的に加熱されない従来の燃焼炉と比較して、堆肥の燃焼温度がより高温で維持される。なお、炉内の温度は熱電対等の温度センサ(図示省略)によって検出・監視されており、温度が所要の温度に下がると、堆肥は供給管4から一次空気と共に、例えば間欠的に適宜供給される。   Thus, the combustion temperature of compost is maintained at a higher temperature compared to a conventional combustion furnace in which primary air is not effectively heated in the initial stage of introduction. The temperature in the furnace is detected and monitored by a temperature sensor (not shown) such as a thermocouple. When the temperature falls to a required temperature, compost is supplied from the supply pipe 4 together with primary air, for example, intermittently as appropriate. The

また、予備送風管4aは、適宜作動させるようにしてあり、予備送風管4aから火格子17の下に溜まっている燃焼灰に少量の空気が供給されると、燃焼灰が巻き上げられ、又は吹き上げられて、燃焼灰に含まれている未燃焼部が炉内の高温に晒される。更に、浮遊する未燃焼部に一次空気により酸素が供給されるので、燃焼が促され、完全燃焼しやすくなる。このようにして、燃焼部170へ供給される一次空気の温度と、新たに導入される一次空気の加熱に利用される燃焼ガスと一次空気の混合ガスの温度を、安定的に高温で維持することができる。   Further, the preliminary blast pipe 4a is operated as appropriate. When a small amount of air is supplied from the preliminary blast pipe 4a to the combustion ash accumulated under the grate 17, the combustion ash is rolled up or blown up. Thus, the unburned part contained in the combustion ash is exposed to the high temperature in the furnace. Further, since oxygen is supplied to the floating unburned portion by primary air, combustion is promoted and complete combustion is facilitated. In this manner, the temperature of the primary air supplied to the combustion unit 170 and the temperature of the mixed gas of the combustion gas and primary air used for heating the newly introduced primary air are stably maintained at a high temperature. be able to.

したがって、堆肥等の流動性固体燃料を自燃によってダイオキシン特措法の新基準に定めてある800℃以上の高温での燃焼の維持が可能となり、ダイオキシンの発生を抑制することができると共に、例えば一般の畜産農家のように比較的規模が小さい需要家でも導入できる比較的小型の燃焼炉であっても、流動性固体燃料を自燃によって完全燃焼させることができる燃焼炉を提供することができる。   Therefore, it is possible to maintain combustion at a high temperature of 800 ° C. or higher, which is defined in the new standard of the Dioxin Special Measures Act, by self-combustion of fluid solid fuel such as compost, and it is possible to suppress the generation of dioxin and, for example, general livestock A combustion furnace capable of completely burning a fluid solid fuel by self-combustion can be provided even for a relatively small combustion furnace that can be introduced even by a relatively small-scale customer such as a farmer.

図7、図8を参照して、燃焼炉Bの運転時における内部の温度の推移について説明する。
なお、図9、図10には、中筒体2の通気口23を塞いで通気口23を通る混合ガスの循環が起こらないようにし、他は同等の条件で燃焼炉を運転したときの内部の温度の推移を比較例として表した。この通気口を塞いだ構造は、従来の技術を用いた構造に近い状態を形成して比較実験したものである。
With reference to FIG. 7 and FIG. 8, the transition of the internal temperature during operation of the combustion furnace B will be described.
9 and 10 show the inside when the combustion furnace is operated under the same conditions except that the vent 23 of the middle cylinder 2 is closed so that the mixed gas does not circulate through the vent 23. The temperature transition of was shown as a comparative example. This structure in which the vent is closed is a comparative experiment in which a state close to a structure using a conventional technique is formed.

燃焼炉Bの温度の測定点は、図5に示すように、中筒体2の入口となる通気口23よりやや下方(T1)、中筒体2の内部となる下部開口部21よりやや上方(T2)、中筒体2の出口となる排気筒3の上端よりやや下方(T3)の三箇所である。また、比較例の燃焼炉についても同等箇所の三箇所で測定した。   As shown in FIG. 5, the measurement point of the temperature of the combustion furnace B is slightly below the vent 23 serving as the inlet of the middle cylinder 2 (T1) and slightly above the lower opening 21 serving as the inside of the middle cylinder 2. (T2), three locations slightly below (T3) from the upper end of the exhaust tube 3 serving as the outlet of the intermediate tube 2. Moreover, it measured in three places of the equivalent location also about the combustion furnace of the comparative example.

(燃焼炉B)
図7、図8を参照する。
予熱を開始し、中筒体2の入口となるT1、中筒体2の内部となるT2においては、開始直後から400℃に到達し、30分後の予熱終了時には、500℃を超えていた。また、中筒体2の出口となるT3においては、予熱終了時に400℃を超えた。
(Combustion furnace B)
Please refer to FIG. 7 and FIG.
Preheating was started and T1 serving as the inlet of the middle cylinder 2 and T2 serving as the inside of the middle cylinder 2 reached 400 ° C. immediately after the start and exceeded 500 ° C. at the end of preheating 30 minutes later. . Moreover, in T3 used as the exit of the intermediate cylinder 2, it exceeded 400 degreeC at the time of the end of preheating.

予熱開始から30分間で予熱を終了し、流動性固体燃料である堆肥を投入した。堆肥の投入は、適宜間欠的に行い、投入量は、3.4L/m i n とした。投入された堆肥にバーナーの火が着火し、35分経過時にはバーナーを停止した。以降は、自燃による燃焼となった。
燃焼が安定した36分経過時から、T2においては、温度が1058℃まで上昇し、堆肥の投入を停止する75分経過時からやや後の77分経過時まで、1050℃前後の温度が維持された。
Preheating was completed in 30 minutes from the start of preheating, and compost which was a fluid solid fuel was added. Compost was input intermittently as appropriate, and the input amount was 3.4 L / min. The burner ignited the input compost, and the burner was stopped after 35 minutes. After that, it became combustion by self-combustion.
The temperature rises to 1058 ° C from 36 minutes after the combustion has stabilized, and the temperature around 1050 ° C is maintained from 75 minutes when composting is stopped to 77 minutes later, when composting is stopped. It was.

また、T3においては、T2にやや遅れて、45分経過時に1013℃まで上昇し、堆肥の投入を停止する75分経過時まで、1050℃前後の温度が維持された。
T1においては、35分経過時に温度が920℃となり、35分経過後にバーナーを停止した後、36分経過後には720℃まで下降した。その後徐々に温度が上昇し、75分経過時に967℃まで上昇した。
Further, at T3, a little later than T2, the temperature rose to 1013 ° C. after 45 minutes, and the temperature around 1050 ° C. was maintained until 75 minutes when composting was stopped.
At T1, the temperature reached 920 ° C. after 35 minutes, and after 35 minutes, the burner was stopped, and then dropped to 720 ° C. after 36 minutes. Thereafter, the temperature gradually increased, and increased to 967 ° C. after 75 minutes.

堆肥の投入を停止した75分経過後は、T1、T2、T3の何れにおいても急激に温度が下降し、92分経過後には、それぞれ400℃近辺まで下がった。
このように、燃焼炉Bによれば、燃焼部における堆肥の自燃を、ダイオキシン特措法の新基準に定めてある800℃を超える温度で維持することができ、排気に悪臭がなかったことも確認された。
After 75 minutes when the composting was stopped, the temperature dropped sharply at any of T1, T2, and T3, and after 92 minutes, each dropped to around 400 ° C.
Thus, according to the combustion furnace B, it was also confirmed that the self-combustion of compost in the combustion section could be maintained at a temperature exceeding 800 ° C., which is defined in the new standard of the Dioxin Special Measures Law, and there was no bad odor in the exhaust. It was.

(比較例の燃焼炉)
図9、図10を参照する。なお、以下においては、便宜上、前記燃焼炉Bの各部の符号と同じ符号を付して説明する。
予熱を開始し、中筒体2の入口となるT1、中筒体2の内部となるT2、及び中筒体2の出口となるT3においては、開始直後から400℃近辺に到達し、30分後の予熱終了時には、500℃近辺まで上昇した。
(Comparative combustion furnace)
Please refer to FIG. 9 and FIG. In the following, for convenience, the same reference numerals as those of the respective parts of the combustion furnace B are given for explanation.
Preheating is started, and at T1, which is the inlet of the intermediate cylinder 2, T2 which is the inside of the intermediate cylinder 2, and T3 which is the outlet of the intermediate cylinder 2, it reaches around 400 ° C. immediately after the start, and 30 minutes At the end of the subsequent preheating, the temperature rose to around 500 ° C.

予熱開始から30分間で予熱を終了し、流動性固体燃料である堆肥を投入した。堆肥の投入は、燃焼炉Bと同様に適宜間欠的に行い、投入量は、3.4L/m i n とした。投入された堆肥にバーナーの火が着火し、35分経過時にはバーナーを停止した。以降は、自燃による燃焼となった。   Preheating was completed in 30 minutes from the start of preheating, and compost which was a fluid solid fuel was added. As with the combustion furnace B, compost was input intermittently as appropriate, and the input amount was 3.4 L / min. The burner ignited the input compost, and the burner was stopped after 35 minutes. After that, it became combustion by self-combustion.

燃焼が安定した36分経過時から、T2においては、温度が981℃まで上昇し、T3においては、973℃まで上昇した。しかし、それ以降は温度が下降し続け、T3では45分経過後に、T2では48分経過後に800℃を割り込んだ。そして、70分経過時には、T2は629℃、T3は687℃まで低下した。なお、T1については、35分経過時に730℃でピークを示した後、バーナー停止後は急激に200℃近辺まで低下し、70分経過時には205℃となった。   The temperature rose to 981 ° C. at T2 and increased to 973 ° C. at T3 from 36 minutes after the combustion was stabilized. However, after that, the temperature continued to fall, and the temperature dropped below 800 ° C. after 45 minutes at T3 and after 48 minutes at T2. And at the time of 70 minutes progress, T2 fell to 629 degreeC and T3 fell to 687 degreeC. In addition, about T1, after showing the peak at 730 degreeC at the time of 35 minutes progress, after the burner stop, it fell rapidly to the vicinity of 200 degreeC, and became 70 degreeC at the time of 70 minutes progress.

また、堆肥の投入を停止する71分経過時には、T2は365℃、T3は393℃まで急激に低下し、T1も180℃まで低下し、以降は何れも徐々に低下した。
このように、比較例の燃焼炉によれば、燃焼部における堆肥の自燃を、ダイオキシン特措法の新基準に定めてある800℃を早い段階で割り込み、800℃を超える温度で維持することが困難であった。また、排気には悪臭があったことが確認された。
In addition, when 71 minutes elapsed when the composting was stopped, T2 rapidly decreased to 365 ° C., T3 rapidly decreased to 393 ° C., T1 also decreased to 180 ° C., and thereafter gradually decreased.
Thus, according to the combustion furnace of the comparative example, it is difficult to interrupt the self-combustion of the compost in the combustion part at an early stage of 800 ° C., which is defined in the new standard of the Dioxin Special Measures Law, and to maintain the temperature above 800 ° C. there were. It was also confirmed that the exhaust had a bad odor.

なお、本明細書で使用している用語と表現は、あくまでも説明上のものであって、なんら限定的なものではなく、本明細書に記述された特徴およびその一部と等価の用語や表現を除外する意図はない。また、本発明の技術思想の範囲内で、種々の変形が可能であるということは言うまでもない。   Note that the terms and expressions used in this specification are merely explanatory and are not limiting at all, and terms and expressions equivalent to the features described in this specification and parts thereof. There is no intention to exclude. Further, it goes without saying that various modifications are possible within the scope of the technical idea of the present invention.

B 燃焼炉
1 炉本体
11 上筒
111、112 フランジ
113 断熱材
114 耐火コンクリート
12 下筒
121、122 フランジ
123 断熱材
124 耐火コンクリート
125 支持具
13 上面板
133 断熱材
134 耐火コンクリート
14 下面板
140 支持板
143 断熱材
144 耐火コンクリート
15 上昇通気路
16 掛止部材
160 凹部
17 火格子
170 燃焼部
18 灰出し用蓋
19 固定具
2 中筒体
21 下部開口部
22 上板
23 通気口
24 側板
3 排気筒
4 供給管
4a 予備送風管
5、5a バーナー接続管
6、6a 覗き窓
B Combustion furnace 1 Furnace main body 11 Upper cylinder 111, 112 Flange 113 Thermal insulation material 114 Refractory concrete 12 Lower cylinder 121, 122 Flange 123 Thermal insulation material 124 Refractory concrete 125 Support tool 13 Upper surface plate 133 Thermal insulation material 134 Refractory concrete 14 Lower surface plate 140 Support plate 143 Heat insulating material 144 Refractory concrete 15 Climbing passage 16 Latching member 160 Recessed portion 17 Grate 170 Combustion portion 18 Lid for ashing 19 Fixing tool 2 Middle cylinder 21 Lower opening portion 22 Upper plate 23 Vent 24 24 Side plate 3 Exhaust tube 4 Supply pipe 4a Preliminary ventilation pipe 5, 5a Burner connection pipe 6, 6a Viewing window

Claims (4)

流動性固体燃料を燃焼させる自燃式の燃焼炉であって、
中空体であり、下部に燃焼部を有する炉本体と、
当該炉本体の内側にある中筒体と、
当該中筒体と前記炉本体を上部から貫通し、下端が中筒体の内部側にある排気筒と、
出口が前記中筒体内の上部に臨んでおり、前記中筒体内に一次空気と流動性固体燃料を供給する供給管と、
を有し、
前記炉本体の側部内面と前記中筒体の側部外面との間には、通気路が形成されており、
前記中筒体の側面上部又は上面には、前記通気路と前記中筒体内部を連通させ、燃焼ガスを通す通気口が形成されている、
燃焼炉。
A self-combustion type combustion furnace for burning a fluid solid fuel,
A furnace body that is a hollow body and has a combustion part at the bottom;
A middle cylinder inside the furnace body;
An exhaust pipe that penetrates the middle cylinder body and the furnace body from above and has a lower end on the inner side of the middle cylinder body;
An outlet facing the upper part of the middle cylinder, and a supply pipe for supplying primary air and fluid solid fuel into the middle cylinder;
Have
Between the side inner surface of the furnace main body and the side outer surface of the middle cylindrical body, a ventilation path is formed,
On the upper or upper side surface of the middle cylinder, the ventilation passage is connected to the inside of the middle cylinder, and a vent hole through which combustion gas passes is formed.
Combustion furnace.
流動性固体燃料を燃焼させる自燃式の燃焼炉であって、
中空体であり、下部に燃焼部を有する炉本体と、
当該炉本体の内側にある中筒体と、
当該中筒体と炉本体を貫通し、下端が中筒体の内部側にある排気筒と、
前記中筒体内部に一次空気と流動性固体燃料を供給する供給管と、
燃焼部内の流動性固体燃料に着火する着火手段と、
を有し、
前記中筒体は、
下部が開口し、上部に通気口が形成され、
前記炉本体内面との間に、燃焼ガスが上昇し前記通気口につながる上昇通気路を形成して、前記炉本体に支持手段で支持されており、
前記排気筒は、
下端が前記中筒体の内部に開口し、
上部側が前記中筒体と前記炉本体を貫通し、上端が外部に開口しており、
前記供給管は、
前記炉本体と前記中筒体の周壁を貫通し、出口が前記中筒体内の上部に臨むようにして接続されている、
燃焼炉。
A self-combustion type combustion furnace for burning a fluid solid fuel,
A furnace body that is a hollow body and has a combustion part at the bottom;
A middle cylinder inside the furnace body;
An exhaust pipe that penetrates the middle cylinder and the furnace body, and whose lower end is on the inner side of the middle cylinder,
A supply pipe for supplying primary air and fluid solid fuel into the inner cylindrical body;
Ignition means for igniting the fluid solid fuel in the combustion section;
Have
The middle cylinder is
The bottom is open, the vent is formed in the top,
Between the inner surface of the furnace body, a rising air passage that leads to the vent is formed by rising combustion gas, and is supported by the furnace body by support means,
The exhaust stack is
The lower end opens inside the middle cylinder,
The upper side penetrates the middle cylinder and the furnace body, and the upper end opens to the outside,
The supply pipe is
Penetrating the peripheral wall of the furnace body and the middle cylinder, and connected so that the outlet faces the upper part in the middle cylinder,
Combustion furnace.
炉本体の下部に二次空気を供給し、溜まっている燃焼灰を炉本体内で巻き上げる予備送風手段を備え、
当該予備送風手段は、炉本体を貫通し当該炉本体内に出口が臨む予備送風管を含む、
請求項1又は2記載の燃焼炉。
Supplying secondary air to the lower part of the furnace body, equipped with preliminary air blowing means to wind up the accumulated combustion ash in the furnace body,
The preliminary blower means includes a preliminary blower pipe that penetrates the furnace body and has an outlet facing the furnace body.
The combustion furnace according to claim 1 or 2.
運転開始前に燃焼炉の内部を加熱する予熱手段を備え、当該予熱手段は、炉本体を貫通し中筒体内に出口が臨むバーナー接続管を含む、
請求項1、2又は3記載の燃焼炉。
Preheating means for heating the inside of the combustion furnace before the start of operation, the preheating means includes a burner connection pipe that penetrates the furnace body and has an outlet facing the inner cylinder.
The combustion furnace according to claim 1, 2 or 3.
JP2012247693A 2012-11-09 2012-11-09 Combustion furnace Active JP5980657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012247693A JP5980657B2 (en) 2012-11-09 2012-11-09 Combustion furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012247693A JP5980657B2 (en) 2012-11-09 2012-11-09 Combustion furnace

Publications (2)

Publication Number Publication Date
JP2014095517A JP2014095517A (en) 2014-05-22
JP5980657B2 true JP5980657B2 (en) 2016-08-31

Family

ID=50938723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012247693A Active JP5980657B2 (en) 2012-11-09 2012-11-09 Combustion furnace

Country Status (1)

Country Link
JP (1) JP5980657B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106016248B (en) * 2016-07-11 2018-11-27 塔城市昊祥三友科技开发有限责任公司 Coal-burning boiler
CN108692316A (en) * 2018-07-18 2018-10-23 福建汇鑫环保科技有限公司 A kind of pyrolysis gasification furnace
CN110068008A (en) * 2019-05-23 2019-07-30 陈庆 A kind of rice-husk combustion stove and combustion system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2146531A (en) * 1938-08-05 1939-02-07 Sanford K Huston Jr Garbage and refuse incinerator
JPS4423501Y1 (en) * 1967-04-03 1969-10-03
JPS4835676A (en) * 1971-09-06 1973-05-25
JP4689731B2 (en) * 2009-05-26 2011-05-25 有限会社明豊エコ・テクノ Swirl combustion furnace

Also Published As

Publication number Publication date
JP2014095517A (en) 2014-05-22

Similar Documents

Publication Publication Date Title
JP6011295B2 (en) Waste incinerator and waste incineration method
TWI554730B (en) Smokeless incinerator and power generation system and heat exchange system using same
KR101770595B1 (en) Redundant Gas Combustor
KR101280857B1 (en) Combustion apparatus with improved combustion efficiency
JP5980657B2 (en) Combustion furnace
BR102016006958B1 (en) METHOD FOR MANAGEMENT OF COMBUSTION IN COOKING INSTALLATIONS AND A COOKING INSTALLATION
JP6146673B2 (en) Waste incinerator and waste incineration method
JP5473098B1 (en) Stoker-type incinerator
JP4415087B2 (en) Incinerator
JP6256859B2 (en) Waste incineration method
EP2458274B1 (en) Particulate solid fuel burner with special overfire air injection
KR101224417B1 (en) Pellet stove
JP4608636B2 (en) Incinerator
US20030059731A1 (en) Device for incinerating waste gas
JP6146671B2 (en) Waste incinerator and waste incineration method
KR101282581B1 (en) Combustion apparatus of boiler using refuse derived fuel or Refused Plastic Fuel
JP3142548U (en) Biomass combustion equipment
JP2013108665A (en) Combustion furnace and hot air generating apparatus having the same
JP5840318B1 (en) Pressurized combustion device
CN205535756U (en) Environment -friendly biomass combustion device
JP6183787B2 (en) Grate-type waste incinerator and waste incineration method
JP2015209992A (en) Waste incineration treatment equipment and waste incineration treatment method
CN103939917A (en) Combustion intensifying device in furnace
KR20120008416A (en) Solid fuel boiler
JP2007147176A (en) Incinerator

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130419

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150914

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160727

R150 Certificate of patent or registration of utility model

Ref document number: 5980657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250