JP5976375B2 - 磁気共鳴イメージング装置 - Google Patents

磁気共鳴イメージング装置 Download PDF

Info

Publication number
JP5976375B2
JP5976375B2 JP2012096637A JP2012096637A JP5976375B2 JP 5976375 B2 JP5976375 B2 JP 5976375B2 JP 2012096637 A JP2012096637 A JP 2012096637A JP 2012096637 A JP2012096637 A JP 2012096637A JP 5976375 B2 JP5976375 B2 JP 5976375B2
Authority
JP
Japan
Prior art keywords
distortion correction
image
data
correction data
magnetic resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012096637A
Other languages
English (en)
Other versions
JP2013223576A (ja
Inventor
高志 重田
高志 重田
良照 渡邊
良照 渡邊
禎也 森田
禎也 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Medical Systems Corp
Original Assignee
Toshiba Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Medical Systems Corp filed Critical Toshiba Medical Systems Corp
Priority to JP2012096637A priority Critical patent/JP5976375B2/ja
Publication of JP2013223576A publication Critical patent/JP2013223576A/ja
Application granted granted Critical
Publication of JP5976375B2 publication Critical patent/JP5976375B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Description

本発明の実施形態は、磁気共鳴イメージングに関する。
MRIは、静磁場中に置かれた被検体の原子核スピンをラーモア周波数のRFパルスで磁気的に励起し、この励起に伴って発生するMR信号から画像を再構成する撮像法である。なお、上記MRIは磁気共鳴イメージング(Magnetic Resonance Imaging)の意味であり、RFパルスは励起パルスとしての高周波パルス(radio frequency pulse)の意味であり、MR信号は核磁気共鳴信号(nuclear magnetic resonance signal)の意味である。
MRIでは、様々な要因により画像歪が生じることが知られている。画像歪を生じさせる特に大きな要因として、傾斜磁場コイルによって撮像領域に形成される傾斜磁場の非線形性に起因する画像歪が挙げられる。
より詳細には、完全に線形な傾斜磁場を傾斜磁場コイルによって形成できれば、その強度分布は、撮像領域内の各座標位置に対して直線的に変化する。しかし、実際の傾斜磁場の強度分布は、完全な線形ではなく、特に磁場中心から離れた領域ほど、線形な強度分布とは違ったものとなる。従って、傾斜磁場が撮像領域内で完全に線形であると仮定してMR信号の収集及び画像再構成処理を実行すると、傾斜磁場の非線形性によって撮像領域の外周部において各画素が位置ずれを起こす。この結果、再構成された画像は、空間的に歪んだものとなる。
傾斜磁場の非線形性に因る画像歪を補正するため、MRI装置は、例えば、予め生成された歪補正テーブルで画像歪を補正する機能を備える。歪補正テーブルは、傾斜磁場コイルが形成する傾斜磁場の強度分布を予め測定又は計算し、撮像領域に設定された複数の代表点毎に、どの程度の位置ずれを起こすかを測定又は計算することで生成される。2次元歪補正では、2次元のスライス画像毎にスライス面内の方向の位置ズレが補正され、3次元歪補正では、マルチスライス撮像や3次元撮像で得られた3次元画像において3次元的に位置ズレが補正される(例えば特許文献1参照)。
特開2010−279601号公報
傾斜磁場の非線形性に因る画像歪を補正する場合、例えば全スライスの各画素単位で、磁場中心からの距離に基づいて歪の補正量を計算する。一方で、近似のMRI装置は、位相エンコード数及び周波数エンコード数を増やすことで画像を高分解能化する方向にある。画像が高分解能化すれば、画像再構成処理に要する時間も長くなるので、画像再構成処理に要する時間の短縮が望まれている。従って、画像再構成処理に要する時間の中で、傾斜磁場の非線形性に因る画像歪の補正処理が占める割合が無視できなくなってきている。
このため、MRIにおいて、傾斜磁場の非線形性に因る画像歪の補正に要する時間を短縮する新規な技術が要望されていた。
以下、本発明の実施形態が取り得る態様の内の数例を各態様毎に説明する。
(1)一実施形態では、MRI装置は、データ収集部と、画像再構成部とを備える。
データ収集部は、本スキャンとして、撮像領域に傾斜磁場を印加すると共に励起パルスを送信することで、撮像領域からMR信号を収集すると共にMR信号を周波数空間データとして保存する。
画像再構成部は、実空間データに変換する変換処理と、傾斜磁場の非線形性に因る画像歪の補正方法を規定する歪補正データに基づく補正処理とを周波数空間データに施すことで、画像データを生成する。画像再構成部は、本スキャンの条件の内、歪補正データの計算に用いられる条件の確定後、上記変換処理の実行前に、歪補正データの計算を開始する。
(2)別の一実施形態では、MRI装置は、データ収集部と、画像再構成部とを備える。
データ収集部は、撮像領域に傾斜磁場を印加すると共に励起パルスを送信することで、画像の生成元となるMR信号を撮像領域から収集し、収集したMR信号を周波数空間データとして保存する。
画像再構成部は、実空間データに変換する変換処理と、傾斜磁場の非線形性に因る画像歪の補正方法を規定する歪補正データに基づく補正処理とを周波数空間データに施すことで、画像を示す画像データを生成する。
一の画像の撮像領域と、別の画像の撮像領域とで、少なくとも一部が装置座標系において重複する場合、画像再構成部は、一の画像を示す画像データの生成時において、別の画像を示す画像データの生成時に用いられる歪補正データを用いて上記補正処理を実行する。
(3)別の一実施形態では、MRI装置は、データ収集部と、画像再構成部とを備える。
データ収集部は、傾斜磁場を印加すると共に励起パルスを送信することで、画像の生成元となるMR信号を被検体から収集し、収集したMR信号を周波数空間データとして保存する。
画像再構成部は、実空間データに変換する変換処理と、傾斜磁場の非線形性に因る画像歪の補正方法を規定する歪補正データに基づく補正処理とを周波数空間データに施すことで、画像を示す画像データを生成する。
一の画像の少なくとも一部の画素と、別の画像の少なくとも一部の画素とが装置座標系で互いに同一位置を示す場合、画像再構成部は、上記一の画像を示す画像データの生成時において、上記同一位置を示す画素に対しては上記別の画像を示す画像データの生成時に用いられる歪補正データを用いると共に、残りの画素に対しては歪補正データを計算することで、補正処理を実行する。
各実施形態のMRI装置の全体構成を示すブロック図。 図1に示すコンピュータ58の機能ブロック図。 傾斜磁場の非線形性の一例を示す模式図。 非線形な傾斜磁場の下で収集されたk空間データからフーリエ変換された実空間の画像データの各画素が、実際の撮像空間のどの位置からのMR信号を反映したものかの一例を示す模式図。 MR信号を受信する装着型のRFコイル装置の一例として、上半身用RFコイル装置の構成の一例を示す平面模式図。 図1のRF受信器48の詳細構成の一例を示すブロック図。 第1の実施形態に係るMRI装置の動作の流れの一例を示すフローチャート。 第1の実施形態の変形例に係るMRI装置の動作の流れの一例を示すフローチャート。 第2の実施形態に係るMRI装置の動作の流れの一例を示すフローチャート。 第2の実施形態の変形例に係るMRI装置の動作の流れの一例を示すフローチャート。 複数の画像間で、重複する撮像領域がある場合の一例を示す平面模式図。 MRI装置の外部に歪補正データを保存する場合の一例として、サーバに歪補正データを保存する場合のブロック図。 第3の実施形態に係るMRI装置の動作の流れの一例を示すフローチャート。
第1の実施形態では、本スキャンの撮像領域の確定後、本スキャンで収集されたMR信号のデータが実空間データに変換される前に、傾斜磁場の非線形性に起因する画像歪の補正方法を規定する歪補正データの計算を開始する。即ち、第1の実施形態では、例えば本スキャンなどの他の処理と並行して歪補正データを計算するので、本スキャン後の画像歪の補正に要する時間を短縮できる。
第2及び第3の実施形態では、歪補正データを保存及び再利用することで、上記画像歪の補正に要する時間を短縮する。具体的には、第2の実施形態では、同じ領域を繰り返し撮像する本スキャンを実行し、既に再構成された画像と同じ撮像領域の画像を再構成する場合に、保存された歪補正データを再利用する。第3の実施形態では、一の撮像シーケンス内に拘らず、再構成処理の対象の画像の撮像領域と、過去に再構成した別の画像の撮像領域とで、少なくとも一部が重複する場合に、歪補正データを再利用する。
以下、MRI装置及びMRI方法の各実施形態について、添付図面に基づいて説明する。なお、各図において同一要素には同一符号を付し、重複する説明を省略する。
(各実施形態のMRI装置の構成)
図1は、各実施形態におけるMRI装置20の全体構成を示すブロック図である。図1に示すように、MRI装置20は、筒状の静磁場磁石22と、筒状のシムコイル24と、傾斜磁場コイル26と、RFコイル28と、制御装置30と、寝台32と、寝台32上の天板34とを有する。シムコイル24は、静磁場磁石22の内側において、静磁場磁石22と軸を同じにして配置されている。
ここでは一例として、装置座標系の互いに直交するX軸、Y軸、Z軸を以下のように定義する。まず、静磁場磁石22及びシムコイル24は、それらの軸方向が鉛直方向に直交するように配置されているものとし、静磁場磁石22及びシムコイル24の軸方向をZ軸方向とする。また、鉛直方向をY軸方向とし、寝台32は、天板34の載置用の面の法線方向がY軸方向となるように配置されているものとする。
なお、装置座標系とは、例えば、撮像領域の決定、傾斜磁場の印加やRFパルスの送信などの撮像動作の実行に際して、MRI装置20が位置や範囲を決めるための基準となる座標系である。ここでは一例として、装置座標系の原点及びX、Y、Z軸は、MRI装置20の電源がオフされて、MRI装置20が次回起動するときも不変であるものとする。例えば第3の実施形態では、MRI装置20の電源オンの前に(前回以前の起動時)に保存された歪補正データを再利用するので、歪補正データに対応する撮像領域を規定する装置座標系が不変であることが望ましいからである。
制御装置30は、静磁場電源40と、シムコイル電源42と、傾斜磁場電源44と、RF送信器46と、RF受信器48と、シーケンスコントローラ56と、コンピュータ58とを有する。傾斜磁場電源44は、X軸傾斜磁場電源44xと、Y軸傾斜磁場電源44yと、Z軸傾斜磁場電源44zとを有する。コンピュータ58は、演算装置60と、入力装置62と、表示装置64と、記憶装置66とを有する。
静磁場磁石22は、静磁場電源40に接続され、静磁場電源40から供給された電流により撮像空間に静磁場を形成させる。静磁場磁石22は、超伝導コイルで構成される場合が多く、励磁の際に静磁場電源40に接続されて電流が供給されるが、一旦励磁された後は非接続状態とされるのが一般的である。なお、静磁場電源40を設けずに、静磁場磁石22を永久磁石で構成してもよい。
上記撮像空間とは、例えば、被検体Pが置かれて、静磁場が印加されるガントリ内の空間を意味する。ガントリとは、静磁場磁石22、シムコイル24、傾斜磁場コイル26、RFコイル28を含むように、例えば円筒状に形成された構造体である。被検体Pが乗せられた天板34がガントリ内に移動できるように、ガントリ及び寝台32は構成される。なお、図1では煩雑となるので、ガントリ内の静磁場磁石22等の構成要素を図示し、ガントリ自体は図示していない。
撮像領域は、例えば、1画像又は1セットの画像の生成に用いるMR信号の収集範囲の少なくとも一部であって、画像となる領域を意味する。撮像領域は、例えば装置座標系により、撮像空間の一部として位置的且つ範囲的に規定される。MR信号の収集範囲の全てが画像となる場合、即ち、MR信号の収集範囲と撮像領域とが完全合致する場合もあるが、両者が完全合致しない場合もある。例えば、折り返しアーチファクトを防止するために、画像となる領域よりも広い範囲でMR信号を収集する場合、撮像領域は、MR信号の収集範囲の一部と言える。
上記「1画像」及び「1セットの画像」は、2次元画像の場合もあれば3次元画像の場合もある。「1セットの画像」とは、例えばマルチスライス撮像などのように、1のパルスシーケンス内で複数画像のMR信号が一括的に収集される場合の「複数画像」である。ここでは一例として、撮像領域は、厚さの薄い領域であればスライスと称し、ある程度の厚みのある領域であればスラブと称することとする。
第1〜第3の実施形態では一例として、撮像領域(正確には、撮像領域を規定する情報の内、スライス厚以外の情報)に基づいて、前述した歪補正データを計算できるものとする。即ち、本スキャンの他の条件に拘らず、撮像領域に基づいて歪補正データを計算できるものとする。撮像領域が確定すれば、後に生成される各画像の撮像領域に対して傾斜磁場が本スキャンでどのように印加されるかがある程度定まるからである。
スライスとして撮像する場合(2次元的な画像データが得られるように撮像する場合)、撮像領域は、例えば、装置座標系でのスライスの中心の座標と、撮像視野(FOV: Field Of View)と、断面方向を規定するベクトルと、スライス厚とで規定される。上記撮像視野とは、例えば、画像の縦横の各サイズである。上記の「断面方向を規定するベクトル」とは、例えば、スライスの面に対する法線方向を示す装置座標系でのベクトルである。これら撮像領域を規定する情報の内、スライス厚以外の情報により、歪補正データが計算される。
直方体状のスラブとして撮像する場合(3次元的なボリュームデータが得られるように撮像する場合)、撮像領域は、例えば以下の情報により規定される。具体的には、(1)スラブの厚さ方向、即ち、断面方向を示す装置座標系でのベクトルと、(2)磁場中心からスラブの中心点までの距離と、(3)撮像視野と、(4)スラブの厚さ、である。これら4つの情報が確定すれば、前述した歪補正データを計算できる。ここでは説明の簡単化のための一例として、上記の磁場中心は、装置座標系の原点に設定されるものとする。
なお、上記の撮像領域の規定方法は、一例に過ぎない。長方形状のスライスとして撮像する場合、撮像領域は、例えば、スライスの4角の装置座標系での座標位置で規定してもよい。同様に、直方体状のスラブとして撮像する場合、撮像領域は、例えば、スラブの8角の装置座標系での座標位置で規定してもよい。また、撮像領域は、長方形状のスライスや直方体状のスラブに限定されるものではなく、例えば円形のスライスや球状のスラブであってもよい。
図1に戻って、シムコイル24は、シムコイル電源42に接続され、シムコイル電源42から供給される電流により、この静磁場を均一化する。
傾斜磁場コイル26は、X軸傾斜磁場コイル26xと、Y軸傾斜磁場コイル26yと、Z軸傾斜磁場コイル26zとを有し、静磁場磁石22の内側で筒状に形成されている。X軸傾斜磁場コイル26x、Y軸傾斜磁場コイル26y、Z軸傾斜磁場コイル26zはそれぞれ、X軸傾斜磁場電源44x、Y軸傾斜磁場電源44y、Z軸傾斜磁場電源44zに接続される。
X軸傾斜磁場電源44x、Y軸傾斜磁場電源44y、Z軸傾斜磁場電源44zからX軸傾斜磁場コイル26x、Y軸傾斜磁場コイル26y、Z軸傾斜磁場コイル26zにそれぞれ供給される電流により、X軸方向の傾斜磁場Gx、Y軸方向の傾斜磁場Gy、Z軸方向の傾斜磁場Gzが撮像領域にそれぞれ形成される。
即ち、装置座標系の3軸方向の傾斜磁場Gx、Gy、Gzを合成し、論理軸としてのスライス選択方向傾斜磁場Gss、位相エンコード方向傾斜磁場Gpe、及び、読み出し方向(周波数エンコード方向)傾斜磁場Groの各方向を任意に設定できる。スライス選択方向、位相エンコード方向、及び、読み出し方向の各傾斜磁場は、静磁場に重畳される。
RF送信器46は、シーケンスコントローラ56から入力される制御情報に基づいて、核磁気共鳴を起こすためのラーモア周波数のRFパルス(RF電流パルス)を生成し、これを送信用のRFコイル28に送信する。RFコイル28には、ガントリに内蔵されたRFパルスの送受信用の全身用コイルWBや、寝台32又は被検体Pの近傍に設けられるRFパルスの受信用の局所コイルなどがある。
送信用のRFコイル28は、RF送信器46からRFパルスを受けて被検体Pに送信する。受信用のRFコイル28は、被検体Pの内部の原子核スピンがRFパルスによって励起されることで発生したMR信号を受信し、このMR信号は、RF受信器48により検出される。
RF受信器48は、検出したMR信号に前置増幅、中間周波変換、位相検波、低周波増幅、フィルタリングなどの所定の信号処理を施した後、A/D(analog to digital)変換を施すことで、デジタル化された複素データである生データ(raw data)を生成する。RF受信器48は、生成したMR信号の生データをシーケンスコントローラ56に入力する。
演算装置60は、MRI装置20全体のシステム制御を行うものであり、これについては後述の図2を用いて説明する。
シーケンスコントローラ56は、演算装置60の指令に従って、傾斜磁場電源44、RF送信器46及びRF受信器48の駆動に必要な制御情報を記憶する。ここでの制御情報とは、例えば、傾斜磁場電源44に印加すべきパルス電流の強度や印加時間、印加タイミング等の動作制御情報を記述したシーケンス情報である。
シーケンスコントローラ56は、記憶した所定のシーケンスに従って傾斜磁場電源44、RF送信器46及びRF受信器48を駆動させることで、X軸傾斜磁場Gx、Y軸傾斜磁場Gy、Z軸傾斜磁場Gz及びRFパルスを発生させる。また、シーケンスコントローラ56は、RF受信器48から入力されるMR信号の生データを、演算装置60に入力する。
ECGユニット36は、拍動を心拍情報として表すECG信号(electrocardiogram signal)を被検体Pから検出して、これをシーケンスコントローラ56経由で演算装置60に入力する。なお、ECG信号の代わりに、拍動を脈波情報として表す脈波同期(PPG: peripheral pulse gating)信号を取得してもよい。
図2は、図1に示すコンピュータ58の機能ブロック図である。図2に示すように、コンピュータ58の演算装置60は、MPU(Micro Processor Unit)86と、システムバス88と、画像再構成部90と、表示制御部98とを備える。
MPU86は、本スキャンの撮像シーケンスの条件の設定、撮像動作及び撮像後の画像表示において、システムバス88等の配線を介してMRI装置20全体のシステム制御を行う。
上記撮像シーケンスの条件とは、例えば、どの種類のパルスシーケンスにより、どのような条件でRFパルス等を送信して、どのような条件で被検体からMR信号を収集するか、の意味である。撮像シーケンスの条件の例としては、撮像領域、傾斜磁場の印加方法、スライス数、撮像部位、パラレルイメージングなどのパルスシーケンスの種類、などが挙げられる。上記撮像部位とは、例えば、頭部、胸部、腹部などの被検体Pのどの部分を撮像領域として画像化するか、の意味である。
上記「本スキャン」は、T1強調画像などの、目的とする診断画像の撮像のためのスキャンであって、位置決め画像用のMR信号収集のスキャンや、較正スキャンを含まないものとする。スキャンとは、MR信号の収集動作を指し、画像再構成を含まないものとする。
較正スキャンとは例えば、本スキャンの撮像シーケンスの条件の内の未確定のものや、本スキャン後の画像再構成時に用いる条件やデータなどを決定するために、本スキャンとは別に行われるスキャンを指す。ここでは一例として、較正スキャンの内、本スキャン前に行われるものをプレスキャンと称する。
較正スキャンとしては、例えば以下のシーケンスが挙げられる。第1に、本スキャンでのRFパルスの中心周波数を計算するシーケンスであり、これは本スキャン前に行われる。第2に、RFコイル装置内の各要素コイルの感度分布マップを生成するシーケンスであり、これは、本スキャン前に行っても、本スキャン後に行ってもよい。
また、MPU86は、プレスキャンの実行結果や、入力装置62からの指示情報に基づいて撮像シーケンスの条件を設定し、設定した撮像シーケンスの条件をシーケンスコントローラ56に入力する。そのために、MPU86は、表示制御部98を制御して、撮像シーケンスの条件の設定画面情報を表示装置64に表示させる。
入力装置62は、撮像シーケンスの条件などを設定する機能をユーザに提供する。
画像再構成部90は、フーリエ変換部100と、画像データベース102と、歪補正データ計算部104と、歪補正データ保存部106と、歪補正部108とを有する。
フーリエ変換部100は、内部にk空間データベース110を有する。フーリエ変換部100は、k空間データベース110に形成されたk空間(周波数空間又はフーリエ空間とも言う)において、シーケンスコントローラ56から入力されるMR信号の生データをk空間データ(周波数空間データ)として配置する。
フーリエ変換部100は、k空間データに変換処理(例えば2次元フーリエ変換)を施すことで、被検体Pの各スライス(又はスラブ)のk空間データを実空間データに変換する。ここでの実空間データは、歪補正が施される前のものであり、例えば、装置座標系のX−Y−Z座標系で規定されるデータである。フーリエ変換部100は、実空間データを画像データベース102に保存する。
歪補正データ保存部106には、傾斜磁場の非線形性に因る画像歪の補正方法を規定するための歪補正テーブルが(例えばMRI装置20の出荷時から)予め保存されている。ここでの歪補正テーブルは、位置ずれを示す3次元変位ベクトル(又は、元の座標と変位ベクトルとの和)のデータを多数の代表点毎に有するものである。上記「複数の代表点」とは、例えば、所定の等間隔で撮像空間の全領域を網羅したものである。即ち、歪補正テーブルは、離散的なデータである。
歪補正データ計算部104は、傾斜磁場の非線形性に因る画像歪の補正方法を規定する歪補正データを計算し、歪補正データを歪補正データ保存部106に保存する。歪補正データの計算は、撮像領域(正確には、撮像領域を規定する情報の内、スライス厚以外の情報。以下、同様)に基づいて、歪補正テーブルを補間することで行われる。歪補正データの計算(歪補正テーブルの補間処理)には時間を要するため、各実施形態では、この補間処理に要する時間の実質的な短縮を図る。
撮像領域が確定すれば、後に生成される各画像の撮像領域に対して傾斜磁場が本スキャンでどのように印加されるかがある程度定まるので、歪補正データを計算して確定することができる。即ち、本スキャンの実行前であっても、撮像領域が確定した時点で、歪補正データ計算部104は、各画像に対する歪補正データの計算を開始できる。
歪補正部108は、フーリエ変換部100で生成された実空間データに対し、歪補正データに基づく補正処理を施すことで、傾斜磁場の非線形性に因る画像歪を補正し、補正処理後の画像データを記憶装置66に保存する。傾斜磁場の非線形性に因る画像歪に対する補正処理について、図3及び図4を用いて具体的に説明する。
図3は、傾斜磁場の非線形性の一例を示す模式図である。縦軸はX軸傾斜磁場Gxの強度を示し、横軸は装置座標系のX軸座標位置を示す。磁場中心は、前述のように例えば装置座標系の原点に設定される。理想的な傾斜磁場の強度分布は、図3の太線で示すように、線形になる。しかし、実際には、図3の点線で示すように、磁場中心から離れると、理想的な傾斜磁場の強度分布とは異なるものとなる。
図4は、非線形な傾斜磁場の下で収集されたk空間データからフーリエ変換された実空間の画像データの各画素が、実際の撮像空間のどの位置からのMR信号を反映したものかの一例を示す模式図である。なお、図3に示す傾斜磁場の強度分布や、図4に示す画像歪は、説明の便宜上の模式的なものに過ぎない。
仮に、線形な傾斜磁場の下でMR信号がk空間データとして収集されれば、装置座標系での実際の各画素の位置は、図4の格子状の点線枠の中央に配置される。しかし、実際には傾斜磁場が非線形であるため、フーリエ変換された実空間の画像データの各画素が示す実際の各位置は、理想的な格子状の配置よりも歪む。
そこで、3次元歪補正では、歪補正部108は、以下の点を歪補正データに基づいて計算する。即ち、補正処理後の画像データの着目画素の位置が、歪を含む(補正処理前の)画像データにおいて、どの位置に相当するかが計算される。歪補正部108は、計算した位置の画素値を着目画素の画素値とすることで、補正処理後の画像データを生成する。
なお、MRIの画像データは、例えば各画素が画素値を有することで構成され、上記の画素値とは、例えば、その画素が表示される際の輝度レベル(その画素に対応する被検体領域から検出されたMR信号の強度)を示す。スライスの場合、MRIの画像データは、縦横の画素数が例えば位相エンコードステップ数×周波数エンコードステップ数となる。
2次元歪補正では、歪補正部108は例えば、補正処理前の画像データの各画素の実際の3次元座標(実際には、撮像空間のどの座標位置からのMR信号を反映した画素であるか)を歪補正データに基づいて計算する。歪補正部108は、各画素の実際の3次元座標を対象スライス画像の上に投影し、補正処理後の画像データにおける各画素の画素値を補間により計算する。
即ち、2次元歪補正は、そのスライスの画像を2次元的にゆがめ戻すことで行われる。一方、3次元歪補正は、スライス面内の歪の他にスライスの厚さ方向の歪も考慮し、3次元的に画像をゆがめ戻すことで行われる。歪補正テーブルの補間による歪補正データの計算方法、及び、2次元歪補正や3次元歪補正の方法については特許文献1等に記載されているので、ここでは詳細な説明を省略する。
なお、本実施形態では一例として、画像再構成処理は、以下の2処理を含めた画像データの生成処理を指すものとする。第1に、k空間データにフーリエ変換を施すことで周波数空間データから実空間の画像データに変換する処理である。第2に、傾斜磁場の非線形性に因る画像歪を補正する補正処理を当該実空間の画像データに対して施す処理である。
記憶装置66は、補正処理後の画像データに対し、撮像シーケンスの条件や被検体Pの情報(患者情報)等の情報を付帯情報として付属させ、補正処理後の画像データを保存する。なお、第2及び第3の実施形態では、記憶装置66は、上記付帯情報として、その画像データの補正処理に用いられた歪補正データも含める。
表示制御部98は、MPU86の制御に従って、撮像シーケンスの条件の設定用画面や、撮像により生成された画像データが示す画像を表示装置64に表示させる。
図5は、MR信号を受信する装着型のRFコイル装置の一例として、上半身用RFコイル装置140の構成の一例を示す平面模式図である。図5に示すように、上半身用RFコイル装置140は、ケーブル124と、コネクタ126と、カバー部材142とを有する。
カバー部材142は、可撓性を有する材料によって折り曲げ等の変形が可能に形成されている。このように変形可能な材料としては、例えば特開2007−229004号公報に記載の可撓性を有する回路基板(Flexible Printed Circuit:FPC)などを用いることができる。
カバー部材142における、図5内の横方向の破線で2等分した上側半分の内部には、被検体Pの背面側に対応した例えば20個の要素コイル(表面コイル)144が配置されている。ここでは一例として、背面側では、被検体Pの背骨を考慮した感度向上の観点から、体軸付近に他の要素コイル144よりも小さい要素コイル144が配置される。
カバー部材142を2等分した下側半分は、被検体Pの頭部、胸部及び腹部上に被さるように構成され、その内部には、被検体Pの前面側に対応した例えば20個の要素コイル(表面コイル)146が配置されている。なお、図5において、要素コイル144は太線で示し、要素コイル146は破線で示す。
また、上半身用RFコイル装置140は、制御回路(図示せず)と、上半身用RFコイル装置140の識別情報を記憶した記憶素子(図示せず)とをカバー部材142内に有する。コネクタ126がMRI装置20の接続ポートに接続された場合、上半身用RFコイル装置140の識別情報は、この制御回路からMRI装置20内の配線を介してMPU86に入力される。
図6は、図1のRF受信器48の詳細構成の一例を示すブロック図である。ここでは一例として、上半身用RFコイル装置140と、MR信号を受信する装着型の下半身用RFコイル装置160とが被検体Pに装着される場合の図を示す。下半身用RFコイル装置160は、MR信号を受信する多数の要素コイル164(図では煩雑となるので6つのみ示す)を有する。
この場合、RFコイル28は、太線の四角枠で示す筒状の全身用コイルWBと、上半身用RFコイル装置140の要素コイル144、146と、下半身用RFコイル装置160の要素164とを含む。要素コイル144、146、164は、MR信号を受信するフェーズドアレイコイルとして機能する。全身用コイルWBは、ガントリ内に配置され、RFパルスの送信用及びMR信号の受信が可能な送受信兼用コイルである。
RF受信器48は、デュプレクサ(送受信切替器)174と、複数のアンプ176と、切替合成器178と、複数の受信系回路180とを備える。切替合成器178の入力側は、アンプ176を介して各要素コイル144、146、164に個別に接続されると共に、デュプレクサ174及びアンプ176を介して全身用コイルWBに個別に接続されている。また、各受信系回路180は、切替合成器178の出力側に個別に接続されている。
デュプレクサ174は、RF送信器46から送信されるRFパルスを全身用コイルWBに与える。また、デュプレクサ174は、全身用コイルWBで受信されたMR信号をアンプ176に入力し、このMR信号は、アンプ176により増幅されて切替合成器178の入力側に与えられる。また、各要素コイル144、146、164で受信されたMR信号は、それぞれ対応するアンプ176で増幅されて切替合成器178の入力側に与えられる。
切替合成器178は、受信系回路180の数に応じて、各要素コイル144、146、164及び全身用コイルWBから検出されるMR信号の合成処理及び切換を行い、対応する受信系回路180に出力する。このようにしてMRI装置20は、全身用コイルWB及び所望の数の要素コイル144、146、164を用いて撮像領域に応じた感度分布を形成し、様々に設定される撮像領域からのMR信号を受信する。
但し、要素コイル144、146、164を設けずに、全身用コイルWBのみでMR信号を受信する構成も可能である。また、切替合成器178を設けずに、要素コイル144、146、164や全身用コイルWBで受信されたMR信号を受信系回路180に直接出力する構成としてもよい。さらに、より多くの要素コイルを広範囲に亘って配置してもよい。
(第1の実施形態の動作説明)
図7は、第1の実施形態におけるMRI装置20の動作の流れの一例を示すフローチャートである。以下、前述の各図を参照しながら、図7に示すステップ番号に従って、MRI装置20の動作を説明する。
[ステップS1]入力装置62に対して、本スキャンの撮像シーケンスの条件の内の主要な条件(パルスシーケンスの種類など)が入力される。MPU86は、入力された条件に基づいて、撮像シーケンスの条件の一部を設定する。
また、被検体Pが天板34(図1参照)上に載置され、RFコイル装置140(図5参照)などのRFコイル装置が被検体Pに装着される。その後、コイル位置測定シーケンスが実行される(例えば特開2010−259777号公報参照)。
具体的には例えば、全身用コイルWBからRFパルスを送信後、被検体Pに装着されたRFコイル装置内の各要素コイルからMR信号を収集し、収集されたMR信号に基づいてコイル位置決め用のプロファイルデータを生成する。次に、プロファイルデータに基づいてRFコイル装置内の要素コイル毎の位置を計算する。この後、各要素コイルの位置に基づいて、MR信号の受信に用いる要素コイルをMPU86が自動選択するか、又は、各要素コイルの位置を表示装置64上に表示後に、MR信号の受信に用いる要素コイルをユーザが選択する。なお、被検体にRFコイル装置が装着されず、例えば全身用コイルWBのみで撮像される場合には、上記コイル位置測定シーケンスを省略する。
また、プレスキャンとして、装着型のRFコイル装置の感度分布マップ生成のシーケンスが実行される(例えば特開2005−237703号公報参照)。具体的には例えば、被検体Pに装着されたRFコイル装置、及び、全身用コイルWBを受信コイルとして、MR信号が収集される。
全身用コイルWBから得られた画像データ(以下、WB画像データという)、及び、RFコイル装置から得られた画像データ(以下、主コイル画像データという)が、RFコイル装置内の全要素コイルの感度分布推定用の画像データとして取得され、画像データベース102に保存される。同様な画像データの取得が3次元領域全体の各断面に亘って実施され、ボリュームデータとして画像データベース102に保存される。
MPU86は、上記ボリュームデータに基づいて、RFコイル装置内に含まれる全要素コイルの感度分布を3次元感度分布マップデータとして生成し、記憶装置66に保存する。例えば、主コイル画像データの信号強度分布をWB画像データの信号強度分布で除算し、両者の信号強度比をRFコイル装置内の全要素コイルの感度分布の推定値とする。同様の処理を3次元領域全体の各断面の画像データに対して実行すれば、各要素コイルの(3次元)感度分布マップデータを生成できる。この感度分布マップデータは例えば、画像再構成部90による画像再構成時に、輝度補正処理に用いられる。
なお、全身用コイルから得られたWB画像データは、基準として用いるものであるため、全身用コイルWBを受信用コイルとせずに、被検体Pに装着されたRFコイル装置のみを受信用コイルとしても感度分布マップを生成可能である。
[ステップS2]ステップS1で選択された要素コイルでMR信号を検出することで、公知の手法により位置決め画像が撮像される。表示制御部98は、MPU86の指令に従って、位置決め画像を表示装置64に表示させる。
[ステップS3]位置決め画像に基づいて、撮像視野や、スライス位置などの撮像領域を設定する情報が入力装置62に対して入力され、MPU86は、この入力内容を本スキャンの撮像シーケンスの条件として設定する。これにより、本スキャンでの撮像領域が確定する。歪補正データ計算部104は、本スキャンでの撮像領域の確定をトリガにして、歪補正データの計算を開始する。即ち、歪補正データ計算部104は、本スキャンでの撮像領域が確定したタイミングに同期して、歪補正データの計算を開始する。
[ステップS4]MRI装置20は、プレスキャンと、歪補正データ計算部104による歪補正データの計算とを並行して実行する。ここでのプレスキャンは、例えば、RFパルスの中心周波数の補正値を計算するシーケンスが挙げられる(例えば特開2009−34152号公報参照)。
具体的には、MPU86は、MRI装置20の各部を制御して、例えば撮像領域の代表のスライスに磁気共鳴スペクトロスコピーを施すことで周波数スペクトラムデータを収集及び解析し、ピーク周波数等に基づいて水素原子核スピンの磁気共鳴周波数を検出する。
[ステップS5]MPU86は、ステップS4でのプレスキャンの検出結果に基づいて、本スキャンで用いるRFパルスの中心周波数を計算及び再設定(補正)する。具体的な一例としては、検出した水素原子核スピンの磁気共鳴周波数を、RFパルスの中心周波数とすればよい。
このようにしてMPU86は、プレスキャンの実行結果などに基づいて、本スキャンの撮像シーケンスの条件で未確定のものを全て確定する。このとき、歪補正データ計算部104による歪補正データの計算も並行して実行される。
[ステップS6]設定された撮像シーケンスの条件に従って本スキャンが以下のように実行されると共に、歪補正データ計算部104による歪補正データの計算が並行して実行される。具体的には、撮像空間では、静磁場電源40により励磁された静磁場磁石22によって静磁場が形成されており、この静磁場はシムコイル24により均一化されている。
そして、入力装置62からMPU86に本スキャン開始指令が入力されると、MPU86は、撮像シーケンスの条件をシーケンスコントローラ56に入力する。シーケンスコントローラ56は、入力された撮像シーケンスに従って傾斜磁場電源44、RF送信器46及びRF受信器48を駆動させることで、被検体Pの撮像部位が含まれる撮像領域に傾斜磁場を形成させると共に、RFコイル28からRFパルスを発生させる。
このため、被検体Pの内部の核磁気共鳴により生じたMR信号がRFコイル28(ステップS1で選択された要素コイルを含む)により受信されて、RF受信器48により検出される。RF受信器48は、検出したMR信号に所定の信号処理を施した後、これをA/D変換することで、デジタル化したMR信号である生データを生成する。
RF受信器48は、生成した生データをシーケンスコントローラ56に入力する。シーケンスコントローラ56は、生データをフーリエ変換部100に入力し、フーリエ変換部100は、k空間データベース110に形成されたk空間において、生データをk空間データとして配置及び保存する。
なお、ここでは一例として、ステップS5での本スキャンの全条件の確定後、ステップS6での本スキャン開始指令を待機中の期間も、歪補正データ計算部104が歪補正データを計算する。
[ステップS7]画像再構成処理が実行される。具体的には、フーリエ変換部100は、被検体Pの各スライス又はスラブのk空間データに変換処理(例えば2次元フーリエ変換)を施すことで、実空間データに変換する。フーリエ変換部100は、実空間データを画像データベース102に保存する。
ここで、ステップS6までにおいて歪補正データの一部を計算できていなければ、歪補正部108は、このステップS7において補正処理の前に、歪補正データの未算出部分の計算を行い、計算された全ての歪補正データを歪補正データ保存部106に保存する。そして、歪補正部108は、フーリエ変換部100で生成された実空間データに対し、歪補正データに基づく補正処理を施すことで、傾斜磁場の非線形性に因る画像歪を補正する。
なお、プレスキャンとしてRFコイル装置内の各要素コイルの感度分布マップ生成のシーケンスが実行された場合、歪補正部108は、上記補正処理の一環として、3次元感度分布マップデータに基づいて画像データの輝度補正も実行する。歪補正部108は、補正処理後の画像データ(スラブの場合はボリュームデータ)を記憶装置66に保存する。
[ステップS8]表示制御部98は、MPU86の指令に従って、補正処理後の画像データを記憶装置66から表示装置64に転送させ、画像データ(スラブの場合はボリュームデータ)が示す画像を表示装置64に表示させる。
なお、上記説明では、本スキャンの撮像領域の確定後から、本スキャンの実行期間中まで継続的に歪補正データを計算しているが、これは一例に過ぎない。例えば、プレスキャンの実行中などの途中のタイミングで歪補正データの計算が終了した場合、以降は、歪補正データ計算部104が他の処理と並行して歪補正データを計算することはない。以上が第1の実施形態の動作説明である。
従来技術では、本スキャンが終了し、画像再構成の開始タイミングの後に、歪補正データの計算が開始される。これに対し第1の実施形態では、本スキャンでの撮像領域の確定後、プレスキャンや本スキャンなどの他の処理と並行して、歪補正データ計算部104が歪補正データを計算する。このため、本スキャンが終了したタイミング(フーリエ変換を含む画像再構成の開始タイミング)では、歪補正データの全て又は一部が計算済である。この結果、従来技術よりも、本スキャン後の画像歪の補正に要する時間を短縮できる。
また、演算装置60の空きメモリを用いて、歪補正データ計算部104による歪補正データの計算と、プレスキャンや本スキャンなどの他の処理とをMRI装置20が並行して実行する。従って、MRI装置20の各部の動作時間として、条件設定の時間や撮像時間を有効に割り当てることができる。
また、本スキャンでの撮像領域の確定をトリガにするので、歪補正データを確定しうる最も早いタイミングから、歪補正データの計算が開始される。このため、本スキャンの終了のタイミングにおいて、歪補正データが全て計算済である可能性を高くすることができる。この結果、本スキャン終了後の画像再構成処理では、歪補正データを計算する必要がなくなる場合もあり、画像歪の補正に要する時間を大いに短縮しうる。
(第1の実施形態の変形例)
図8は、第1の実施形態の変形例に係るMRI装置20の動作の流れの一例を示すフローチャートである。較正スキャンが本スキャンの後に実行され、且つ、本スキャン終了時に歪補正データの計算が終了していない場合、MRI装置20は、本スキャン後の較正スキャンと並行して、歪補正データの計算を実行してもよい。図8は、その場合のMRI装置20の動作の一例を示す。
図8のステップS11〜S16、S18、S19の処理は、ステップS11においてRFコイル装置内の各要素コイルの感度分布マップの生成シーケンスが実行されない点を除き、上記ステップS1〜S8の処理とそれぞれ同様である。
ステップS17では、較正スキャンと並行して、歪補正データ計算部104は歪補正データを計算する。本スキャンの後(ステップS17)において実行してもよい較正スキャンは、本スキャンの条件に関わらないが、本スキャン後の画像再構成の条件を決めるためのデータ収集である。かかる較正スキャンとしては、例えば、図7のステップS1で実行したRFコイル装置内の各要素コイルの感度分布マップの生成シーケンス等が挙げられる。
このように、図8の変形例の場合も、図7で説明した第1の実施形態と同様の効果が得られる。
なお、第1の実施形態及びその変形例では、本スキャンにおける撮像領域の確定に同期して歪補正データの計算を開始する例を述べたが、これは一例にすぎない。本スキャンの条件の内、撮像領域の決定後に確定する条件の確定をトリガとしてもよい。例えば、本スキャンでの傾斜磁場の印加条件の確定に同期して、歪補正データの計算を開始してもよい。
(第2の実施形態の動作説明)
第1の実施形態では複数の処理を並行して実行するが、第2及び第3の実施形態では各処理がシリアルに実行される。第2の実施形態では、一のシーケンスの中で、同じ位置、同じ撮像視野の画像が繰り返し撮像される場合に、歪補正データを再利用する。
図9は、第2の実施形態におけるMRI装置20の動作の流れの一例を示すフローチャートである。以下、図9に示すステップ番号に従って、MRI装置20の動作を説明する。
[ステップS21]MPU86(図2参照)は、入力装置62を介してMRI装置20に対して入力された一部の撮像シーケンスの条件や、プレスキャンの実行結果に基づいて、本スキャンの撮像シーケンスの全条件を設定する。ここでは一例として、同じ位置を繰り返し撮像する本スキャンのパルスシーケンスが設定されるものとする。そのようなパルスシーケンスとしては、例えば同期撮像が挙げられる。
同期撮像としては、例えば心電同期の撮像が挙げられる。この場合、例えばt−SLIP法(Time Spatial Labeling Inversion Pulse Method:特開2011−83592号公報等を参照)により、撮像断面に流入する血液をラベリングする。t−SLIP法のパルスシーケンスにより、反転時間(inversion time)後に撮像断面に到達した血液のみの信号強度を選択的に強調又は抑制できる。なお、t−SLIP法におけるパルスは、必要に応じて、ECGユニット36(図1参照)により被検体Pから検出されるECG信号のR波から一定の遅延時間が経過後に印加され、心電同期の下で撮像が行われる。
同期撮像の別の例としては、ECGユニット36の代わりに、呼吸同期ユニットを設け、呼吸同期撮像を行う場合が挙げられる。呼吸同期ユニットは、被検体Pの胸部に当接されて胸郭運動に比例する信号を検知する不図示の呼吸センサ(電極)を有する。呼吸同期ユニットは、この呼吸センサの検知信号から呼吸曲線データを演算することで、被検体Pの呼吸周期の所望期間(例えば呼気期間)に同期させた呼吸同期信号を生成し、この呼吸同期信号をシーケンスコントローラ56に入力する。これにより、例えば吸気時相又は吐気時相の撮像を繰り返すことができる。
同じ位置を繰り返し撮像するパルスシーケンスの別の例としては、拡散強調イメージングが挙げられる。拡散強調イメージングでは、例えばMPGパルス(Motion Probing Gradient Pulse:拡散傾斜磁場パルス)を印加しないで、b値をゼロとして基準の1セットのスライス群を撮像する。
次に、b値を第1の値にすると共にセット毎に方向性が異なるMPGパルスを印加しつつ、複数セットのスライス群の撮像を行う。次に、b値を第2の値にして、セット毎に方向性が異なるMPGパルスを印加しつつ、複数セットのスライス群の撮像を行う。
このような撮像を繰り返し、b値がゼロの基準の1セットのスライス群と、b値が第1の値の各セットのスライス群とで差分をとる。b値が第2の値、b値が第3の値の場合も同様に差分をとることで、撮像対象の拡散を描出する。
同じ位置を繰り返し撮像するパルスシーケンスの別の例としては、ダイナミック撮像が挙げられる。ダイナミック撮像は、同じ断面に対し、呼吸位相や心時相などの時相を変えて、複数の撮像を行う手法である。
[ステップS22]設定された撮像シーケンスの条件に従って、第1の実施形態のステップS6と同様にして本スキャンが実行される。なお、ここでは一例として、歪補正データの計算を並行して実行することはない。
[ステップS23]フーリエ変換部100は、k空間データベース110からk空間データを取り込み、これにフーリエ変換を施すことで実空間データに変換する。
[ステップS24]歪補正データ計算部104は、本スキャンでMR信号が収集された各スライス又はスラブについて歪補正データを計算又は取得する。さらに、歪補正データ計算部104は、どのスライス又はスラブに対する歪補正データかの付帯情報を加えて、歪補正データを歪補正データ保存部106に保存する。上記付帯情報は、例えば、撮像視野、スライス厚、断面方向などの、当該スライス又はスラブの撮像領域を装置座標系で規定する情報である。
また、ここでは同じ位置を繰り返し撮像する本スキャンが実行されているので、歪補正データ計算部104は、歪補正データの計算に際して、重複実行を避ける。
具体的には、「現在歪補正データの計算対象となっているスライス又はスラブ」と、装置座標系で規定される撮像領域が同一のスライス又はスラブに対して歪補正データを計算済の場合、歪補正データ計算部104は、当該計算済の歪補正データを取得する。
歪補正データ計算部104は、当該計算済の歪補正データの付帯情報として、上記の「現在歪補正データの計算対象となっているスライス又はスラブ」を追加する。
これにより、歪補正データ計算部104は、歪補正データ保存部106に保存されている歪補正データの付帯情報を更新する。
このようにして、歪補正データ計算部104は、歪補正データの重複した計算を避ける。なお、歪補正データ自体を歪補正データ保存部106の記憶領域に重複して保存することはしない。
ここで、上記のように重複した計算を避ける条件、即ち、歪補正データを再利用する条件として、被検体の同一性は不要である(後述の第3の実施形態についても同様)。静磁場の均一性の乱れ方は被検体により異なるが、撮像領域が同じであれば、発生する傾斜磁場(の非線形性)は被検体に拘らずほぼ同じになるからである。従って、仮に、ステップS21の前のシーケンスにおいて、同一又は異なる被検体の撮像として、撮像領域が同一のスライス又はスラブに対して歪補正データを計算済の場合、当該歪補正データを再利用可能である。
また、上記のように重複した計算を避ける条件として、歪補正データの計算対象のスライスと、歪補正データを計算済のスライスとで、断面方向が同じであることが望ましく、第2の実施形態では一例として、この点を条件とする。断面方向が完全一致すれば、歪補正データをそのまま再利用できるからである。
ここでは一例として、歪補正データの計算対象のスライス又はスラブと、装置座標系で規定される撮像領域が完全一致するスライス又はスラブに対して歪補正データを計算済ではない場合、歪補正データ計算部104は、歪補正データを計算する。但し、歪補正データの計算対象のスライス又はスラブと、撮像領域の重複部分を有するスライス又はスラブに対して歪補正データを計算済である場合、歪補正データ計算部104は、当該重複部分の歪補正データを再利用してもよい(この例については、後述する)。
[ステップS25]歪補正部108は、ステップS23で生成された実空間データに対し、ステップS24で計算或いは取得された歪補正データに基づく補正処理を施すことで、傾斜磁場の非線形性に因る画像歪を補正する。歪補正部108は、補正処理後の画像データを記憶装置66に保存する。
[ステップS26]第1の実施形態のステップS8と同様にして補正処理後の撮像画像が表示される。以上が第2の実施形態のMRI装置20の動作説明である。
このように第2の実施形態では、同期撮像、ダイナミック撮像、拡散強調イメージングなどのように一の撮像シーケンスで同一位置を繰り返し撮像する場合に、歪補正データの重複的な計算を避ける。即ち、ある撮像領域のスライス又はスラブに対して一度計算した歪補正データを保存する。これにより、タイミングなどの条件を変えて同一のスライス又はスラブを撮像する場合に歪補正データを再利用するので、従来よりも歪補正データの計算時間を短縮できる。この結果、傾斜磁場の非線形性に因る画像歪の補正を、従来よりも高速化できる。
また、再利用される歪補正データについては、選択方法が無限に近いスライス又はスラブの各々に対して保存するのではなく、同一位置を繰り返し撮像するシーケンスの特性を利用して最低限の歪補正データが保存される。即ち、ステップS24において、歪補正データを重複保存せずに、その付帯情報として、「当該歪補正データに対応するスライス又はスラブの撮像領域の情報」を追加する。従って、歪補正データの保存に要する記憶領域は、現実的な範囲に収めることができる。
(第2の実施形態の変形例)
図10は、第2の実施形態の変形例に係るMRI装置20の動作の流れの一例を示すフローチャートである。上記図9のステップS24では、歪補正データを再利用できるか否かの判定処理を行わない例を述べたが、図10のフローチャートのように、かかる判定処理を入れてもよい。以下、図10に示すステップ番号に従って、第2の実施形態の変形例におけるMRI装置20の動作を説明する。
[ステップS31〜S33]図9のステップS21〜S23の処理とそれぞれ同様である。この後、ステップS34に進む。
[ステップS34]歪補正データ計算部104は、「現在歪補正データの計算対象となっているスライス又はスラブ」と、(装置座標系で規定される)撮像領域が同一のスライス又はスラブに対して歪補正データを計算済か否かを判定する。撮像領域が同一のスライス又はスラブに対して歪補正データを計算済の場合、ステップS35に進み、そうではない場合、ステップS36に進む。
[ステップS35]歪補正データ計算部104は、上記ステップS24と同様に、計算済であって、撮像領域が同一のスライス又はスラブの歪補正データの付帯情報として、「現在歪補正データの計算対象となっているスライス又はスラブ」を追加する。この後、ステップS37に進む。
[ステップS36]歪補正データ計算部104は、ステップS34での判定処理の対象のスライス又はスラブに対して歪補正データを計算する。歪補正データ計算部104は、どのスライス又はスラブに対する歪補正データかの情報と付帯しつつ、計算した歪補正データを歪補正データ保存部106に保存する。この後、ステップS37に進む。
[ステップS37、S38]図9のステップS25、S26の処理とそれぞれ同様である。このように、図10に示す変形例においても、図9の場合と同様の効果が得られる。
(第3の実施形態の動作説明)
前述のように、歪補正データの計算対象のスライス又はスラブと、撮像領域の重複部分を有するスライス又はスラブに対して歪補正データを計算済である場合、当該重複部分の歪補正データを再利用してもよい。第3の実施形態では、同じ位置を繰り返し撮像する場合などのシーケンス種類に拘らず、重複領域があれば歪補正データを再利用する。
図11は、複数の画像間で、重複する撮像領域がある場合の一例を示す平面模式図である。図11において、スライスSL1と、スライスSL2とで、互いの撮像領域が部分的に重複し、破線で囲われた斜線領域が重複領域250である。ここでの「重複」とは、スライスSL1の少なくとも一部の画素と、スライスSL2の少なくとも一部の画素とが、装置座標系において互いに同一位置を示すことである。
例えばスライスSL1について先に歪補正データが生成され、これが歪補正データ保存部106に保存されている場合を考える。
この場合、歪補正データ計算部104は、スライスSL2における非重複領域(重複領域250以外の撮像領域)について歪補正データを計算し、重複領域250の歪補正データを歪補正データ保存部106から取得する。歪補正データ計算部104は、スライスSL2については、非重複領域の歪補正データと、取得した重複領域250の歪補正データとを領域的に合成することで、その歪補正データを生成する。
特に、撮像領域がスラブである場合(ボリューム撮像の場合)、歪補正データの計算対象のスラブと、歪補正データを計算済のスラブとで、部分的に重複することが多い。その場合、重複領域については、歪補正データを再利用することができる。
前述のように、重複計算を避ける条件として、歪補正データの計算対象のスライスと、歪補正データを生成済のスライスとで、断面方向が同じであることが望ましいが、これは必須ではない。歪補正データの計算対象のスライスと、歪補正データを生成済のスライスとで断面方向が異なっていても、重複領域があれば、重複領域について歪補正データを再利用してもよい。
また、第3の実施形態では、種類の異なる複数の撮像シーケンス間の歪補正データや、MRI装置20の電源がオンされる前の歪補正データも再利用可能な構成とする。この再利用の条件として、被検体の同一性は前述の理由で不要である。
即ち、直前の撮像シーケンスで別の被検体について撮像された場合や、電源オン前に別の被検体について撮像された場合でも、重複領域があれば、重複領域について歪補正データを再利用する。
従って、第3の実施形態では一例として、MRI装置20の電源がオフされても、歪補正データを継続して保存する。これに対し第2の実施形態では、MRI装置20の電源オフ時に、歪補正データ保存部106内の歪補正データを消去してもよい。
図12は、MRI装置20の外部に歪補正データを保存する場合の一例として、外部のサーバに歪補正データを保存する場合のブロック図である。第3の実施形態では、例えば、図12に示すように、通信ケーブル300を介してMRI装置20の演算装置60に接続されたサーバ302に全ての歪補正データを保存する。
即ち、第3の実施形態では、歪補正データ保存部106は、MRI装置20の電源がオンされた後に生成された歪補正データのみを保存し、生成された歪補正データをMRI装置20の電源オフ前にサーバ302に転送する。但し、これは一例に過ぎない。歪補正データ保存部106の記憶容量が大きければ、MRI装置20の電源オフに拘らず、歪補正データ保存部106が継続的に歪補正データを保存してもよい。
図13は、第3の実施形態におけるMRI装置20の動作の流れの一例を示すフローチャートである。なお、ここでは一例として、MRI装置20の電源がオンされた後、図13のステップS42の本スキャンとはパルスシーケンスの種類が異なる別の本スキャンがステップS41の直前に実行済であるものとする。即ち、当該別の本スキャンの各スライス(又はスラブ)に対する補正処理後の画像データが記憶装置66に保存され、当該別の本スキャンの各スライス(又はスラブ)に対する歪補正データが歪補正データ保存部106に保存されているものとする。
以下、図13に示すステップ番号に従って、MRI装置20の動作を説明する。
[ステップS41]MPU86(図2参照)は、入力装置62を介してMRI装置20に対して入力された撮像シーケンスの条件の一部や、プレスキャンの実行結果に基づいて、本スキャンの全条件を設定する。ここでの本スキャンは、どの種類のパルスシーケンスであってもよいが、ここでは一例として、直前に実行されたパルスシーケンスとは種類が異なるものとする。
[ステップS42]ステップS41で設定された撮像シーケンスの条件に従って、前述と同様にして本スキャンが実行される。
[ステップS43]フーリエ変換部100は、k空間データベース110からk空間データを取り込み、これにフーリエ変換を施すことで実空間データに変換する。
[ステップS44]歪補正データ計算部104は、歪補正データ保存部106及びサーバ302にアクセスし、以下の判定処理を実行する。即ち、歪補正データの計算対象のスライス(スラブ)の撮像領域と、歪補正データを計算済のスライス(スラブ)の撮像領域とで、重複領域があるか否かが判定される(装置座標系で規定された撮像領域同士で、重複の有無を判定する)。
ここでの計算済の歪補正データは、ステップS41の前の撮像シーケンスで計算され、歪補正データ保存部106に保存中のものと、MRI装置20の電源がオンされる前(前回以前のMRI装置20の起動時)に計算され、サーバ302に保存中のものを含む。
上記判定処理において、重複領域があると判定された場合、ステップS45に進み、そうではない場合、ステップS46に進む。
[ステップS45]歪補正データ計算部104は、歪補正データの計算対象のスライス(スラブ)について、非重複領域(ステップS44で重複領域と判定された領域を除く領域)の歪補正データを計算し、重複領域の歪補正データを歪補正データ保存部106又はサーバ302から取得する。歪補正データ計算部104は、計算した歪補正データと、取得した歪補正データとを領域的に合わせることで、計算対象のスライス(スラブ)について、その歪補正データを生成する。この後、ステップS47に進む。
[ステップS46]歪補正データ計算部104は、ステップS44での判定処理の対象のスライス(スラブ)に対して歪補正データを計算する。歪補正データ計算部104は、付帯情報として、当該スライス又はスラブの装置座標系での撮像領域を規定する情報を加えて、計算した歪補正データを歪補正データ保存部106に保存する。なお、ここでは一例として、被検体Pの情報も付帯情報に含めるものとする。この後、ステップS47に進む。
[ステップS47]歪補正部108は、ステップS43で生成された実空間データに対し、ステップS45、S46で得られた歪補正データに基づく補正処理を施すことで、傾斜磁場の非線形性に因る画像歪を補正する。歪補正部108は、補正処理後の画像データを記憶装置66に保存する。
また、歪補正データ保存部106は、ステップS41〜46までに計算されて保存した歪補正データをサーバ302に転送する。サーバ302は、転送された歪補正データ(及びその付帯情報)を保管する。この後、ステップS48に進む。
[ステップS48]第1の実施形態のステップS8と同様にして補正処理後の撮像画像が表示される。以上が第3の実施形態のMRI装置20の動作説明である。
このように第3の実施形態では、以前に計算済の歪補正データと少しでも重複領域がある場合、重複領域については歪補正データを再利用する。
概念的に言えば、「一の画像」の少なくとも一部の画素と、「別の画像」の少なくとも一部の画素とが装置座標系で互いに同一位置を示す場合、画像再構成部90は、上記「一の画像」を示す画像データの生成時において、上記同一位置を示す画素に対しては上記「別の画像」を示す画像データの生成時に用いられる歪補正データを用いると共に、残りの画素に対しては歪補正データを計算することで、補正処理を実行する。
即ち、被検体の同一性や本スキャンのパルスシーケンスの種類を問わず、重複領域については歪補正データを再利用するので、歪補正データの計算量を最小限にすることができる。この結果、傾斜磁場の非線形性に因る画像歪の補正に要する時間を従来よりも短縮できる。
例えば、同じ被検体の経過観察の撮像として、当該被検体について以前(1年前や半年前など)に撮像された領域と撮像領域を同じにして再検査される場合がある。このような場合、サーバ302に保管された歪補正テーブルを再利用することで補正処理に要する時間を短縮できるので、効果的である。
(実施形態の補足事項)
[1]第2の実施形態では、MRI装置20の内部(歪補正データ保存部106)に、各画像データの画像再構成処理で用いられた歪補正データを保存する例を述べた。本発明の実施形態は、かかる態様に限定されるものではない。例えば、第3の実施形態のように、MRI装置20の外部に歪補正データを継続的に保存してもよい。
[2]第2及び第3の実施形態では、各処理がシリアルに実行される例を述べた。本発明の実施形態は、かかる態様に限定されるものではない。第1の実施形態と、第2の実施形態とを組み合わせてもよい。即ち、第2の実施形態のステップS21において、本スキャンでの撮像領域の確定をトリガとして、(本スキャンなどの他の処理と並行して実行する処理として)歪補正データの計算を開始してもよい。
同様に、第1の実施形態と、第3の実施形態とを組み合わせてもよい。即ち、第3の実施形態のステップS41において、本スキャンでの撮像領域の確定をトリガとして、(他の処理と並行して実行する処理として)歪補正データの計算を開始してもよい。
[3]MRI装置20として、静磁場磁石22、シムコイル24、傾斜磁場コイル26、RFコイル28が含まれるガントリの外にRF受信器48が存在する例を述べた(図1参照)。これは一例に過ぎず、RF受信器48がガントリ内に含まれる態様でもよい。
具体的には例えば、RF受信器48に相当する電子回路基盤をガントリ内に配置する。そして、受信用RFコイルによって電磁波からアナログの電気信号に変換されたMR信号を、当該電子回路基盤内のプリアンプによって増幅し、デジタル信号としてガントリ外に出力し、シーケンスコントローラ56に入力してもよい。ガントリ外への出力に際しては、例えば光通信ケーブルを用いて光デジタル信号として送信すれば、外部ノイズの影響が軽減されるので、望ましい。
[4]請求項の用語と実施形態との対応関係を説明する。なお、以下に示す対応関係は、参考のために示した一解釈であり、本発明を限定するものではない。
静磁場磁石22、シムコイル24、傾斜磁場コイル26、RFコイル28、制御装置30の全体(図1参照)が、傾斜磁場の印加及びRFパルスの送信を伴ったスキャンにより被検体PからMR信号を収集する機能は、請求項記載のデータ収集部の一例である。
静磁場磁石22、シムコイル24、傾斜磁場コイル26、RFコイル28、制御装置30の全体(図1参照)が、傾斜磁場及びRFパルスの印加を伴ってMR信号を収集し、プレスキャンを実行する構成は、請求項記載のプレスキャン実行部の一例である。
[5]本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
20 MRI装置
22 静磁場磁石
24 シムコイル
26 傾斜磁場コイル
26x X軸傾斜磁場コイル
26y Y軸傾斜磁場コイル
26z Z軸傾斜磁場コイル
28 RFコイル
30 制御装置
32 寝台
34 天板
36 ECGユニット
40 静磁場電源
42 シムコイル電源
44 傾斜磁場電源
44x X軸傾斜磁場電源
44y Y軸傾斜磁場電源
44z Z軸傾斜磁場電源
46 RF送信器
48 RF受信器
56 シーケンスコントローラ
58 コンピュータ
60 演算装置
62 入力装置
64 表示装置
66 記憶装置
86 MPU
88 システムバス
90 画像再構成部
98 表示制御部
100 フーリエ変換部
102 画像データベース
104 歪補正データ計算部
106 歪補正データ保存部
108 歪補正部
110 k空間データベース
140 上半身用RFコイル装置
142 カバー部材
144、146 要素コイル
174 デュプレクサ
176 アンプ
178 切替合成器
180 受信系回路
250 重複領域
300 通信ケーブル
302 サーバ
P 被検体
WB 全身用コイル

Claims (12)

  1. 本スキャンとして、撮像領域に傾斜磁場を印加すると共に励起パルスを送信することで、前記撮像領域から核磁気共鳴信号を収集すると共に前記核磁気共鳴信号を周波数空間データとして保存するデータ収集部と、
    前記周波数空間データに対して、実空間データに変換する変換処理と、前記傾斜磁場の非線形性に因る画像歪の補正方法を規定する歪補正データに基づく補正処理とを施すことで、画像データを生成する画像再構成部と
    を備えた磁気共鳴イメージング装置であって、
    前記画像再構成部は、前記本スキャンの条件の内、前記歪補正データの計算に用いられる条件の確定後、前記変換処理の実行前に、前記歪補正データの計算を開始し、
    前記画像再構成部による前記歪補正データの計算と、前記歪補正データの計算以外の処理とを並行して実行する、
    ことを特徴とする磁気共鳴イメージング装置。
  2. 前記画像再構成部は、前記撮像領域の確定後、前記撮像領域に基づいて前記歪補正データの計算を開始することを特徴とする請求項1記載の磁気共鳴イメージング装置。
  3. 前記画像再構成部は、前記撮像領域が確定したタイミングに同期して、前記歪補正データの計算を開始することを特徴とする請求項2記載の磁気共鳴イメージング装置。
  4. 前記データ収集部により前記本スキャンが実行されている期間に、前記画像再構成部は前記歪補正データを計算することを特徴とする請求項1記載の磁気共鳴イメージング装置。
  5. 前記本スキャンの一部の条件の決定に用いられる前記核磁気共鳴信号を収集するプレスキャンが実行されている期間に、前記画像再構成部は前記歪補正データを計算することを特徴とする請求項1記載の磁気共鳴イメージング装置。
  6. プレスキャンとして、前記本スキャンの一部の条件の決定に用いられる前記核磁気共鳴信号を前記本スキャンの前に収集するプレスキャン実行部をさらに備え、
    前記プレスキャンの実行後、前記本スキャンが実行される前の期間に、前記画像再構成部は前記歪補正データを計算することを特徴とする請求項1記載の磁気共鳴イメージング装置。
  7. 撮像領域に傾斜磁場を印加すると共に励起パルスを送信することで、画像の生成元となる核磁気共鳴信号を前記撮像領域から収集し、収集した前記核磁気共鳴信号を周波数空間データとして保存するデータ収集部と、
    前記周波数空間データに対して、実空間データに変換する変換処理と、前記傾斜磁場の非線形性に因る画像歪の補正方法を規定する歪補正データに基づく補正処理とを施すことで、前記画像を示す画像データを生成する画像再構成部と
    を備えた磁気共鳴イメージング装置であって、
    一の画像の前記撮像領域と、過去に生成された別の画像の前記撮像領域とで、少なくとも一部が装置座標系において重複する場合、前記画像再構成部は、前記一の画像を示す画像データの生成時において、前記別の画像を示す画像データの生成時に用いられる前記歪補正データを用いて前記補正処理を実行することを特徴とする磁気共鳴イメージング装置。
  8. 前記画像再構成部は、前記撮像領域に基づいて前記歪補正データを計算し、前記歪補正データを磁気共鳴イメージング装置の外部又は内部に保存させるように構成され、
    一の撮像シーケンス内で同一の撮像領域が繰り返して撮像される場合、前記画像再構成部は、前記同一の撮像領域の画像データの生成時には共通の前記歪補正データを用いる
    ことを特徴とする請求項7記載の磁気共鳴イメージング装置。
  9. 前記一の撮像シーケンスとして、同期撮像、ダイナミック撮像、拡散強調イメージングのいずれか1つを実行することを特徴とする請求項8記載の磁気共鳴イメージング装置。
  10. 前記画像再構成部は、生成対象となっている画像データと、過去に生成された画像データとで装置座標系において撮像領域の重複部分があるか否かを判定し、判定結果が肯定的な場合には、前記過去に生成された画像データの生成時に用いられた前記歪補正データを取得し、取得した前記歪補正データを用いて前記補正処理を実行することを特徴とする請求項7記載の磁気共鳴イメージング装置。
  11. 前記データ収集部は、第1の本スキャンとして前記核磁気共鳴信号を収集して周波数空間データとして保存後、前記第1の本スキャンとはパルスシーケンスが異なる第2の本スキャンとして前記核磁気共鳴信号を収集して周波数空間データとして保存し、
    前記画像再構成部は、前記第1の本スキャンの撮像領域と、前記第2の本スキャンの撮像領域とで重複部分があるか否かを判定する
    ことを特徴とする請求項10記載の磁気共鳴イメージング装置。
  12. 傾斜磁場を印加すると共に励起パルスを送信することで、画像の生成元となる核磁気共鳴信号を被検体から収集し、収集した前記核磁気共鳴信号を周波数空間データとして保存するデータ収集部と、
    前記周波数空間データに対して、実空間データに変換する変換処理と、前記傾斜磁場の非線形性に因る画像歪の補正方法を規定する歪補正データに基づく補正処理とを施すことで、前記画像を示す画像データを生成する画像再構成部と
    を備えた磁気共鳴イメージング装置であって、
    一の画像の少なくとも一部の画素と、過去に生成された別の画像の少なくとも一部の画素とが装置座標系で互いに同一位置を示す場合、前記画像再構成部は、前記一の画像を示す画像データの生成時において、前記同一位置を示す画素に対しては前記別の画像を示す画像データの生成時に用いられる前記歪補正データを用いると共に、残りの画素に対しては前記歪補正データを計算することで、前記補正処理を実行する
    ことを特徴とする磁気共鳴イメージング装置。
JP2012096637A 2012-04-20 2012-04-20 磁気共鳴イメージング装置 Active JP5976375B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012096637A JP5976375B2 (ja) 2012-04-20 2012-04-20 磁気共鳴イメージング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012096637A JP5976375B2 (ja) 2012-04-20 2012-04-20 磁気共鳴イメージング装置

Publications (2)

Publication Number Publication Date
JP2013223576A JP2013223576A (ja) 2013-10-31
JP5976375B2 true JP5976375B2 (ja) 2016-08-23

Family

ID=49594118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012096637A Active JP5976375B2 (ja) 2012-04-20 2012-04-20 磁気共鳴イメージング装置

Country Status (1)

Country Link
JP (1) JP5976375B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220065962A1 (en) * 2019-01-18 2022-03-03 The Board Of Trustees Of The University Of Llinois Methods for producing magnetic resonance images with sub-millisecond temporal resolution

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9581671B2 (en) * 2014-02-27 2017-02-28 Toshiba Medical Systems Corporation Magnetic resonance imaging with consistent geometries
JP7291610B2 (ja) * 2018-11-29 2023-06-15 キヤノンメディカルシステムズ株式会社 磁気共鳴イメージング装置、画像処理装置及び磁気共鳴イメージング方法
JP7487047B2 (ja) * 2020-08-21 2024-05-20 富士フイルムヘルスケア株式会社 磁気共鳴イメージング装置、及び、その制御方法及びプログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4969445B2 (ja) * 2005-06-15 2012-07-04 株式会社日立メディコ 磁気共鳴イメージング装置
JP5179182B2 (ja) * 2005-07-27 2013-04-10 株式会社日立メディコ 磁気共鳴イメージング装置
JP5683984B2 (ja) * 2011-02-03 2015-03-11 株式会社日立メディコ 磁気共鳴イメージング装置および非線形性歪み補正方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220065962A1 (en) * 2019-01-18 2022-03-03 The Board Of Trustees Of The University Of Llinois Methods for producing magnetic resonance images with sub-millisecond temporal resolution
US12000917B2 (en) * 2019-01-18 2024-06-04 The Board Of Trustees Of The University Of Illinois Methods for producing magnetic resonance images with sub-millisecond temporal resolution

Also Published As

Publication number Publication date
JP2013223576A (ja) 2013-10-31

Similar Documents

Publication Publication Date Title
JP5931406B2 (ja) 磁気共鳴イメージング装置
JP5835989B2 (ja) 磁気共鳴イメージング装置および磁気共鳴イメージング方法
JP6042069B2 (ja) 磁気共鳴イメージング装置
JP6058477B2 (ja) 磁気共鳴イメージング装置
JP5443695B2 (ja) 磁気共鳴イメージング装置
JP5481061B2 (ja) 磁気共鳴イメージング装置および磁気共鳴イメージング方法
US20140086469A1 (en) Mri reconstruction with incoherent sampling and redundant haar wavelets
JP6230811B2 (ja) 磁気共鳴イメージング装置
JP5366437B2 (ja) 磁気共鳴イメージング装置
JP2012040362A (ja) 磁気共鳴イメージング方法、磁気共鳴イメージング装置およびその制御装置
JP5976375B2 (ja) 磁気共鳴イメージング装置
JP6433653B2 (ja) 磁気共鳴イメージング装置、及び、磁気共鳴イメージングにおけるコイル選択支援方法
US20200284867A1 (en) Magnetic resonance imaging device, nyquist ghost correction method, and nyquist ghost correction program
US9470772B2 (en) Magnetic resonance image distortion correction with a reference volume
JP5181235B2 (ja) 画像処理装置、医用画像撮影装置、プログラムおよび画像処理方法
US11035922B2 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method for correcting distortion of a collected magnetic resonance image
US11650281B2 (en) Excitation region setting method and magnetic resonance imaging apparatus
JP6266325B2 (ja) 画像解析装置、画像解析プログラム、及び、磁気共鳴イメージング装置
JP2010119740A (ja) 磁気共鳴イメージング装置
JP5378149B2 (ja) Mri装置及び撮影領域設定用制御プログラム
JP4901420B2 (ja) 磁気共鳴イメージング装置,磁気共鳴イメージング方法
JP5624402B2 (ja) 磁気共鳴イメージング装置
CN115113122A (zh) 图像处理装置以及图像处理方法
CN115542215A (zh) 磁共振成像的系统及方法
JP2024037537A (ja) 磁気共鳴イメージング装置、mr画像再構成装置及びmr画像再構成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160125

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160720

R150 Certificate of patent or registration of utility model

Ref document number: 5976375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350