JP5974317B2 - Ultrasonic flaw detection method and ultrasonic flaw detection apparatus - Google Patents

Ultrasonic flaw detection method and ultrasonic flaw detection apparatus Download PDF

Info

Publication number
JP5974317B2
JP5974317B2 JP2012090106A JP2012090106A JP5974317B2 JP 5974317 B2 JP5974317 B2 JP 5974317B2 JP 2012090106 A JP2012090106 A JP 2012090106A JP 2012090106 A JP2012090106 A JP 2012090106A JP 5974317 B2 JP5974317 B2 JP 5974317B2
Authority
JP
Japan
Prior art keywords
wave
ultrasonic
subject
flaw detection
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012090106A
Other languages
Japanese (ja)
Other versions
JP2013217830A (en
Inventor
山口 雄一
雄一 山口
明憲 津田
明憲 津田
将史 倉茂
将史 倉茂
稔 田上
稔 田上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2012090106A priority Critical patent/JP5974317B2/en
Publication of JP2013217830A publication Critical patent/JP2013217830A/en
Application granted granted Critical
Publication of JP5974317B2 publication Critical patent/JP5974317B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、超音波探傷方法及び超音波探傷装置に係り、詳しくは構造物に内在するきず等の欠陥の深さや大きさ等を超音波を用いて検査する超音波探傷方法及び超音波探傷装置に関する。   The present invention relates to an ultrasonic flaw detection method and an ultrasonic flaw detection apparatus, and more specifically, an ultrasonic flaw detection method and an ultrasonic flaw detection apparatus that inspect the depth and size of defects such as flaws existing in a structure using ultrasonic waves. About.

超音波探傷の1つであるフェーズドアレイ探傷法は、複数の振動子を配置し、振動子に印加する入力信号電圧のタイミングをずらすことで、超音波ビームの向きを変えたり、超音波ビームを絞ったりすることができる。このようなフェーズドアレイ探傷法では高検出、高精度の探傷が可能であり、探傷結果の画像化も可能であるため、構造物等の被検体内部に存在する欠陥の検査等に使用され、例えばボイラや原子力プラント等、多くの製品で利用されている。   Phased array flaw detection, which is one of ultrasonic flaw detection, arranges a plurality of transducers and shifts the timing of the input signal voltage applied to the transducers, thereby changing the direction of the ultrasonic beam or changing the ultrasonic beam. It can be squeezed. In such a phased array flaw detection method, high-accuracy flaw detection and high-accuracy flaw detection are possible, and flaw detection results can also be imaged, so it is used for inspection of defects existing inside a subject such as a structure. It is used in many products such as boilers and nuclear power plants.

ところで、超音波を入射させると減衰する高減衰材、例えば粉末成型体や多孔質成型体等は超音波の透過性が悪いため、感度を上げて超音波探傷を行う必要がある。しかしながら、感度を上げるとノイズの影響も大きくなるため、高減衰材に内在する欠陥部から反射した超音波による信号がノイズに埋もれてしまうことがあり、欠陥部を検出しにくいという問題がある。
このようなノイズを低減する信号処理の手法として、従来、ウェーブレットを使用する方法や(特許文献1)、超音波としてバースト波やチャープ波を使用する方法(特許文献2)、及び周波数フィルタを使用する方法等が知られている。
By the way, a high attenuation material that attenuates when an ultrasonic wave is incident, for example, a powder molded body or a porous molded body, has a poor ultrasonic transmission property. Therefore, it is necessary to increase the sensitivity for ultrasonic flaw detection. However, when the sensitivity is increased, the influence of noise is increased, so that a signal due to the ultrasonic wave reflected from the defective portion existing in the high attenuation material may be buried in the noise, and there is a problem that it is difficult to detect the defective portion.
As a signal processing technique for reducing such noise, a method using a wavelet (Patent Document 1), a method using a burst wave or a chirp wave as an ultrasonic wave (Patent Document 2), and a frequency filter are conventionally used. The method of doing is known.

特許第4371364号Japanese Patent No. 4371364 特開2012−32285号公報JP 2012-32285 A

しかしながら、上述した特許文献1では、ウェーブレットの計算に必要な各パラメータについて開示されていないため、計測者による算出誤差が大きくなり、必ずしもノイズを良好に低減できるわけではないという問題がある。
また、上記特許文献2では、バースト波やチャープ波を超音波として用いて非破壊検査を行うことが開示されているが、例えばパルス波を用いた場合に比べてSN比は向上するものの、ノイズによる影響は依然として残っているため、ノイズの更なる低減が求められている。
また、周波数フィルタを使用する場合、周波数フィルタの種類は非常に多いため、受信した出力信号に含まれるノイズの低減に好適なフィルタの調査が必要となり、調査に時間を要するため作業効率が悪くなり好ましくない。
However, since the above-described Patent Document 1 does not disclose each parameter necessary for wavelet calculation, there is a problem that a calculation error by a measurer increases, and noise cannot always be reduced satisfactorily.
Further, in Patent Document 2, it is disclosed that nondestructive inspection is performed using a burst wave or a chirp wave as an ultrasonic wave. For example, although the SN ratio is improved as compared with the case where a pulse wave is used, noise is improved. Since the effects of are still left, further reduction of noise is required.
In addition, when using frequency filters, since there are so many types of frequency filters, it is necessary to investigate a filter suitable for reducing the noise contained in the received output signal. It is not preferable.

本発明は、上述した課題を解決すべくなされたものであり、その目的とするところは、被検体の超音波探傷で発生するノイズをより低減することの可能な超音波探傷方法及び超音波探傷装置を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an ultrasonic flaw detection method and an ultrasonic flaw detection capable of further reducing noise generated by ultrasonic flaw detection of a subject. To provide an apparatus.

上記の目的を達成するべく、請求項1の超音波探傷方法は、フェーズドアレイ法を用いて被検体内に超音波を伝搬させて前記被検体を検査する超音波探傷方法において、複数の振動子から構成されるアレイ探触子を介して前記被検体内に、チャープ波からなる超音波を伝搬し、前記被検体内に内在する欠陥部から反射した超音波を前記複数の振動子を介して受信する検査工程と、前記複数の振動子で受信したそれぞれの受信波を1つの受信波に合成処理する合成処理工程と、1つに合成した受信波と、予め設定された参照波との相関処理を行い、前記1つに合成した受信波に含まれるノイズを低減する相関処理工程と、を有することを特徴とする。 In order to achieve the above object, an ultrasonic flaw detection method according to claim 1 is an ultrasonic flaw detection method in which an ultrasonic wave is propagated in a subject using a phased array method and the subject is inspected. An ultrasonic wave consisting of a chirp wave is propagated into the subject through an array probe composed of: and an ultrasonic wave reflected from a defect portion present in the subject is passed through the plurality of transducers. correlation of the inspection step of receiving, a synthetic process for synthesizing processes a respective received waves received by the plurality of transducers in one receiving wave, a received wave obtained by combining into one, a preset reference wave And a correlation processing step of reducing noise included in the received wave synthesized into one .

請求項2の超音波探傷方法では、請求項1において、前記参照波は、前記被検体内で反射した超音波であることを特徴とする。   The ultrasonic flaw detection method according to claim 2 is characterized in that, in claim 1, the reference wave is an ultrasonic wave reflected in the subject.

請求項3の超音波探傷装置は、フェーズドアレイ法を用いて被検体内に超音波を伝搬させて前記被検体を検査する超音波探傷装置において、複数の振動子から構成されるアレイ探触子を介して前記被検体内に、チャープ波からなる超音波を伝搬させ、前記被検体内に内在する欠陥部から反射された超音波を前記複数の振動子を介して受信する検査手段と、前記複数の振動子で受信したそれぞれの受信波を1つの受信波に合成処理する合成処理手段と、1つに合成した受信波と、予め設定された参照波との相関処理を行い、前記1つに合成した受信波に含まれるノイズを低減する相関処理手段と、を有することを特徴とする。 An ultrasonic flaw detector according to claim 3 is an array probe composed of a plurality of transducers in an ultrasonic flaw detector that inspects the subject by propagating ultrasonic waves into the subject using the phased array method. An inspection means for propagating an ultrasonic wave composed of a chirp wave through the object through the plurality of vibrators, and receiving ultrasonic waves reflected from a defect portion existing in the object through the plurality of transducers; performs a synthesizing process means for synthesizing processes a respective received waves received by a plurality of transducers in one receiving wave, a received wave obtained by combining into one, the correlation between the preset reference wave, the one And correlation processing means for reducing noise contained in the received wave synthesized.

請求項4の超音波探傷装置では、請求項3において、前記参照波は、前記被検体内または同質の試験体内で反射した超音波であることを特徴とする。   The ultrasonic flaw detector according to claim 4 is characterized in that, in claim 3, the reference wave is an ultrasonic wave reflected in the subject or a homogeneous test body.

請求項1の超音波探傷方法、請求項3の超音波探傷装置によれば、チャープ波からなる超音波を被検体内に伝搬して欠陥部から反射した超音波を各振動子で受信し、受信した受信波を合成した後に参照波を用いて相関処理を行う。   According to the ultrasonic flaw detection method of claim 1 and the ultrasonic flaw detection apparatus of claim 3, each transducer receives ultrasonic waves that propagate an ultrasonic wave consisting of chirp waves into the subject and are reflected from the defect portion, After synthesizing the received received waves, correlation processing is performed using the reference wave.

従って、ノイズの影響を低減できるチャープ波による超音波を用いて被検体に向けて送信し、受信した受信波を相関処理することでさらにノイズを低減できるので、被検体に内在する欠陥部を精度よく検出することができる。   Therefore, it is possible to further reduce noise by transmitting to the subject using ultrasonic waves with chirp waves that can reduce the influence of noise, and by correlating the received received waves, so that the defective part inherent in the subject can be accurately Can be detected well.

本発明に係る超音波探傷装置の概略構成図である。1 is a schematic configuration diagram of an ultrasonic flaw detector according to the present invention. フェーズドアレイ探触子を用いて被検体の超音波探傷を行う一例を示す図である。It is a figure which shows an example which performs the ultrasonic flaw detection of a test object using a phased array probe. 本発明に係る超音波探傷方法を示すフローチャートである。It is a flowchart which shows the ultrasonic flaw detection method which concerns on this invention. 水浸法で行う被検体の超音波探傷の概略図である。It is the schematic of the ultrasonic flaw detection of the subject performed with a water immersion method. (A)は超音波としてチャープ波を用い、得られた信号を相関処理した結果を示す探傷波形の一例、(B)は超音波としてパルス波を用いて探傷を行った結果を示す探傷波形の一例、(C)は超音波としてパルス波を用い、得られた信号に周波数フィルタを適用した結果を示す探傷波形の一例、(D)は超音波としてパルス波を用い、得られた信号を相関処理した結果を示す探傷波形の一例である。(A) is an example of a flaw detection waveform showing the result of correlation processing of the obtained signal using a chirp wave as an ultrasonic wave, and (B) is a flaw detection waveform showing the result of flaw detection using a pulse wave as an ultrasonic wave. An example, (C) is an example of a flaw detection waveform showing the result of applying a frequency filter to the obtained signal using a pulse wave as an ultrasonic wave, (D) is a pulse wave as an ultrasonic wave, and correlating the obtained signal It is an example of the flaw detection waveform which shows the result of processing. (A)は超音波としてチャープ波を用い、得られた信号を相関処理した探傷結果から得られた探傷画像を模式的に表した図の一例、(B)は超音波としてパルス波を用いた探傷結果から得られた探傷画像を模式的に表した図の一例、(C)は超音波としてパルス波を用い、得られた信号を相関処理した探傷結果から得られた探傷画像を模式的に表した図の一例を示す。(A) is an example of a diagram schematically showing a flaw detection image obtained from a flaw detection result obtained by correlating the obtained signal using a chirp wave as an ultrasonic wave, and (B) using a pulse wave as an ultrasonic wave. An example of a diagram schematically showing a flaw detection image obtained from a flaw detection result, (C) schematically shows a flaw detection image obtained from a flaw detection result obtained by correlating the obtained signal using a pulse wave as an ultrasonic wave. An example of the represented figure is shown.

以下、本発明の実施形態について図面を参照しながら説明する。
図1は、本発明に係る超音波探傷装置を含む概略構成図である。
超音波探傷装置1は、例えば構造物等の被検体2に存在する割れや穴等の欠陥部2aの欠陥情報を取得するための装置である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram including an ultrasonic flaw detector according to the present invention.
The ultrasonic flaw detection apparatus 1 is an apparatus for acquiring defect information of a defect portion 2a such as a crack or a hole existing in a subject 2 such as a structure.

超音波探傷装置1は、パルス発生器4、フェーズドアレイ探触子6、パルスレシーバ8、アナログ/デジタル変換器(以下、A/D変換器という)10、演算処理装置12、及びモニタ18を備えている。
パルス発生器4は、フェーズドアレイ探触子6に接続されており、フェーズドアレイ探触子6への入力信号としてチャープ波を発生する。チャープ波とは、時間経過に伴い周波数が変化する信号である。
The ultrasonic flaw detector 1 includes a pulse generator 4, a phased array probe 6, a pulse receiver 8, an analog / digital converter (hereinafter referred to as A / D converter) 10, an arithmetic processing device 12, and a monitor 18. ing.
The pulse generator 4 is connected to the phased array probe 6 and generates a chirp wave as an input signal to the phased array probe 6. A chirp wave is a signal whose frequency changes over time.

図2に示すように、フェーズドアレイ探触子6には、内部に振動子6aが複数配置して設けられており、パルス発生器4から入力された入力信号により各振動子6aが振動してチャープ波の超音波を発生する。発生した超音波は被検体2内を伝搬し、欠陥部2aや被検体2の底面等によって反射した超音波(以下、エコーという)を各振動子6aで受信する。パルス発生器4から振動子6aに入力信号を入力するタイミングをずらすことによって、超音波ビームの方向や焦点深度Pfを変えることができる。なお、振動子6aは直線状に配置されていてもよく、格子状や円形状に配置されていてもよい。 As shown in FIG. 2, the phased array probe 6 is provided with a plurality of transducers 6 a arranged therein, and each transducer 6 a vibrates by an input signal input from the pulse generator 4. Generates chirp wave ultrasonic waves. The generated ultrasonic wave propagates through the subject 2, and ultrasonic waves (hereinafter referred to as echoes) reflected by the defect portion 2 a and the bottom surface of the subject 2 are received by each transducer 6 a. By shifting the timing of inputting the input signal to the transducer 6a from the pulse generator 4, it is possible to change the direction and depth of focus P f of the ultrasonic beam. The vibrator 6a may be arranged in a straight line, or may be arranged in a lattice shape or a circular shape.

各振動子6aが受信したエコー(受信波)は、パルスレシーバ8で電気信号に変換される。変換されたエコーはA/D変換器10でデジタル変換される。演算処理装置12は中央演算処理装置(以下、CPUと略す)14やメモリ16から構成される。メモリ16はRAM、ROM等を含んで構成されており、各プログラムが格納されている。A/D変換器10で変換されたエコーは、演算処理装置12で信号処理されてエコー波形としてモニタ18に表示される。   The echo (received wave) received by each transducer 6 a is converted into an electrical signal by the pulse receiver 8. The converted echo is digitally converted by the A / D converter 10. The arithmetic processing unit 12 includes a central processing unit (hereinafter abbreviated as CPU) 14 and a memory 16. The memory 16 includes a RAM, a ROM, and the like, and stores each program. The echo converted by the A / D converter 10 is signal-processed by the arithmetic processing unit 12 and displayed on the monitor 18 as an echo waveform.

被検体2は高減衰材料からなる高減衰体であり、例えばステンレス、チタン合金、ニッケル合金、鋳鋼品、ゴム組成物からなる弾性体、圧粉成型されたセラミックスグリーン体等の粉末成型体、コンクリートまたはセラミックス系複合材料等の多孔質成型体、または炭素繊維強化炭素複合材料等からなる炭素繊維構造体等である。なお、図1では被検体2にフェーズドアレイ探触子6を直接配置して探傷する直接接触法の構成としているが、本発明で利用可能な超音波探傷の試験方法としては、他に水浸法、局部水浸法、ギャップ法、噴流法、タイヤ探触子接触法、非接触法等、全ての接触方式を利用することができる。   The subject 2 is a high-attenuating body made of a high-attenuating material such as stainless steel, titanium alloy, nickel alloy, cast steel, elastic body made of a rubber composition, powder molded body such as compacted ceramic green body, concrete, and the like. Alternatively, a porous molded body such as a ceramic composite material or a carbon fiber structure made of a carbon fiber reinforced carbon composite material or the like. In FIG. 1, the direct contact method is used in which the phased array probe 6 is directly arranged on the subject 2 for flaw detection. However, as a test method for ultrasonic flaw detection that can be used in the present invention, water immersion is also available. All contact methods such as the method, the local water immersion method, the gap method, the jet method, the tire probe contact method, and the non-contact method can be used.

以下、このように構成された超音波探傷装置1の本発明に係る超音波探傷方法について説明する。
図3は、被検体2の超音波探傷方法を示すフローチャートであり、以下同フローチャートに基づいて説明する。なお、以下に述べるステップS2、S3の各処理は、メモリ16に格納されているプログラムをCPU14で実行することによって行われる。
Hereinafter, an ultrasonic flaw detection method according to the present invention of the ultrasonic flaw detection apparatus 1 configured as described above will be described.
FIG. 3 is a flowchart showing an ultrasonic flaw detection method for the subject 2 and will be described below based on the flowchart. In addition, each process of step S2 and S3 mentioned below is performed by running the program stored in the memory 16 with CPU14.

ステップS1では、パルス発生器4で発生させたチャープ波の超音波をフェーズドアレイ探触子6を介して被検体2内に伝搬させ、欠陥部2aでのエコーをフェーズドアレイ探触子6で受信した後、パルスレシーバ8で電気信号に変換する。そして、当該信号はA/D変換器10でアナログ−デジタル変換されて演算処理装置12に入力される(検査工程、検査手段)。   In step S1, chirp wave ultrasonic waves generated by the pulse generator 4 are propagated into the subject 2 through the phased array probe 6, and echoes at the defect 2a are received by the phased array probe 6. After that, the pulse receiver 8 converts it into an electrical signal. The signal is analog-digital converted by the A / D converter 10 and input to the arithmetic processing unit 12 (inspection process, inspection means).

ステップS2では、演算処理装置12に入力された各出力信号に対して合成処理を行い、1つの出力信号に合成する。
詳しくは、複数の振動子6aから超音波を被検体2内に伝搬させると、欠陥部2aからのエコーも振動子6aの数だけ受信されるため、次のステップで説明する相関処理を行う前に複数の信号を1つの信号に合成する。
In step S2, each output signal input to the arithmetic processing unit 12 is combined to be combined into one output signal.
Specifically, when ultrasonic waves are propagated from the plurality of transducers 6a into the subject 2, echoes from the defect portion 2a are also received by the number of the transducers 6a. Therefore, before performing the correlation processing described in the next step. A plurality of signals are combined into one signal.

ステップS3では、上記ステップS2で合成された信号に対して相関処理を行う(ノイズ低減工程、ノイズ低減手段)。本ステップで相関処理関数として使用するのは、メモリ16に格納されている参照波である。本ステップで使用する参照波は、例えば被検体2の底面からの反射信号や、模擬欠陥部からの反射信号等、被検体2内で反射した超音波、または被検体2と同質の試験体の底面からの反射信号や、当該試験体に形成した模擬欠陥部からの反射信号等を用いることができ、SN比が2以上の信号を用いるのが好ましい。なお、参照波を模擬欠陥部からの反射信号とする場合、参照波のSN比をより高くするためにはノイズを抑制する必要があるので、模擬欠陥部の深さは比較的浅い方がよい。その後、相関処理を行ったエコー波形をモニタ18に表示する。   In step S3, correlation processing is performed on the signal synthesized in step S2 (noise reduction process, noise reduction means). A reference wave stored in the memory 16 is used as a correlation processing function in this step. The reference wave used in this step is, for example, a reflected signal from the bottom surface of the subject 2, a reflected signal from a simulated defect portion, or the like, an ultrasonic wave reflected in the subject 2, or a test body of the same quality as the subject 2 A reflected signal from the bottom surface, a reflected signal from a simulated defect formed on the test body, or the like can be used, and a signal having an SN ratio of 2 or more is preferably used. In addition, when making a reference wave into the reflected signal from a simulated defect part, since it is necessary to suppress noise in order to make the SN ratio of a reference wave higher, it is better that the depth of the simulated defect part is relatively shallow. . Thereafter, the echo waveform subjected to the correlation process is displayed on the monitor 18.

上述した超音波探傷方法を用いて、欠陥部2aが形成された被検体2の超音波探傷を入力信号を変えて水浸法で行い、出力信号のノイズ処理方法をそれぞれ変えて調査を行った。図4に当該調査の概略図を示すように、水槽20の水中に被検体2を入れて、被検体2の上方にフェーズドアレイ探触子6を配置した。フェーズドアレイ探触子6の位置は、被検体2に超音波を伝搬させ、欠陥部2aからのエコーが最大となる位置である。被検体2としてチタン合金からなる厚肉構造物を使用した。被検体2に形成された欠陥部2aは直径0.4mmの円形の穴であり、被検体2の上面2bからの深さDは75mmである。相関処理に使用した参照波は、図示しないが被検体2の上面2bからの深さ61mmに設けられた底面に向けて超音波を伝搬し、当該底面から反射した超音波のエコー波形である。   Using the ultrasonic flaw detection method described above, ultrasonic flaw detection of the subject 2 in which the defect portion 2a is formed was performed by the water immersion method with the input signal changed, and the noise processing method of the output signal was changed for each investigation. . As shown in the schematic diagram of the investigation in FIG. 4, the subject 2 was placed in the water of the water tank 20, and the phased array probe 6 was disposed above the subject 2. The position of the phased array probe 6 is a position where the ultrasonic wave is propagated to the subject 2 and the echo from the defect portion 2a is maximized. A thick structure made of a titanium alloy was used as the specimen 2. The defect 2a formed in the subject 2 is a circular hole having a diameter of 0.4 mm, and the depth D from the upper surface 2b of the subject 2 is 75 mm. Although not shown, the reference wave used for the correlation processing is an echo waveform of the ultrasonic wave that propagates toward the bottom surface provided at a depth of 61 mm from the top surface 2b of the subject 2 and is reflected from the bottom surface.

調査結果を図5(A)〜(D)に示す。図5(A)は、上述した本発明の超音波探傷方法で処理を行ったグラフである。図5(B)〜(D)は図5(A)の比較例であり、図5(B)はパルス波を入力信号として使用し、ノイズ処理を行わなかった場合の処理結果を示すグラフ、図5(C)はパルス波を入力信号として使用し、周波数フィルタを用いてノイズ処理した場合の処理結果を示すグラフ、図5(D)はパルス波を入力信号として使用し、相関処理を行ってノイズ処理した場合の処理結果を示すグラフである。なお、図5(B)〜図5(D)はそれぞれ合成処理を行っている。なお、図5(A)で相関処理に使用した参照波のSN比は43である。また、図5(C)で使用した周波数フィルタは、5〜15MHzのバンドパスフィルタである。   The survey results are shown in FIGS. FIG. 5A is a graph obtained by processing with the ultrasonic flaw detection method of the present invention described above. 5 (B) to (D) are comparative examples of FIG. 5 (A), and FIG. 5 (B) is a graph showing processing results when a pulse wave is used as an input signal and noise processing is not performed. FIG. 5C is a graph showing a processing result when a pulse wave is used as an input signal and noise processing is performed using a frequency filter, and FIG. 5D is a correlation process using the pulse wave as an input signal. 5 is a graph showing a processing result when noise processing is performed. Note that FIG. 5B to FIG. 5D each perform a synthesis process. Note that the SN ratio of the reference wave used for the correlation processing in FIG. The frequency filter used in FIG. 5C is a 5-15 MHz bandpass filter.

図5(A)に示すように、入力信号としてチャープ波を用い、得られた出力信号を相関処理することで、ノイズ処理を行わなかった図5(B)と比べてノイズSnが良好に低減され、欠陥信号Sdが精度よく検出されていることが判る。また、周波数フィルタを使用してノイズ処理を行った図5(C)は、図5(B)に比べてノイズSnが低減されているものの、図5(A)の低減幅には及ばない。そして、入力信号にパルス波を用い、出力信号を相関処理した図5(D)は、図5(C)に比べてノイズSnがさらに低減されているが、図5(A)よりはノイズが大きいことが判る。   As shown in FIG. 5A, noise Sn is satisfactorily reduced by using a chirp wave as an input signal and performing correlation processing on the obtained output signal as compared with FIG. 5B in which noise processing is not performed. It can be seen that the defect signal Sd is detected with high accuracy. In addition, FIG. 5C in which noise processing is performed using a frequency filter does not reach the reduction range of FIG. 5A, although noise Sn is reduced as compared with FIG. 5B. 5D in which a pulse wave is used as an input signal and the output signal is subjected to correlation processing, noise Sn is further reduced as compared with FIG. 5C, but noise is lower than that in FIG. You can see that it is big

各グラフにおける欠陥信号SdのSN比は、図5(A)が8.8であり、図5(B)が2.9、図5(C)が5.9、図5(D)が8.1であった。このようにそれぞれの欠陥信号SdのSN比を見ても、本発明の超音波探傷方法を適用することで、より精度よく欠陥信号を検出することができることが判る。   The S / N ratio of the defect signal Sd in each graph is 8.8 in FIG. 5A, 2.9 in FIG. 5B, 5.9 in FIG. 5C, and 8 in FIG. .1. Thus, it can be seen that the defect signal can be detected with higher accuracy by applying the ultrasonic flaw detection method of the present invention even when looking at the SN ratio of each defect signal Sd.

次に、図4に示した構成において、フェーズドアレイ探触子6で被検体2を2次元で、即ち被検体2の上面2bを走査してエコー波形を取得し、被検体2の上面2bから所定の深さにゲートを設け、そのゲートにおける信号強度を調査した。調査結果を図6(A)〜(C)に示す。図6(A)は、本発明の超音波探傷方法を適用して得られた探傷画像を模式的に表した図、図6(B)は、入力信号としてパルス波を使用し、ノイズ処理を行わなかった場合の探傷画像を模式的に表した図、図6(C)は、入力信号としてパルス波を使用し、取得した出力信号を相関処理した場合の探傷画像を模式的に表した図である。図6(A)〜(C)において、色が濃くなるほどノイズが高いことを示している。   Next, in the configuration shown in FIG. 4, the object 2 is scanned two-dimensionally with the phased array probe 6, that is, the upper surface 2 b of the subject 2 is scanned to obtain an echo waveform, and from the upper surface 2 b of the subject 2. A gate was provided at a predetermined depth, and the signal intensity at the gate was investigated. The survey results are shown in FIGS. FIG. 6A is a diagram schematically showing a flaw detection image obtained by applying the ultrasonic flaw detection method of the present invention, and FIG. 6B uses a pulse wave as an input signal to perform noise processing. FIG. 6C is a diagram schematically showing a flaw detection image when a pulse wave is used as an input signal and correlation processing is performed on the acquired output signal. It is. 6A to 6C, the darker the color, the higher the noise.

図6(A)に示すように、入力信号にチャープ波を使用し、ノイズ処理に相関処理を使用することで、欠陥部2aの位置を精度よく検出できていることが判る。一方、図6(B)に示すようにノイズ処理を行わなかった場合には、ノイズの影響が大きく、欠陥部2aの位置を特定することも困難であることが判る。また、入力信号にパルス波を用いて相関処理を行った図6(C)は精度よく欠陥部2aの位置を検出できているが、図6(A)の方が図6(C)よりもより精度よく欠陥部2aの位置を精度よく検出できていることが判る。   As shown in FIG. 6A, it can be seen that the position of the defective portion 2a can be accurately detected by using a chirp wave for the input signal and using correlation processing for noise processing. On the other hand, as shown in FIG. 6B, it can be seen that when noise processing is not performed, the influence of noise is large and it is difficult to specify the position of the defective portion 2a. Further, FIG. 6C in which the correlation processing is performed using the pulse wave as the input signal can detect the position of the defective portion 2a with high accuracy, but FIG. 6A is more than FIG. 6C. It can be seen that the position of the defective portion 2a can be detected with higher accuracy.

このように、本実施形態によれば、入力信号にチャープ波を使用して被検体2内にフェーズドアレイ探触子6を介して超音波を伝搬し、エコー波形を合成し、参照波を用いて受信したエコーに対して相関処理を行う。
これにより、ノイズSnを良好に低減して欠陥信号Sdを精度よく検出することができるので、検査精度をより向上させることができる。
As described above, according to the present embodiment, the chirp wave is used as the input signal, the ultrasonic wave is propagated in the subject 2 via the phased array probe 6, the echo waveform is synthesized, and the reference wave is used. Correlation processing is performed on the received echo.
Thereby, since the noise Sn can be reduced satisfactorily and the defect signal Sd can be detected with high accuracy, the inspection accuracy can be further improved.

また、フェーズドアレイ探触子6で受信した各信号を1つの信号に合成処理した後に相関処理を行うので、相関処理に要する時間は1/振動子数となるので相関処理時間を短縮することができる。   Further, since the correlation processing is performed after the signals received by the phased array probe 6 are combined into one signal, the time required for the correlation processing is 1 / the number of transducers, so that the correlation processing time can be shortened. it can.

また、相関処理に用いる参照波として、例えば所定の深さの被検体2の底面からのエコー波形等、SN比の高いエコー波形を用いることにより、欠陥部2aからのエコー波形に含まれるノイズを良好に低減することができるので、検査精度をより向上させることができる。   In addition, by using an echo waveform having a high S / N ratio, such as an echo waveform from the bottom surface of the subject 2 having a predetermined depth, as a reference wave used for the correlation processing, noise included in the echo waveform from the defect portion 2a is reduced. Since it can reduce favorably, inspection accuracy can be improved more.

以上で実施形態の説明を終えるが、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。   Although the description of the embodiment is finished as described above, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.

1 超音波探傷装置
2 被検体
2a 欠陥部
6 フェーズドアレイ探触子
6a 振動子
12 演算処理装置
DESCRIPTION OF SYMBOLS 1 Ultrasonic flaw detector 2 Subject 2a Defect 6 Phased array probe 6a Vibrator 12 Arithmetic processing unit

Claims (4)

フェーズドアレイ法を用いて被検体内に超音波を伝搬させて前記被検体を検査する超音波探傷方法において、
複数の振動子から構成されるアレイ探触子を介して前記被検体内に、チャープ波からなる超音波を伝搬し、前記被検体内に内在する欠陥部から反射した超音波を前記複数の振動子を介して受信する検査工程と、
前記複数の振動子で受信したそれぞれの受信波を1つの受信波に合成処理する合成処理工程と、
1つに合成した受信波と、予め設定された参照波との相関処理を行い、前記1つに合成した受信波に含まれるノイズを低減する相関処理工程と、
を有することを特徴とする超音波探傷方法。
In the ultrasonic flaw detection method for inspecting the subject by propagating ultrasonic waves into the subject using the phased array method,
An ultrasonic wave composed of a chirp wave is propagated into the subject through an array probe composed of a plurality of transducers, and an ultrasonic wave reflected from a defect portion existing in the subject is transmitted to the plurality of vibrations. An inspection process received via the child;
A synthesizing step of synthesizing processes a respective received waves received by the plurality of transducers in one receiving waves,
A correlation processing step for performing a correlation process between the received wave combined into one and a reference wave set in advance to reduce noise included in the received wave combined into the one ;
An ultrasonic flaw detection method comprising:
前記参照波は、前記被検体内で反射した超音波であることを特徴とする請求項1に記載の超音波探傷方法。   The ultrasonic flaw detection method according to claim 1, wherein the reference wave is an ultrasonic wave reflected in the subject. フェーズドアレイ法を用いて被検体内に超音波を伝搬させて前記被検体を検査する超音波探傷装置において、
複数の振動子から構成されるアレイ探触子を介して前記被検体内に、チャープ波からなる超音波を伝搬させ、前記被検体内に内在する欠陥部から反射された超音波を前記複数の振動子を介して受信する検査手段と、
前記複数の振動子で受信したそれぞれの受信波を1つの受信波に合成処理する合成処理手段と、
1つに合成した受信波と、予め設定された参照波との相関処理を行い、前記1つに合成した受信波に含まれるノイズを低減する相関処理手段と、
を有することを特徴とする超音波探傷装置。
In an ultrasonic flaw detector that inspects the subject by propagating ultrasonic waves into the subject using the phased array method,
An ultrasonic wave consisting of a chirp wave is propagated in the subject through an array probe composed of a plurality of transducers, and the ultrasonic waves reflected from a defect portion existing in the subject are Inspection means for receiving via a vibrator;
And synthesis processing means for synthesizing processes a respective received waves received by the plurality of transducers in one receiving waves,
Correlation processing means for performing correlation processing between the received wave combined into one and a preset reference wave, and reducing noise included in the received wave combined into the one ;
An ultrasonic flaw detector characterized by comprising:
前記参照波は、前記被検体内または同質の試験体内で反射した超音波であることを特徴とする請求項3に記載の超音波探傷装置。   The ultrasonic flaw detector according to claim 3, wherein the reference wave is an ultrasonic wave reflected in the subject or a homogeneous test body.
JP2012090106A 2012-04-11 2012-04-11 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus Active JP5974317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012090106A JP5974317B2 (en) 2012-04-11 2012-04-11 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012090106A JP5974317B2 (en) 2012-04-11 2012-04-11 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus

Publications (2)

Publication Number Publication Date
JP2013217830A JP2013217830A (en) 2013-10-24
JP5974317B2 true JP5974317B2 (en) 2016-08-23

Family

ID=49590077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012090106A Active JP5974317B2 (en) 2012-04-11 2012-04-11 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus

Country Status (1)

Country Link
JP (1) JP5974317B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6223864B2 (en) * 2014-02-28 2017-11-01 三菱重工業株式会社 Ultrasonic flaw detection method
JP7346249B2 (en) * 2019-11-05 2023-09-19 株式会社ニチゾウテック Ultrasonic flaw detection inspection equipment and reflection source identification method
CN113075297B (en) * 2021-05-06 2024-02-02 西部超导材料科技股份有限公司 Titanium alloy phased array linear array ultrasonic detection sound field model construction method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2009223322B2 (en) * 2008-03-14 2014-08-14 Expro Meters, Inc. Method and apparatus for determining pipewall thickness using one or more ultrasonic sensors
JP2009276319A (en) * 2008-05-19 2009-11-26 Choonpa Zairyo Shindan Kenkyusho:Kk Air ultrasonic diagnostic apparatus
JP2011047763A (en) * 2009-08-26 2011-03-10 Uchiyama Masakatsu Ultrasonic diagnostic device
JP2012032285A (en) * 2010-07-30 2012-02-16 Kaneka Corp Foam inspection method

Also Published As

Publication number Publication date
JP2013217830A (en) 2013-10-24

Similar Documents

Publication Publication Date Title
CA2553340C (en) Method and apparatus for examining the interior material of an object, such as a pipeline or a human body, from a surface of the object using ultrasound
RU2521720C1 (en) Method and device for welding zone imaging
JP2019506597A (en) Apparatus and method for inspecting and measuring welding defects on a cylindrical wall
JP5974317B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP2016090272A (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP6061077B2 (en) Ultrasonic flaw detection method and apparatus
JP2012068209A (en) Material diagnostic method and apparatus using ultrasonic wave
JP2015212654A (en) Ultrasonic flaw detection inspection method and ultrasonic flaw detection inspection device
JP2018189550A (en) Ultrasonic video device and method for generating ultrasonic video
JP2013011526A (en) Ultrasonic flaw detection method and ultrasonic flaw detection device
KR101082085B1 (en) Ultrasonic imaging device and Method for controlling the same
JP6061076B2 (en) Ultrasonic flaw detection method and apparatus
JP2010127689A (en) Ultrasonic flaw detection device, cross-sectional image forming method, and cross-sectional image forming program
JP2015097619A (en) Ultrasonic diagnostic equipment, and program for ultrasonic diagnostic equipment
JP2005221321A (en) Method and device for detecting ultrasonic signal
JP2012083297A (en) Ultrasonic flaw detection method and apparatus
KR101883987B1 (en) Imaging device using non-linear property of utrasonic wave and method for the same
Lukacs et al. Grating-lobe suppression through angular weighting for laser induced phased arrays
Nishimura et al. Image reconstruction of defects 100 mm deep within SN sample using inverse problem solving
KR101561038B1 (en) Ultrasonic inspection of clearance of the lower tube reactor using (Time of Flight Diffraction) ultrasonic wedge curvature correction TOFD
Nishimura et al. Study of image reconstruction by UT probe array using truncated singular value decomposition
Nishimura et al. Visualization of Internal Defects in Ceramic Products by using a UT Probe Array
Pasadas et al. Crack Depth Evaluation and Imaging using Lamb wavefield measurements by a movable PZT Sensor
JPH0816674B2 (en) Ultrasonic flaw detector
Gheorghe et al. Research on ultrasonic non-destructive examination in water immersion of a composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160621

R151 Written notification of patent or utility model registration

Ref document number: 5974317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250