JP2013011526A - Ultrasonic flaw detection method and ultrasonic flaw detection device - Google Patents

Ultrasonic flaw detection method and ultrasonic flaw detection device Download PDF

Info

Publication number
JP2013011526A
JP2013011526A JP2011144720A JP2011144720A JP2013011526A JP 2013011526 A JP2013011526 A JP 2013011526A JP 2011144720 A JP2011144720 A JP 2011144720A JP 2011144720 A JP2011144720 A JP 2011144720A JP 2013011526 A JP2013011526 A JP 2013011526A
Authority
JP
Japan
Prior art keywords
flaw detection
signal
ultrasonic
detection signal
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011144720A
Other languages
Japanese (ja)
Other versions
JP5742513B2 (en
Inventor
Yukinori Iizuka
幸理 飯塚
Yoshiharu Kusumoto
義治 楠本
Yasuo Tomura
寧男 戸村
Koichi Komatsu
康一 小松
Makoto Araya
誠 荒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011144720A priority Critical patent/JP5742513B2/en
Publication of JP2013011526A publication Critical patent/JP2013011526A/en
Application granted granted Critical
Publication of JP5742513B2 publication Critical patent/JP5742513B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To highly accurately detect a flaw in a steel product.SOLUTION: A transmitting/receiving section 3 transmits an ultrasonic pulse signal while scanning an ultrasonic probe 2 and receives a flaw detection signal caused by the ultrasonic pulse signal. A storage section 5 stores flaw detection signals for a plurality of pulses received by the transmitting/receiving section 3. A subtraction signal acquiring section 7a takes out a flaw detection signal predetermined pulses before a flaw detection signal subject to processing from the stored flaw detection signals, as a subtraction signal. A subtraction processing section 7b subtracts the subtraction signal from the flaw detection signal subject to the processing. Echo noise can be thus removed therefrom to provide a flaw echo signal with a high S/N ratio and with reduced noise, so that the flaw in a steel product can be highly accurately detected.

Description

本発明は、超音波を用いて被検体の内部欠陥を検査する超音波探傷方法および超音波探傷装置に関するものである。   The present invention relates to an ultrasonic flaw detection method and an ultrasonic flaw detection apparatus for inspecting an internal defect of a subject using ultrasonic waves.

従来から、超音波を用いて被検体の内部の欠陥を非破壊検査する超音波探傷方法が提案されている。この超音波探傷方法では、一般に、鋼管または鋼板等の被検体に超音波探触子(超音波プローブ)を接触させた状態で被検体に対して超音波を送信し、被検体からのエコー信号(探傷信号)を受信して、欠陥で反射した欠陥エコー信号を所定の閾値で検出することによって、被検体の内部の傷等の欠陥を検査する。しかしながら、この探傷信号にはノイズが含まれるため、高いS/N比をもつ欠陥エコー信号を得られず、微小欠陥を精度高く検査できない場合があった。   Conventionally, there has been proposed an ultrasonic flaw detection method for nondestructive inspection of defects inside a subject using ultrasonic waves. In this ultrasonic flaw detection method, in general, an ultrasonic probe (ultrasonic probe) is in contact with a subject such as a steel pipe or a steel plate, and ultrasonic waves are transmitted to the subject, and echo signals from the subject are transmitted. (Flaw detection signal) is received, and a defect echo signal reflected by the defect is detected with a predetermined threshold, thereby inspecting a defect such as a flaw inside the subject. However, since this flaw detection signal includes noise, a defect echo signal having a high S / N ratio cannot be obtained, and there is a case where a minute defect cannot be inspected with high accuracy.

ところで、探傷信号に含まれるノイズには、探傷信号に時間的にランダムに混入する電気ノイズだけでなく、被検材の形状や超音波探触子の配置に起因して探傷信号に同期して一定時間位置に混入するエコー性のノイズがある。例えば、鋼材の表面に近接した欠陥検査における表面エコー信号や、底面に近接した欠陥検査における底面エコー信号や、縦波と横波との間のモード変換により伝搬速度が異なったエコー信号などがエコー性ノイズの要因になり得る。   By the way, the noise included in the flaw detection signal is synchronized with the flaw detection signal due to not only the electrical noise mixed randomly in the flaw detection signal in time but also the shape of the test material and the arrangement of the ultrasonic probe. There is echoic noise mixed in at a certain time. For example, the surface echo signal in the defect inspection close to the surface of the steel material, the bottom echo signal in the defect inspection close to the bottom surface, and the echo signal whose propagation speed is different due to mode conversion between the longitudinal wave and the transverse wave It can be a cause of noise.

このような背景から、超音波探傷に対するエコー性ノイズの影響を減少させて高いS/N比の欠陥エコー信号を得るための信号処理技術が提案されている。例えば特許文献1および特許文献2には、被検体と超音波探触子とを相対的に走査しながら超音波を送信して得た探傷信号のうち、隣り合う位置で得られた探傷信号波形を差分演算することにより、表面エコー信号と底面エコー信号とを除去することが記載されている。   Against this background, there has been proposed a signal processing technique for obtaining a defect echo signal having a high S / N ratio by reducing the influence of echo noise on ultrasonic flaw detection. For example, Patent Literature 1 and Patent Literature 2 describe flaw detection signal waveforms obtained at adjacent positions among flaw detection signals obtained by transmitting ultrasonic waves while relatively scanning the subject and the ultrasonic probe. It is described that the surface echo signal and the bottom surface echo signal are removed by performing a difference calculation on.

特許文献3には、複数の超音波探触子から超音波パルスを送信して得た探傷信号のうち、隣り合う超音波探触子で得られた探傷信号波形を差分演算することにより、表面エコー信号と底面エコー信号との影響を軽減させて欠陥エコー信号を顕在化することが記載されている。   Patent Document 3 discloses a method for calculating a difference between flaw detection signal waveforms obtained by adjacent ultrasonic probes among flaw detection signals obtained by transmitting ultrasonic pulses from a plurality of ultrasonic probes. It is described that the defect echo signal becomes obvious by reducing the influence of the echo signal and the bottom echo signal.

特許文献4には、被検体と複数の超音波探触子とを相対的に走査しながら超音波を送信し、被検体を通過した超音波の透過強度を検出し、隣り合う超音波探触子で検出した透過強度の差分を演算することにより、表面の汚れなどによる透過強度の変動の影響を軽減させて欠陥を検出することが記載されている。   In Patent Document 4, ultrasonic waves are transmitted while relatively scanning an object and a plurality of ultrasonic probes, the transmission intensity of ultrasonic waves that have passed through the object is detected, and adjacent ultrasonic probes are detected. It is described that a defect is detected by calculating the difference in transmission intensity detected by a child to reduce the influence of transmission intensity fluctuation due to surface contamination or the like.

特開平9−152428号公報Japanese Patent Laid-Open No. 9-152428 特開2002−243703号公報JP 2002-243703 A 特開2004−12369号公報JP 2004-12369 A 特開2005−106597号公報JP 2005-106597 A

しかしながら、特許文献1および特許文献2に記載された技術によれば、隣り合う位置間の距離より欠陥の長さが長い場合には、双方の探傷信号に欠陥エコー信号が含まれることになる。このため、隣り合う位置の探傷信号波形の差分演算を行うと、エコー性ノイズのみならず欠陥エコー信号まで減少させることになり、欠陥を見逃してしまうおそれがあった。なお、このような問題を解決するために、特許文献1には、欠陥エコー信号を検出した際、直前の位置の探傷信号波形には欠陥エコー信号が含まれていないものとみなし、それ以降は隣り合う位置の探傷信号波形の代わりに、欠陥エコー信号を検出した直前の位置の探傷信号波形との差分演算を行うことが記載されている。しかしながら、一般に、超音波探傷においては、微小な欠陥の見逃しを防止するために、探傷信号のサンプリング間隔を超音波のビーム幅より小さく設定することから、欠陥エコー信号は徐々に大きくなって出現する。そのため、欠陥エコー信号を所定の閾値で検出した際には、その直前の位置の探傷信号にも欠陥エコー信号が含まれている可能性が高く、いずれにしても欠陥エコー信号を減少させるおそれがあった。   However, according to the techniques described in Patent Document 1 and Patent Document 2, if the length of the defect is longer than the distance between adjacent positions, the defect echo signal is included in both flaw detection signals. For this reason, if the difference calculation between the flaw detection signal waveforms at adjacent positions is performed, not only the echo noise but also the defect echo signal is reduced, and the defect may be missed. In order to solve such a problem, Patent Document 1 considers that a defect echo signal is not included in the flaw detection signal waveform at the immediately preceding position when a defect echo signal is detected. It describes that the difference calculation with the flaw detection signal waveform at the position immediately before the detection of the defect echo signal is performed instead of the flaw detection signal waveform at the adjacent position. However, in general, in ultrasonic flaw detection, in order to prevent a minute defect from being missed, the sampling interval of the flaw detection signal is set smaller than the ultrasonic beam width, so that the defect echo signal gradually increases and appears. . For this reason, when a defect echo signal is detected at a predetermined threshold, it is highly likely that the defect detection signal is included in the flaw detection signal immediately before the defect echo signal. In any case, the defect echo signal may be reduced. there were.

また、特許文献3および特許文献4に記載された技術によれば、複数の超音波探触子には特性上のばらつきがあるため、隣り合う超音波探触子により検出される信号波形は、同一のノイズ要因によっても完全に一致するとは限らず、ノイズ低減効果は低い。加えて、特許文献4に記載の透過強度による欠陥検出は、もとより検出精度が低い。   In addition, according to the techniques described in Patent Document 3 and Patent Document 4, since there are variations in characteristics of a plurality of ultrasonic probes, the signal waveforms detected by adjacent ultrasonic probes are: Even with the same noise factor, it is not always the same, and the noise reduction effect is low. In addition, the defect detection based on the transmission intensity described in Patent Document 4 has low detection accuracy.

本発明は、上記に鑑みてなされたものであって、鋼材中の欠陥を精度高く検出可能な超音波探傷方法および超音波探傷装置を提供することを目的とする。   This invention is made in view of the above, Comprising: It aims at providing the ultrasonic flaw detection method and ultrasonic flaw detection apparatus which can detect the defect in steel materials with high precision.

上述した課題を解決し、目的を達成するために、本発明にかかる超音波探傷方法は、超音波探触子を走査しながら超音波パルス信号を送信し、該超音波パルス信号に起因する探傷信号を受信することによって、連続的に鋼材中の欠陥を検査する超音波探傷方法において、受信した複数パルス回数分の探傷信号を記憶するステップと、前記記憶した探傷信号から処理対象の探傷信号より所定パルス回数前の探傷信号を減算用信号として取り出すステップと、前記処理対象の探傷信号から前記減算用信号を減算するステップと、前記減算用信号が減算された前記探傷信号に基づいて鋼材中の欠陥を検査するステップと、を含むことを特徴とする。   In order to solve the above-described problems and achieve the object, an ultrasonic flaw detection method according to the present invention transmits an ultrasonic pulse signal while scanning an ultrasonic probe, and flaw detection caused by the ultrasonic pulse signal. In the ultrasonic flaw detection method for continuously inspecting defects in steel materials by receiving signals, a step of storing flaw detection signals for a plurality of received pulses and a flaw detection signal to be processed from the stored flaw detection signals Taking out the flaw detection signal before the predetermined number of pulses as a subtraction signal, subtracting the subtraction signal from the flaw detection signal to be processed, and based on the flaw detection signal obtained by subtracting the subtraction signal, Inspecting for defects.

また、本発明にかかる超音波探傷方法は、上記発明において、前記所定パルス回数は、前記所定パルス回数前の探傷信号を受信してから前記処理対象の探傷信号を受信するまでの間の超音波探触子の走査量が、検出されるべき欠陥の長さと超音波パルス信号のビーム幅とを合わせた長さ以上で、かつ探傷信号中のエコー性ノイズの波形が変化しない長さ以下であることを特徴とする。   The ultrasonic flaw detection method according to the present invention is the ultrasonic flaw detection method according to the present invention, wherein the predetermined number of pulses is an ultrasonic wave from when a flaw detection signal before the predetermined number of pulses is received to when the flaw detection signal to be processed is received. The scanning amount of the probe is equal to or longer than the total length of the defect to be detected and the beam width of the ultrasonic pulse signal, and is equal to or shorter than the length at which the waveform of the echo noise in the flaw detection signal does not change. It is characterized by that.

また、本発明にかかる超音波探傷方法は、上記発明において、前記減算用信号は、前記所定パルス回数以前の複数の探傷信号を同期加算平均して求めることを特徴とする。   In the ultrasonic flaw detection method according to the present invention as set forth in the invention described above, the subtraction signal is obtained by synchronously averaging a plurality of flaw detection signals before the predetermined number of pulses.

また、本発明にかかる超音波探傷方法は、上記発明において、前記受信した探傷信号を記憶する際に、境界エコー信号を基準に整列させて記憶させることを特徴とする。   The ultrasonic flaw detection method according to the present invention is characterized in that, in the above invention, when the received flaw detection signal is stored, the boundary flaw signal is aligned and stored based on a reference.

また、本発明にかかる超音波探傷装置は、超音波探触子を走査しながら超音波パルス信号を送信し、該超音波パルス信号に起因する探傷信号を受信することによって、連続的に鋼材中の欠陥を検査する超音波探傷装置において、受信した複数パルス回数分の探傷信号を記憶する手段と、前記記憶した探傷信号から処理対象の探傷信号より所定パルス回数前の探傷信号を減算用信号として取り出す手段と、前記処理対象の探傷信号から前記減算用信号を減算する手段と、前記減算用信号が減算された前記探傷信号に基づいて鋼材中の欠陥を検査する手段と、を備えたことを特徴とする。   Further, the ultrasonic flaw detection apparatus according to the present invention transmits an ultrasonic pulse signal while scanning an ultrasonic probe, and receives a flaw detection signal resulting from the ultrasonic pulse signal, thereby continuously in a steel material. In the ultrasonic flaw detector for inspecting a defect, a means for storing the received flaw detection signals for a plurality of pulses, and a flaw detection signal a predetermined number of pulses before the flaw detection signal to be processed from the stored flaw detection signal as a subtraction signal Means for taking out, means for subtracting the subtraction signal from the flaw detection signal to be processed, and means for inspecting a defect in the steel material based on the flaw detection signal obtained by subtracting the subtraction signal. Features.

本発明によれば、探傷信号からエコー性ノイズを除去するようにしているので、ノイズが低減されたS/N比の高い欠陥エコー信号を得ることができ、この結果、従来、検出が困難であった微小欠陥等の欠陥を検出することができる。   According to the present invention, since the echo noise is removed from the flaw detection signal, it is possible to obtain a defect echo signal having a reduced S / N ratio with reduced noise. It is possible to detect a defect such as a minute defect.

図1は、超音波探触子から超音波パルス信号を送信して得られる探傷信号を説明するための説明図である。FIG. 1 is an explanatory diagram for explaining a flaw detection signal obtained by transmitting an ultrasonic pulse signal from an ultrasonic probe. 図2は、超音波探触子から送信された1回分の超音波パルス信号で得られる探傷信号を例示する波形図である。FIG. 2 is a waveform diagram illustrating a flaw detection signal obtained from one ultrasonic pulse signal transmitted from the ultrasonic probe. 図3は、本発明の実施の形態にかかる超音波探傷装置の構成を模式的に示したブロック図である。FIG. 3 is a block diagram schematically showing the configuration of the ultrasonic flaw detector according to the embodiment of the present invention. 図4は、本発明の他の実施の形態にかかる超音波探傷装置の構成を模式的に示したブロック図である。FIG. 4 is a block diagram schematically showing the configuration of an ultrasonic flaw detector according to another embodiment of the present invention. 図5は、超音波探傷装置による超音波探傷処理手順を示すフローチャートである。FIG. 5 is a flowchart showing an ultrasonic flaw detection processing procedure by the ultrasonic flaw detector. 図6は、超音波探傷処理を説明するための説明図である。FIG. 6 is an explanatory diagram for explaining the ultrasonic flaw detection processing. 図7は、Nを選定する方法の説明図である。FIG. 7 is an explanatory diagram of a method of selecting N. 図8は、Nを選定する方法の説明図である。FIG. 8 is an explanatory diagram of a method of selecting N. 図9は、NおよびNaの選定方法の説明図である。FIG. 9 is an explanatory diagram of a method for selecting N and Na. 図10は、NおよびNaの選定方法の説明図である。FIG. 10 is an explanatory diagram of a method for selecting N and Na. 図11は、探傷信号を境界エコー信号を基準に整列させることによる効果を例示する図である。FIG. 11 is a diagram illustrating the effect of aligning the flaw detection signal with the boundary echo signal as a reference.

以下、図面を参照して、本発明にかかる超音波探傷方法および超音波探傷装置の実施の形態について説明する。なお、この実施の形態により本発明が限定されるものではない。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of an ultrasonic flaw detection method and an ultrasonic flaw detection apparatus according to the present invention will be described with reference to the drawings. In addition, this invention is not limited by this embodiment.

まず、図1および図2を参照して、超音波探触子から超音波パルス信号を送信して得られる探傷信号について説明する。図1は、内部に欠陥Fを有する被検体Sの表面Aから底面Bに向かって超音波パルス信号Pを送信した場合に被検体Sを透過して得られる探傷信号を説明するための模式図であり、図2は、図1のように送信されたパルス1回分の超音波パルス信号Pによって得られる探傷信号波形を例示した図である。   First, a flaw detection signal obtained by transmitting an ultrasonic pulse signal from an ultrasonic probe will be described with reference to FIGS. 1 and 2. FIG. 1 is a schematic diagram for explaining a flaw detection signal obtained through transmission through an object S when an ultrasonic pulse signal P is transmitted from the surface A to the bottom surface B of the object S having a defect F inside. FIG. 2 is a diagram illustrating a flaw detection signal waveform obtained from the ultrasonic pulse signal P for one pulse transmitted as shown in FIG.

図1に示すように、被検体Sの表面Aに入射した超音波パルス信号Pは、様々な経路で底面Bを透過して探傷信号として受信される。例えば、図1の経路T1は、超音波パルス信号Pが欠陥Fのない健全部のみを通過する最短経路であり、図2に示す経路T1に対応するピークのように、超音波パルス信号Pは最短時間で探傷信号として受信される。一方、経路T2は、超音波パルス信号Pが健全部のみを通過しながら底面Bおよび表面Aで反射した後に底面Bを透過する最長経路であり、図2に示す経路T2に対応するピークのように、超音波パルス信号Pが探傷信号として受信されるまでの時間が長い。そして、経路F1は、超音波パルス信号Pが底面Bおよび欠陥Fで反射した後に底面Bを透過する経路であり、経路F2は、超音波パルス信号Pが欠陥Fおよび表面Aで反射した後に底面Bを透過する経路である。超音波パルス信号Pが欠陥Fで反射する経路F1および経路F2は、経路T1より長く、且つ、経路T2より短く、図2の経路T1に対応するピークと経路T2に対応するピークとの間に現れる。   As shown in FIG. 1, the ultrasonic pulse signal P incident on the surface A of the subject S passes through the bottom surface B through various paths and is received as a flaw detection signal. For example, the path T1 in FIG. 1 is the shortest path through which the ultrasonic pulse signal P passes only through the healthy part without the defect F. Like the peak corresponding to the path T1 shown in FIG. It is received as a flaw detection signal in the shortest time. On the other hand, the path T2 is the longest path through which the ultrasonic pulse signal P is reflected by the bottom surface B and the surface A while passing through only the healthy part and then passes through the bottom surface B, and is a peak corresponding to the path T2 shown in FIG. Furthermore, it takes a long time until the ultrasonic pulse signal P is received as a flaw detection signal. A path F1 is a path through which the ultrasonic pulse signal P is reflected by the bottom surface B and the defect F and then passes through the bottom surface B. A path F2 is a bottom surface after the ultrasonic pulse signal P is reflected by the defect F and the surface A. This is a path through B. A path F1 and a path F2 in which the ultrasonic pulse signal P is reflected by the defect F are longer than the path T1 and shorter than the path T2, and are between the peak corresponding to the path T1 and the peak corresponding to the path T2 in FIG. appear.

図2の経路T1に対応するピークと経路T2に対応するピークとの間には、上述した経路F1および経路F2などのように欠陥Fで反射した欠陥エコー信号の他、被検体Sの表面Aに斜めに入射したり縦波と横波との間でモード変換をした超音波が底面Bや表面Aで反射しながら健全部のみを通過した後に受信された多数のエコー性ノイズや、超音波探触子内で反射した残響によるエコー性ノイズが含まれる。本発明は、そのようなエコー性ノイズの影響を低減して欠陥エコー信号を際立たせるための信号処理を行なうものである。   Between the peak corresponding to the path T1 and the peak corresponding to the path T2 in FIG. 2, in addition to the defect echo signal reflected by the defect F such as the path F1 and the path F2 described above, the surface A of the subject S A large number of echo noises or ultrasonic probes received after passing through only a healthy part while being reflected obliquely on the bottom surface B or surface A while being incident obliquely on the surface or having undergone mode conversion between longitudinal and transverse waves. Echo noise due to reverberation reflected in the tactile element is included. The present invention performs signal processing for reducing the influence of such echo noise and making a defective echo signal stand out.

図3は、本発明の実施の形態にかかる超音波探傷装置の構成を模式的に示したブロック図である。図3に示すように、この超音波探傷装置10は、被検体の欠陥を非破壊検査するための超音波を送信し、この送信した超音波に起因する探傷信号を受信する探傷信号取得部1と、各種情報を入力する入力部4と、被検体の検査データ等を記憶する記憶部5と、被検体の検査結果等を表示する表示部6と、超音波探傷装置10の各構成部を制御する制御部7とを有する。   FIG. 3 is a block diagram schematically showing the configuration of the ultrasonic flaw detector according to the embodiment of the present invention. As shown in FIG. 3, the ultrasonic flaw detector 10 transmits an ultrasonic wave for nondestructive inspection of a defect of a subject, and receives a flaw detection signal resulting from the transmitted ultrasonic wave. An input unit 4 for inputting various information, a storage unit 5 for storing examination data of the subject, a display unit 6 for displaying the examination result of the subject, and each component of the ultrasonic flaw detector 10. And a control unit 7 for controlling.

探傷信号取得部1は、超音波プローブ(超音波探触子)2と送受信部3とを有し、送受信部3から送信された電気信号の超音波信号を、超音波プローブ2から外部に超音波として送信するとともに、超音波プローブ2で受信した超音波を電気信号の探傷信号として送受信部3に出力する。超音波プローブ2は、圧電振動子等を用いて実現され、送受信部3からのパルス信号の印加によって超音波を外部に送信し、外部からの超音波を受波して電気信号に変換する。送受信部3は、超音波プローブ2の共振周波数またはその近傍の周波数のパルス信号を超音波プローブ2に印加することによって超音波パルス信号を超音波プローブ2を介して外部に出力する。   The flaw detection signal acquisition unit 1 includes an ultrasonic probe (ultrasonic probe) 2 and a transmission / reception unit 3, and transmits an ultrasonic signal of an electrical signal transmitted from the transmission / reception unit 3 to the outside from the ultrasonic probe 2. While transmitting as a sound wave, the ultrasonic wave received with the ultrasonic probe 2 is output to the transmission / reception part 3 as a flaw detection signal of an electrical signal. The ultrasonic probe 2 is realized by using a piezoelectric vibrator or the like, transmits an ultrasonic wave to the outside by applying a pulse signal from the transmission / reception unit 3, receives the ultrasonic wave from the outside, and converts it into an electric signal. The transmission / reception unit 3 outputs an ultrasonic pulse signal to the outside via the ultrasonic probe 2 by applying a pulse signal having a resonance frequency of the ultrasonic probe 2 or a frequency in the vicinity thereof to the ultrasonic probe 2.

なお、本実施の形態においては、超音波を送信する超音波プローブ2と超音波を受信する超音波プローブ2とを別体で構成し、被検体をはさんで対向するように配置している。   In the present embodiment, the ultrasonic probe 2 that transmits ultrasonic waves and the ultrasonic probe 2 that receives ultrasonic waves are configured separately, and are arranged so as to face each other with the subject interposed therebetween. .

入力部4は、電源スイッチおよび入力キー等の入力デバイスを用いて実現され、操作者による入力操作に対応して、制御部7に対して各種指示情報を入力する。例えば、入力部4は、被検体の探傷開始または探傷終了等の指示情報、被検体の探傷データの表示を指示する指示情報等を制御部7に入力する。   The input unit 4 is realized by using an input device such as a power switch and an input key, and inputs various instruction information to the control unit 7 in response to an input operation by the operator. For example, the input unit 4 inputs to the control unit 7 instruction information such as the start or end of flaw detection of the subject, instruction information for instructing display of flaw detection data of the subject, and the like.

記憶部5は、ハードディスク等の記憶メディアを用いて実現され、制御部7によって指示された被検体の検査データ等の各種情報を記憶する。とくに本実施の形態において、記憶部5は、後述するように、常時、最新の超音波パルス信号以前に送信されたパルスに対応する探傷信号の複数回分((N+Na)回分)以上を記憶している。   The storage unit 5 is realized using a storage medium such as a hard disk, and stores various types of information such as examination data of the subject instructed by the control unit 7. In particular, in the present embodiment, as will be described later, the storage unit 5 always stores a plurality of (five (N + Na)) or more flaw detection signals corresponding to pulses transmitted before the latest ultrasonic pulse signal. Yes.

表示部6は、液晶ディスプレイ等の表示デバイスを用いて実現され、制御部7によって表示指示された各種情報を表示する。具体的には、表示部6は、超音波探傷による被検体の検査データ(例えば、微小傷等の欠陥情報等)を表示する。また、表示部6は、検査対象の被検体から得られた探傷信号の波形情報等を表示してもよい。   The display unit 6 is realized by using a display device such as a liquid crystal display, and displays various information instructed to be displayed by the control unit 7. Specifically, the display unit 6 displays inspection data of the subject by ultrasonic flaw detection (for example, defect information such as minute flaws). The display unit 6 may display waveform information of a flaw detection signal obtained from the subject to be examined.

制御部7は、処理プログラム等を記憶したメモリおよび処理プログラムを実行するCPU等を用いて実現され、上述した超音波探傷装置10の各構成部を制御する。また、制御部7は、減算用信号を取得する減算用信号取得部7aと、探傷信号から減算用信号を減算する信号処理を行なう減算処理部7bとを有し、後述する超音波探傷処理を実行する。   The control unit 7 is realized using a memory that stores a processing program and the like and a CPU that executes the processing program, and controls each component of the ultrasonic flaw detector 10 described above. The control unit 7 includes a subtraction signal acquisition unit 7a that acquires a subtraction signal and a subtraction processing unit 7b that performs signal processing for subtracting the subtraction signal from the flaw detection signal, and performs ultrasonic flaw detection processing to be described later. Run.

なお、制御部7はFPGAを用いて実現することも可能である。図4に、制御部7にFPGAを用いて実現する場合の超音波探傷装置の構成を示す。この場合には、図4に示すように、記憶部5はメモリを用い、制御部7内に含めて構成し、以下に説明する超音波探傷処理をハードウェア上で実現する。その他の構成は図3と同様である。   The control unit 7 can also be realized using an FPGA. FIG. 4 shows the configuration of an ultrasonic flaw detector when the control unit 7 is realized using an FPGA. In this case, as shown in FIG. 4, the storage unit 5 uses a memory and is configured to be included in the control unit 7, and realizes ultrasonic flaw detection processing described below on hardware. Other configurations are the same as those in FIG.

次に、図5および図6を参照して、超音波探傷装置10による超音波探傷処理手順について説明する。図5は超音波探傷処理手順を示すフローチャートであり、図6は超音波探傷処理を説明するための説明図である。図5に示すフローチャートは、例えば、操作者が入力部4を操作して被検体に対する超音波探傷指示入力があったタイミングで開始となり、超音波探傷処理はステップS1の処理に進む。   Next, an ultrasonic flaw detection processing procedure performed by the ultrasonic flaw detector 10 will be described with reference to FIGS. FIG. 5 is a flowchart showing an ultrasonic flaw detection processing procedure, and FIG. 6 is an explanatory diagram for explaining the ultrasonic flaw detection processing. The flowchart shown in FIG. 5 starts, for example, when the operator operates the input unit 4 to input an ultrasonic flaw detection instruction to the subject, and the ultrasonic flaw detection process proceeds to the process of step S1.

ステップS1の処理では、制御部7が、記憶部5に常時、超音波探傷処理の対象とする探傷信号(例えば、受信した最新の探傷信号)に対応する超音波パルス信号より以前に送信された超音波パルス信号により得られた探傷信号の少なくとも(N+Na)回分を記憶させる処理を開始する。記憶させる対象の探傷信号は、少なくとも、最新の超音波パルス信号よりパルス(N+Na)回前までの各パルスに対応する探傷信号とする。すなわち、図6に示すように、最新の超音波パルス信号をi番目のパルスとして、i番目のパルスに対応する探傷信号について超音波探傷処理を行なう場合に、制御部7は、記憶部5に少なくとも、(i−N−Na)番目〜i番目のパルスに対応する(N+Na)回分の探傷信号を記憶させる。これにより、ステップS1の処理は完了し、超音波探傷処理はステップS2の処理に進む。   In the process of step S1, the control unit 7 is always transmitted to the storage unit 5 before the ultrasonic pulse signal corresponding to the flaw detection signal to be subjected to the ultrasonic flaw detection processing (for example, the latest flaw detection signal received). Processing for storing at least (N + Na) times of flaw detection signals obtained from the ultrasonic pulse signal is started. The flaw detection signal to be stored is at least a flaw detection signal corresponding to each pulse from the latest ultrasonic pulse signal up to the pulse (N + Na) times before. That is, as shown in FIG. 6, when performing the ultrasonic flaw detection process on the flaw detection signal corresponding to the i-th pulse with the latest ultrasonic pulse signal as the i-th pulse, the control unit 7 stores in the storage unit 5. At least (N + Na) flaw detection signals corresponding to the (i−N−Na) to i th pulses are stored. Thereby, the process of step S1 is completed and the ultrasonic flaw detection process proceeds to the process of step S2.

なお、NおよびNaの値は、例えば操作者が入力部4を操作することにより、ステップS1の処理前に予め指定されるものとする。   It should be noted that the values of N and Na are specified in advance before the process of step S1, for example, when the operator operates the input unit 4.

また、超音波パルス信号が送信されるたびに、最新の超音波パルス信号に対応する探傷信号が受信される。したがって制御部7は、(i+1)番目の超音波パルス信号に対応する探傷信号が受信されるたびに記憶部5に新たに記憶する。併せて、制御部7が、記憶部5に記憶されている探傷信号のうち最も古いものを削除してもよい。つまり、この場合には、制御部7は、(i−N−Na)番目のパルスに対応する探傷信号を削除してもよい。   Each time an ultrasonic pulse signal is transmitted, a flaw detection signal corresponding to the latest ultrasonic pulse signal is received. Therefore, the control unit 7 newly stores in the storage unit 5 each time a flaw detection signal corresponding to the (i + 1) th ultrasonic pulse signal is received. At the same time, the control unit 7 may delete the oldest one of the flaw detection signals stored in the storage unit 5. That is, in this case, the control unit 7 may delete the flaw detection signal corresponding to the (i−N−Na) th pulse.

ステップS2の処理では、図6に示すように、減算用信号取得部7aが、記憶部5からi番目の超音波パルス信号より(N+Na)回前からN回前までのパルスNa回分に対応する探傷信号を取り出して、周知の同期加算平均処理を行なうことにより、減算用信号を取得する。   In the process of step S2, as shown in FIG. 6, the subtraction signal acquisition unit 7a corresponds to the pulse Na times from (N + Na) times to N times before the i-th ultrasonic pulse signal from the storage unit 5. A flaw detection signal is taken out and a known synchronous addition averaging process is performed to obtain a subtraction signal.

ここで、i番目のパルスに対応する探傷信号のj番目のサンプリング点(全n個)での振幅をx(i,j)とし、このi番目の超音波パルス信号に対応する探傷信号に対して超音波探傷処理を行なう場合に、減算用信号のj番目のサンプリング点での振幅r(i,j)は、次式(1)で表すことができる。なお、サンプリング点の位置は、超音波パルス信号が送信されてからの時間に比例する。
Here, the amplitude at the j-th sampling point (all n) of the flaw detection signal corresponding to the i-th pulse is x (i, j), and the flaw detection signal corresponding to this i-th ultrasonic pulse signal When performing ultrasonic flaw detection, the amplitude r (i, j) at the j-th sampling point of the subtraction signal can be expressed by the following equation (1). Note that the position of the sampling point is proportional to the time after the ultrasonic pulse signal is transmitted.

以上の演算処理を行なうことにより、ステップS2の処理は完了し、超音波探傷処理はステップS3の処理に進む。   By performing the above arithmetic processing, the processing in step S2 is completed, and the ultrasonic flaw detection processing proceeds to processing in step S3.

ステップS3の処理では、減算処理部7bは、図6に示すように、超音波探傷処理の対象の探傷信号からステップS2で取得した減算用信号を減算する処理を行なう。本実施の形態では、最新の超音波パルス信号に対応する探傷信号を超音波探傷処理の対象とする。   In the process of step S3, the subtraction processing unit 7b performs a process of subtracting the subtraction signal acquired in step S2 from the flaw detection signal to be subjected to the ultrasonic flaw detection process, as shown in FIG. In the present embodiment, the flaw detection signal corresponding to the latest ultrasonic pulse signal is the target of ultrasonic flaw detection processing.

ここで、i番目のパルスに対応する探傷信号を対象として、探傷信号から減算用信号を減算する処理で得られる信号のj番目のサンプリング点での振幅y(i,j)は、次式(2)で表すことができる。
Here, for the flaw detection signal corresponding to the i th pulse, the amplitude y (i, j) at the j th sampling point of the signal obtained by subtracting the subtraction signal from the flaw detection signal is expressed by the following equation ( 2).

制御部7は、以上の減算処理により得られる信号に含まれる被検体の欠陥エコー信号を検出することによって、鋼材の欠陥を検査する。これにより、ステップS3の処理は完了し、一連の超音波探傷処理は終了する。   The control unit 7 inspects the defect of the steel material by detecting the defect echo signal of the subject included in the signal obtained by the above subtraction process. Thereby, the process of step S3 is completed and a series of ultrasonic flaw detection processes are completed.

以上の超音波探傷処理を行なうことにより、健全部での探傷信号を減算用信号とすれば、欠陥エコー信号を含む探傷信号から減算用信号を減算する処理を行うことで、健全部での探傷信号にも欠陥部での探傷信号にも等しく含まれるエコー性ノイズを除去することができる。そして、図6に示すように、欠陥エコー信号を含む欠陥部での探傷信号に対して上記の超音波探傷処理を行なった結果に得られる信号y(i,j)は、図6の点線で囲まれる部分に示されるように、欠陥エコー信号の強度(振幅)が際立つので、欠陥エコー信号を見逃すおそれが少なくなる。欠陥エコー信号の強度に適宜な閾値を設定することで、欠陥と判定することができる。   By performing the above ultrasonic flaw detection process, if the flaw detection signal at the sound part is used as a subtraction signal, the subtraction signal is subtracted from the flaw detection signal including the defect echo signal, thereby performing flaw detection at the sound part. Echo noise that is equally included in the signal and the flaw detection signal at the defective portion can be removed. As shown in FIG. 6, the signal y (i, j) obtained as a result of performing the above-described ultrasonic flaw detection processing on the flaw detection signal in the defect portion including the defect echo signal is indicated by a dotted line in FIG. As shown in the enclosed part, the intensity (amplitude) of the defect echo signal stands out, and the possibility of missing the defect echo signal is reduced. A defect can be determined by setting an appropriate threshold for the intensity of the defect echo signal.

なお、減算用信号を超音波探傷処理の対象の探傷信号の直前の探傷信号ではなくN回以上前のパルスに対応する探傷信号としたことにより、長い欠陥を探傷する場合にも、減算用信号に欠陥部での探傷信号を適用してしまう可能性を低くすることができる。   Note that the subtraction signal is not the flaw detection signal immediately before the flaw detection signal to be subjected to ultrasonic flaw detection processing, but is a flaw detection signal corresponding to a pulse N times or more before, so that a subtraction signal can be used even when detecting a long defect. The possibility of applying the flaw detection signal at the defect portion to the defect portion can be reduced.

ここで、図7および図8を参照して、上記のNの選定方法について説明する。図7および図8は欠陥の検出精度について説明するための図であり、超音波探触子を欠陥の上を通る線上を走査しながら超音波パルス信号を送信して受信する欠陥エコー信号の強度とパルス回数との関係を示すイメージ図である。図7はごく小さい点状の欠陥の上を走査する場合を示し、図8は長さが超音波パルス信号のビーム幅より長い欠陥(連続型欠陥)の上を走査する場合を示す。図7に示すように、欠陥がごく小さい点状で、その長さがパルス間の走査量(パルス時間間隔と超音波探触子の走査速度の積)より十分に短い場合には、欠陥の真上を中心としたピークが現れ、その裾野の幅は超音波のビーム幅に相当する。一方、図8に示すように、欠陥の長さがビーム幅よりも長い場合には、欠陥の長さに相当する台形状のピークが現れ、裾野の幅は欠陥の長さとビーム幅との和に相当する。   Here, with reference to FIG. 7 and FIG. 8, the method for selecting N will be described. 7 and 8 are diagrams for explaining the defect detection accuracy. The intensity of the defect echo signal received by transmitting an ultrasonic pulse signal while scanning the ultrasonic probe on a line passing over the defect. It is an image figure which shows the relationship between and the number of pulses. FIG. 7 shows the case of scanning over a very small spot-like defect, and FIG. 8 shows the case of scanning over a defect (continuous defect) whose length is longer than the beam width of the ultrasonic pulse signal. As shown in FIG. 7, when the defect is a very small dot and its length is sufficiently shorter than the scanning amount between pulses (the product of the pulse time interval and the scanning speed of the ultrasonic probe), A peak centered right above appears, and the width of the base corresponds to the ultrasonic beam width. On the other hand, as shown in FIG. 8, when the defect length is longer than the beam width, a trapezoidal peak corresponding to the defect length appears, and the skirt width is the sum of the defect length and the beam width. It corresponds to.

これに基づいて、本実施の形態では、N回のパルス間の走査量が欠陥の長さより十分に長くなるようにNを選定する。これにより、減算用信号に欠陥部での探傷信号を適用して減算処理を行った結果、欠陥エコー信号まで低減させる事態を防止している。   Based on this, in the present embodiment, N is selected so that the scanning amount between N pulses is sufficiently longer than the length of the defect. As a result, the subtraction process is performed by applying the flaw detection signal at the defect portion to the subtraction signal, thereby preventing the reduction to the defect echo signal.

ただし、N回のパルス間の走査量の分だけ離れた位置で被検体の形状が変化しないようにNを選定する。被検体の形状が変化すると、健全部での探傷信号に含まれるエコー性ノイズの波形が、超音波探傷処理の対象の探傷信号のエコー性ノイズの波形と異なるため、減算処理によるノイズ低減の効果を望めなくなる。   However, N is selected so that the shape of the subject does not change at a position separated by the scanning amount between N pulses. When the shape of the subject changes, the waveform of the echo noise included in the flaw detection signal at the healthy part is different from the waveform of the echo noise of the flaw detection signal that is the target of the ultrasonic flaw detection process. I can not expect.

また、減算用信号を複数回(Na回)のパルスに対応する探傷信号を同期加算平均して求めることにより、各探傷信号に含まれる電気的なランダムノイズや音響接触媒質中の気泡などに起因した瞬間的なエコー性ノイズの影響を低減している。   In addition, the subtraction signal is obtained by synchronously averaging the flaw detection signals corresponding to a plurality of (Na times) pulses, resulting in electrical random noise included in each flaw detection signal or bubbles in the acoustic contact medium. The effect of instantaneous echo noise is reduced.

減算用信号を複数回(Na回)のパルスに対応する探傷信号を同期加算平均して求めることにより、さらに、超音波探触子が欠陥を通過した後に健全部で得られる探傷信号に対して超音波探傷処理を行なう際に、減算用信号に通過した欠陥部での欠陥エコー信号を含む探傷信号が含まれる場合にも、その欠陥エコー信号の影響を低減できる。健全部での探傷信号から欠陥エコー信号を含む減算用信号を減算する処理を行なうと、健全部にあたかも欠陥があるかのように虚エコー信号が検出される事象が発生するが、これにより、減算用信号に欠陥エコー信号が含まれていてもその影響を低減でき、虚エコー信号の発生を低減できる。   By obtaining the subtraction signal by synchronously averaging the flaw detection signals corresponding to a plurality of (Na times) pulses, the flaw detection signal obtained at the sound part after the ultrasonic probe has passed the defect is further detected. When performing an ultrasonic flaw detection process, even when a flaw detection signal including a defect echo signal at a defective portion that has passed through is included in the subtraction signal, the influence of the defect echo signal can be reduced. When the process of subtracting the subtraction signal including the defect echo signal from the flaw detection signal in the healthy part, an event is detected in which the virtual echo signal is detected as if there is a defect in the healthy part. Even if a defect echo signal is included in the subtraction signal, the influence can be reduced, and the generation of a virtual echo signal can be reduced.

図9および図10に、上記NおよびNaを変更して本実施の形態の超音波探傷処理を適用した場合の欠陥エコー信号の強度を示す。図9、図10とも、横軸にN,Naの組合せを示し、縦軸に各組合せに対応する超音波探傷処理後の欠陥エコー信号強度を、連続型欠陥の場合、点状欠陥の場合、欠陥がない場合のそれぞれについて示している。また、N=生、Na=生とは、超音波探傷処理を行なわない場合の欠陥エコー信号強度である。   FIG. 9 and FIG. 10 show the intensity of the defect echo signal when the ultrasonic flaw detection process of the present embodiment is applied by changing the above N and Na. In both FIG. 9 and FIG. 10, the horizontal axis indicates the combination of N and Na, and the vertical axis indicates the defect echo signal intensity after ultrasonic flaw detection processing corresponding to each combination in the case of continuous defects, Each of the cases without defects is shown. N = raw and Na = raw are defect echo signal intensities when ultrasonic flaw detection processing is not performed.

図9は、Naを4として、Nを変更した場合であって、N=1は、隣接する超音波パルス信号に対応する探傷信号を減算用信号に含めることを意味している。この図9によれば、N=1の場合に、いずれの欠陥についても超音波探傷処理後の欠陥エコー信号強度が低減すること、またNが大きくなるほど欠陥エコー信号強度の低減が改善されることがわかる。記憶部5の容量の制約にもよるが、Nを50以上にすることが望ましい。   FIG. 9 shows a case where Na is set to 4 and N is changed, and N = 1 means that a flaw detection signal corresponding to an adjacent ultrasonic pulse signal is included in the subtraction signal. According to FIG. 9, when N = 1, the defect echo signal intensity after the ultrasonic flaw detection process is reduced for any defect, and the reduction of the defect echo signal intensity is improved as N is increased. I understand. Although N depends on the capacity of the storage unit 5, it is desirable to set N to 50 or more.

図10は、Nを30として、Naを変更した場合であって、Na=1は、単一の探傷信号を減算用信号とすることを意味している。この図10によれば、Naが大きくなるほど欠陥エコー信号強度の低減が改善されることがわかる。Naを10以上にすることが望ましい。   FIG. 10 shows a case where N is 30 and Na is changed, and Na = 1 means that a single flaw detection signal is used as a subtraction signal. According to FIG. 10, it can be seen that the reduction of the defect echo signal intensity is improved as Na is increased. It is desirable to set Na to 10 or more.

以上説明したように、本実施の形態の超音波探傷処理によれば、健全部での探傷信号に等しく含まれるエコー性ノイズを除去できるので、欠陥エコー信号があれば際立たせることができ、微小な欠陥も見逃すおそれが小さい。また、長い欠陥に対しても簡易な処理でエコー性ノイズを低減させて欠陥エコー信号を際立たせることができる。   As described above, according to the ultrasonic flaw detection processing of the present embodiment, since the echo noise that is equally included in the flaw detection signal in the healthy part can be removed, if there is a defect echo signal, it can be made to stand out. There is little risk of overlooking any flaws. Further, even for a long defect, the echo noise can be reduced with a simple process to make the defect echo signal stand out.

なお、上記の実施の形態の超音波探傷処理を実施する際には、被検体の振動などの影響でエコーの位置がぶれる場合があるため、各サンプリング点での探傷信号を整列させ、エコー性ノイズの時間位置を一致させることが望ましい。探傷信号の整列には、例えば図2中の経路T1、T2に対応するピークに示されるような、表面エコー信号や底面エコー信号などの境界エコー信号を基準にすればよい。例えば、境界エコー検出手段を設け、検出した境界エコー信号を基準に探傷信号を記憶部5に記憶させることで実現できる。   When performing the ultrasonic flaw detection process of the above-described embodiment, the position of the echo may be blurred due to the influence of the subject's vibration or the like. It is desirable to match the time positions of noise. For the alignment of the flaw detection signals, for example, boundary echo signals such as surface echo signals and bottom surface echo signals as indicated by peaks corresponding to the paths T1 and T2 in FIG. For example, this can be realized by providing boundary echo detection means and storing the flaw detection signal in the storage unit 5 with reference to the detected boundary echo signal.

図11に、境界エコー信号を基準にして各探傷信号を整列させる場合の効果を例示する。図11の上段に探傷信号を示し、中段および下段に、上段の探傷信号の一部を横軸の時間軸を拡大して示す。このうち中段は減算処理を行う前の探傷信号を示し、下段はN=50,Na=4として減算用信号を取得して減算処理を行った後の探傷信号を示す。中段の減算処理前の探傷信号および下段の減算処理後の探傷信号としては、それぞれ、境界エコー信号による整列を行わない探傷信号と、経路T1に対応するピークを基準に整列を行った探傷信号と、経路T2に対応するピークを基準に整列を行った探傷信号を示す。この図11によれば、各探傷信号の境界エコー信号による整列を行わないと、本実施の形態の超音波探傷処理によっても、被検体の振動などの影響でエコーの位置がぶれ、探傷領域にノイズや経路T2に対応するピークが残る場合がある。一方、経路T1に対応するピークを基準に探傷信号を整列させると、経路T2に対応するピークが低減されつつも探傷領域に残る場合があるが、経路T2に対応するピークを基準に探傷信号を整列させると、良好に探傷領域のエコー性ノイズを低減できることがわかる。   FIG. 11 illustrates the effect of aligning the flaw detection signals with reference to the boundary echo signal. The upper part of FIG. 11 shows the flaw detection signal, and the middle part and the lower part show a part of the upper part of the flaw detection signal on the horizontal axis. Among these, the middle stage shows the flaw detection signal before the subtraction process, and the lower stage shows the flaw detection signal after the subtraction process is performed with N = 50 and Na = 4. The flaw detection signal before the subtraction process at the middle stage and the flaw detection signal after the subtraction process at the lower stage are a flaw detection signal that is not aligned by the boundary echo signal, and a flaw detection signal that is aligned with reference to the peak corresponding to the path T1. , Shows flaw detection signals aligned on the basis of the peak corresponding to the path T2. According to FIG. 11, if the flaw detection signals are not aligned by the boundary echo signal, the echo fluctuates due to the influence of the vibration of the subject even in the ultrasonic flaw detection processing of the present embodiment, and the flaw detection region is detected. There may be a case where a peak corresponding to noise or the path T2 remains. On the other hand, if the flaw detection signals are aligned based on the peak corresponding to the path T1, the peak corresponding to the path T2 may be reduced but remain in the flaw detection area. However, the flaw detection signal is generated based on the peak corresponding to the path T2. It can be seen that, when aligned, the echo noise in the flaw detection area can be reduced satisfactorily.

1 探傷信号取得部
2 超音波プローブ(超音波探触子)
3 送受信部
4 入力部
5 記憶部
6 表示部
7 制御部
7a 減算用信号取得部
7b 減算処理部
10 超音波探傷装置
1 Flaw Detection Signal Acquisition Unit 2 Ultrasonic Probe (Ultrasonic Probe)
DESCRIPTION OF SYMBOLS 3 Transmission / reception part 4 Input part 5 Storage part 6 Display part 7 Control part 7a Subtraction signal acquisition part 7b Subtraction processing part 10 Ultrasonic flaw detector

Claims (5)

超音波探触子を走査しながら超音波パルス信号を送信し、該超音波パルス信号に起因する探傷信号を受信することによって、連続的に鋼材中の欠陥を検査する超音波探傷方法において、
受信した複数パルス回数分の探傷信号を記憶するステップと、
前記記憶した探傷信号から処理対象の探傷信号より所定パルス回数前の探傷信号を減算用信号として取り出すステップと、
前記処理対象の探傷信号から前記減算用信号を減算するステップと、
前記減算用信号が減算された探傷信号に基づいて鋼材中の欠陥を検査するステップと、
を含むことを特徴とする超音波探傷方法。
In an ultrasonic flaw detection method for continuously inspecting a defect in a steel material by transmitting an ultrasonic pulse signal while scanning an ultrasonic probe and receiving a flaw detection signal resulting from the ultrasonic pulse signal,
Storing flaw detection signals for the number of received multiple pulses;
Extracting a flaw detection signal that is a predetermined number of pulses prior to the flaw detection signal to be processed from the stored flaw detection signal;
Subtracting the subtraction signal from the flaw detection signal to be processed;
Inspecting a defect in the steel based on the flaw detection signal from which the subtraction signal is subtracted;
An ultrasonic flaw detection method comprising:
前記所定パルス回数は、前記所定パルス回数前の探傷信号を受信してから前記処理対象の探傷信号を受信するまでの間の超音波接触子の走査量が、検出されるべき欠陥の長さと超音波パルス信号のビーム幅とを合わせた長さ以上で、かつ探傷信号中のエコー性ノイズの波形が変化しない長さ以下であることを特徴とする請求項1に記載の超音波探傷方法。   The predetermined number of pulses means that the scanning amount of the ultrasonic contact from the time when the flaw detection signal before the predetermined number of pulses is received until the time when the flaw detection signal to be processed is received exceeds the length of the defect to be detected. 2. The ultrasonic flaw detection method according to claim 1, wherein the ultrasonic flaw detection method has a length equal to or longer than a total length of the beam width of the sound wave pulse signal and a length that does not change a waveform of echo noise in the flaw detection signal. 前記減算用信号は、前記所定パルス回数以前の複数の探傷信号を同期加算平均して求めることを特徴とする請求項1または2に記載の超音波探傷方法。   3. The ultrasonic flaw detection method according to claim 1, wherein the subtraction signal is obtained by synchronously averaging a plurality of flaw detection signals before the predetermined number of pulses. 前記受信した探傷信号を記憶する際に、境界エコー信号を基準に整列させて記憶させることを特徴とする請求項1〜3のいずれか1項に記載の超音波探傷方法。   The ultrasonic flaw detection method according to any one of claims 1 to 3, wherein when the received flaw detection signal is stored, the boundary echo signal is stored in alignment with a reference. 超音波探触子を走査しながら超音波パルス信号を送信し、該超音波パルス信号に起因する探傷信号を受信することによって、連続的に鋼材中の欠陥を検査する超音波探傷装置において、
受信した複数パルス回数分の探傷信号を記憶する手段と、
前記記憶した探傷信号から処理対象の探傷信号より所定パルス回数前の探傷信号を減算用信号として取り出す手段と、
前記処理対象の探傷信号から前記減算用信号を減算する手段と、
前記減算用信号が減算された探傷信号に基づいて鋼材中の欠陥を検査する手段と、
を備えたことを特徴とする超音波探傷装置。
In an ultrasonic flaw detector that continuously inspects defects in steel by transmitting an ultrasonic pulse signal while scanning an ultrasonic probe and receiving a flaw detection signal resulting from the ultrasonic pulse signal,
Means for storing flaw detection signals for the number of received multiple pulses;
Means for taking out a flaw detection signal a predetermined number of times before the processing target flaw detection signal as a subtraction signal from the stored flaw detection signal;
Means for subtracting the subtraction signal from the flaw detection signal to be processed;
Means for inspecting a defect in the steel based on the flaw detection signal obtained by subtracting the subtraction signal;
An ultrasonic flaw detector characterized by comprising:
JP2011144720A 2011-06-29 2011-06-29 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus Active JP5742513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011144720A JP5742513B2 (en) 2011-06-29 2011-06-29 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011144720A JP5742513B2 (en) 2011-06-29 2011-06-29 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus

Publications (2)

Publication Number Publication Date
JP2013011526A true JP2013011526A (en) 2013-01-17
JP5742513B2 JP5742513B2 (en) 2015-07-01

Family

ID=47685519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011144720A Active JP5742513B2 (en) 2011-06-29 2011-06-29 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus

Country Status (1)

Country Link
JP (1) JP5742513B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104237379A (en) * 2014-09-30 2014-12-24 田志恒 Electromagnetic ultrasonic detection system
CN104569152A (en) * 2014-12-25 2015-04-29 奥瑞视(北京)科技有限公司 Ultrasonic detection method and system used for wheels of railway vehicle and based on interface wave correlation detection
CN117900981A (en) * 2024-03-19 2024-04-19 宝鸡核力材料科技有限公司 Production process optimization method and system applied to TC4 tape processing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108645920B (en) * 2018-04-09 2020-12-22 华南理工大学 Denoising and alignment-based direct wave suppression method for ultrasonic flaw detection of steel rail

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749338A (en) * 1993-08-05 1995-02-21 Asupekuto:Kk Ultrasonic flaw detection evaluating method and apparatus
JPH09133658A (en) * 1995-10-27 1997-05-20 Takahiko Otani Ultrasonic flaw detection method
JP2005106782A (en) * 2003-10-02 2005-04-21 Kawasaki Heavy Ind Ltd Ultrasonic flaw detecting method and device
JP2007139685A (en) * 2005-11-22 2007-06-07 Sumitomo Metal Ind Ltd Ultrasonic flaw detection method of inner surface deformed pipe and ultrasonic flaw detection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749338A (en) * 1993-08-05 1995-02-21 Asupekuto:Kk Ultrasonic flaw detection evaluating method and apparatus
JPH09133658A (en) * 1995-10-27 1997-05-20 Takahiko Otani Ultrasonic flaw detection method
JP2005106782A (en) * 2003-10-02 2005-04-21 Kawasaki Heavy Ind Ltd Ultrasonic flaw detecting method and device
JP2007139685A (en) * 2005-11-22 2007-06-07 Sumitomo Metal Ind Ltd Ultrasonic flaw detection method of inner surface deformed pipe and ultrasonic flaw detection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104237379A (en) * 2014-09-30 2014-12-24 田志恒 Electromagnetic ultrasonic detection system
CN104569152A (en) * 2014-12-25 2015-04-29 奥瑞视(北京)科技有限公司 Ultrasonic detection method and system used for wheels of railway vehicle and based on interface wave correlation detection
CN117900981A (en) * 2024-03-19 2024-04-19 宝鸡核力材料科技有限公司 Production process optimization method and system applied to TC4 tape processing
CN117900981B (en) * 2024-03-19 2024-05-28 宝鸡核力材料科技有限公司 Production process optimization method and system applied to TC4 tape processing

Also Published As

Publication number Publication date
JP5742513B2 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
RU2521720C1 (en) Method and device for welding zone imaging
JP6189227B2 (en) Ultrasonic flaw detector and its evaluation method
EP3070467B1 (en) Ultrasonic test system, ultrasonic test method and method of manufacturing aircraft part
JP6317708B2 (en) Ultrasonic flaw detection system, ultrasonic flaw detection method, and aircraft structure
KR101738803B1 (en) Ultrasonic flaw-detection method and ultrasonic flaw-detection device
JP5075850B2 (en) Ultrasonic inspection apparatus and ultrasonic inspection method
JP5742513B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP6034057B2 (en) Ultrasonic scanning using local gain interval
JP2007085949A (en) Method and device for detecting texture change by ultrasonic wave
WO2015184892A1 (en) Detecting method for improving resolution of area array probe
JP5804497B2 (en) Lamb wave damage imaging system
JP2018084416A (en) Ultrasonic inspection device and ultrasonic inspection method
JP6540185B2 (en) Defect inspection apparatus, control method therefor, program, and storage medium
JP2018189550A (en) Ultrasonic video device and method for generating ultrasonic video
JP2008102071A (en) Ultrasonic flaw detecting method and ultrasonic imaging device
JP2012122729A (en) Method and apparatus for material deterioration detection using ultrasonic
JP5974317B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP6061077B2 (en) Ultrasonic flaw detection method and apparatus
JP2005274444A (en) Ultrasonic flaw detection image processor, and processing method therefor
JP6234788B2 (en) Ultrasonic diagnostic apparatus and program for ultrasonic diagnostic apparatus
JP2015212654A (en) Ultrasonic flaw detection inspection method and ultrasonic flaw detection inspection device
JP2002243703A (en) Ultrasonic flaw detector
JP2014089064A (en) Method and apparatus for ultrasonic flaw detection
JP2014044123A (en) Contact interface detection device
JP5416726B2 (en) Ultrasonic inspection apparatus and ultrasonic inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150420

R150 Certificate of patent or registration of utility model

Ref document number: 5742513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250