JP2015212654A - Ultrasonic flaw detection inspection method and ultrasonic flaw detection inspection device - Google Patents

Ultrasonic flaw detection inspection method and ultrasonic flaw detection inspection device Download PDF

Info

Publication number
JP2015212654A
JP2015212654A JP2014095196A JP2014095196A JP2015212654A JP 2015212654 A JP2015212654 A JP 2015212654A JP 2014095196 A JP2014095196 A JP 2014095196A JP 2014095196 A JP2014095196 A JP 2014095196A JP 2015212654 A JP2015212654 A JP 2015212654A
Authority
JP
Japan
Prior art keywords
subject
wave
defect
transmitted
flaw detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014095196A
Other languages
Japanese (ja)
Other versions
JP6371575B2 (en
Inventor
洋幸 山口
Hiroyuki Yamaguchi
洋幸 山口
佐藤 明良
Akira Sato
明良 佐藤
憲志 木村
Kenji Kimura
憲志 木村
宏明 畠中
Hiroaki Hatanaka
宏明 畠中
明憲 津田
Akinori Tsuda
明憲 津田
祐気 永井
Yuki Nagai
祐気 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
IHI Aerospace Co Ltd
Original Assignee
IHI Corp
IHI Aerospace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, IHI Aerospace Co Ltd filed Critical IHI Corp
Priority to JP2014095196A priority Critical patent/JP6371575B2/en
Publication of JP2015212654A publication Critical patent/JP2015212654A/en
Application granted granted Critical
Publication of JP6371575B2 publication Critical patent/JP6371575B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic flaw detection inspection method and an ultrasonic flaw detection inspection device which can perform flaw detection inspection using an ultrasonic wave at a low frequency and can accurately detect the characteristics of a defect existing in a subject even when the subject is high attenuation material.SOLUTION: An ultrasonic flaw detection inspection device obtains the difference between a signal wave of a transmitted wave obtained with a subject for sound data acquisition and a signal wave of a transmitted wave obtained with a subject, acquires the signal strength of a diffraction wave generated in a defect, and performs determination of the presence/absence of the defect and specification of a defect position on the basis of the acquired signal strength of the diffraction wave.

Description

本発明は、被検体の内部における欠陥の有無を判定するのに用いられる超音波探傷検査方法及び超音波探傷検査装置に関するものである。   The present invention relates to an ultrasonic flaw detection inspection method and an ultrasonic flaw inspection apparatus used for determining the presence or absence of a defect in a subject.

非破壊検査の1つとして、超音波を用いた探傷検査が従来から行われている。この超音波探傷検査の1つにパルス反射法がある。このパルス反射法とは、送信用探触子から発した超音波が被検体に入射してこの被検体に内在するきず等の欠陥や被検体の底面で反射して戻る反射波を受信用探触子で受信して、欠陥の位置や大きさ等の欠陥の性状を調べる検査手法である。このような検査手法は、ボイラや原子力プラント等の構造物の検査に広く利用されている(特許文献1参照)。   As one of the nondestructive inspections, a flaw detection inspection using ultrasonic waves has been conventionally performed. One of the ultrasonic inspections is a pulse reflection method. In this pulse reflection method, the ultrasonic wave emitted from the transmitting probe is incident on the subject, and defects such as flaws existing in the subject and the reflected wave reflected on the bottom surface of the subject are returned to the receiving probe. This is an inspection method in which the property of a defect such as the position and size of the defect is received by receiving with a toucher. Such inspection methods are widely used for inspection of structures such as boilers and nuclear power plants (see Patent Document 1).

特開2002−005904号公報JP 2002-005904 A

ところで、上述した特許文献1のように、被検体に内在する欠陥を間にして送信用探触子と受信用探触子とを並べて配置して超音波探傷検査を行う場合において、受信用探触子は、被検体の底面で反射して戻る反射波に加えて欠陥の先端部で回折した回折波を受信する。この際、受信した反射波の信号波形と回折波の信号波形とが重ならないようにするために、被検体に入射する超音波の周波数をある程度高い周波数に設定する必要がある。   By the way, in the case of performing ultrasonic flaw detection by arranging a transmitting probe and a receiving probe side by side with a defect inherent in a subject as in Patent Document 1 described above, a receiving probe is used. The touch element receives the diffracted wave diffracted at the tip of the defect in addition to the reflected wave reflected and returned from the bottom surface of the subject. At this time, in order to prevent the received reflected wave signal waveform and the diffracted wave signal waveform from overlapping, it is necessary to set the frequency of the ultrasonic wave incident on the subject to a certain high frequency.

しかしながら、検査対象の被検体が高減衰材である場合には、被検体に入射する超音波の周波数を高い周波数に設定すると、高減衰材である被検体内で超音波が減衰し易くなる分だけ透過性が悪くなり、これに対処するべく受信感度を上げてしまうと、ノイズの影響が大きくなって欠陥の性状の検出が困難になるので、好ましくない。   However, when the subject to be examined is a high attenuation material, if the frequency of the ultrasonic wave incident on the subject is set to a high frequency, the ultrasonic wave is easily attenuated in the high attenuation material. However, if the reception sensitivity is increased to cope with this, the influence of noise is increased and it becomes difficult to detect the property of the defect.

一方、被検体に入射する超音波の周波数を低い周波数に設定すると、高減衰材である被検体内で減衰し難くなるものの、上記したように、受信した反射波の信号波形と回折波の信号波形とが互いに重なり合ってしまい、欠陥の性状の検出が難しくなってしまうという問題があり、これを解決することが従来の課題となっていた。   On the other hand, if the frequency of the ultrasonic wave incident on the subject is set to a low frequency, the signal waveform of the received reflected wave and the signal of the diffracted wave are difficult to attenuate within the subject, which is a high attenuation material, as described above. There is a problem that the waveform overlaps each other and it becomes difficult to detect the property of the defect, and it has been a conventional problem to solve this.

本発明は、上述した課題に着目してなされたものであり、低い周波数の超音波を用いた探傷検査を行うことができ、被検体が高減衰材であったとしても、被検体に内在する欠陥の性状を精度よく検出することが可能な超音波探傷検査方法及び超音波探傷検査装置を提供することを目的としている。   The present invention has been made by paying attention to the above-described problems, and can perform flaw detection inspection using ultrasonic waves of a low frequency, and is inherent to the subject even if the subject is a high attenuation material. An object of the present invention is to provide an ultrasonic flaw detection inspection method and an ultrasonic flaw inspection apparatus capable of accurately detecting the nature of a defect.

上記の目的を達成するべく、本発明の第1の態様は、超音波が減衰する減衰材からなる被検体の内部における欠陥の有無を超音波を用いて判定する超音波探傷検査方法であって、前記被検体と同一性状の健全なデータ採取用被検体の表裏面のうちの一方の面に送信用探触子を配置して、該送信用探触子から発信された超音波の前記健全なデータ採取用被検体における欠陥のない部分を透過する透過波を前記健全なデータ採取用被検体の表裏面のうちの他方の面側の複数箇所で欠陥無信号波として予め受信した後、前記被検体の表裏面のうちの一方の面に送信用探触子を配置して、前記送信用探触子から発信された超音波の前記被検体を透過する透過波を前記被検体の表裏面のうちの他方の面側の複数箇所で本信号波として受信し、前記健全なデータ採取用被検体に超音波を透過させることで取得した前記欠陥無信号波、及び、前記被検体に超音波を透過させることで取得した前記本信号波の双方を開口合成して、それぞれの可視化画像を取得するのに続いて、前記欠陥無信号波及び前記本信号波の各可視化画像同士を比較して、該欠陥無信号波及び前記本信号波の各可視化画像間に相違点がある場合には、該相違点が前記被検体の欠陥で発生する回折波によるものとして、前記被検体内に欠陥有りと判定する構成としている。   In order to achieve the above object, a first aspect of the present invention is an ultrasonic flaw detection inspection method that uses ultrasonic waves to determine the presence or absence of defects in a subject made of an attenuation material that attenuates ultrasonic waves. The transmission probe is arranged on one of the front and back surfaces of a healthy data collection subject having the same property as the subject, and the sound of the ultrasonic wave transmitted from the transmission probe is placed. After receiving in advance a transmitted wave that passes through a defect-free portion in a specimen for data collection, as a defect-free signal wave at multiple locations on the other side of the front and back surfaces of the specimen for data collection, A transmission probe is arranged on one of the front and back surfaces of the subject, and a transmitted wave of the ultrasonic wave transmitted from the transmission probe that passes through the subject is transmitted to the front and back surfaces of the subject. Received as a signal wave at a plurality of locations on the other side of the Aperture synthesis of both the defect-free signal wave acquired by transmitting ultrasonic waves to the subject for data collection and the main signal wave acquired by transmitting ultrasonic waves to the subject, Then, the respective visualized images of the defect-free signal wave and the main signal wave are compared with each other, and there is a difference between the visualized images of the defect-free signal wave and the main signal wave. In some cases, the difference is caused by a diffracted wave generated by the defect of the subject, and it is determined that there is a defect in the subject.

本発明の第2の態様は、超音波が減衰する減衰材からなる被検体の内部における欠陥の有無を超音波を用いて判定する超音波探傷検査方法であって、前記被検体と同一性状の健全なデータ採取用被検体の表裏面のうちの一方の面に送信用探触子を配置して、該送信用探触子から発信された超音波の前記健全なデータ採取用被検体における欠陥のない部分を透過する透過波を前記健全なデータ採取用被検体の表裏面のうちの他方の面側の複数箇所で欠陥無信号波として予め受信した後、前記被検体の表裏面のうちの一方の面に送信用探触子を配置して、前記送信用探触子から発信された超音波の前記被検体を透過する透過波を前記被検体の表裏面のうちの他方の面側の複数箇所で本信号波として受信し、前記健全なデータ採取用被検体に超音波を透過させることで取得した前記欠陥無信号波と、前記被検体に超音波を透過させることで取得した前記本信号波とを比較して、前記欠陥無信号波及び本信号波に振幅の差が生じている部分がある場合には、該振幅の差が前記被検体の欠陥で発生する回折波によるものとして前記振幅の差分を開口合成し、該振幅の差分を開口合成して得られる可視化画像に基づいて前記被検体内に欠陥有りと判定する構成としている。   According to a second aspect of the present invention, there is provided an ultrasonic flaw detection method for determining the presence / absence of a defect in an object made of an attenuating material that attenuates an ultrasonic wave, using the ultrasonic wave, and having the same property as the object. A defect in the sound data collection subject of the ultrasonic wave transmitted from the transmission probe by disposing a transmission probe on one of the front and back surfaces of the sound data collection subject. After receiving in advance a transmitted wave that passes through the part without any defect as a no-signal wave at a plurality of locations on the other side of the front and back surfaces of the subject for data collection, A transmission probe is arranged on one surface, and transmitted waves of the ultrasonic wave transmitted from the transmission probe are transmitted through the subject on the other surface side of the front and back surfaces of the subject. This signal wave is received at multiple locations, and ultrasonic waves are applied to the healthy data collection subject. The defect no-signal wave acquired by transmitting and the main signal wave acquired by transmitting the ultrasonic wave to the subject are compared, and there is a difference in amplitude between the defect no-signal wave and the main signal wave. If there is a generated part, the difference in the amplitude is caused by a diffracted wave generated by the defect of the subject, and the difference in the amplitude is aperture-synthesized, and the visualization image obtained by aperture-synthesizing the difference in amplitude Based on the above, it is determined that there is a defect in the subject.

本発明の第3の態様は、前記被検体に検査領域を設定すると共に該検査領域をブロック状に分割して複数の検査小領域を設定し、前記検査領域をブロック状に分割することで設定された複数の前記ブロック毎で得られる前記回折波の信号強度をそれぞれ演算して合成し、この合成で取得した前記信号強度に基づいて、前記被検体内に有りと判定した前記欠陥の位置を特定する構成としている。   According to a third aspect of the present invention, an examination area is set on the subject, the examination area is divided into blocks, a plurality of examination small areas are set, and the examination area is divided into blocks. And calculating and synthesizing the signal intensity of the diffracted wave obtained for each of the plurality of blocks, and determining the position of the defect determined to be present in the subject based on the signal intensity obtained by the synthesis. It has a specific configuration.

本発明の第4の態様は、前記被検体と同一性状で且つ複数の欠陥が形成された変換曲線作成用被検体の表裏面のうちの一方の面に前記送信用探触子を配置して、該送信用探触子から発信された超音波の前記変換曲線作成用被検体を透過する透過波を前記変換曲線作成用被検体の表裏面のうちの他方の面側の複数箇所で受信した後、前記健全なデータ採取用被検体から取得した透過波の信号波形の最大振幅強度と、前記変換曲線作成用被検体から取得した複数箇所における透過波の信号波形の最大振幅強度との差分を演算して前記回折波の振幅強度を求め、前記回折波の信号波形の振幅強度と前記複数の欠陥の位置との関係を表す変換曲線を作成し、取得した前記回折波の信号波形の振幅強度に基づいて、前記変換曲線から前記欠陥の位置及び大きさ等の性状を推定ないし特定する構成としている。   According to a fourth aspect of the present invention, the transmission probe is arranged on one of the front and back surfaces of the conversion curve creation subject having the same property as the subject and having a plurality of defects formed thereon. The transmission wave of the ultrasonic wave transmitted from the transmission probe transmitted through the subject for creating the conversion curve is received at a plurality of locations on the other side of the front and back surfaces of the subject for creating the conversion curve. Thereafter, the difference between the maximum amplitude intensity of the transmitted wave signal waveform acquired from the healthy data collection subject and the maximum amplitude intensity of the transmitted wave signal waveform at a plurality of locations acquired from the conversion curve generating object is calculated. An amplitude intensity of the diffracted wave is obtained by calculation to create a conversion curve representing a relationship between the amplitude intensity of the signal waveform of the diffracted wave and the positions of the plurality of defects, and the amplitude intensity of the acquired signal waveform of the diffracted wave The position of the defect from the transformation curve and The properties of the feeder and the like are estimated to particular composing.

本発明の第5の態様は、前記健全なデータ採取用被検体,前記変換曲線作成用被検体及び前記被検体の各他方の面側における透過波の受信を複数箇所に並べて配置した受信用探触子で行う構成とし、本発明の第6の態様は、前記健全なデータ採取用被検体,前記変換曲線作成用被検体及び前記被検体の各他方の面側における透過波の受信を一つの受信用探触子を走査させて行う構成としている。   According to a fifth aspect of the present invention, there is provided a receiving probe in which the sound data collection subject, the conversion curve creation subject, and reception of transmitted waves on the other surface side of the subject are arranged in a plurality of places. In the sixth aspect of the present invention, reception of transmitted waves on the other surface side of the healthy data collection subject, the conversion curve creation subject, and the other surface side of the subject is a single aspect. The receiving probe is scanned for scanning.

一方、本発明に係る超音波探傷検査装置の第1の態様は、超音波が減衰する減衰材からなる被検体の内部における欠陥の有無を超音波を用いて判定する超音波探傷検査装置であって、被検体に超音波を入射する送信用探触子と、前記被検体を介して前記送信用探触子と対向して配置され、前記被検体内を伝搬する超音波を受信する受信用探触子と、前記被検体と同一性状の健全なデータ採取用被検体における欠陥のない部分に超音波を透過させることで取得した欠陥無信号波、及び、前記被検体に超音波を透過させることで取得した本信号波の双方を開口合成して、それぞれの可視化画像を取得する手段と、取得した前記欠陥無信号波及び前記本信号波の各可視化画像同士を比較して、該欠陥無信号波及び前記本信号波の各可視化画像間に相違点がある場合には、該相違点が前記被検体の欠陥で発生する回折波によるものとして、前記被検体内に欠陥有りと判定する手段を備える構成としている。   On the other hand, the first aspect of the ultrasonic flaw detection apparatus according to the present invention is an ultrasonic flaw detection apparatus that uses ultrasonic waves to determine the presence or absence of defects in a subject made of an attenuation material that attenuates ultrasonic waves. A transmitting probe that makes ultrasonic waves incident on the subject, and a receiving probe that is disposed to face the transmitting probe via the subject and receives ultrasonic waves that propagate through the subject. A defect-free signal wave acquired by transmitting ultrasonic waves to a probe and a portion having no defect in a healthy data collection sample having the same characteristics as the sample, and transmitting ultrasonic waves to the sample A means for obtaining both visualized images by performing aperture synthesis on both of the signal waves obtained in this way and the obtained visualized images of the defect-free signal wave and the signal wave are compared with each other. There is a phase between the signal wave and each visualized image of the signal wave. If there is a point, as by the diffraction wave the differences occurs in defect of the subject, the is configured to include means for determining that there is a defect in the subject.

本発明に係る超音波探傷検査方法及び超音波探傷検査装置によれば、被検体が高減衰材である場合でも、被検体に内在する欠陥の検査精度を向上させることができる。   According to the ultrasonic flaw detection inspection method and the ultrasonic flaw detection inspection apparatus according to the present invention, it is possible to improve the inspection accuracy of defects inherent in a subject even when the subject is a high attenuation material.

本発明の一実施形態に係る超音波探傷検査装置の概略図である。1 is a schematic diagram of an ultrasonic flaw detection apparatus according to an embodiment of the present invention. 図1の方向Aから見た受信用探触子の一配置例を示す概略図である。It is the schematic which shows the example of 1 arrangement | positioning of the probe for reception seen from the direction A of FIG. 本発明に係る超音波探傷検査方法の一実施要領を示すフローチャートである。It is a flowchart which shows one execution point of the ultrasonic flaw detection inspection method which concerns on this invention. 健全なデータ取得用被検体に超音波探傷検査を実施する場合の概略図である。It is the schematic in the case of implementing an ultrasonic flaw detection test | inspection to the test subject for sound data acquisition. 欠陥が内在する被検体に超音波探傷検査を実施する場合の概略図である。It is the schematic in the case of implementing an ultrasonic flaw detection test | inspection to the subject which has a defect. 被検体内に設定した仮想領域を示す概略図である。It is the schematic which shows the virtual area | region set in the subject. 被検体に内在する欠陥に最も近いアレイ探触子が受信した回折波の信号波形を示す図(A),図7(A)に示す信号波形の回折波を受信したアレイ探触子の隣に配置されているアレイ探触子で受信した回折波の信号波形を示す図(B)及び被検体に内在する欠陥から最も離れているアレイ探触子が受信した回折波の信号波形を示す図(C)である。A diagram showing a signal waveform of a diffracted wave received by the array probe closest to the defect inherent in the subject (A), next to the array probe receiving the diffracted wave of the signal waveform shown in FIG. A diagram (B) showing the signal waveform of the diffracted wave received by the array probe arranged, and a diagram showing the signal waveform of the diffracted wave received by the array probe farthest from the defect inherent in the subject ( C). 図7に示した信号波形の回折波を開口合成した合成波の信号波形を示す図である。It is a figure which shows the signal waveform of the synthetic wave which carried out aperture synthesis of the diffracted wave of the signal waveform shown in FIG. 健全なデータ採取用被検体に超音波を透過させることで取得した欠陥無信号波を開口合成して得た可視化画像(A)及び被検体に超音波を透過させることで取得した本信号波を開口合成して得た可視化画像(B)である。Visualization image (A) obtained by aperture synthesis of defect-free signal wave acquired by transmitting ultrasonic wave to sound data collection object and main signal wave acquired by transmitting ultrasonic wave to object It is the visualization image (B) obtained by aperture synthesis. 本発明に係る超音波探傷検査方法の他の実施要領を示すフローチャートである。It is a flowchart which shows the other implementation point of the ultrasonic flaw detection inspection method which concerns on this invention. 健全なデータ採取用被検体に超音波を透過させることで取得した欠陥無信号波及び被検体に超音波を透過させることで取得した本信号波間に生じている振幅の差分を開口合成して得られる可視化画像の模式図である。Obtained by aperture synthesis of the amplitude difference generated between the defect-free signal wave acquired by transmitting the ultrasonic wave to a sound data collection object and the ultrasonic wave transmitted to the object. It is a schematic diagram of the visualized image. 本発明の他の実施形態に係る超音波探傷検査装置の概略図である。It is the schematic of the ultrasonic flaw detection inspection apparatus which concerns on other embodiment of this invention. 本発明に係る超音波探傷検査方法の他の実施要領を示すフローチャートである。It is a flowchart which shows the other implementation point of the ultrasonic flaw detection inspection method which concerns on this invention. 複数の欠陥が形成された変換曲線作成用被検体を含む概略図である。It is the schematic containing the test object for conversion curve creation in which the some defect was formed. 送信用探触子から見て0degの位置にある受信用探触子が受信した透過波及び回折波を含む合成波の各信号波形を示す図である。It is a figure which shows each signal waveform of the synthetic wave containing the transmitted wave and diffraction wave which the receiving probe in the position of 0deg seeing from the transmitting probe received. 透過及び合成波の各最大振幅強度を示すグラフである。It is a graph which shows each maximum amplitude intensity | strength of a transmission and a synthetic wave. 図16の合成波の信号波形における回折波の最大振幅強度を示すグラフである。It is a graph which shows the maximum amplitude intensity | strength of the diffracted wave in the signal waveform of the synthetic wave of FIG. 受信用探触子から欠陥までの距離と回折の強度との関係を表す変換曲線である。It is a conversion curve showing the relationship between the distance from a receiving probe to a defect and the intensity of diffraction.

以下、本発明に係る超音波探傷検査方法及び超音波探傷検査装置を図面に基づいて説明する。
図1〜図9は、本発明に係る超音波探傷検査装置の一実施形態を示しており、この実施形態では、被検体が円筒形状を成すロケットの固体推進薬(高減衰材)である場合を例に挙げて説明する。
Hereinafter, an ultrasonic inspection method and an ultrasonic inspection device according to the present invention will be described with reference to the drawings.
FIGS. 1 to 9 show an embodiment of an ultrasonic flaw detection apparatus according to the present invention. In this embodiment, the subject is a solid propellant (high attenuation material) of a rocket having a cylindrical shape. Will be described as an example.

図1に示すように、この超音波探傷検査装置1は、パルス発生器10と、送信用探触子12と、受信用探触子14と、パルスレシーバ16と、アナログ/デジタル変換器(以下、A/D変換器という)18と、演算装置20と、モニタ28を備えている。   As shown in FIG. 1, this ultrasonic flaw detection inspection apparatus 1 includes a pulse generator 10, a transmission probe 12, a reception probe 14, a pulse receiver 16, and an analog / digital converter (hereinafter referred to as "analog / digital converter"). , 18), an arithmetic unit 20, and a monitor 28.

送信用探触子12は、円筒形状を成す被検体2の内周面(表裏面のうちの一方の面)2aに接触状態で配置されており、パルス発生器10で発生させた所定周波数の超音波を被検体2に入射させる。この際、被検体2が高減衰材から成るロケットの固体推進薬であることから、周波数は、被検体2の内部で減衰しにくい低い周波数、例えば、数百kHzとするのが好ましく、このように、低い周波数の超音波を被検体2に入射させることで、後述する透過波や回折波を受信用探触子14で良好に受信し得る。   The transmission probe 12 is arranged in contact with the inner peripheral surface (one of the front and back surfaces) 2a of the subject 2 having a cylindrical shape, and has a predetermined frequency generated by the pulse generator 10. Ultrasound is incident on the subject 2. At this time, since the subject 2 is a solid propellant of a rocket made of a high attenuation material, the frequency is preferably set to a low frequency that is difficult to attenuate inside the subject 2, for example, several hundred kHz. In addition, by allowing a low-frequency ultrasonic wave to enter the subject 2, a transmission wave or a diffracted wave, which will be described later, can be received well by the receiving probe 14.

一方、受信用探触子14は、円筒形状を成す被検体2の外周面(表裏面のうちの他方の面)2bに送信用探触子12と対向して配置され、被検体2の内部を伝搬する透過波や回折波を受信する。この場合、受信用探触子14は、図2にも示すように、合計m×n個のアレイ探触子14aを、縦にm個(m=1以上の整数)、横にn個(n=1以上の整数)マトリックス状に配置して成るマトリックスアレイであり、この受信用探触子14は、中央ないしその近傍にあるアレイ探触子14aが送信用探触子12と対向するようにして配置される。   On the other hand, the receiving probe 14 is disposed on the outer peripheral surface (the other of the front and back surfaces) 2b of the subject 2 having a cylindrical shape so as to face the transmitting probe 12, and the inside of the subject 2 A transmitted wave and a diffracted wave propagating through are received. In this case, as shown in FIG. 2, the receiving probe 14 includes a total of m × n array probes 14 a, where m (m is an integer greater than or equal to 1) and n ( (n = 1 or larger integer) is a matrix array arranged in a matrix form. The receiving probe 14 is arranged such that the array probe 14a in the center or the vicinity thereof faces the transmitting probe 12. Arranged.

アレイ探触子14aの少なくとも被検体2との接触面はゴムなどの弾性材料で形成されており、被検体2の外周面2bのように設置部位が曲面であったとしても、受信用探触子14を被検体2の外周面2bに設置する際に、各アレイ探触子14aと被検体2の外周面2bとの間に隙間が生じることがないようにしている。なお、受信用探触子14として、環状アレイを用いてもよい。   At least the contact surface of the array probe 14a with the subject 2 is formed of an elastic material such as rubber. Even if the installation site is a curved surface like the outer peripheral surface 2b of the subject 2, the probe for reception is used. When the child 14 is placed on the outer peripheral surface 2 b of the subject 2, no gap is generated between each array probe 14 a and the outer peripheral surface 2 b of the subject 2. Note that an annular array may be used as the receiving probe 14.

受信用探触子14が受信した透過波や回折波は、パルスレシーバ16で電気信号に変換され、電気信号に変換された透過波や回折波は、A/D変換器18でデジタル信号に変換されて、演算装置20で信号処理される。   The transmitted wave or diffracted wave received by the receiving probe 14 is converted into an electric signal by the pulse receiver 16, and the transmitted wave or diffracted wave converted into the electric signal is converted into a digital signal by the A / D converter 18. Then, signal processing is performed by the arithmetic unit 20.

演算装置20は、中央演算処理装置(以下、CPUという)やROM、RAM等のメモリ(図示せず)から構成されている。このメモリにはプログラムが格納されており、演算装置20がこれらのプログラムを実行することによって、回折波抽出部22,開口合成部24及び欠陥性状推定部26の各機能が発揮される。なお、演算装置20は、回折波抽出部22,開口合成部24及び欠陥性状推定部26以外の機能も有しているが、本実施形態では説明を省略する。   The arithmetic unit 20 includes a central processing unit (hereinafter referred to as a CPU) and a memory (not shown) such as a ROM and a RAM. Programs are stored in this memory. When the arithmetic unit 20 executes these programs, the functions of the diffracted wave extraction unit 22, the aperture synthesis unit 24, and the defect property estimation unit 26 are exhibited. The arithmetic unit 20 also has functions other than the diffracted wave extraction unit 22, the aperture synthesis unit 24, and the defect property estimation unit 26, but description thereof is omitted in this embodiment.

回折波抽出部22は、受信用探触子14のアレイ探触子14aのそれぞれが受信した透過波の信号波形を処理して回折波を抽出する。開口合成部24は、抽出された回折波を後述するようにして開口合成する。欠陥性状推定部26は、合成した回折波の信号強度に基づいて被検体2に内在する欠陥4の位置を特定すると共に、大きさ等の性状を推定する。   The diffracted wave extracting unit 22 extracts the diffracted wave by processing the signal waveform of the transmitted wave received by each of the array probes 14 a of the receiving probe 14. The aperture synthesizer 24 synthesizes the extracted diffracted wave as described later. The defect property estimation unit 26 specifies the position of the defect 4 inherent in the subject 2 based on the signal intensity of the synthesized diffracted wave, and estimates the property such as the size.

演算装置20には出力装置としてモニタ28が接続されており、演算装置20で信号波形を処理して抽出される回折波を開口合成することで得られる可視化画像を表示して、被検体2内の欠陥4の有無や、被検体2に欠陥4が内在している場合の欠陥4の位置等の欠陥情報を表示するようにしている。なお、図示はしないが、演算装置20はキーボード等の入力装置を備えていてもよい。   A monitor 28 is connected to the computing device 20 as an output device, and a visualization image obtained by aperture synthesis of the diffracted wave extracted by processing the signal waveform in the computing device 20 is displayed, and the inside of the subject 2 is displayed. The defect information such as the presence / absence of the defect 4 and the position of the defect 4 when the defect 4 is present in the subject 2 is displayed. Although not shown, the arithmetic device 20 may include an input device such as a keyboard.

次に、上記した超音波探傷検査装置1を用いた本発明の一実施形態に係る超音波探傷検査方法の実施要領を説明する。図3は、超音波探傷検査の工程を示すフローチャート、図4は、被検体2と同一性状のデータ採取用被検体2A、すなわち、欠陥が内在しない健全な被検体2Aに対して超音波探傷検査を実施する場合の概略図、図5は、欠陥が内在する被検体2に対して超音波探傷検査を実施する場合の概略図である。なお、図3に示すフローチャートにおけるステップS3以降の各ステップの処理は、演算装置20のメモリに格納されたプログラムをCPUで実行することによって行われる。   Next, the point of implementation of the ultrasonic flaw detection method according to one embodiment of the present invention using the ultrasonic flaw detection apparatus 1 described above will be described. FIG. 3 is a flowchart showing a process of ultrasonic flaw detection, and FIG. 4 is an ultrasonic flaw inspection for a data collection subject 2A having the same properties as the subject 2, that is, a healthy subject 2A having no defect. FIG. 5 is a schematic diagram when an ultrasonic flaw inspection is performed on the subject 2 in which a defect is present. In addition, the process of each step after step S3 in the flowchart shown in FIG. 3 is performed by running the program stored in the memory of the arithmetic unit 20 with CPU.

まず、ステップS1において、検査対象の被検体2と同一性状であり、欠陥4が形成されていない健全なデータ採取用被検体2Aに対して超音波探傷検査を実施する。このように、欠陥4が形成されていないデータ採取用被検体2Aの場合には、図4に示すように、送信用探触子12からデータ採取用被検体2Aに入射した超音波は、データ採取用被検体2Aの内部を透過して受信用探触子14において透過波WT(欠陥無信号波)として受信される。   First, in step S1, an ultrasonic flaw detection inspection is performed on a healthy data collection subject 2A that has the same property as the subject 2 to be examined and in which no defect 4 is formed. As described above, in the case of the data collection subject 2A in which the defect 4 is not formed, as shown in FIG. 4, the ultrasonic wave incident on the data collection subject 2A from the transmission probe 12 is the data The light is transmitted through the collection subject 2A and received by the reception probe 14 as a transmitted wave WT (defect-free signal wave).

ここで、受信用探触子14のアレイ探触子14a11〜14amnのうちの略中央にあるアレイ探触子をアレイ探触子14aijとすると共に、アレイ探触子14a11〜14amnのうちの送信用探触子12からの距離が最も短い列をj番目(j=1以上の整数)として、j番目の列のアレイ探触子14a1j〜14amjについて説明する。 Here, the array probe at the approximate center of the array probes 14a 11 to 14a mn of the receiving probe 14 is referred to as an array probe 14a ij and the array probes 14a 11 to 14a mn. as the shortest string distance from the transmitting transducer 12 of the j-th (j = 1 or more integer), it will be described j-th column of the array probe 14a 1j ~14a mj.

受信用探触子14のアレイ探触子14a1j〜14amjのそれぞれが透過波WTを受信する時間は、送信用探触子12に最も近いアレイ探触子14aijが最も早くなり、送信用探触子12から離れていくにつれて、透過波WTを受信する時間が遅くなる。そして、アレイ探触子14aijから最も離れているアレイ探触子14a1j,14amjが透過波WTを受信する時間が最も遅くなる。このように、各アレイ探触子14a11〜14amnが透過波WTを受信する時間には、それぞれずれが生じる。 The time each array probe 14a 1j to 14A mj of the receiving transducer 14 receives the transmitted wave WT is closest array probe 14a ij to probe 12 probe transmission is earliest, for transmission As the distance from the probe 12 increases, the time for receiving the transmitted wave WT is delayed. Then, the array probes 14a 1j and 14amj that are farthest from the array probe 14a ij receive the transmitted wave WT most slowly. Thus, there is a difference in the time during which each of the array probes 14a 11 to 14a mn receives the transmitted wave WT.

次いで、ステップS2において、検査対象の被検体2に対して超音波探傷検査を実施する。検査対象の被検体2に欠陥4が内在する場合には、図5に示すように、送信用探触子12から送信された超音波は、欠陥4で回折して回折波WD(本信号波の一部)を生じ、欠陥4で生じた回折波WDは被検体2内を伝搬して受信用探触子14で受信される。   Next, in step S2, an ultrasonic flaw detection inspection is performed on the subject 2 to be inspected. When the defect 4 is inherent in the subject 2 to be inspected, as shown in FIG. 5, the ultrasonic wave transmitted from the transmission probe 12 is diffracted by the defect 4 and diffracted wave WD (main signal wave). And the diffracted wave WD generated by the defect 4 propagates through the subject 2 and is received by the receiving probe 14.

図5では、判り易くするためにアレイ探触子14a1j,14amjだけが透過波WTを受信する状況を示しているが、被検体2内を透過した透過波は他の各アレイ探触子14a11〜14amnでも受信される。 FIG. 5 shows a situation in which only the array probes 14a 1j and 14a mj receive the transmitted wave WT for the sake of easy understanding. However, the transmitted wave transmitted through the subject 2 is transmitted to each of the other array probes. 14a 11 to 14a mn are also received.

このステップS2でも、各アレイ探触子14a11〜14amnが回折波WD及び透過波WTを受信する時間には互にずれが生じる。また、欠陥4がある位置に応じて回折波WDを最も早く受信するアレイ探触子14aも変わる。さらに、被検体2内を伝搬する超音波において、まず透過波WTが各アレイ探触子14a11〜14amnに受信され、その後遅れて回折波WDが各アレイ探触子14a11〜14amnに受信される。 In this step S2, mutually displacement occurs in the time that each array probe 14a 11 to 14A mn receives diffracted wave WD and transmitted wave WT. Further, the array probe 14a that receives the diffracted wave WD earliest also changes depending on the position where the defect 4 is present. Further, the ultrasonic wave propagating inside the subject 2 is first transmitted wave WT are received on each array probe 14a 11 to 14A mn, subsequently delayed diffracted wave WD each array probe 14a 11 to 14A mn Received.

上述したように、ステップS2において検査対象の被検体2に対して超音波探傷検査を実施して得られた本信号波には、透過波WTと回折波WDとが含まれている。一方、ステップS1において健全なデータ採取用被検体2Aに対して超音波探傷検査を実施して得られた欠陥無信号波には、透過波WTのみが含まれている。   As described above, the main signal wave obtained by performing the ultrasonic flaw detection inspection on the subject 2 to be inspected in step S2 includes the transmitted wave WT and the diffracted wave WD. On the other hand, only the transmitted wave WT is included in the defect-free signal wave obtained by performing the ultrasonic flaw inspection on the healthy data collection subject 2A in step S1.

そこで、ステップS3では、ステップS1で得た透過波WT(欠陥無信号波)、及び、ステップS2で得た透過波WTと回折波WDとの合成波(本信号波)の双方をそれぞれ開口合成する。開口合成とは、各アレイ探触子14a11〜14amnが受信した信号波の時間のずれを合わせ込んで信号波を合成する処理のことである。詳しくは、図6〜図8に基づいて以下に説明する。 Therefore, in step S3, both the transmitted wave WT (defect-free signal wave) obtained in step S1 and the synthesized wave (main signal wave) of the transmitted wave WT and diffracted wave WD obtained in step S2 are aperture synthesized. To do. Aperture synthesis is a process of synthesizing signal waves by combining the time lags of the signal waves received by the array probes 14a 11 to 14a mn . Details will be described below with reference to FIGS.

図6は、被検体2内の仮想領域Vを示す概略図、図7(A)は、被検体2に内在する欠陥4に最も近いアレイ探触子14aが受信した回折波WDの信号波形の一例、図7(B)は、図7(A)に示す信号波形の回折波を受信したアレイ探触子14aの隣に配置されているアレイ探触子14aで受信した回折波WDの信号波形の一例、図7(C)は、被検体2に内在する欠陥4から最も離れているアレイ探触子14aが受信した回折波WDの信号波形の一例、図8は、図7に示した信号波形の回折波を開口合成した合成波の信号波形の一例である。   6 is a schematic diagram showing a virtual region V in the subject 2, and FIG. 7A is a signal waveform of the diffracted wave WD received by the array probe 14 a closest to the defect 4 inherent in the subject 2. For example, FIG. 7B shows the signal waveform of the diffracted wave WD received by the array probe 14a arranged next to the array probe 14a that has received the diffracted wave of the signal waveform shown in FIG. 7A. 7C shows an example of the signal waveform of the diffracted wave WD received by the array probe 14a farthest from the defect 4 inherent in the subject 2, and FIG. 8 shows the signal shown in FIG. It is an example of the signal waveform of the synthetic wave which carried out aperture synthesis of the diffraction wave of a waveform.

図6に示すように、回折波WDを開口合成するために、受信用探触子14が配置されている側の被検体2内の所定の大きさの領域を仮想領域Vとして設定する。仮想領域Vは、超音波探傷検査を行った領域のうち、欠陥4を評価する領域として設定する。仮想領域Vは、所定の大きさの複数のブロック(直方体形状の塊)Vgに分割されており、これらのブロックVgに対して開口合成を行って、各ブロックVgの信号強度を求める。   As shown in FIG. 6, a region of a predetermined size in the subject 2 on the side where the receiving probe 14 is arranged is set as a virtual region V in order to perform aperture synthesis of the diffracted wave WD. The virtual region V is set as a region for evaluating the defect 4 among the regions subjected to the ultrasonic flaw detection inspection. The virtual region V is divided into a plurality of blocks (cuboids) Vg having a predetermined size, and aperture synthesis is performed on these blocks Vg to obtain the signal intensity of each block Vg.

仮想領域VにおけるブロックVg1の開口合成を例として以下に説明する。
複数のアレイ探触子14a11〜14amnでそれぞれ受信されるブロックVg1で発生した回折波WDには、受信時間のずれが生じている。
An example of aperture synthesis of the block Vg1 in the virtual region V will be described below.
The diffracted wave WD generated in block Vg1 received respectively by the plurality of array probe 14a 11 ~14a mn, deviation of reception time occurs.

詳しくは、ステップS2で得た本信号波である合成波から抽出される回折波WDの信号波形は、図7(A)〜図7(C)に示すように、ブロックVg1に最も近いアレイ探触子14aijにおいて最も速い時間tiで受信され、アレイ探触子14aijの隣にあるアレイ探触子14a(i+1)jでは、時間tiよりも遅い時間ti+1で受信され、ブロックVg1から最も離れているアレイ探触子14amjにおいて最も遅い時間tmで受信される。複数のアレイ探触子14a11〜14amnがそれぞれ受信した回折波WDを各々の信号波形の時間差を合わせ込んで合成すると、例えば、図8に示すように、信号強度Sの信号波形となる。仮想領域Vにおける複数のブロックVg毎に開口合成を行い、これらのブロックVgにおける各信号強度を求める。 Specifically, the signal waveform of the diffracted wave WD extracted from the synthesized wave, which is the main signal wave obtained in step S2, is the array search closest to the block Vg1, as shown in FIGS. 7 (A) to 7 (C). received at the fastest time ti in probe 14a ij, the array probe 14a ij of next array probe 14a (i + 1) j, is received at a later time ti + 1 than the time ti, block It is received at the latest time tm at the array probe 14a mj furthest from Vg1. When the diffracted waves WD received by the plurality of array probes 14a 11 to 14a mn are combined by combining the time differences of the respective signal waveforms, for example, as shown in FIG. Aperture synthesis is performed for each of the plurality of blocks Vg in the virtual region V, and the signal strengths in these blocks Vg are obtained.

そして、ステップS3では、ステップS1で得た透過波WT(欠陥無信号波)、及び、ステップS2で得た透過波WTと回折波WDとの合成波(本信号波)の双方を上述のようにそれぞれ開口合成して、複数のブロックVgにおける各信号強度を求めて、図9(A),(B)に示すように、透過波WTの可視化画像、及び、透過波WTと回折波WDとの合成波の可視化画像をモニタ28上に表示する。   In step S3, both the transmitted wave WT (defect-free signal wave) obtained in step S1 and the combined wave (main signal wave) of the transmitted wave WT and diffracted wave WD obtained in step S2 are as described above. 9A and 9B, the respective signal intensities in the plurality of blocks Vg are obtained, and as shown in FIGS. 9A and 9B, the visualized image of the transmitted wave WT, the transmitted wave WT, and the diffracted wave WD A visualized image of the synthesized wave is displayed on the monitor 28.

続いて、ステップS4において、ステップS3で得た2つの可視化画像同士を比較して、両可視化画像間に存在する相違点が被検体2の欠陥4で発生する回折波WDによるものとして、被検体2内に欠陥4有りと判定する。   Subsequently, in step S4, the two visualized images obtained in step S3 are compared with each other, and it is assumed that the difference existing between the two visualized images is due to the diffracted wave WD generated in the defect 4 of the subject 2. 2 is determined to have a defect 4.

ステップS5において、ステップS4で被検体2内に欠陥4有りと判定した場合には、ステップS3で開口合成した複数のブロックVgにおける各信号強度に基づいて、欠陥4の位置や、大きさ等の欠陥4の性状の推定を行う。具体的には、ステップS3で行った開口合成により、欠陥4が存在するブロックVgの信号強度Sは、他のブロックVgの信号強度Sよりも大きくなるので、この信号強度Sに基づいて、欠陥4の大きさを推定することができる。また、複数のブロックVgにおける各信号強度Sを求めることによって、欠陥4の位置を推定することができる。   If it is determined in step S5 that the defect 4 is present in the subject 2 in step S4, the position and size of the defect 4 are determined based on the signal intensities in the plurality of blocks Vg obtained by aperture synthesis in step S3. The property of the defect 4 is estimated. Specifically, since the signal intensity S of the block Vg in which the defect 4 exists is larger than the signal intensity S of the other block Vg by the aperture synthesis performed in step S3, the defect intensity is determined based on the signal intensity S. The size of 4 can be estimated. Further, the position of the defect 4 can be estimated by obtaining each signal intensity S in the plurality of blocks Vg.

このように、本実施形態では、検査対象の被検体2、及び、この被検体2と同じ性状の健全なデータ取得用被検体2Aのそれぞれに超音波探傷検査を実施して、健全なデータ取得用被検体2Aから得た可視化画像と、検査対象の被検体2から得た可視化画像とを比較し、両可視化画像に相違点が生じている場合には、この相違点が被検体2の欠陥4で発生する回折波WDによるものとして、被検体2内に欠陥4有りと判定し、この回折波WDの信号波形(信号強度)に基づいて欠陥4の位置や、大きさ等の性状を推定ないし特定する。   As described above, in the present embodiment, an ultrasonic flaw detection test is performed on each of the subject 2 to be examined and the healthy data acquisition subject 2A having the same properties as the subject 2 to obtain healthy data acquisition. When the visualized image obtained from the subject 2A is compared with the visualized image obtained from the subject 2 to be inspected, and there is a difference between the two visualized images, this difference is a defect of the subject 2 As a result of the diffracted wave WD generated at 4, it is determined that there is a defect 4 in the subject 2, and the properties such as the position and size of the defect 4 are estimated based on the signal waveform (signal intensity) of the diffracted wave WD. Or specify.

これにより、欠陥4で発生する回折波WDの信号波形の信号強度は送信された超音波の信号強度より弱いので、被検体2が高減衰材である場合でも回折波の減衰が抑制され、検査対象の被検体2に内在する欠陥4の位置や、大きさ等の性状を精度よく特定することができる。
また、透過法を用いて超音波探傷検査を行うので、被検体2の外周面2bからの反射波の影響を受けることなく、被検体2の検査精度を向上させることができる。
Thereby, since the signal intensity of the signal waveform of the diffracted wave WD generated in the defect 4 is weaker than the signal intensity of the transmitted ultrasonic wave, the attenuation of the diffracted wave is suppressed even when the subject 2 is a high attenuation material. Properties such as the position and size of the defect 4 existing in the subject 2 can be accurately identified.
Further, since the ultrasonic flaw detection inspection is performed using the transmission method, the inspection accuracy of the subject 2 can be improved without being affected by the reflected wave from the outer peripheral surface 2b of the subject 2.

さらに、超音波探傷検査を行った領域のうち、評価する領域を仮想領域Vとして複数のブロック状に区分けし、複数のブロックVg毎に回折波WDの信号波形を開口合成してブロックVgにおける各信号強度Sに基づいて欠陥4の性状を推定するので、欠陥4の性状を精度よく推定することができる。   Further, among the areas subjected to the ultrasonic flaw detection inspection, the area to be evaluated is divided into a plurality of blocks as a virtual area V, and the signal waveform of the diffracted wave WD is aperture-synthesized for each of the plurality of blocks Vg to generate each block Vg. Since the property of the defect 4 is estimated based on the signal intensity S, the property of the defect 4 can be estimated with high accuracy.

さらにまた、検査対象となる被検体2の大きさに応じて受信用探触子14のアレイ探触子14aの数を増加させることで、例えば大型の被検体2であったとしても、受信用探触子14を走査させる必要がなく、受信用探触子14を走査させる場合と比較して、被検体2を傷つけることなくより短時間で超音波探傷検査を実施し得る。   Furthermore, by increasing the number of array probes 14a of the receiving probe 14 according to the size of the subject 2 to be examined, for example, even if the subject 2 is a large subject, the receiving probe 14 There is no need to scan the probe 14, and the ultrasonic flaw detection inspection can be performed in a shorter time without damaging the subject 2 as compared with the case of scanning the receiving probe 14.

次に、上記した超音波探傷検査装置1を用いた本発明の他の実施形態に係る超音波探傷検査方法の実施要領を説明する。図10は、超音波探傷検査の工程を示すフローチャートである。なお、図10に示すフローチャートにおけるステップS3以降の各ステップの処理も、演算装置20のメモリに格納されたプログラムをCPUで実行することによって行われる。   Next, an execution procedure of an ultrasonic flaw detection inspection method according to another embodiment of the present invention using the above-described ultrasonic flaw detection inspection apparatus 1 will be described. FIG. 10 is a flowchart showing the ultrasonic flaw detection process. In addition, the process of each step after step S3 in the flowchart shown in FIG. 10 is also performed by executing the program stored in the memory of the arithmetic unit 20 by the CPU.

この実施形態に係る超音波探傷検査方法の実施要領が、先の実施形態に係る超音波探傷検査方法の実施要領と相違するところは、ステップSS3おいて、ステップS1及びステップS2でそれぞれ取得した透過波WTを比較して、両者の差分をアレイ探触子14a11〜14amn毎に求め、各アレイ探触子14a11〜14amnのそれぞれについて回折波WDを取得し、すなわち、健全なデータ採取用被検体2Aに対して超音波探傷検査を実施して得られた信号波の振幅と、検査対象の被検体2に対して超音波探傷検査を実施して得られた信号波の振幅との差分を求めて、欠陥4により発生する回折波WDを抽出する点と、ステップSS4において、ステップSS3で抽出した回折波WDの回折波形を開口合成して図11に示す可視化画像を取得した後、ステップSS5において、この可視化画像に基づいて被検体2内に欠陥4有りと判定する点にある。 The point of execution of the ultrasonic flaw detection inspection method according to this embodiment is different from the point of execution of the ultrasonic flaw detection inspection method according to the previous embodiment. In step SS3, the transmission obtained in step S1 and step S2, respectively. compared waves WT, obtains a difference between the two for each array probe 14a 11 to 14A mn, acquires the diffracted wave WD for each of the array probe 14a 11 to 14A mn, i.e., sound data acquisition Between the amplitude of the signal wave obtained by performing the ultrasonic flaw detection test on the subject 2A and the amplitude of the signal wave obtained by performing the ultrasonic flaw detection test on the subject 2 to be examined The difference is obtained to extract the diffracted wave WD generated by the defect 4, and in step SS4, the diffraction waveform of the diffracted wave WD extracted in step SS3 is aperture synthesized to obtain the visualized image shown in FIG. In step SS5, lies in determining a defect 4 there into the subject 2 based on the visible image.

そして、ステップSS6において、先の実施形態に係る超音波探傷検査方法の実施要領と同様に、ステップSS5で被検体2内に欠陥4有りと判定した場合には、ステップSS4で開口合成した複数のブロックVgにおける各信号強度に基づいて、欠陥4の位置や、大きさ等の欠陥4の性状の推定を行う。   Then, in step SS6, as in the implementation procedure of the ultrasonic flaw detection method according to the previous embodiment, when it is determined in step SS5 that there is a defect 4 in the subject 2, a plurality of apertures synthesized in step SS4 are combined. Based on each signal intensity in the block Vg, the position of the defect 4 and the property of the defect 4 such as the size are estimated.

このように、本実施形態では、検査対象の被検体2、及び、この被検体2と同じ性状の健全なデータ取得用被検体2Aのそれぞれに超音波探傷検査を実施して、健全なデータ取得用被検体2Aから受信した信号波と検査対象の被検体2から受信した信号波とを比較し、両波の各振幅に差が生じている場合には、この振幅の差が被検体2の欠陥4で発生する回折波WDによるものとして、その差分をアレイ探触子14a11〜14amn毎に求めて回折波WDを抽出し、この回折波WDの信号強度に基づいて欠陥4の位置や、大きさ等の性状を推定ないし特定する。 As described above, in the present embodiment, an ultrasonic flaw detection test is performed on each of the subject 2 to be examined and the healthy data acquisition subject 2A having the same properties as the subject 2 to obtain healthy data acquisition. When the signal wave received from the subject 2A is compared with the signal wave received from the subject 2 to be examined, and there is a difference between the amplitudes of both waves, the difference in amplitude is as by the diffraction wave WD generated by the defect 4, the differences obtained for each array probe 14a 11 to 14A mn extracts diffracted wave WD, the position of the defect 4 Ya based on the signal intensity of the diffracted wave WD Estimate or specify properties such as size.

これにより、欠陥4で発生する回折波WDの信号強度は送信された超音波の信号強度よりも弱いので、被検体2が高減衰材である場合でも回折波の減衰が抑制され、検査対象の被検体2に内在する欠陥4の位置や、大きさ等の性状を精度よく特定することができる。
また、透過法を用いて超音波探傷検査を行うので、被検体2の底面からの反射波の影響を受けることなく、被検体2の検査精度を向上させることができる。
Thereby, since the signal intensity of the diffracted wave WD generated at the defect 4 is weaker than the signal intensity of the transmitted ultrasonic wave, the attenuation of the diffracted wave is suppressed even when the subject 2 is a high attenuation material, and the inspection object The position and size of the defect 4 existing in the subject 2 can be accurately identified.
In addition, since the ultrasonic flaw detection inspection is performed using the transmission method, the inspection accuracy of the subject 2 can be improved without being affected by the reflected wave from the bottom surface of the subject 2.

さらに、超音波探傷検査を行った領域のうち、評価する領域を仮想領域Vとして複数のブロック状に区分けし、複数のブロックVg毎に回折波WDの信号波形を開口合成してブロックVgにおける各信号強度Sに基づいて欠陥4の性状を推定するので、欠陥4の性状を精度よく推定することができ、加えて、図11に模式的に示す1つの可視化画像だけで、欠陥4の有無の判定を行い得る。   Further, among the areas subjected to the ultrasonic flaw detection inspection, the area to be evaluated is divided into a plurality of blocks as a virtual area V, and the signal waveform of the diffracted wave WD is aperture-synthesized for each of the plurality of blocks Vg to generate each block Vg. Since the property of the defect 4 is estimated based on the signal intensity S, the property of the defect 4 can be accurately estimated. In addition, the presence / absence of the defect 4 can be determined with only one visualized image schematically shown in FIG. A determination can be made.

次に、本発明に係る超音波探傷検査装置のさらに他の実施形態について説明する。本実施形態は、上記実施形態に対して、回折波の信号強度と受信用探触子14から欠陥4までの距離との関係を変換曲線として予め作成し、その変換曲線に基づいて欠陥4の性状を推定する点が異なっており、その他の構成については共通している。したがって、共通点については説明を省略する。   Next, still another embodiment of the ultrasonic flaw detection inspection apparatus according to the present invention will be described. In the present embodiment, the relationship between the signal intensity of the diffracted wave and the distance from the receiving probe 14 to the defect 4 is created in advance as a conversion curve, and the defect 4 The point of property estimation is different, and other configurations are common. Therefore, description of common points is omitted.

図12は、本実施形態に係る超音波探傷検査装置1Aの概略図である。図12に示すように、この超音波探傷検査装置1Aの演算装置200は、CPUやROM、RAM等のメモリ(図示せず)から構成されている。当該メモリにはプログラムが格納されており、演算装置200がこれらのプログラムを実行することによって、回折波抽出部201、回折強度演算部202、欠陥性状推定部203の各機能が発揮される。また、当該メモリには、後述する変換曲線が格納されている。なお、演算装置200は、回折波抽出部201、回折強度演算部202、欠陥性状推定部203以外の機能も有しているが、本変形例では説明を省略する。   FIG. 12 is a schematic diagram of an ultrasonic flaw detection inspection apparatus 1A according to the present embodiment. As shown in FIG. 12, the arithmetic unit 200 of the ultrasonic flaw detection inspection apparatus 1A is composed of a memory (not shown) such as a CPU, a ROM, and a RAM. Programs are stored in the memory, and when the arithmetic device 200 executes these programs, the functions of the diffraction wave extraction unit 201, the diffraction intensity calculation unit 202, and the defect property estimation unit 203 are exhibited. In addition, a conversion curve described later is stored in the memory. The arithmetic device 200 also has functions other than the diffracted wave extraction unit 201, the diffraction intensity calculation unit 202, and the defect property estimation unit 203, but description thereof is omitted in this modification.

回折波抽出部201は、受信用探触子14のアレイ探触子14aのそれぞれが受信した透過波を処理して、回折波の成分を抽出する。回折強度演算部202は、抽出された回折波の信号強度を演算する。欠陥性状推定部203は、演算された回折波の信号波形に基づいて被検体2に内在する欠陥4の位置を特定すると共に、大きさ等の性状を推定する。   The diffracted wave extraction unit 201 processes the transmitted wave received by each of the array probes 14 a of the receiving probe 14 and extracts a diffracted wave component. The diffraction intensity calculation unit 202 calculates the signal intensity of the extracted diffracted wave. The defect property estimation unit 203 identifies the position of the defect 4 existing in the subject 2 based on the calculated signal waveform of the diffracted wave, and estimates the property such as the size.

次に、本実施形態に係る超音波探傷検査装置1Aを用いた本発明の他の実施形態に係る超音波探傷検査方法の実施要領を説明する。図13は、超音波探傷検査の工程を示すフローチャート、図14は、被検体2と同一性状であり且つ複数の欠陥4が形成された変換曲線作成用被検体2Bの概略図、図15は、送信用探触子12から見て0degの位置にある受信用探触子14が受信した透過波及び回折波を含む合成波の各信号波形、図16は、透過波及び合成波の最大振幅強度を示すグラフ、図17は、図16の合成波の信号波形における回折波形の最大振幅強度を示すグラフ、図18は、受信用探触子14から欠陥4までの距離と、回折の強度との関係を表す変換曲線をそれぞれ示している。   Next, the point of implementation of an ultrasonic flaw detection inspection method according to another embodiment of the present invention using the ultrasonic flaw detection inspection apparatus 1A according to the present embodiment will be described. FIG. 13 is a flowchart showing an ultrasonic flaw detection process, FIG. 14 is a schematic diagram of a subject 2B for creating a conversion curve having the same properties as the subject 2 and a plurality of defects 4 formed thereon, and FIG. Each signal waveform of the synthesized wave including the transmitted wave and the diffracted wave received by the receiving probe 14 at the position of 0 deg when viewed from the transmitting probe 12, FIG. 16 shows the maximum amplitude intensity of the transmitted wave and the synthesized wave. FIG. 17 is a graph showing the maximum amplitude intensity of the diffraction waveform in the signal waveform of the composite wave of FIG. 16, and FIG. 18 is a graph showing the distance from the receiving probe 14 to the defect 4 and the diffraction intensity. The conversion curves representing the relationship are shown respectively.

まず、検査対象の被検体2と同一性状の被検体を2体準備し、一方を上述の欠陥4のない健全なデータ取得用被検体2Aとし、他方を複数の欠陥4が形成された変換曲線作成用被検体2Bとし、詳しくは、図14に示すように、変換曲線作成用被検体2Bは、複数の欠陥4a〜4dが内在するものとする。一例として、変換曲線作成用被検体2Bの中心からの距離をR1〜R6で示し、この変換曲線作成用被検体2Bに形成された欠陥4a〜4dは、送信用探触子12から見て略直線上、即ち0degの位置に内在している。欠陥4の数は、本実施形態において欠陥4a〜4dの4個としているが、欠陥4の数は後述する変換曲線を作成するために十分な数であればこれに限られない。また、領域Pは、送信用探触子12から送信された超音波が変換曲線作成用被検体2B内を伝搬する領域を示している。受信用探触子14は、この領域Pの範囲を走査させればよい。   First, two specimens having the same properties as the subject 2 to be inspected are prepared, one of which is a healthy data acquisition subject 2A without the above-described defect 4, and the other is a conversion curve in which a plurality of defects 4 are formed. Specifically, as shown in FIG. 14, the transformation curve creation subject 2B includes a plurality of defects 4a to 4d. As an example, the distances from the center of the transformation curve creation subject 2B are indicated by R1 to R6, and the defects 4a to 4d formed in the transformation curve creation subject 2B are substantially omitted when viewed from the transmission probe 12. It resides on a straight line, that is, at a position of 0 deg. In the present embodiment, the number of the defects 4 is four, that is, the defects 4a to 4d. However, the number of the defects 4 is not limited to this as long as the number is sufficient to create a conversion curve described later. A region P indicates a region in which the ultrasonic wave transmitted from the transmission probe 12 propagates in the conversion curve creation subject 2B. The reception probe 14 may scan the range of the region P.

送信用探触子12から見た受信用探触子14の位置が0degとなる位置を基準とし、図14において0degから上方向を正の位置、下方向を負の位置とする。図14では、例として変換曲線作成用被検体2Bの中心から送信用探触子12までの距離R1=200mm、変換曲線作成用被検体2Bの中心から欠陥4aまでの距離R2=300mm、変換曲線作成用被検体2Bの中心から欠陥4bまでの距離R3=500mm、変換曲線作成用被検体2Bの中心から欠陥4cまでの距離R4=700mm、変換曲線作成用被検体2Bの中心から欠陥4dまでの距離R5=900mm、変換曲線作成用被検体2Bの中心から受信用探触子14までの距離R6=1000mmとしている。送信用探触子12から送信された超音波が伝搬する範囲Pを受信用探触子14で走査し、それぞれの位置で透過波WT及び回折波WDの信号波形を取得する。なお、図14では、1つの受信用探触子14を走査させているが、複数のアレイ探触子14aを用いてもよい。   With reference to the position where the position of the receiving probe 14 viewed from the transmitting probe 12 is 0 deg, the upward direction from 0 deg in FIG. 14 is the positive position and the downward direction is the negative position. In FIG. 14, as an example, the distance R1 = 200 mm from the center of the conversion curve creation subject 2B to the transmission probe 12, the distance R2 = 300 mm from the center of the transformation curve creation subject 2B to the defect 4a, the conversion curve. Distance R3 = 500 mm from the center of the specimen 2B for creation to the defect 4b, distance R4 = 700 mm from the center of the specimen 2B for creation of the conversion curve to the defect 4c, and from the center of the specimen 2B for creation of the conversion curve to the defect 4d The distance R5 = 900 mm, and the distance R6 = 1000 mm from the center of the conversion curve creation subject 2B to the receiving probe 14. A range P in which the ultrasonic wave transmitted from the transmission probe 12 propagates is scanned by the reception probe 14, and signal waveforms of the transmitted wave WT and the diffracted wave WD are obtained at the respective positions. In FIG. 14, one receiving probe 14 is scanned, but a plurality of array probes 14a may be used.

そして、ステップS11において、変換曲線作成用被検体2Bに対して超音波探傷検査を実施して透過波WT及び回折波WDを取得するのに続いて、ステップS12において、健全なデータ取得用被検体2Aに対して超音波探傷検査を実施して、透過波WTを取得する。   Then, in step S11, after performing ultrasonic flaw detection on the conversion curve creation subject 2B and acquiring the transmitted wave WT and the diffracted wave WD, in step S12, a healthy data acquisition subject. An ultrasonic flaw inspection is performed on 2A to obtain a transmitted wave WT.

次いで、ステップS13において、ステップS11で取得した透過波WT及び回折波WDと、ステップS12で取得した透過波WTとに基づいて、変換曲線を作成する。   Next, in step S13, a conversion curve is created based on the transmitted wave WT and the diffracted wave WD acquired in step S11 and the transmitted wave WT acquired in step S12.

詳しくは、図15に示すように、健全なデータ取得用被検体2Aに超音波探傷検査を実施して取得した透過波WTの最大振幅に対して、変換曲線作成用被検体2Bに超音波探傷検査を実施して取得した距離R5の位置にある欠陥4dからの透過波WTの最大振幅が若干小さくなるので、受信用探触子14を変換曲線作成用被検体2Bの外周上で走査して、この欠陥4dにおける最大振幅を変換曲線作成用被検体2Bの外周の各位置で取得してプロットすることで変換曲線を作成する。   Specifically, as shown in FIG. 15, the ultrasonic inspection is performed on the conversion curve creating subject 2B with respect to the maximum amplitude of the transmitted wave WT obtained by performing the ultrasonic inspection on the healthy data acquisition subject 2A. Since the maximum amplitude of the transmitted wave WT from the defect 4d at the position of the distance R5 obtained by performing the inspection is slightly reduced, the receiving probe 14 is scanned on the outer circumference of the subject 2B for creating the conversion curve. The conversion curve is created by acquiring and plotting the maximum amplitude of the defect 4d at each position on the outer circumference of the subject 2B for creating the conversion curve.

一例として、図16に簡略的に示すように、送信用探触子12からの距離が近い欠陥4aほど、つまり受信用探触子14から距離の遠い欠陥4aほど、透過波WTの最大振幅強度が弱くなる傾向にある。また、健全なデータ取得用被検体2Aから取得した透過波WTの最大振幅強度に対して、欠陥4a(欠陥4b〜4dの波形は省略)から取得した最大振幅強度は、複数のピークに分かれている。このようにして取得した透過波WTの最大振幅強度について、健全なデータ取得用被検体2Aから取得した透過波WTの最大振幅強度と、欠陥4aから取得した透過波WTの最大振幅強度との差分を演算したものを図17に示す。   As an example, as schematically shown in FIG. 16, the maximum amplitude intensity of the transmitted wave WT increases as the defect 4 a is closer to the transmission probe 12, that is, the defect 4 a is farther from the reception probe 14. Tend to be weak. In addition, the maximum amplitude intensity acquired from the defect 4a (the waveforms of the defects 4b to 4d are omitted) with respect to the maximum amplitude intensity of the transmitted wave WT acquired from the healthy data acquisition subject 2A is divided into a plurality of peaks. Yes. Regarding the maximum amplitude intensity of the transmitted wave WT acquired in this way, the difference between the maximum amplitude intensity of the transmitted wave WT acquired from the healthy data acquisition subject 2A and the maximum amplitude intensity of the transmitted wave WT acquired from the defect 4a. FIG. 17 shows a result obtained by calculating the above.

図17に簡略的に示すように、健全な被データ取得用被検体2Aから取得した透過波WTを基準とした透過波WTの最大振幅強度、即ち回折波WDの最大振幅強度のグラフは、ピークが2つに割れた形状として現れる。ここで、2つのピークは略等しい大きさであることから、このピークから2つのピークの間にある谷までの長さ、即ち振幅強度を回折の強度SDとする。   As simply shown in FIG. 17, the graph of the maximum amplitude intensity of the transmitted wave WT based on the transmitted wave WT acquired from the healthy data acquisition subject 2A, that is, the maximum amplitude intensity of the diffracted wave WD is a peak. Appears as a shape broken into two. Here, since the two peaks have substantially the same size, the length from this peak to the valley between the two peaks, that is, the amplitude intensity is defined as the diffraction intensity SD.

一例として、図17には欠陥4aにおける最大振幅強度のグラフにおける振幅強度SD2を示している。このように回折の強度SDを欠陥4a〜4dのそれぞれのグラフから求め、回折の強度SDと受信用探触子14から欠陥4a〜4dまでの距離をプロットし、得られた曲線を変換曲線とする。この変換曲線の例を図18に示す。図18に示すように、各点を曲線で近似した変換曲線を作成することによって、この変換曲線を用いて、回折の強度SDに基づいて欠陥4a〜4dの位置を特定することができる。   As an example, FIG. 17 shows the amplitude intensity SD2 in the graph of the maximum amplitude intensity in the defect 4a. Thus, the diffraction intensity SD is obtained from the respective graphs of the defects 4a to 4d, the diffraction intensity SD and the distance from the receiving probe 14 to the defects 4a to 4d are plotted, and the obtained curve is converted into a conversion curve. To do. An example of this conversion curve is shown in FIG. As shown in FIG. 18, by creating a conversion curve in which each point is approximated by a curve, the positions of the defects 4a to 4d can be specified based on the diffraction intensity SD using this conversion curve.

次に、ステップS14において、検査対象の被検体2に対して超音波探傷検査を実施して、透過波WT及び回折波WDを取得する。   Next, in step S14, an ultrasonic flaw detection inspection is performed on the subject 2 to be inspected to obtain a transmitted wave WT and a diffracted wave WD.

そして、ステップS15において、ステップS11で取得した透過波WT及び回折波WDと、ステップS12で取得した透過波WTとの差分を演算する。詳しくは、ステップS11で取得した透過波WT及び回折波WDの最大振幅強度と、ステップS12で取得した透過波WTの最大振幅強度との差分を演算する。この差分の振幅強度は、回折波WDの振幅強度、即ち回折の強度SDとなる。   In step S15, the difference between the transmitted wave WT and diffracted wave WD acquired in step S11 and the transmitted wave WT acquired in step S12 is calculated. Specifically, the difference between the maximum amplitude intensity of the transmitted wave WT and the diffracted wave WD acquired in step S11 and the maximum amplitude intensity of the transmitted wave WT acquired in step S12 is calculated. The amplitude intensity of this difference becomes the amplitude intensity of the diffracted wave WD, that is, the diffraction intensity SD.

続いて、ステップS16において、ステップS15で求めた回折の強度SDから、ステップS13で作成した変換曲線に基づいて、検査対象の被検体2に内在する欠陥4の位置を推定する。例えば、ステップS15で求めた回折の強度SDが1.04×10-3であった場合には、受信用探触子14から欠陥4までの距離は約400mmとなる。 Subsequently, in step S16, the position of the defect 4 existing in the subject 2 to be inspected is estimated from the diffraction intensity SD obtained in step S15, based on the conversion curve created in step S13. For example, when the diffraction intensity SD obtained in step S15 is 1.04 × 10 −3 , the distance from the receiving probe 14 to the defect 4 is about 400 mm.

このように、本実施形態において、予め欠陥4の距離が測定された変換曲線作成用被検体2Bを用いて変換曲線を作成し、その変換曲線に基づいて検査対象の被検体2に内在する欠陥4の性状を推定する。これにより、検査対象の被検体2の検査精度をより向上させることができる。   As described above, in the present embodiment, a conversion curve is created using the transformation curve creation subject 2B in which the distance of the defect 4 is measured in advance, and the defect inherent in the subject 2 to be inspected based on the transformation curve. 4 properties are estimated. Thereby, the inspection accuracy of the subject 2 to be inspected can be further improved.

以上で実施形態の説明を終えるが、本発明は上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。
例えば、上記実施形態では、本発明に係る超音波探傷検査方法及び超音波探傷検査装置をロケットの高減衰材である固体推進薬の欠陥検出に用いた場合を示したが、例えば、ゴム等の弾性体やプラント等の大型構造物の欠陥検出に用いてもよい。
Although the description of the embodiment has been completed above, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.
For example, in the above-described embodiment, the case where the ultrasonic inspection method and the ultrasonic inspection device according to the present invention are used for detecting a defect of a solid propellant that is a high-damping material of a rocket is shown. You may use for the defect detection of large structures, such as an elastic body and a plant.

また、上記実施形態では、受信用探触子14としてマトリックスアレイを用いているが、1つの受信用探触子14を走査して透過波WT及び回折波WDの信号波形を取得してもよい。   In the above-described embodiment, a matrix array is used as the receiving probe 14. However, the signal waveform of the transmitted wave WT and the diffracted wave WD may be acquired by scanning one receiving probe 14. .

1,1A 超音波探傷検査装置
2 被検体
2A 健全なデータ採取用被検体
2a 被検体の内周面(表裏面のうちの一方の面)
2b 被検体の外周面(表裏面のうちの他方の面)
4 欠陥
12 送信用探触子
14 受信用探触子
20 演算装置(可視化画像を取得する手段)
DESCRIPTION OF SYMBOLS 1,1A Ultrasonic flaw detection apparatus 2 Subject 2A Healthy data collection subject 2a Inner peripheral surface (one surface of front and back surfaces) of subject
2b The outer peripheral surface of the subject (the other surface of the front and back surfaces)
4 Defect 12 Transmitting probe 14 Receiving probe 20 Arithmetic unit (means for acquiring a visualized image)

Claims (7)

超音波が減衰する減衰材からなる被検体の内部における欠陥の有無を超音波を用いて判定する超音波探傷検査方法であって、
前記被検体と同一性状の健全なデータ採取用被検体の表裏面のうちの一方の面に送信用探触子を配置して、該送信用探触子から発信された超音波の前記健全なデータ採取用被検体における欠陥のない部分を透過する透過波を前記健全なデータ採取用被検体の表裏面のうちの他方の面側の複数箇所で欠陥無信号波として予め受信した後、
前記被検体の表裏面のうちの一方の面に送信用探触子を配置して、前記送信用探触子から発信された超音波の前記被検体を透過する透過波を前記被検体の表裏面のうちの他方の面側の複数箇所で本信号波として受信し、
前記健全なデータ採取用被検体に超音波を透過させることで取得した前記欠陥無信号波、及び、前記被検体に超音波を透過させることで取得した前記本信号波の双方を開口合成して、それぞれの可視化画像を取得するのに続いて、前記欠陥無信号波及び前記本信号波の各可視化画像同士を比較して、該欠陥無信号波及び前記本信号波の各可視化画像間に相違点がある場合には、該相違点が前記被検体の欠陥で発生する回折波によるものとして、前記被検体内に欠陥有りと判定する超音波探傷検査方法。
An ultrasonic flaw detection method that uses ultrasonic waves to determine the presence or absence of defects inside an object made of an attenuation material that attenuates ultrasonic waves,
A transmitting probe is arranged on one of the front and back surfaces of a healthy data collection subject having the same property as the subject, and the sound transmitted from the transmitting probe is sound. After receiving a transmitted wave that passes through a defect-free portion in the data collection subject in advance as a defect-free signal wave at a plurality of locations on the other side of the front and back surfaces of the healthy data collection subject,
A transmission probe is arranged on one of the front and back surfaces of the subject, and a transmitted wave of the ultrasonic wave transmitted from the transmission probe and transmitted through the subject is displayed on the surface of the subject. Received as this signal wave at multiple locations on the other side of the back side,
Aperture synthesis of both the defect-free signal wave acquired by transmitting ultrasonic waves to the healthy data collection subject and the main signal wave acquired by transmitting ultrasonic waves to the subject Then, after obtaining the respective visualized images, the respective visualized images of the defect no-signal wave and the main signal wave are compared with each other, and the difference between the visualized images of the defect no-signal wave and the main signal wave is determined. When there is a point, the ultrasonic flaw detection inspection method that determines that the difference exists in the subject as a difference due to the diffracted wave generated by the defect of the subject.
超音波が減衰する減衰材からなる被検体の内部における欠陥の有無を超音波を用いて判定する超音波探傷検査方法であって、
前記被検体と同一性状の健全なデータ採取用被検体の表裏面のうちの一方の面に送信用探触子を配置して、該送信用探触子から発信された超音波の前記健全なデータ採取用被検体における欠陥のない部分を透過する透過波を前記健全なデータ採取用被検体の表裏面のうちの他方の面側の複数箇所で欠陥無信号波として予め受信した後、
前記被検体の表裏面のうちの一方の面に送信用探触子を配置して、前記送信用探触子から発信された超音波の前記被検体を透過する透過波を前記被検体の表裏面のうちの他方の面側の複数箇所で本信号波として受信し、
前記健全なデータ採取用被検体に超音波を透過させることで取得した前記欠陥無信号波と、前記被検体に超音波を透過させることで取得した前記本信号波とを比較して、前記欠陥無信号波及び本信号波に振幅の差が生じている部分がある場合には、該振幅の差が前記被検体の欠陥で発生する回折波によるものとして前記振幅の差分を開口合成し、該振幅の差分を開口合成して得られる可視化画像に基づいて前記被検体内に欠陥有りと判定する超音波探傷検査方法。
An ultrasonic flaw detection method that uses ultrasonic waves to determine the presence or absence of defects inside an object made of an attenuation material that attenuates ultrasonic waves,
A transmitting probe is arranged on one of the front and back surfaces of a healthy data collection subject having the same property as the subject, and the sound transmitted from the transmitting probe is sound. After receiving a transmitted wave that passes through a defect-free portion in the data collection subject in advance as a defect-free signal wave at a plurality of locations on the other side of the front and back surfaces of the healthy data collection subject,
A transmission probe is arranged on one of the front and back surfaces of the subject, and a transmitted wave of the ultrasonic wave transmitted from the transmission probe and transmitted through the subject is displayed on the surface of the subject. Received as this signal wave at multiple locations on the other side of the back side,
The defect no-signal wave acquired by transmitting the ultrasonic wave to the healthy data collection subject and the main signal wave acquired by transmitting the ultrasonic wave to the subject are compared, and the defect If there is a portion where there is a difference in amplitude between the non-signal wave and the main signal wave, the difference in amplitude is aperture-synthesized assuming that the difference in amplitude is caused by a diffracted wave generated in the defect of the subject, An ultrasonic flaw detection inspection method for determining that a defect exists in the subject based on a visualized image obtained by aperture synthesis of amplitude differences.
前記被検体に検査領域を設定すると共に該検査領域をブロック状に分割して複数の検査小領域を設定し、
前記検査領域をブロック状に分割することで設定された複数の前記ブロック毎で得られる前記回折波の信号強度をそれぞれ演算して合成し、
この合成で取得した前記信号強度に基づいて、前記被検体内に有りと判定した前記欠陥の位置を特定する請求項1又は2に記載の超音波探傷検査方法。
Setting an examination area on the subject and dividing the examination area into blocks to set a plurality of examination small areas,
Calculate and synthesize the signal intensity of the diffracted wave obtained for each of the plurality of blocks set by dividing the inspection region into blocks,
The ultrasonic flaw detection inspection method according to claim 1 or 2, wherein the position of the defect determined to be present in the subject is specified based on the signal intensity acquired by the synthesis.
前記被検体と同一性状で且つ複数の欠陥が形成された変換曲線作成用被検体の表裏面のうちの一方の面に前記送信用探触子を配置して、該送信用探触子から発信された超音波の前記変換曲線作成用被検体を透過する透過波を前記変換曲線作成用被検体の表裏面のうちの他方の面側の複数箇所で受信した後、
前記健全なデータ採取用被検体から取得した透過波の信号波形の最大振幅強度と、前記変換曲線作成用被検体から取得した複数箇所における透過波の信号波形の最大振幅強度との差分を演算して前記回折波の振幅強度を求め、前記回折波の信号波形の振幅強度と前記複数の欠陥の位置との関係を表す変換曲線を作成し、
取得した前記回折波の信号波形の振幅強度に基づいて、前記変換曲線から前記欠陥の位置及び大きさ等の性状を推定ないし特定する請求項1又は2に記載の超音波探傷検査方法。
The transmission probe is arranged on one of the front and back surfaces of the subject for creating a conversion curve, which has the same property as the subject and a plurality of defects are formed, and is transmitted from the transmission probe. After receiving the transmitted wave of the ultrasonic wave transmitted through the subject for creating the conversion curve at a plurality of locations on the other side of the front and back surfaces of the subject for creating the conversion curve,
Calculate the difference between the maximum amplitude intensity of the signal waveform of the transmitted wave acquired from the healthy data collection subject and the maximum amplitude intensity of the signal waveform of the transmitted wave obtained from the subject for generating the conversion curve. Obtaining the amplitude intensity of the diffracted wave, and creating a conversion curve representing the relationship between the amplitude intensity of the signal waveform of the diffracted wave and the positions of the plurality of defects,
The ultrasonic flaw detection method according to claim 1, wherein properties such as a position and a size of the defect are estimated or specified from the conversion curve based on the acquired amplitude intensity of the signal waveform of the diffracted wave.
前記健全なデータ採取用被検体,前記変換曲線作成用被検体及び前記被検体の各他方の面側における透過波の受信を複数箇所に並べて配置した受信用探触子で行う請求項1又は2に記載の超音波探傷検査方法。   3. The reception probe that arranges the sound wave on the other surface side of each of the subject for collecting the sound data, the subject for generating the conversion curve, and the subject is arranged in a plurality of locations. The ultrasonic flaw detection inspection method as described in 2. 前記健全なデータ採取用被検体,前記変換曲線作成用被検体及び前記被検体の各他方の面側における透過波の受信を一つの受信用探触子を走査させて行う請求項1又は2に記載の超音波探傷検査方法。   3. The sound receiving object, the conversion curve generating object, and transmission waves on the other surface side of the object are received by scanning one receiving probe. The ultrasonic flaw detection inspection method described. 超音波が減衰する減衰材からなる被検体の内部における欠陥の有無を超音波を用いて判定する超音波探傷検査装置であって、
被検体に超音波を入射する送信用探触子と、
前記被検体を介して前記送信用探触子と対向して配置され、前記被検体内を伝搬する超音波を受信する受信用探触子と、
前記被検体と同一性状の健全なデータ採取用被検体における欠陥のない部分に超音波を透過させることで取得した欠陥無信号波、及び、前記被検体に超音波を透過させることで取得した本信号波の双方を開口合成して、それぞれの可視化画像を取得する手段と、
取得した前記欠陥無信号波及び前記本信号波の各可視化画像同士を比較して、該欠陥無信号波及び前記本信号波の各可視化画像間に相違点がある場合には、該相違点が前記被検体の欠陥で発生する回折波によるものとして、前記被検体内に欠陥有りと判定する手段を備える超音波探傷検査装置。
An ultrasonic flaw detection apparatus that uses ultrasonic waves to determine the presence or absence of defects inside a subject made of an attenuation material that attenuates ultrasonic waves,
A transmission probe for injecting ultrasonic waves into the subject;
A receiving probe that is disposed opposite to the transmitting probe via the subject and receives ultrasonic waves propagating in the subject;
A defect-free signal wave obtained by transmitting ultrasonic waves to a defect-free portion in a healthy data collection subject having the same property as the subject, and a book obtained by transmitting ultrasonic waves to the subject Means for aperture synthesis of both of the signal waves to obtain respective visualization images;
When the visualized images of the defect-free signal wave and the main signal wave obtained are compared with each other, and there is a difference between the visualized images of the defect-free signal wave and the main signal wave, the difference is An ultrasonic flaw detection apparatus comprising means for determining that there is a defect in the subject as a result of a diffracted wave generated by a defect of the subject.
JP2014095196A 2014-05-02 2014-05-02 Ultrasonic flaw detection inspection method and ultrasonic flaw detection inspection apparatus Active JP6371575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014095196A JP6371575B2 (en) 2014-05-02 2014-05-02 Ultrasonic flaw detection inspection method and ultrasonic flaw detection inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014095196A JP6371575B2 (en) 2014-05-02 2014-05-02 Ultrasonic flaw detection inspection method and ultrasonic flaw detection inspection apparatus

Publications (2)

Publication Number Publication Date
JP2015212654A true JP2015212654A (en) 2015-11-26
JP6371575B2 JP6371575B2 (en) 2018-08-08

Family

ID=54696989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014095196A Active JP6371575B2 (en) 2014-05-02 2014-05-02 Ultrasonic flaw detection inspection method and ultrasonic flaw detection inspection apparatus

Country Status (1)

Country Link
JP (1) JP6371575B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017098641A1 (en) * 2015-12-10 2017-06-15 株式会社日立製作所 Ultrasonic transmission/reception apparatus and ultrasonic transmission/reception method
CN107144631A (en) * 2017-04-13 2017-09-08 上海理工大学 Retire real-time detecting system and method in a kind of solid rocket propellant combustion face
JP2021004738A (en) * 2019-06-25 2021-01-14 神鋼検査サービス株式会社 Ultrasonic flaw detection machine learning device, ultrasonic flaw detection machine learning method, ultrasonic flaw detection machine learning program, and ultrasonic flaw detection device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0242355A (en) * 1988-08-02 1990-02-13 Hitachi Constr Mach Co Ltd Ultrasonic inspecting device
JP2003004712A (en) * 2001-06-22 2003-01-08 Mitsubishi Electric Corp Ultrasonic flaw detector
JP2004101422A (en) * 2002-09-11 2004-04-02 Toshiba Corp Ultrasonic inspection apparatus
US20130308419A1 (en) * 2012-05-17 2013-11-21 Honeywell International Inc. Ultrasonic non-destructive evaluation methods for friction-welded blisks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0242355A (en) * 1988-08-02 1990-02-13 Hitachi Constr Mach Co Ltd Ultrasonic inspecting device
JP2003004712A (en) * 2001-06-22 2003-01-08 Mitsubishi Electric Corp Ultrasonic flaw detector
JP2004101422A (en) * 2002-09-11 2004-04-02 Toshiba Corp Ultrasonic inspection apparatus
US20130308419A1 (en) * 2012-05-17 2013-11-21 Honeywell International Inc. Ultrasonic non-destructive evaluation methods for friction-welded blisks

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017098641A1 (en) * 2015-12-10 2017-06-15 株式会社日立製作所 Ultrasonic transmission/reception apparatus and ultrasonic transmission/reception method
CN107144631A (en) * 2017-04-13 2017-09-08 上海理工大学 Retire real-time detecting system and method in a kind of solid rocket propellant combustion face
CN107144631B (en) * 2017-04-13 2023-11-07 上海理工大学 Real-time detection system and method for solid rocket propellant combustion surface retreating
JP2021004738A (en) * 2019-06-25 2021-01-14 神鋼検査サービス株式会社 Ultrasonic flaw detection machine learning device, ultrasonic flaw detection machine learning method, ultrasonic flaw detection machine learning program, and ultrasonic flaw detection device

Also Published As

Publication number Publication date
JP6371575B2 (en) 2018-08-08

Similar Documents

Publication Publication Date Title
CN105987950B (en) Ultrasonic flaw detection system, ultrasonic flaw detection method, and aircraft part manufacturing method
US9207639B2 (en) Transforming A-scan data samples into a three-dimensional space for facilitating visualization of flaws
JP6396076B2 (en) Detection method and non-contact acoustic detection system using sound waves
JP2017535786A (en) Method for detecting and characterizing defects in heterogeneous materials via ultrasound
JP6371575B2 (en) Ultrasonic flaw detection inspection method and ultrasonic flaw detection inspection apparatus
CN109196350A (en) Pass through the method for the defects of ultrasound detection material
JP2010266416A (en) Method of processing phased array aperture synthesis and method of evaluating application effect thereof
RU108627U1 (en) PIPELINE ULTRASONIC DEFECTOSCOPY SYSTEM
CN105640497A (en) Signal processing method, acoustic wave processing apparatus, and recording medium
JP2009236620A (en) Ultrasonic flaw detection method
KR101082085B1 (en) Ultrasonic imaging device and Method for controlling the same
JP6061077B2 (en) Ultrasonic flaw detection method and apparatus
JP5742513B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP5974317B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
KR101826917B1 (en) Multi-channel ultrasonic diagnostic method for long distance piping
JP2010127689A (en) Ultrasonic flaw detection device, cross-sectional image forming method, and cross-sectional image forming program
JP2019015530A (en) Thinning display method and thinning display device
CN103743818A (en) Flaw diagnosis method based on wave energy flow diagram and flaw diagnosis system implementing method
JP6761780B2 (en) Defect evaluation method
JP5750066B2 (en) Non-destructive inspection method using guided waves
JP2002139478A (en) Creep damage detection method and device of structural material
KR100485450B1 (en) Ultrasonic testing apparatus and control method therefor
Muhammad et al. ANALYSIS OF GUIDED WAVE PROPAGATION BY VISUALIZING IN‐PLANE AND OUT‐OF‐PLANE MODES
KR101883987B1 (en) Imaging device using non-linear property of utrasonic wave and method for the same
JP2018004275A (en) Inspection system, inspection device and inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180713

R150 Certificate of patent or registration of utility model

Ref document number: 6371575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250