WO2017098641A1 - Ultrasonic transmission/reception apparatus and ultrasonic transmission/reception method - Google Patents

Ultrasonic transmission/reception apparatus and ultrasonic transmission/reception method Download PDF

Info

Publication number
WO2017098641A1
WO2017098641A1 PCT/JP2015/084699 JP2015084699W WO2017098641A1 WO 2017098641 A1 WO2017098641 A1 WO 2017098641A1 JP 2015084699 W JP2015084699 W JP 2015084699W WO 2017098641 A1 WO2017098641 A1 WO 2017098641A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
transmission
reception
ultrasonic
transducer
Prior art date
Application number
PCT/JP2015/084699
Other languages
French (fr)
Japanese (ja)
Inventor
崇秀 寺田
川畑 健一
悠史 坪田
文晶 武
一宏 山中
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/084699 priority Critical patent/WO2017098641A1/en
Publication of WO2017098641A1 publication Critical patent/WO2017098641A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy

Definitions

  • the present invention relates to an ultrasonic transmission / reception apparatus, and more particularly to a technique effective when applied to an apparatus for measuring an object using an ultrasonic signal.
  • Patent Documents 1, 2 and the like propose a method for calculating a physical property value distribution (sound velocity distribution, stress distribution, attenuation amount distribution, etc.) of an object based on a propagation distance). Such a method is also referred to as an ultrasonic tomography method because a cross-sectional image of an object is obtained with respect to predetermined physical property values.
  • ultrasonic waves are transmitted from the upper surface of the object toward the inside, and reflected by the back surface of the object and received by the upper surface of the object.
  • Patent Document 3 discloses the position of a transducer in a transducer array in which a plurality of transducers are arranged, such as a transducer array in which a plurality of transducers are arranged in a ring shape, which is used for detecting breast cancer or the like.
  • a method for calibrating coordinates is disclosed. In this method, a signal delay time from transmission to reception is measured by transmitting and receiving ultrasonic waves with a pair of transducers in a state where no object is arranged, and based on the measurement result, the transducers are measured. The position coordinates are estimated and calibration is performed to compensate the position coordinates.
  • Patent Document 3 calculates the inter-vibrator distance from the signal delay time from transmission to reception between the transducer pairs, and The position coordinates are estimated and the position coordinates are calibrated.
  • a substance different from that at the time of calibration is arranged in the ultrasonic wave propagation space. In this case, it was found that the signal delay time could not be calculated with high accuracy. Therefore, if an object is placed in the ultrasonic propagation space and actually measured, the signal delay time cannot be calculated with high accuracy.
  • An object of the present invention is to provide an ultrasonic transmission / reception apparatus capable of calculating the position coordinates of each transducer with higher accuracy and obtaining an object image with higher accuracy.
  • the present invention provides a transducer array including a plurality of transducers, a transmission unit connected to at least one transducer among the plurality of transducers, and at least one of the plurality of transducers.
  • an ultrasonic transmission / reception apparatus having a reception unit, a calculation unit, and a control unit connected to two other transducers.
  • the transmission unit receives an electrical signal from the control unit, amplifies the electrical signal, generates a transmission signal, outputs the transmission signal to the connected transducer, and the transducer that receives the transmission signal transmits the transmission signal. It converts into an ultrasonic signal and transmits toward a predetermined space.
  • the other transducers that have received the ultrasonic signal propagating in the predetermined space convert the ultrasonic signal into a received signal that is an electrical signal, and the receiving unit amplifies the received signal and outputs the amplified received signal.
  • the calculation unit calculates an image of the object arranged in a predetermined space based on the amplified received signal and one or more of a plurality of parameter values obtained in advance.
  • the parameter value includes a signal response characteristic in at least one of the transmitter and the transducer connected to the transmitter, and between the transducer and the receiver connected to the transducer, and position information of the transducer. ,including.
  • the control unit has a calibration mode for adjusting the parameter value. In the calibration mode, an ultrasonic signal is transmitted and received by operating the transmission unit and the reception unit, and signal response characteristics and position information of the transducer are calculated.
  • FIG. 6A is a plan view of an transducer array of an ultrasonic transmission / reception apparatus according to a second embodiment
  • FIGS. 5B to 5G are diagrams illustrating examples of information stored in a storage unit.
  • 10 is a flowchart for explaining the operation of a modification of the calibration mode of the ultrasonic transmission / reception apparatus according to the second embodiment.
  • 10 is a flowchart for explaining the operation of a modification of the calibration mode of the ultrasonic transmission / reception apparatus according to the second embodiment.
  • (A) It is a flowchart explaining operation
  • (b) It is a flowchart explaining the modification of measurement mode.
  • FIG. 7A is a plan view of an transducer array of an ultrasonic transmission / reception apparatus according to a third embodiment
  • FIGS. 5B to 5G are diagrams illustrating examples of information stored in storage units.
  • (A) And (b) It is a flowchart which shows operation
  • Explanatory drawing which shows the example of a display screen of the calibration result in the calibration mode of Fig.19 (a). It is a flowchart which shows operation
  • FIG. 26 is an explanatory diagram illustrating a display screen example of a calibration result in the calibration mode of FIG. 25.
  • an ultrasonic wave transmitting transducer in addition to the ultrasonic wave propagation time between the ultrasonic wave transmitting transducer and the receiving transducer, an ultrasonic wave transmitting transducer.
  • the signal response time between the transmitter that outputs the transmission signal that is an electrical signal and the transducer, and the signal response time between the transducer that receives the ultrasonic wave and the receiver that receives the received signal are errors. I found it included.
  • the signal response time between the transmission unit and the vibrator is such that the transmission unit receives an input of an electrical signal to be transmitted from the control unit, and then the transmission unit amplifies the electrical signal to generate a transmission signal.
  • the signal response time between the receiver and the transducer is converted into a received signal that is an electrical signal after the ultrasonic wave reaches the transducer including the matching layer and acoustic lens, and the receiver amplifies the received signal. It is the time until output.
  • the compensated position coordinate is a signal response to the signal delay time. It contains an error due to the inclusion of time.
  • the propagation characteristic of the propagation space of the ultrasonic signal is the same as that at the time of calibration (that is, if the measurement target object (object) does not exist in the propagation space)
  • the transmitted signal is transmitted and received Since the timing received by the unit coincides with a desired value, at first glance, it seems that the error has been removed from the measurement result.
  • the object since the object is arranged, it is impossible to accurately calculate the propagation time and propagation path of the ultrasonic wave. For this reason, it is not possible to obtain an accurate physical property value such as sound velocity or attenuation.
  • the transducer position coordinates include an error in signal response time (an error that is not a function of position coordinates)
  • the signal delay time between multiple sets of transmitters and receivers is measured, and each signal delay time
  • the position coordinates of the transducer become different position coordinates. Therefore, for example, if one position coordinate is obtained by averaging a plurality of position coordinates, an error occurs.
  • the position coordinates are individually given to each combination of the transmission unit and the reception unit, and the vibrator is moved in a pseudo manner according to the combination of the transmission and reception units.
  • matrix calculation for obtaining physical property values such as sound speed and attenuation amount to be measured cannot be performed.
  • the signal gain from the transmission unit to the reception unit for example, the intensity ratio between the transmission signal and the reception signal.
  • the signal conversion gain between the transmitter and the transducer that outputs the transmission signal to the transducer and The inventors have found that a signal conversion gain between a transducer that receives ultrasonic waves and a receiving unit that amplifies the received signal is included as an error.
  • the signal conversion gain between the transmission unit and the transducer is a signal gain between the electric signal received by the transmission unit from the control unit and the ultrasonic wave radiated from the transducer.
  • the signal conversion gain between the receiving unit and the transducer is a signal gain between the ultrasonic signal reaching the transducer and the received signal after amplification by the receiving unit.
  • the signal gain from the transmission unit to the reception unit includes an error in the signal conversion gain, the physical property value of the object cannot be calculated with high accuracy as in the case of the signal delay time.
  • the error of the signal conversion gain included in the signal gain from transmission to reception is removed, and the position coordinates of the transducer are calculated.
  • the ultrasonic transmitting / receiving apparatus includes a transducer array 2 including a plurality of transducers 1a to 1d and at least one transducer among the plurality of transducers 1a to 1d.
  • the transmission unit 6 connected to 1a
  • the reception unit 7 connected to at least one other transducer 1d among the plurality of transducers 1a to 1d
  • the arithmetic unit 20 connected to the control unit 4.
  • the transmission unit 6 receives the electric signal S1 to be transmitted from the control unit 4, amplifies it to generate a transmission signal S11, and outputs it to the connected transducer 1a.
  • the transducer 1a that has received the transmission signal S11 converts the transmission signal S11 into an ultrasonic signal S21 and transmits the ultrasonic signal S21 toward a predetermined space (propagation space) 30.
  • the other transducer 1d to which the ultrasonic signal S21 that has propagated through the predetermined space 30 arrives converts the ultrasonic signal S21 into a reception signal S31 that is an electrical signal.
  • the receiving unit 7 amplifies the received signal S31 from the other transducer 1d and outputs the amplified received signal S41.
  • the calculation unit 20 calculates an image of the object placed in the predetermined space 30 based on the amplified received signal S41 and one or more of a plurality of parameter values obtained in advance.
  • the plurality of parameter values are stored in the parameter storage unit 19.
  • the parameter value is a signal response characteristic between the time when the transmission unit 6 receives the electrical signal S1 and the time when the transducer 1a connected to the transmission unit 6 transmits the ultrasonic signal S21. At least one of signal response characteristics from when the ultrasonic signal S21 arrives at the transducer 1d to when the receiving unit 7 connected to the other transducer 1d outputs the received signal S41 after amplification, and the transducer 1a, 1d position information.
  • the control unit 4 has a calibration mode 4a for adjusting a parameter value used by the calculation unit 20 for calculation.
  • the control unit 4 operates the transmission unit 6 and the reception unit 7 to transmit / receive the ultrasonic signal S21, and obtains the signal response characteristics R1 and R2 and the position information of the transducers 1a and 1d. calculate.
  • the signal response characteristics R1 (signal response time R1t ⁇ signal conversion gain R1A), R2 (signal response time R2t ⁇ signal conversion gain R2A) and the positional information of the transducers 1a and 1d are calculated and calibration is performed.
  • the signal response characteristics R1 and R2 between the transmission unit 6 and the transducer 1a and between the other transducer 1d and the reception unit 7 are amplified by the reception unit 7 after the transmission unit 6 receives the electric signal S1. It is possible to reduce errors caused by being included in the characteristics (signal propagation characteristics PR (signal delay time PRt ⁇ signal gain PRA)) until the subsequent reception signal S41 is output.
  • the parameter value used by the calculation unit 20 for calculating the image of the object can be adjusted with high accuracy, and the accuracy of the image of the object can be improved.
  • the control unit 4 performs the signal delay time PRt from the timing T1 when the transmission unit 6 receives the electrical signal S1 from the control unit 4 to the timing T4 when the reception unit 7 outputs the amplified reception signal S41. Is calculated (FIG. 1B). Based on the calculated signal delay time PRt, the control unit 4 transmits, as signal response characteristics R1 and R2, the timing T2 at which the ultrasonic signal S21 is transmitted from the transducer 1a from the timing T1 when the transmission unit 6 receives the electrical signal S1.
  • the control unit 4 has an intensity ratio A4 between the intensity A1 of the electrical signal S1 received from the control unit 4 by the transmission unit 6 and the intensity A4 of the amplified reception signal S41 output from the reception unit 7.
  • a signal gain PRA that is / A1 may be obtained.
  • the control unit 4 Based on the intensity ratio A4 / A1, the control unit 4 converts the signal during transmission between the intensity A1 of the electrical signal S1 and the intensity S2 of the ultrasonic signal S21 transmitted by the vibrator 1a as the signal response characteristic R1.
  • the control unit 4 calculates the position information of the transducers 1a and 1d and the ultrasonic wave propagation gain P1A between the transducers 1a and 1d with higher accuracy.
  • the control unit 4 adjusts the parameter value in the parameter storage unit 19 used by the calculation unit 20 for calculating the image, based on the signal response characteristics R1 and R2 calculated in the calibration mode 4a and the position information of the transducers 1a and 1d. Is possible.
  • control unit 4 has a measurement mode 4b that transmits an ultrasonic signal to the object and causes the calculation unit 20 to calculate an image.
  • the control unit 4 calculates in the calibration mode 4a. It is also possible to adjust the position coordinates of the vibrators 1a and 1d by operating the drive unit according to the position information.
  • the calculation unit 20 is connected to the transducer 1a to which the transmission unit 6 is connected and the reception unit 7 based on the amplified reception signal S41 received from the reception unit 7 and the parameter value of the parameter storage unit 19.
  • the ultrasonic propagation characteristic P1 of the ultrasonic signal S21 between the transducer 1d can be obtained by reducing errors due to the signal response characteristics R1 and R2.
  • Based on the ultrasonic propagation characteristic P1 of the obtained ultrasonic signal S21, an image showing the distribution of physical property values (for example, sound speed, stress, attenuation, etc.) of the object can be accurately calculated. Thereby, ultrasonic tomography is realizable.
  • the transducer 1d connected to the receiving unit 7 is arranged at a position where the direct wave of the ultrasonic signal S21 transmitted by the transducer 1a connected to the transmitting unit 6 reaches. It is desirable that For example, the transducer array 2 can be arranged so as to surround a predetermined propagation space 30 as shown in FIG.
  • the ultrasonic signal S21 can be transmitted from any one or more transducers of the plurality of transducers 1a to 1d and can be received by any one or more transducers. It is possible to receive the object by passing or reflecting it through the path. Therefore, it is possible to easily calculate the image of the object.
  • the position coordinates of the transducer can be calculated while suppressing errors in the signal response characteristics R1 and R2 included in the signal propagation characteristics PR from transmission to reception.
  • the distribution of physical property values (attenuation amount, etc.) of the object can be calculated with high accuracy.
  • Second Embodiment An ultrasonic transmission / reception apparatus according to the second embodiment will be described.
  • the ultrasonic transmission / reception apparatus is configured to obtain signal response times R1t and R2t as signal response characteristics R1 and R2.
  • FIG. 2 is a block diagram showing a configuration example of an ultrasonic transmission / reception apparatus including a plurality of transducers 1 according to the second embodiment.
  • the same reference numerals are given to the same configurations as those in FIG. 1A of the first embodiment.
  • the ultrasonic transmission / reception device 5 transmits and receives an ultrasonic wave array S2 (see FIGS. 1A and 1B) connected to the vibrator 1 and the vibrator array 2 including a plurality of vibrators 1 (1a to 1d, etc.).
  • the transducer array 2 is disposed so as to surround a space 30 in which ultrasonic waves are propagated.
  • a parameter storage unit 19 is disposed in the storage unit 9.
  • the transmission / reception unit 3 includes a transmission unit 6, a reception unit 7, and a transmission / reception switch (T / R SW) 8 for switching between transmission and reception.
  • One transmission / reception unit 3 is connected to one transducer 1, and each transmission / reception unit 3 can independently transmit and receive an ultrasonic signal.
  • the control unit 4 can output different signals such as control signals S51 and S52 to the transmission / reception units 3 to perform different controls. For example, the control unit 4 can perform a transmission operation by the transmission / reception unit 3 to which the control signal S51 instructing transmission is input, and can perform a reception operation by the transmission / reception unit 3 to which the control signal S52 instructing reception is input.
  • the transmission unit 6 includes, for example, an amplifier, amplifies the electric signal S1 input from the control unit 4 to a desired intensity, generates a transmission signal S11, and outputs the transmission signal S11 to the vibrator 1.
  • the vibrator 1 includes a structure such as a matching layer and an acoustic lens, and converts (transmits) the transmission signal S11 received from the transmission unit 6 into ultrasonic waves.
  • the sound pressure of the ultrasonic signal radiated from the vibrator 1 changes according to the signal intensity of the transmission signal S11 delivered to the vibrator 1.
  • the signal strength of the transmission signal S11 generated by the transmission unit 6 is set by the control signal S51.
  • the signal response time R1t in the transmission operation of the transmission / reception unit 3 is the time from the timing T1 when the electric signal S1 is input to the transmission unit 6 from the control unit 4 to the timing (T2) when the ultrasonic signal S21 is output from the transducer 1 (T2-T1). It is also possible to arrange a function (for example, a signal delay circuit) for adjusting the signal response time in the transmission operation in the transmission / reception unit 3, and set the desired signal response time R1t by the control signal S51.
  • a function for example, a signal delay circuit
  • the emitted ultrasonic signal S21 passes through the propagation space 30 and reaches another transducer 1.
  • the vibrator 1 includes structures such as a matching layer and an acoustic lens, and converts the arrived ultrasonic signal S21 into a reception signal S31 that is an electric signal and outputs the received signal S31.
  • the receiving unit 7 includes, for example, an amplifier, a filter, and an analog-digital converter, amplifies the electrical signal (received signal S31) output from the vibrator 1, and reduces noise outside a desired frequency band. Then, the signal is quantized and an amplified reception signal S41 is generated and output to the control unit 4.
  • the gain of the amplifier of the receiving unit 7 and the filter constant are set by the control signal S52.
  • the intensity of the electrical signal of the reception signal S31 output from the vibrator 1 changes according to the sound pressure of the ultrasonic signal S21 received by the vibrator 1.
  • the signal response time R2t in the reception operation of the transmission / reception unit 3 is a time (T4-T3) from timing T3 when the ultrasonic signal S21 is input to the transducer 1 to timing T4 when the amplified reception signal S41 is output from the reception unit 7. ).
  • the transmitter / receiver 3 may be provided with a function (for example, a signal delay circuit) for adjusting a signal response time in the reception operation, and may be set to a desired signal response time R2t by the control signal S52.
  • the transmission / reception switch 8 disconnects the connection between the receiving unit 7 and the vibrator 1 during the transmission operation and short-circuits the reception operation. This prevents the receiving unit 7 from being destroyed by the high-voltage transmission signal S11 output from the transmitting unit 6 to the vibrator 1 during the transmission operation.
  • the control unit 4 includes a calibration mode 4a, a measurement mode 4b, and a calculation unit 20.
  • the control unit 4 has a CPU (Central Processing Unit) and a memory in which a program is stored in advance, and the CPU reads and executes the program, whereby the functions of the calibration mode 4a, the measurement mode 4b, and the calculation unit 20 are performed.
  • a CPU Central Processing Unit
  • the control unit 4 is not limited to a configuration that realizes the function by software, and a part or all of the control unit 4 may be a custom IC (Integrated Circuit) such as ASIC (Application Specific Integrated Circuit) or FPGA. It can also be configured by hardware such as a programmable IC such as (Field-Programmable Gate Array).
  • the control unit 4 controls the transmission / reception unit 3 according to a predetermined procedure, and transmits an ultrasonic signal to the measurement target arranged in the space 30 surrounded by the transducer array 2. S21 is transmitted and the ultrasonic signal 21 that has passed through the space 30 is received.
  • the control unit 4 calculates one or more parameter values using a received signal or the like, and adjusts (calibrates) the parameter values stored in the parameter storage unit 19.
  • the computing unit 20 uses the received signal obtained in the measurement mode 4b, the computing unit 20 computes the obtained received signal S41 after amplification using the parameter value stored in the parameter storage unit 19, thereby obtaining the space 30.
  • the ultrasonic signal S21 transmitted from a certain transducer 1 passes (propagates) through the space 30 through a predetermined path while being transmitted through the measurement target or reflected on the surface of the measurement target and the end face of the internal structure. And received by another vibrator 1.
  • the calculation unit 20 can calculate the time (ultrasonic propagation time) that the ultrasonic signal S ⁇ b> 21 propagates through the space 30 and obtain the sound speed of the measurement target. .
  • the ultrasonic propagation time is a time (T3-T2) from when an ultrasonic signal is output from one transducer 1 to when an ultrasonic signal is input to another transducer 1.
  • the sound speed can be obtained from the ultrasonic propagation time and the distance between the two transducers 1.
  • the sound speed distribution of the measurement target can be calculated by obtaining the sound speed for each of a plurality of different propagation paths and performing matrix calculation or the like. Also, other physical property values can be calculated based on the speed of sound.
  • the storage unit 9 stores information such as settings related to the transmission / reception operation of each transmission / reception unit 3 and the signal waveform of the electric signal S1 output to the transmission unit 6.
  • the parameter storage unit 19 of the storage unit 9 stores values such as the signal response times R1t and R2t of each transmitter / receiver 3 obtained in advance and the position coordinates of each transducer 1 in the transducer array 2.
  • the display unit 10 displays the measurement result (image) of the measurement target, displays the position coordinates of each transducer 1 in the transducer array 2, the signal response times R1t and R2t of each transmission / reception unit 3, and the like.
  • the operator gives an instruction to the control unit 4 or exchanges information with other devices through the operation unit 40.
  • FIG. 3A is an example of the arrangement of the transducers 1 in the transducer array 2.
  • FIGS. 3B to 3G are tables showing examples of information stored in the parameter storage unit 19 of the storage unit 9.
  • the transducer array 2 has a structure in which the transducers 1 are arranged in a ring shape on a plane expressed by the orthogonal x-axis and y-axis.
  • the transmitting / receiving unit 3 connected to the vibrators 1a, 1b, 1c is represented by 3a, 3b, 3c, respectively, and the transmitting unit 6 and the receiving unit 7 in the transmitting / receiving unit 3 are respectively represented by 6a, 6b, 6c and 7a, 7b, 7c, the signal response time R1t between the transducers 1a, 1b, 1c and the transmission unit 6 of the transmission / reception units 3a, 3b, 3c, and the transducers 1a, 1b, 1c and the transmission / reception units 3a, 3b, 3c.
  • the signal response time R2t with the receiving unit 7 is stored in the parameter storage unit 19 as in the table of FIG.
  • the signal response time R1t in the transmission operation of the transmission / reception unit 3a is 0.1 ⁇ s
  • the signal response time R2t in the reception operation is 0.3 ⁇ s.
  • the parameter storage unit 19 also stores the signal delay time PRt between the transmission / reception units 3 when the space 30 is filled with a predetermined substance as shown in the table of FIG.
  • the transmission unit 6 and the reception unit 7 in the transmission / reception units 3a, 3b, and 3c connected to the vibrators 1a, 1b, and 1c are represented by 6a, 6b, 6c, and 7a, 7b, and 7c, respectively.
  • the transmission / reception unit starts from the timing T1 when the electrical signal S1 is input from the control unit 4 to the transmission unit 6a in the transmission / reception unit 3a.
  • the signal delay time PRt until the timing T4 when the amplified reception signal S41 is output from the reception unit 7 in 3b is 94.68 ⁇ s. This is because the ultrasonic wave propagation time P1t obtained using the distance between the transducers obtained from the position coordinates of the transducers 1a and 1b and the sound speed, the signal response time R1t in the transmission operation of the transmission / reception unit 3a, and the transmission / reception unit 3b. Is the sum of the signal response time R2t in the receiving operation.
  • FIG. 3E shows a table of position coordinates stored in the parameter storage unit 19 when the position coordinates of the vibrator 1b are shifted by 0.2 mm toward the vibrator 1a along the x axis.
  • Such positional coordinate deviation (error) is caused by manufacturing variations of the transducer 1b, assembly errors of the transducer array 2, and the like.
  • FIG. 3 (f) is an example of a table representing signal response times R1t and R2t when the signal response time R1t in the transmission operation of the transmission / reception unit 3c is 0.1 ⁇ s later than the table of FIG. 3 (c). .
  • Such an error in the signal response time R1t is caused by deterioration of each component over time or change in usage environment, manufacturing variation of the transducer 1c, manufacturing variation of the transmission unit 6c, and manufacturing of a cable connecting the transducer 1c and the transmission unit 6c. This may occur due to variations, timing errors of the clock signal input from the control unit 4 to the transmission unit 6c, and the like.
  • the signal delay time PRt is as shown in the table shown in FIG.
  • the difference between the tables in FIGS. 3D and 3G is due to the error in the position coordinates of the transducer 1b and the error in the signal response time R1t in the transmission operation of the transmission / reception unit 3c.
  • the position coordinates of the vibrator 1 are not limited to being expressed by the orthogonal x-axis and y-axis, but may be polar coordinates expressed by a distance and an angle from the origin, coordinates in a three-dimensional space, or any other coordinate system.
  • the above-described parameter values stored in the parameter storage unit 19 are not limited to being stored in the form of a table, but may be stored in other formats.
  • FIG. 4 is a diagram showing another shape example of the transducer array 2 of the ultrasonic transmission / reception device 5 according to the second embodiment.
  • the arrangement of the transducers 1 in the transducer array 2 is not limited to a circle as shown in FIG.
  • the transducer array 2 receives, by another transducer 1, a signal in which the ultrasonic signal S 21 transmitted from a certain transducer 1 is transmitted through the measurement target or reflected from the surface of the measurement target and the end face of the internal structure.
  • Any shape can be used. That is, as long as there is no obstacle in the space 30, it is only necessary that one vibrator 1 and another vibrator 1 are in a line-of-sight state.
  • the transducer array 2 may be oval, polygonal (FIG. 4A), or partially recessed (FIG. 4B).
  • the transducer array 2 is not limited to a closed loop shape, and may be a shape in which a part of the transducer array 2 is open (FIG. 3C). Further, the transducer array 2 may have a shape including a plurality of transducer sub-arrays 11 (FIGS. 3D and 3E).
  • the transducer subarrays 11 are not necessarily separated from each other.
  • the shape of FIG. 3A may be configured by combining a plurality of transducer subarrays 11.
  • the shape of the transducer array 2 is not limited to the shape in which the transducers 1 are arranged on a two-dimensional plane, and may be a shape in which the transducers 1 are arranged in three dimensions such as a cylindrical shape or a hemisphere (FIG. 3). (F)).
  • FIGS. 5A and 5B are signal waveform diagrams for explaining an operation example of the ultrasonic transmission / reception apparatus 5 according to the second embodiment.
  • FIG. 5A shows an example in which the space 30 inside the transducer array 2 is viewed with a predetermined substance such as water and the sound velocity distribution is constant, and is used in the calibration mode 4a.
  • the ultrasonic signal S21 is transmitted from the vibrator 1a at the timing T2, and the ultrasonic signal S21 is received by the vibrators 1b, 1c, and 1d.
  • Timings T3b, T3c, and T3d at which the ultrasonic signals S21 are received by the transducers 1b, 1c, and 1d depend on the distance between the transducer 1a and the transducers 1b, 1c, and 1d. Therefore, the transducer 1b closest to the transducer 1a first receives the ultrasonic signal S21, then the transducer 1c receives, and finally the transducer 1d receives.
  • FIG. 5B is an example in which the measurement object A composed of a substance having a slow sound speed is arranged in the space 30 in the state of FIG. 5A, and is a state when measurement is performed in the measurement mode.
  • the substance constituting the measurement object A has an acoustic impedance different from that of the surrounding water or the like.
  • part of the energy of the ultrasonic signal S21 transmitted from the transducer 1a is reflected on the surface of the measurement target A, or the signal is absorbed or scattered inside the measurement target A.
  • the speed of sound is reduced inside the measurement object A.
  • the vibrators 1c and 1d receive the transmitted wave that has passed through the measurement A.
  • the signal intensity of the transmitted wave is reduced due to reflection, absorption, and scattering, and the reception timings T3c and T3d are later than in the case of FIG. 5A (indicated by a dotted line).
  • the transmission wave is received at the same timing T3b-1 as in FIG.
  • the reflected wave reflected from the surface of the measuring object A is received at a timing T3b-2 that is delayed by the propagation distance.
  • the calculation unit 20 includes the transducer 1 that performs the transmission operation and the transducer that performs the reception operation.
  • FIG. 6 is a sequence diagram for explaining the operation of each part in the calibration mode 4a.
  • FIG. 7 is a flowchart showing the overall flow of the operation of the control unit 4.
  • FIGS. 8A, 8B, and 9 are flowcharts showing detailed operations of the control unit 7 in the calibration mode 4a.
  • FIG. 10 is a sequence diagram for explaining the operation of each part in the measurement mode 4b.
  • FIGS. 11A and 11B are flowcharts showing detailed operations of the control unit 7 in the measurement mode 4b.
  • FIG. 12 shows an example of a calibration result display screen.
  • the control unit 4 when the operator turns on the power switch or the calibration instruction button of the operation unit 40 and the calibration start instruction signal S61 is input, the control unit 4 performs the calibration mode in the memory.
  • the calibration mode 4a is started by reading and executing the program (see steps S601 and S602 in FIG. 7).
  • a configuration may be adopted in which a display that prompts the operator to start calibration is displayed on the display unit 10 every time a predetermined time elapses, and an instruction to start calibration is received from the operator.
  • the space 30 inside the transducer array 2 is a substance having a known sound velocity, For example, it is filled with water.
  • a display that prompts the operator to fill the space 30 with, for example, water can be displayed on the display unit 10. According to this, the operator operates to fill the space with water.
  • the calibration instruction button of the operation unit 40 is a two-step switch, and the control unit 4 displays a display prompting the operator to fill the space 30 with, for example, water when the first step is operated.
  • a device that fills the space 30 with water (not shown), for example, is used in combination with the ultrasonic transmission / reception device 5, or a device (not shown) that fills the space 30 with water, for example, is provided in the ultrasonic transmission / reception device 5. It is also possible to fill the space 30 with water at the start of S602.
  • the calibration mode 4a will be specifically described with reference to the sequence diagram of FIG.
  • the control unit 4 accesses the parameter storage unit 19 of the storage unit 9 and reads various parameter values for calibration (see step S101 in FIG. 8).
  • This parameter value is a value set as a default value or a value stored by the previous calibration.
  • the parameters are the position coordinates of each transducer 1 in the transducer array 2, the signal response times R1t and R2t in the transmission operation and reception operation of each transmission / reception unit 3, and the signal conversion gain in the transmission operation and reception operation of each transmission / reception unit 3.
  • R1A, R2A, transmission signal waveform, reception filter constant, and the like are included.
  • the control unit 4 transmits a transmission / reception operation instruction signal S63 to each transmission / reception unit 3, causes a predetermined transmission / reception unit 3a to perform a transmission operation, and causes the other transmission / reception units 3b and 3c to perform transmission operations.
  • the ultrasonic signal S21 is propagated to the space 30 (step S102).
  • the specific ultrasonic wave propagation operation in step S102 is performed by the control unit 4 while changing the transducer 1 to be transmitted.
  • the control unit 4 outputs the electrical signal S1 of the transmission signal waveform read out as the parameter value from the parameter storage unit 19 to the transmission unit 6 of the transmission / reception unit 3 selected as the transmission unit, and generates the transmission signal S11.
  • a reception filter constant or the like is set as a parameter value to the transmission / reception unit 3 selected as the reception unit, and a reception operation is instructed.
  • the ultrasonic signal S21 is transmitted from the transducer 1 connected to the transmission / reception unit 3 selected as the transmission unit, and is received by the transducer 1 connected to the reception unit 7 of the transmission / reception unit 3 selected as the reception unit.
  • the reception signal S31 is filtered and amplified by the reception unit 7 to generate an amplified reception signal S41 and is output to the control unit 4.
  • the control unit 4 calculates a signal delay time PRt that is a difference between the timing T4 at which the amplified reception signal S41 is output from the reception unit 7 and the timing T1 at which the electrical signal S1 is output to the transmission unit 6, and serves as the transmission unit. Calculation is made for each combination of the selected transmission / reception unit 3 and the transmission / reception unit 3 selected as the reception unit, and is written in the storage unit 9 (step S109).
  • the information written in the storage unit 9 may include signal waveform data of the amplified received signal S41 in addition to the signal delay time PRt.
  • step S107 to S109 repeats the operations in steps S107 to S109 until the transmission operation is performed with all the N transmitting / receiving units 3 as transmission units (steps S110 and S111).
  • step S102 for propagating the ultrasonic signal S21 to the space 30 is completed.
  • step S109 for calculating and writing the signal delay time PRt to the storage unit 9 may be performed collectively after step S110 in which it is determined that all of the N transmission / reception units 3 are to be transmitted.
  • the transmission / reception part 3 which the control part 4 selects as a transmission part is not restricted to one, Plural may be sufficient.
  • a plurality of transmission / reception units 3 may be simultaneously operated to transmit a composite wave of ultrasonic signals.
  • the transmission / reception unit 3 selected by the control unit 4 as the reception unit may not be all except the transmission / reception unit 3 selected as the transmission unit.
  • the positional relationship with the transmission / reception unit 3 that performs the transmission operation and the shape of the transducer array 2 The transmission / reception unit 3 selected according to the environment inside the transducer array 2 may be used.
  • the transmission / reception unit 3 may be instructed to perform the reception operation and receive the reflected wave of the transmitted ultrasonic signal S21.
  • step S104 the control unit 4 proceeds to step S103 in FIG. 8A, and reads out information on the signal delay time PRt for all the transmission / reception units 3 stored in step S109 from the storage unit 9. Then, a new parameter value is calculated based on all the signal delay times PRt (step S104). Specifically, the position coordinates of all the transducers 1 in the transducer array 2, the signal response time R1t in the transmission operation of all the transmission / reception units 3, and the signal response time R2t in the reception operation are obtained as new parameter values. The detailed operation of step 104 will be described later in detail.
  • control unit 4 writes the new parameter values (position coordinates and signal response times R1t, R2t) obtained in step S104 into the parameter storage unit 19 of the storage unit 9 as calibrated parameter values and displays them.
  • the information is displayed on the unit 10 (step S105).
  • control unit 4 displays on the display unit 10 a display for confirming to the operator whether or not the measurement mode may be performed based on the calibration result (new parameter value) (step S603 in FIG. 7). If the operator agrees, the control unit 4 proceeds to the measurement mode (step S604). On the other hand, if the operator determines that it is not appropriate to perform the measurement mode with the parameter values after calibration, maintenance (step S607) or the like can be instructed. Note that it is also possible to write the calibrated parameter value in the parameter storage unit 19 after the operator agrees in step S603. Further, it may be simplified such that confirmation of the calibration result to the operator (step S603) is omitted, and only that the calibration is completed is notified. Or you may substitute by changing to other states, such as a state which can receive the measurement start instruction demonstrated below and an ultrasonic transmission / reception apparatus.
  • the position coordinates of the transducer 1 in the transducer array 2 and the signal response time of the transmission / reception unit 3 can be calibrated.
  • the control unit 4 is based on the parameter values (vibrator position coordinates, signal response times R1t, R2t) read from the parameter storage unit 19 in step S101 and the sound speed of the substance filled in the space 30.
  • the signal delay time PRt is calculated (step S164). Specifically, the control unit 4 calculates the distance between the transducers 1 that have transmitted and received from the position coordinates of the transducers read from the parameter storage unit 19, and divides this by the sound speed, The ultrasonic propagation time P1t of the parameter value (default) is calculated. Further, the control unit 4 calculates the default signal delay time PRt by adding the calculated ultrasonic propagation time P1t and the signal response times R1t and R2t of the transmission / reception unit 3 connected to these transducers. .
  • the control unit 4 calculates the difference between the signal delay time PRt read in step S103 and the default signal delay time PRt calculated in step S164 (step S165).
  • the difference from the default signal delay time PRt is not more than a predetermined value (for example, If the sum of squares of the signal delay time difference is within a predetermined value)
  • the position coordinates of the parameter values and the signal response times R1t and R2t read from the parameter storage unit 19 in step S101 are the current position coordinates of the transducer 1 and the transmission / reception unit.
  • the signal response times R1t and R2t are within a predetermined value.
  • step S166 the control unit 4 does not calculate the new position coordinates and the signal response times R1t and R2t, and proceeds to step S105 as it is (step S166).
  • step S167 the process proceeds to step S167 to calculate the current position coordinates of the transducer 1 and the signal response times R1t and R2t of the transmission / reception unit.
  • steps S167 to S173 new position coordinates and signal response times R1t and R2t are set, the signal delay time PRt calculated from the new position coordinates and signal response times R1t and R2t, and the signal delay time PRt measured in step S102.
  • the new position coordinates and signal response times R1t and R2t are calculated by the least square method so that the sum of squares of the difference between the two is minimized.
  • the signal delay time PRt is calculated.
  • the position coordinate X that minimizes the sum of squares of the difference between the signal delay time PRt calculated from the new position coordinates X and Y and the signal response times R1t and R2t and the signal delay time PRt measured in step S102 is calculated. (Step S168).
  • the X coordinate is the coordinate calculated in step S168
  • the signal response times R1t and R2t are parameter storage units.
  • the signal delay time PRt is calculated using the value read from 19.
  • the position coordinate Y that minimizes the sum of squares of the difference between the signal delay time PRt calculated from the new position coordinates X and Y and the signal response times R1t and R2t and the signal delay time PRt measured in step S102 is calculated. (Step S169).
  • the signal response time R2t is calculated using the value read from the parameter storage unit 19, and the signal delay time PRt is calculated. Accordingly, the signal response time R1t that minimizes the sum of squares of the difference between the signal delay time PRt calculated from the new position coordinates X and Y and the signal response times R1t and R2t and the signal delay time PRt measured in step S102 is obtained. Calculate (step S170).
  • the signal delay time PRt is calculated using the coordinates calculated in S168 and 169 and the signal response time R1t using the value calculated in step S170.
  • the signal response time R2t that minimizes the sum of squares of the difference between the signal delay time PRt calculated from the new position coordinates X and Y and the signal response times R1t and R2t and the signal delay time PRt measured in step S102 is obtained. Calculate (step S171).
  • step S168 to 171 are repeated for all (N) vibrators 1 (steps S172 and 173).
  • new position coordinates and signal response times R1t and R2t with a minimum error from the signal delay time PRt measured in step S102 can be calculated as new parameter values, and step S104 is completed.
  • steps 168 to 171 when calculating the value that minimizes the sum of squares of the difference, if the sum of squares of the difference is less than or equal to a predetermined value, or the amount of decrease in the difference is less than or equal to the predetermined value. When the number of calculations reaches a predetermined number, it may be determined that the sum of squares of the difference is minimized.
  • the signal delay time PRt between the transmission / reception units 3 may be weighted.
  • the transducer array 2 is configured by a combination of the transducer subarrays 11, an error between the position coordinates of the transducer 1 and the signal response time for each transducer subarray 11. Is considered to have a tendency, so that each transducer subarray 11 is weighted.
  • the vibrator 1 has directivity for transmitting and receiving ultrasonic signals due to the element shape, the matching layer, the acoustic lens, and the like. For this reason, in steps 168 to 171, the signal response times R 1 t and R 2 t may be added with directivity typical to the vibrator 1 having the structure. In addition, in some cases, typical directivity characteristics may be greatly different between the vibrator 1 located at the end of the vibrator sub-array 11 and the vibrator 1 located at other positions. Depending on the position in the sub-array 11, typical directivity suitable for each of the signal response times R1t and R2t may be added.
  • step S104 in which the position coordinates and the signal response times R1t and R2t are calculated in steps S164 to S173, the number of parameters of the pair of transducers 1 and the transmission / reception unit 3 is the distance between the transducers 1 and the transmission / reception unit.
  • the signal response time R1t in the transmission operation 3 and the signal response time R2t in the reception operation of the transmission / reception unit 3 are three. Therefore, when there are N sets of transducers 1 and transmission / reception units 3, the number of parameters is 3N.
  • the signal delay time PRt to be measured is N ⁇ (N ⁇ 1) because it is a combination of the transducer 1 and the transceiver 3. That is, 3N parameters are obtained by N ⁇ (N ⁇ 1) simultaneous equations.
  • N is 4 or more, 3N parameters can be uniquely obtained except for other error factors. Therefore, a restriction may be provided such that only the transducer 1 and the transmission / reception unit 3 that are separated by a predetermined distance or more perform a reception operation on the transducer 1 and the transmission / reception unit 3 that perform a transmission operation. In this case, even if the number of the transducers 1 and the transmission / reception units 3 that perform the reception operation is reduced to half, if N is 7 or more, 3N parameters can be uniquely obtained. If the distance between the transducers 1 is known, the position coordinates that are the relative positional relationship of the transducers 1 can be obtained by the principle of triangulation, and the reception operation is performed using this. The number of vibrators 1 may be reduced.
  • step S104 When the position coordinates and signal response time values obtained in step S104 described above differ from the values before calibration (default) by a predetermined value or more, other parameters (transmission signal waveform, signal conversion in transmission operation)
  • the gain R1A, the signal conversion gain R2A in the reception operation, and the parameters such as the reception filter constant may be corrected in the same manner.
  • These corrected parameter values are also written in the parameter storage unit 19 as calibrated parameter values.
  • step S604 the measurement mode (step S604) in FIG. 7 will be described in detail with reference to FIGS.
  • the control unit 4 executes the measurement mode (step 604). Before starting the measurement mode, the operator places a measurement target in the space 30 inside the transducer array 2. Note that the control unit 4 may automatically start the measurement mode by an automatic control program or the like, triggered by the fact that the measurement target is installed in the space 30 inside the transducer array 2.
  • the control unit 4 reads the values of various parameters from the parameter storage unit 19 of the storage unit 9 (step S112).
  • This parameter includes the position coordinates of each transducer 1 and the signal response times R1t and R2t of each transceiver 3.
  • a transmission signal waveform, transmission signal strength, signal conversion gains R1A and R2A of the transmission / reception unit 3, reception filter constants, and the like may be included.
  • the position coordinates of the transducer and the signal response times R1t and R2t are values calibrated in the calibration mode 602.
  • control unit 4 transmits a transmission / reception operation instruction signal 63 to each transmission / reception unit 3, causes the predetermined transmission / reception unit 3 a to perform transmission operation, and causes the other transmission / reception units 3 b and 3 c to perform reception operation.
  • the sound wave signal S21 is propagated to the space 30 (step S113).
  • step S113 Specific ultrasonic wave propagation operation in step S113 is performed by the control unit 4 while changing the vibrator 1 to be transmitted as shown in FIG. 11B.
  • the N 1 first transmission / reception unit 3 is selected as a transmission / reception unit that performs a transmission operation, and the remaining transmission / reception units 3 are selected as reception units that perform a reception operation (steps S117 and S118).
  • the control unit 4 outputs the electrical signal S1 of the transmission signal waveform read out as the parameter value from the parameter storage unit 19 to the transmission unit 6 of each transmission / reception unit 3 selected as the transmission unit, and generates the transmission signal S11.
  • a reception filter constant or the like is set as a parameter value to the transmission / reception unit 3 selected as the reception unit and a reception operation is instructed (step S119).
  • the ultrasonic signal S21 is transmitted from the transducer 1 connected to the Nth transceiver unit 3 selected as the transmission unit (step S119).
  • the Nth transmitting / receiving unit 3 selected as the transmitting unit is selected as a receiving unit, a receiving filter constant or the like is set as a parameter value, and a receiving operation is instructed (step S120).
  • the ultrasonic signal S21 transmitted from the Nth transmitter / receiver 3 passes through the measurement target A arranged in the space 30 as shown in FIG. 5B, and a part thereof depends on the measurement target. Reflected and transmitted waves and reflected waves are received by the vibrator 1 connected to the Nth transmitter / receiver 3, and the reflected wave from the measurement target is connected to the Nth transmitter / receiver 3 that has transmitted the ultrasonic signal S 21.
  • the received transducer 1 also receives the signal (step S121).
  • the reception signal S31 of each transducer 1 is filtered and amplified by the reception unit 7 of the connected transmission / reception unit 3 to generate an amplified reception signal S41 and is output to the control unit 4.
  • the control unit 4 calculates a signal delay time PRt that is a difference between the timing T4 at which the amplified reception signal S41 is output from the reception unit 7 and the timing T1 at which the electrical signal S1 is output to the transmission unit 6. Further, the signal strength of the amplified received signal S41 may be calculated.
  • the calculated signal delay time PRt and the like are written in the storage unit 9 for each combination of the transmission / reception unit 3 selected as the transmission unit and the transmission / reception unit 3 selected as the reception unit (step S122).
  • the information to be written in the storage unit 9 may include signal waveform data of the received signal S41 after amplification in addition to the signal delay time PRt and the intensity information.
  • steps S118 to S122 are repeated until all the N transmission / reception units 3 perform transmission operations (steps S123 and S124). Note that step S122 for calculating and storing the signal delay time PRt may be performed after the repetition determination S123.
  • the transmission / reception part 3 which the control part 4 selects as a transmission part is not restricted to one, Plural may be sufficient.
  • a plurality of transmission / reception units 3 may be simultaneously operated to transmit a composite wave of ultrasonic signals.
  • the transmission / reception unit 3 selected as the reception unit by the control unit 4 is a part selected according to the positional relationship with the transmission / reception unit 3 that performs the transmission operation, the shape of the transducer array 2, and the environment inside the transducer array 2.
  • the transmission / reception unit 3 may be used.
  • control unit 4 proceeds to step S114 in FIG. 11A, and reads out the signal delay times PRt for all the transmission / reception units 3 stored in step S113 from the storage unit 9.
  • the calculation unit 20 of the control unit 4 uses the parameters such as the read signal delay time PRt, the signal intensity, and the position coordinates of the transducer after calibration read in step S112, the shape of the measurement target, the sound speed, A physical property value distribution (map) such as an attenuation amount is calculated, and the calculated shape and physical property value distribution (map) are stored (stored) in the storage unit 9 (step S115).
  • the shape image of the measurement target is a plurality of receptions set in the space 30 by receiving signals from the transducer that has received the ultrasonic signal reflected by the measurement target, as in a general ultrasonic imaging apparatus. It can be generated by performing phasing addition (reception beam forming) for the time focus and converting the signal intensity after phasing addition into luminance. It is also possible to generate a shape image by detecting the boundary of the sound velocity or attenuation distribution in the sound velocity distribution or attenuation distribution that describes the generation method.
  • the sound speed distribution image can be generated as follows.
  • the calculation unit 20 subtracts the signal response times R1t and R2t of each transmission / reception unit 3 that are the parameters after calibration read in step S112 from the read signal delay time PRt, thereby transmitting and receiving the ultrasonic wave.
  • the ultrasonic wave propagation time P1t of the ultrasonic signal S21 between 1 is obtained.
  • the distance between the transducers 1 that have transmitted and received the ultrasonic signal S21 is calculated from the position coordinates of the transducers 1 that are the parameters after calibration read in step S112.
  • the average sound speed of the ultrasonic signal S21 is obtained by dividing the obtained distance between the transducers by the ultrasonic wave propagation time P1t.
  • the average sound velocity at each angle when the ultrasonic signal S21 is transmitted from various angles to the measurement target. can be requested. Since the average sound speed is an average of the sound speed distribution of the path through which the ultrasonic wave has passed (propagated), a known tomography method such as matrix calculation is used so as not to contradict the average sound speed in various paths. Thus, the sound speed distribution (sound speed map) to be measured can be calculated. Thereby, it is possible to generate a sound velocity distribution image of the measurement target on the plane where the transducer array 2 is arranged.
  • an attenuation distribution image can be generated as follows.
  • the arithmetic unit 20 calculates the signal strength of the amplified received signal S41, the signal strength of the electrical signal S1 output from the control unit 4 to the transmission unit 6, and the signal conversion gains R1A and R2A of the transmission / reception unit 3 read in step S112. It is possible to calculate the average attenuation amount between the transducers 1 that have transmitted and received the ultrasonic signal S21.
  • the average attenuation is an average of the attenuation distribution of the path through which the ultrasonic signal S21 passes (propagated).
  • the attenuation distribution (attenuation map) of the measurement target is obtained by using the calculation processing of a known tomography method such as matrix calculation using the average attenuation when the ultrasonic signal S21 is transmitted from various angles. Can be calculated. Thereby, it is possible to generate an attenuation distribution image of the measurement target on the plane on which the transducer array 2 is arranged.
  • the operation in the measurement mode may be performed with a plurality of signal strengths, signal frequencies, signal waveforms, and the like.
  • the calculated shape of the measurement target and the distribution (map) of physical property values such as sound speed and attenuation are displayed on the display unit 10 together with information such as the shape and physical property value (step S116). Note that these measurement results may be displayed together with various parameter values after calibration read from the storage unit 9 in step S112. By displaying various parameter values, the measurement result and the characteristics of the ultrasonic transmission / reception apparatus 5 can be managed in association with each other.
  • step S116 the control unit 4 causes the display unit 10 to display a display asking the operator whether to turn off the power and end the measurement or to continue the measurement (step in FIG. 6). S605). If the operator selects not to turn off the power (No) via the operation unit 40, the control unit 4 returns to step S604 and repeats the measurement mode. On the other hand, when the operator selects to turn off the power (Yes), the control unit 4 displays a display that prompts the interior space 30 of the transducer array 2 to fill a predetermined liquid (for example, water). 10 is displayed. When the operator who sees this fills the space 30 with a predetermined liquid and notifies (confirms) this to the control unit 4 via the operation unit 40, the control unit 4 turns off the power. Accordingly, since the space 30 is filled with a predetermined liquid from the next time the power is turned on (step S601), the calibration mode is executed without bothering the operator. (Step S602).
  • the measurement result confirmation signal can be received from the operator via the operation unit 40.
  • the ultrasonic transmission / reception apparatus can be configured to transition to another state such as a pause state or a state where a measurement start instruction can be accepted.
  • the position coordinates of the calibrated transducer 1, the signal response times R1t and R2t of the transmission / reception unit 3, the measured signal delay time, and the ultrasonic reception signal intensity By using this, it is possible to measure the shape of the measurement object and the physical property values such as the sound speed and the attenuation amount with high accuracy.
  • the display unit 10 can display the position coordinates after calibration and the values of the signal response times R1t and R2t as they are. Further, for example, an ultrasonic signal is transmitted / received to / from an object having a known shape and a physical property value such as sound velocity and attenuation amount in the same manner as in the measurement mode of FIGS. And signal response times R1t and R2t can be used to perform matrix calculation (ultrasonic tomography method) and display the calculated shape of the same object and an image of physical property values such as sound speed and attenuation.
  • FIG. 12 is a screen example of the display unit 10 that displays the calibration result, and has display areas 81 to 84 that display values of position coordinates and signal response times R1t and R2t, and a known shape, sound speed, and attenuation.
  • An ultrasonic signal is transmitted to and received from an object (standard phantom), and the shape image, sound velocity image, and attenuation amount of the standard phantom calculated by the ultrasonic tomography method using the calibrated position coordinates and signal response times R1t and R2t.
  • the differences (errors) between the values of the X and Y coordinates after calibration of each transducer 1 and the initial values (values before calibration) are displayed as graphs.
  • the differences (errors) between the signal response times R1t and R2t after calibration of the transducers 1 and the initial values (values before calibration) are displayed as graphs.
  • a calibration result approval switch object that accepts an operation for approving the calibration result in step S603 of FIG. 7 from the user who has seen the calibration results shown in the display areas 81 to 87. ) 89 can also be displayed.
  • a calibration re-execution switch (object) 88 that accepts an instruction to re-execute the calibration mode 4a from the user can also be displayed on the display screen.
  • object an instruction to re-execute the calibration mode 4a from the user
  • the user can easily grasp the value of the calibration result and the image when the object (standard phantom) is measured using the calibration result. Can do. Therefore, it is possible to support the user's judgment on whether to approve the calibration result or to re-execute it on the display screen.
  • the calibration result may be finely adjusted based on the known shape of the same object (standard phantom) and physical property values such as sound speed and attenuation.
  • the calibration mode 4a when the temperature of the water filling the space 30 is different from the assumption, and the sound speed of the water filling the space 30 used in step S104 is 1% faster, the image of the shape of the object is 1% It is displayed small.
  • the calibrated parameter value related to the distance (positional coordinate) between the transducers 1 is also shortened by 1%. Therefore, fine adjustment is performed so that the distance between the vibrators 1 is increased by 1%. In this way, it is possible to increase the certainty of the calibrated parameter value.
  • the calibration mode 4a of the control unit 4 described above is configured to calculate a new parameter value so that the difference between the measured signal delay time and the signal delay time obtained from the parameter value is minimized.
  • the method of calculating the parameter value in the calibration mode is not limited to this method, and other methods can be used.
  • a calibration mode 4a using another calculation method will be described.
  • ⁇ Modification 1-1> the sound velocity of the substance filling the space 30 inside the transducer array 2 is changed to form a plurality of sound velocity states, and the signal delay time is measured each time.
  • An example of calibrating the signal response times R1t and R2t will be described.
  • FIG. 13 is a flowchart for explaining the operation of the calibration mode 4a (step S602 in FIG. 6) of the modified example 1-1. In FIG. 13, steps that perform the same operation as the step of FIG.
  • the control unit 4 reads parameters such as the position coordinates of the transducer 1 and the signal response time of the transmission / reception unit 3 from the parameter storage unit 19 (step S101).
  • the control unit 4 arranges a first sonic material (for example, water adjusted to a predetermined first temperature) (step S132).
  • the control unit 4 prompts the operator to fill the space 30 with the first sonic substance (step S132).
  • the control unit 4 displays a predetermined display on the display unit 10. If the control unit 4 confirms that the operator has filled the space 30 with the first sonic substance through the operation of the operation unit 40, an ultrasonic signal transmission / reception operation is performed (step S102-1).
  • the operation in step S102-1 is the same as the operation in FIG.
  • step S106 to S111 The ultrasonic signal S21 is transmitted to the space 30, the signal delay time PRt is measured, and stored in the storage unit 9. To do. However, the predetermined value for setting the number of repetitions in step S110 can be reduced as compared to the case of executing steps S106 to S111 in FIG. 8B in step S102 of FIG.
  • the control unit 4 arranges a second sonic material (for example, water adjusted to a predetermined second temperature) (step S134). Specifically, the operator is prompted to fill the space 30 with the second sonic material (step S134). For example, the control unit 4 displays a predetermined display on the display unit 10. If the control unit 4 confirms that the operator has filled the space 30 with the second sonic substance through the operation of the operation unit 40, an ultrasonic signal transmission / reception operation is performed (step S102-2). The operation in step S102-2 is the same as the operation in FIG. 8B (steps S106 to S111). The ultrasonic signal S21 is transmitted to the space 30, the signal delay time PRt is measured, and stored in the storage unit 9. To do.
  • a second sonic material for example, water adjusted to a predetermined second temperature
  • the predetermined value for setting the number of repetitions in step S110 can be reduced as compared to the case of executing steps S106 to S111 in FIG. 8B in step S102 of FIG.
  • the first sonic substance and the second sonic substance may be realized by changing the temperature of the same substance, or may be realized by changing the concentration of the solution, or by changing the type of substance. It may be realized.
  • the operation in which the control unit 4 arranges the space 30 with the first and second sound velocity substances does not prompt the operator, but the ultrasonic transmission / reception device 5 automatically creates the space 30. It is also possible to configure so as to be filled with the first sonic material and the second sonic material.
  • the ultrasonic transmitting / receiving apparatus 5 includes a device that selectively supplies the first sonic substance and the second sonic substance to the space 30 and fills the space 30 with the supplied sonic substance.
  • the control unit 4 reads the signal delay time PRt measured by filling the space 30 with the first and second sound velocity substances in the above-described steps S102-1, 102-2 from the storage unit 9 (step S102-1).
  • step S103 a difference between the signal delay time PRt1 measured by arranging the first sonic substance and the signal delay time PRt2 measured by arranging the second sonic substance is calculated (step S137). Since the signal response times R1t and R2t of the transmission / reception unit 3 included in the signal delay time PRt1 and the signal delay time PRt2 are equal, the difference (PRt1 ⁇ PRt2) is an ultrasonic propagation time P1t in which the ultrasonic signal S21 has propagated through the space 30. Is the difference.
  • the distance between the transducers 1 can be calculated from the difference in signal propagation time (PRt1 ⁇ PRt2) and the difference in sound velocity.
  • the control unit 4 obtains the position coordinates of each transducer 1 from the calculated distance between the transducers 1 by the least square method and stores it in the parameter storage unit 19 (step S138). Thereafter, using the obtained position coordinates of the transducer 1 and the measured signal delay times PRt1 and PRt2, the signal response times R1t and R2t of the transmission / reception unit 3 are obtained by the least square method and stored in the parameter storage unit 19 (step S139).
  • steps S138 and S139 are performed in the same manner as the operations in steps S164 to S173 in FIG. Finally, the calibration results of the position coordinates of the transducer 1 and the signal response times R1t and R2t are displayed on the display unit 10 (step S105).
  • the position coordinates of the transducer 1 in the transducer array 2 and the signal response time of the transmission / reception unit 3 can be calibrated with higher accuracy.
  • the transducer array 2 includes a drive unit that adjusts the position of the transducer 1, and the transmission / reception unit 3 has a function of adjusting the signal response time.
  • the operation of the calibration mode 4a suitable for such a configuration will be described.
  • FIG. 14 is a flowchart for explaining the operation of the calibration mode 4a (step S602 in FIG. 6) of the modified example 1-2.
  • steps that perform the same operations as those in FIG. 8A are denoted by the same reference numerals.
  • the control unit 4 reads the position coordinates of the transducer 1 and the signal response times R1t and R2t of the transmission / reception unit 3 from the parameter storage unit 19 (step S101).
  • the control unit 4 controls the driving unit of the transducer 1 and the adjustment function of the transmission / reception unit 3, and the position coordinates of each transducer 1 and the signal response time of the transmission / reception unit 3 are read in step S ⁇ b> 101 and the signal response. Adjustments are made to the values of time R1t and R2t (step S141).
  • an ultrasonic signal transmission / reception operation is performed (step S102).
  • the operation in step S102 is the same as the operation in FIG. 8B.
  • the ultrasonic signal S21 is transmitted, the signal delay time PRt is measured, and stored in the storage unit 9.
  • step S103 the signal delay time PRt measured in step 102 is read from the storage unit 9 (step S103).
  • the position coordinates adjusted in step S142, and the signal response times R1t and R2t the position coordinates are obtained by the operations in steps S164 to S173 in FIG. 9 in the same manner as in step S104 in FIG.
  • signal response times R1t and R2t are calculated and stored in the parameter storage unit 19 (step S104-1).
  • the specific operation in step 104 is the same as the operation in steps S164 to S173 in FIG.
  • the control unit 4 calculates the sum of squares of errors between the signal delay time PRt calculated in step S104-1, and the signal delay time PRt ′ in the preferable position coordinates and signal response time determined in advance. It is determined whether the error sum of squares has converged (step S142). For example, when the error sum of squares is less than a predetermined value, or when the amount of decrease from the previous error sum of squares is less than a predetermined value, the above steps S141, S102 to S103 and S104-1 are performed. If it has been carried out a predetermined number of times, it is determined that it has converged.
  • the preferred position coordinates and signal response time use values obtained from the ideal position and signal response time of the transducer 1 obtained from the shape of the transducer array 2, for example.
  • step S142 If the error sum of squares does not converge in step S142, it means that the position coordinates and signal response time of the vibrator 1 adjusted in step S141 are not appropriate. Therefore, the position coordinates and the signal response time calculated in step S104-1 and stored in the parameter storage unit 19 are adopted (updated) as values to be adjusted (step S143), the process returns to step S141, and each transducer 1 Are adjusted to the values adopted (updated) in step S143. Thereafter, steps S102, S103, S104-1, and S142 are repeated.
  • Step S105-1 the position coordinates calculated in step S104-1 and stored in the parameter storage unit 19 and the signal response times R1t and R2t are displayed as calibration results.
  • the position coordinates of the transducer 1 and the signal response times R1t and R2t of the transmission / reception unit 3 can be calibrated with higher accuracy.
  • measurement can be performed at the originally preferred position coordinates of the vibrator 1 and the signal response times R1t and R2t of the transmission / reception unit 3.
  • ⁇ Modification 1-3> In the calibration mode of the modified example 1-3, past information on the calibrated position coordinates of the transducer 1 and the signal response time of the transmission / reception unit 3 is stored. Specifically, the control unit 4 stores in the storage unit 9 the signal response characteristics and the position information of the vibrator obtained by calibration performed in the past. Thereby, it is possible to detect deterioration or failure of the ultrasonic transmission / reception apparatus 5 by displaying the past calibration result.
  • FIG. 15 is a flowchart of the control unit 4 for explaining an operation example in the calibration mode of the ultrasonic transmission / reception device 5 according to Modification 1-3.
  • steps that perform the same operations as those in FIG. 14 are denoted by the same reference numerals.
  • steps S101 to S104-1 are the same as steps S101, S102, S103, and S104-1 in FIG.
  • the control unit 4 reads the past calibration result (for example, the position coordinates and signal response time calculated in the previous calibration) from the parameter storage unit 19 (step S144), and the position calculated in the current calibration. The coordinates and the signal response time are displayed (step S145).
  • the control unit 4 calculates the sum of squares of the difference (error) between the current and past calibrated position coordinates and the signal response time, and determines whether it is larger than a predetermined value (step S146).
  • step S146 is not limited to the sum of squares of errors, and whether one of the calibrated position coordinates of each transducer 1 or the signal response time of each transmission / reception unit 3 is greater than a predetermined value. Whether the change in the sum of squares in the past calibration and the current calibration is a time-series graph as shown in FIG. 15B, and whether the change amount of the sum of squares is larger than a predetermined value. You may judge by.
  • step S146 If it is determined in step S146 that the error is larger than the predetermined value, an alert is displayed (step S147) because it is considered that there is a failure or deterioration of the ultrasonic transmission / reception device 5.
  • the flow of operation as described above is used as the calibration mode, deterioration or failure of the ultrasonic transmission / reception device 5 can be monitored, and appropriate maintenance can be performed. Moreover, an appropriate measurement result can be acquired by grasping the degree of deterioration or failure.
  • FIG. 16A is a flowchart showing the operation in the calibration mode of the control unit 4 of the ultrasonic transmission / reception apparatus 5 according to Modification 1-4
  • FIG. 16B is a flowchart showing the operation in the measurement mode. It is.
  • Steps S101 to S103 and S104-1 in FIG. 16A in the calibration mode are the same as steps S101, 102, 103, and 104-1 in FIG. 14, and the control unit 4 determines the position coordinates in step S104-1.
  • the signal response time is calculated and stored in the storage unit 9.
  • the position coordinates and signal response time calculated in step S104-1 are referred to as parameter set A.
  • control unit 4 obtains an error between the position coordinates and signal response time (parameter set A) calculated in step S104-1, and the position coordinates and signal response time read from the parameter storage unit 19 in step S101. Then, it is determined whether there is a larger value than the predetermined value (step S148). For example, if there is no error larger than a predetermined value, the calibration result (parameter set A) is displayed in step S151, and the calibration operation is terminated.
  • step S148 when there is a position coordinate or a signal response time having an error larger than a predetermined value in step S148, the control unit 4 removes (erases) the signal delay time PRt related to them (step S149) and remains.
  • the position coordinates of the parameter storage unit 19 and the signal response time are calculated again in the same manner as in step S104-1, and stored in the storage unit 9 (step S104). -2).
  • the position coordinates and signal response time calculated in step S104-2 are referred to as parameter set B.
  • control unit 4 displays the position coordinates and signal response time (parameter set B) calculated in step 104-2, and the position coordinates and signal response time (parameter set A) calculated in step S104-1. And one of the parameter sets A and B is selected by the operator via the operation unit 40 (step S151).
  • step S151 instead of allowing the operator to select one, for example, the control unit 4 may automatically select and display a calibration result with a small error sum of squares.
  • an object having a known shape and a physical property value such as sound speed and attenuation is arranged in the space 30 and the same operation as in the measurement mode is performed, so that the object in both the parameter sets A and B can be selected.
  • the measurement result shape, distribution of physical property values, etc.
  • the operator can easily recognize the difference between the images of the parameter sets A and B, and as a result, can be easily selected.
  • the determination condition in step 148 described above can be variously considered in addition to the above-described conditions. For example, the determination may be made based on whether the sum of squares of the difference between the calculated position coordinates or signal response time and the position coordinates or signal response time stored in the parameter storage unit 19 is greater than a predetermined value. Alternatively, the determination step S148 may be omitted, and the calibration results of both parameter sets A and B may always be calculated. Further, the maximum value of the error between the calculated position coordinate or signal response time and the position coordinate or signal response time stored in the parameter storage unit 19 is minimized, or each transducer 1 and each transmission / reception unit 3 is weighted. In addition, the sum of squared errors may be minimized.
  • the transducer subarray 11 is considered to have an error in the position coordinates of the transducer 1 and the signal response time for each transducer subarray 11.
  • Each can be weighted.
  • the control unit 4 displays in step S151 if the error is less than or equal to a predetermined value in step S148 in the calibration mode. If the error is greater than the predetermined value in step S148, the parameter set B selected in step S151 is read. And the control part 4 performs transmission / reception of an ultrasonic signal by performing step S113, S114, and reads the signal strength of the measured signal delay time PRt and the amplified received signal S41.
  • control unit 4 determines whether or not the error is larger than the predetermined value in the above-described step S148, and the parameter set B is selected in step S151 (step S152), and when the parameter set B is selected.
  • the remaining signal delay time and signal intensity are used to calculate the shape of the measurement target and the distribution of physical property values (sound speed and attenuation) (step S115), and the calculation result (measurement) (Result) is displayed on the display unit 10 (step S116).
  • step S151 when the parameter set A is selected in step S151 and when the parameter set A is displayed as the calibration result in step S151 because the error is equal to or smaller than the predetermined value in step S148 (step S152).
  • the control unit 4 uses the signal delay time and the signal intensity read in step S114 as they are to calculate the shape of the measurement target and the distribution of physical property values (sound speed and attenuation) (step S115), and the calculation result (measurement result). ) Is displayed on the display unit 10 (step S116).
  • both parameter sets A and B are selected in step S151 in the calibration mode, and the shape and physical property values (sound speed and attenuation amount) of the measurement target are used by using each parameter set A and B when operating in the measurement mode.
  • Distribution and a plurality of calculation results (measurement results) may be displayed. In that case, an operator or a user of measurement results may select the most suitable one (desired result) from a plurality of measurement results.
  • the display screen of FIG. 17 includes display areas 181 to 184 for displaying the position coordinates after calibration and the values of the signal response times R1t and R2t, as in FIG. Further, for example, a shape image and physical properties of the same object calculated by transmitting and receiving an ultrasonic signal to a standard phantom having a known shape and physical property values such as sound velocity and attenuation amount, for example, in the measurement mode of FIG. It further includes display areas 85-1, 85-2, 85-3 for displaying value images and the like.
  • the difference (error) between the X coordinate, Y coordinate, signal response time R1t, R2t after calibration of each transducer 1 and the initial value (value before calibration) is
  • Each of the parameter sets A, B, and C is displayed as an appearance frequency graph.
  • standard phantom shape images calculated using the parameter sets A, B, and C are displayed, respectively.
  • the parameter sets A and B are respectively obtained in steps S104-1 and 104-2 in the calibration mode in FIG.
  • the parameter set C is a parameter set calculated in step S104-1 or S104-2 with the determination conditions in step 148 described above being different from those in the case of parameter sets A and B.
  • a determination condition that minimizes the sum of squares of errors after weighting each transducer 1 and each transmission / reception unit 3 can be used as the different determination conditions.
  • the user can easily compare the values of the plurality of parameter sets A, B, and C and the results of measuring the object (standard phantom) using them. Can be grasped. Therefore, it is possible to support the user's judgment as to whether to approve the selection of the parameter sets A and B and the calibration result by using the display screen.
  • the shape of the measurement target, the sound speed, and the attenuation amount are obtained by calibrating the position coordinates of the transducer 1 and the signal response time of the transmission / reception unit 3. It is possible to measure physical property values such as with high accuracy.
  • the position of the vibrator 1 and the setting of the signal response time are corrected during the calibration operation, and the calibration operation is repeated again in the corrected state, thereby obtaining the position coordinates of the vibrator 1 and the signal response time of the transmission / reception unit 3.
  • Each can be calibrated with high accuracy.
  • the ultrasonic transmission / reception apparatus of the third embodiment is the same as that of the second embodiment, but the second embodiment calculates the signal response times R1t and R2t as the signal response characteristics R1 and R2, but the third embodiment Then, the signal conversion gains R1A and R2A are calculated and the calibration is performed.
  • the configuration of the ultrasonic transmission / reception apparatus according to the third embodiment is the same as the configuration of FIG.
  • the intensity of the electrical signal S1 received by the transmitter 6 from the controller 4 is A1
  • the intensity of the ultrasonic signal S21 transmitted by the transducer 1a is A2
  • the other transducer 1d is transmitted.
  • the intensity of the reached ultrasonic signal S21 is A3, and the intensity of the amplified received signal S41 output from the receiving unit 7 is A4.
  • the signal conversion gain R1A at the time of transmission is represented by A2 / A1
  • the signal conversion gain R2A at the time of reception is represented by A4 / A3.
  • the signal strength ratio (signal gain) PRA of the electric signal S1 and the amplified received signal S41 is represented by A4 / A1.
  • the parameter storage unit 19 of the storage unit 9 stores previously obtained values such as the signal conversion gains R1A and R2A of each transmission / reception unit 3 and the position coordinates of each transducer 1 in the transducer array 2.
  • FIG. 18A shows an example of the arrangement of the transducers 1 in the transducer array 2.
  • FIGS. 18B to 18G are tables showing examples of information stored in the parameter storage unit 19 of the storage unit 9.
  • the parameter storage unit 19 stores the position coordinates of the transducers 1a, 1b, and 1c as shown in the table of FIG. Further, the signal conversion gain R1A between the transducers 1a, 1b, 1c and the transmission unit 6 of the transmission / reception units 3a, 3b, 3c, and the reception unit 7 of the transducers 1a, 1b, 1c and the transmission / reception units 3a, 3b, 3c.
  • the signal conversion gain R2A between and is stored in the parameter storage unit 19 as shown in the table of FIG.
  • the signal conversion gain R1A in the transmission operation of the transmission / reception unit 3a is 1 kPa / V
  • the signal conversion gain R2A in the reception operation is 1 mV / Pa.
  • the signal intensity ratio (PRA) A4 / A1 of the transmission signal and the reception signal between the transmission / reception units 3 when the space 30 is filled with a predetermined substance is also shown in FIG. It is stored like the table shown.
  • the space 30 surrounded by the transducer array 2 is filled with a substance whose attenuation can be regarded as 0 dB, and when the energy of the ultrasonic signal S21 is attenuated in proportion to the distance, the transmission signal
  • FIG. 18E shows a table of position coordinates stored in the parameter storage unit 19 when the position coordinates of the vibrator 1b are shifted by 0.2 mm toward the vibrator 1a along the x axis.
  • Such positional coordinate deviation (error) is caused by manufacturing variations of the transducer 1b, assembly errors of the transducer array 2, and the like.
  • FIG. 18 (f) is an example of a table showing signal conversion gains R1A and R2A when the signal conversion gain in the transmission operation of the transmission / reception unit 3c is 0.1 kPa / V lower than the table of FIG. 18 (c). is there.
  • Such an error in the signal conversion gain R1A is due to deterioration with time of each component or change in use environment, manufacturing variation of the transducer 1c, manufacturing variation of the transmission unit 6c, and manufacturing of a cable connecting the transducer 1c and the transmission unit 6c. This may be caused by variations, an intensity error of the electric signal S1 input from the control unit 4 to the transmission unit 6c, and the like.
  • the signal intensity ratio PRA is as shown in the table shown in FIG.
  • the difference between the tables in FIGS. 18D and 18G is due to the error of the position coordinate of the transducer 1b and the error of the signal conversion gain in the transmission operation of the transmission / reception unit 3c.
  • control unit 4 The operation of the control unit 4 will be specifically described.
  • the overall operation flow of the control unit 4 is the same as in FIG. 7 of the second embodiment.
  • step S601 in FIG. 7 the control unit 4 performs calibration as shown in the flow of FIGS. 19 (a) and 19 (b).
  • the same steps as those in the flow of FIGS. 8A and 8B of the second embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the control unit 4 reads various parameter values from the parameter storage unit 19 of the storage unit 9 (step S201 in FIG. 19A).
  • the parameters include position coordinates of each transducer 1 in the transducer array 2, signal conversion gains R1A and R2A, transmission signal waveforms, reception filter constants, and the like in the transmission and reception operations of each transmission / reception unit 3.
  • the control unit 4 causes the predetermined transmission / reception unit 3a to perform transmission operation, and causes the other transmission / reception units 3b and 3c to perform reception operation to propagate the ultrasonic signal S21 to the space 30 (step S202).
  • FIG. 19 (b) as in steps S106 to S108 in FIG.
  • the transmission / reception unit 3 that performs transmission operation and the reception unit that performs reception operation are selected, and the transmission unit 6 outputs the electrical signal S1, causes the transducer 1 to transmit the ultrasonic signal S21, and causes the reception unit 7 of the selected transmission / reception unit 3 to receive the signal, thereby obtaining an amplified reception signal S41.
  • the control unit 4 calculates and stores a signal intensity ratio PRA that is a ratio of the intensity A1 of the electric signal S1 and the intensity A4 of the amplified received signal S41 (step S209). This is repeated while changing the vibrator 1 (steps S110 and S111).
  • control unit 4 proceeds to step S203 in FIG. 17A, and reads out the signal intensity ratio PRA for all the transmission / reception units 3 stored in step S209 from the storage unit 9. Based on all signal strength ratios PRA, the signal conversion gain R1A in the transmission operation and the signal conversion gain R2A in the reception operation of all the transmission / reception units 3 are calculated (calculated) by the least square method (step S204). Since the method of calculating the signal conversion gains R1A and R2A by the least square method can be the same as the method described with reference to FIG. 9 in the second embodiment, detailed description thereof is omitted here.
  • control unit 4 writes the position coordinates and signal conversion gains R1A and R2A obtained in step S204 as calibrated parameter values in the parameter storage unit 19 of the storage unit 9 and displays them on the display unit 10 ( Step S205).
  • step S604 in FIG. 6 the measurement mode (step S604 in FIG. 6) of the control unit 4 will be described.
  • the measurement mode of the third embodiment is the same as the measurement mode of FIGS. 11A and 11B of the second embodiment. Only the difference between the measurement mode of the third embodiment and the measurement mode of the second embodiment will be described below.
  • the parameters read in step S112 always include the signal conversion gains R1A and R2A of the transmission / reception unit 3, and the signal conversion gains R1A and R2A are values calibrated in the calibration mode 602. It is.
  • step S122 in addition to the signal propagation time PRt, the signal strength ratio PRA between the electric signal S1 and the amplified received signal S41 is always calculated, and the storage unit 9 (Step S122). Further, in step S114 of FIG. 11A, the signal propagation time PRt and the signal strength ratio PRA are read from the storage unit 9. In step S115, using the parameters such as the read signal propagation time PRt, the signal intensity ratio PRA, and the position coordinates of the transducer read in step S112, the shape of the measurement target and the distribution of physical property values such as attenuation ( Map). A specific method for calculating the attenuation map is the same as the method described in the second embodiment.
  • the calculation unit 20 calculates the signal intensity ratio PRA and the signal of the transmission / reception unit 3 read in step S112. From the conversion gains R1A and R2A, an average attenuation amount between the transducers 1 that have transmitted and received the ultrasonic signal S21 is calculated, and a known tomo is used using the average attenuation amount when the ultrasonic signal S21 is transmitted from various angles.
  • the attenuation distribution (attenuation map) of the measurement target is calculated by the graphic method. As in the second embodiment, it is also possible to calculate the sound speed distribution (sound speed map) to be measured based on the signal propagation time PRt.
  • the display screen of FIG. 20 can display the position coordinates (X, Y coordinates) after calibration and the values of the signal conversion gains R1A and R2A in the areas 81 to 84, as in FIG.
  • a shape image calculated by transmitting and receiving ultrasonic waves using the position coordinates after calibration and signal response times R1t and R2t with respect to the phantom
  • a physical property value image such as a sound velocity distribution and an attenuation distribution
  • display areas 85 to 87 It is also possible to display them respectively.
  • a calibration result approval switch 89 and a calibration re-execution switch 88 can be displayed together as in FIG.
  • the user can easily grasp the value of the calibration result and the image when the standard phantom is measured using the calibration result. Therefore, it is possible to support the user's judgment on whether to approve the calibration result or to re-execute it on the display screen.
  • the calibration result may be finely adjusted based on the known shape of the same object (standard phantom) and physical property values such as sound speed and attenuation.
  • the calibration mode 4a when the temperature of the water filling the space 30 is different from the assumption, and the sound speed of the water filling the space 30 used in step S104 is 1% faster, the image of the shape of the object is 1% It is displayed small.
  • the calibrated parameter value related to the distance (positional coordinate) between the transducers 1 is also shortened by 1%. Therefore, fine adjustment is performed so that the distance between the vibrators 1 is increased by 1%. In this way, it is possible to increase the certainty of the calibrated parameter value.
  • the distribution of physical property values such as the attenuation amount and sound speed of the measurement target can be measured with high accuracy.
  • ⁇ Modification 2-1> by changing the attenuation rate of the substance filling the space 30 inside the transducer array 2 to form a plurality of attenuation rate states, and measuring the signal intensity ratio PRA each time, the transducer 1 An example of calibrating the position coordinates and the signal conversion gains R1A and R2A will be described.
  • FIG. 21 is a flowchart for explaining the operation of the calibration mode 4a of the modified example 2-1. Steps that perform the same operations as those in FIG. 13 are denoted by the same reference numerals.
  • the control unit 4 reads parameters such as the position coordinates of the transducer 1 and the signal conversion gain of the transmission / reception unit 3 from the parameter storage unit 19 (step S201), and a first attenuation factor substance (for example, a predetermined first).
  • a first attenuation factor substance for example, a predetermined first
  • the control unit 4 performs an ultrasonic signal transmission / reception operation (step S202-1).
  • the operation in step S202-1 is the same as the operation in FIG. 19B, and the intensity ratio (signal intensity ratio PRA) between the received signal and the transmitted signal is measured and stored.
  • step S234 the operator is prompted to fill the space 30 with a second attenuation material (for example, water added with a mixture at the second concentration) (step S234), and an ultrasonic signal transmission / reception operation is performed (step S202-). 2).
  • the operation in step S202-2 is the same as the operation in FIG. 19B, and the signal intensity ratio PRA is measured and stored.
  • the signal intensity ratio PRA measured in the space 30 with a plurality of attenuation factor substances is read (step S236), and the signal intensity ratio PRA1 measured by arranging the first attenuation substance and the second attenuation factor substance are arranged and measured.
  • the difference in the signal intensity ratio PRA2 is calculated (step S237).
  • the difference (PRA1 ⁇ PRA2) is an ultrasonic propagation when the ultrasonic signal S21 propagates through the space 30. This is the difference in gain P1A.
  • the distance between the vibrators 1 can be calculated from the difference in signal propagation gain (PRA1 ⁇ PRA2) and the difference in attenuation factor.
  • the control unit 4 obtains the position coordinates of each transducer 1 from the calculated distance between the transducers 1 by the least square method in the same manner as step S138 in FIG.
  • step S2308 the signal conversion gains R1A and R2A of the transmission / reception unit 3 are obtained by the least square method and stored in the parameter storage unit 19 (step) S239). Finally, the position coordinates of the transducer 1 and the calibration results of the signal conversion gains R1A and R2A are displayed on the display unit 10 (step S205).
  • the ultrasonic transceiver 5 may automatically fill the space 30 with the first attenuation material and the second attenuation material, A device that fills the space 30 with the first attenuation material and the second attenuation material and the ultrasonic transmission / reception device 5 may be used in combination.
  • the position coordinates of the transducer 1 in the transducer array 2 and the signal conversion gain of the transmission / reception unit 3 can be calibrated with higher accuracy.
  • FIG. 22 shows a flowchart of an operation example in the calibration mode.
  • the signal intensity ratio (A4 / A1) is measured for the signal intensity A1 of the plurality of electric signals S1, and the position coordinates and the signal conversion gain for each signal intensity are calibrated.
  • the control unit 4 reads the position coordinates of the default transducer 1 and the signal conversion gain of the transmission / reception unit 3 from the parameter storage unit 19 (step S201), and sets the first transmission electric signal intensity as the intensity A1 of the electric signal S1. Setting is made (step S241-1). For example, an intermediate value (typical value) of the intensity of the electric signal S1 that can be set in the transmission / reception unit 3 is set. Then, similarly to steps S202 and S203 in FIG. 19A, an ultrasonic signal is transmitted / received (step S202-1), the measured signal intensity ratio PRA is read (step S203-1), and similarly to step S204. After calculating the position coordinates and the signal conversion gain, they are stored in the storage unit 9 (step S204-1).
  • the second transmission electric signal intensity is set as the intensity A1 of the electric signal S1 (step S241-2). For example, it is the maximum value of the intensity of the electric signal S1 that can be set in the transmission / reception unit 3.
  • the ultrasonic signal is transmitted and received (step S202-2)
  • the measured signal intensity ratio PRA is read (step S203-2)
  • the position coordinates and the signal conversion gain are calculated. Calculation is performed (step S204-2).
  • step S205 the position coordinates and signal conversion gain at each transmission electric signal intensity A1 calculated in steps S204-1 and S204-2 are displayed.
  • the calibration results for a plurality of types of transmission electric signal strengths A1 are shown in the relationship between the transmission electric signal strength A1 and the signal conversion gain in the transmission operation of the transmission / reception unit 3, or in step S202-1. , S202-2, the relationship between the received electrical signal strength A4 and the signal conversion gain in the reception operation of the transceiver 3 can be displayed as a graph or the like.
  • the amplification factor gradually decreases as the voltage of the input / output signal increases, and it becomes impossible to output a voltage having a certain amplitude or more limited by the power supply voltage.
  • the transmission ultrasonic signal intensity A2 may be used instead of the transmission electric signal intensity A1, or the reception ultrasonic signal intensity A3 may be used instead of the reception electric signal intensity A4.
  • calibration may be performed by switching the amplifier gain, the filter constant, and the like of the receiving unit 7. Thereby, since the signal conversion gain at the time of various settings of the receiving unit 7 is known, more accurate calibration can be performed. Similarly, calibration may be performed by changing the signal frequency or signal waveform.
  • the position coordinates of the transducer 1 in the transducer array 2 and the signal conversion gain of the transmission / reception unit 3 are calibrated in consideration of nonlinearity with respect to the signal intensity of the transducer 1 and the transmission / reception unit 3. be able to.
  • the transducer array 2 includes a drive unit that adjusts the position of the transducer 1, and the transmission / reception unit 3 has a function of adjusting the signal conversion gain.
  • the operation of the calibration mode 4a suitable for such a configuration will be described.
  • FIG. 23 is a flowchart for explaining the operation of the calibration mode 4a of the modified example 2-3, and calibration is performed by the same processing as the flowchart of FIG. In FIG. 23, steps that perform the same operations as those in FIG. 19A are denoted by the same reference numerals.
  • the control unit 4 reads the position coordinates of the transducer 1 and the signal conversion gains R1A and R2A of the transmission / reception unit 3 from the parameter storage unit 19 (step S201).
  • the control unit 4 controls the drive unit of the transducer array 2 and the adjustment function of the transmission / reception unit 3, and the position coordinates and signals of the transducers 1 and the signal conversion gain of the transmission / reception unit 3 read out in step S ⁇ b> 201.
  • Adjustment (compensation) is performed to the values of the conversion gains R1A and R2A (step S251).
  • an ultrasonic signal transmission / reception operation is performed (step S202).
  • the operation in step S202 is the same as the operation in FIG. 19B, and the signal intensity ratio PRA is measured and stored.
  • the signal strength ratio PRA is read (step S203), and the measured signal strength ratio PRA, the position coordinates adjusted in S241, and the signal conversion gains R1A and R2A are used.
  • the position coordinates and the signal conversion gains R1A and R2A are calculated and stored in the parameter storage unit 19 (step S204-3).
  • control unit 4 calculates the sum of squares of errors between the signal intensity ratio PRA newly calculated in step S204-3, the predetermined preferred position coordinates and the signal conversion gain PRA ′, and the sum of squares of errors. It is determined whether or not has converged (step S252). If it is determined in step S252 that the error sum of squares has not converged, the position coordinates and signal conversion gain calculated in step S204 are adopted (updated) as values to be adjusted (step S253), and step S251. Returning to the step, the position of each transducer 1 and the signal conversion gain of the transmission / reception unit 3 are adjusted to the values adopted in step S253. Steps S202 to S204-3 and S252 are repeated.
  • the preferred position coordinates and signal conversion gain use values obtained from the ideal position and signal conversion gain of the transducer 1 obtained from the shape of the transducer array 2, for example.
  • step S252 if it is determined in step S252 that the sum of squared errors has converged, the position coordinates and signal conversion gains R1A and R2A stored in the parameter storage unit 19 are displayed as calibration results (step S105).
  • the position coordinates of the transducer 1 and the signal conversion gains R1A and R2A of the transmission / reception unit 3 can be calibrated with higher accuracy.
  • measurement is possible using the originally preferred position coordinates of the vibrator 1 and the signal conversion gains R1A and R2A of the transmission / reception unit 3.
  • ⁇ Modification 2-4> In the calibration mode of the modified example 2-4, past information on the calibrated position coordinates of the transducer 1 and the signal conversion gain of the transmission / reception unit 3 is stored and displayed. Detect failure.
  • FIG. 24 is a flowchart of the control unit 4 for explaining an example of the operation in the calibration mode of the ultrasonic transmission / reception apparatus 5 according to the modification 2-4. Calibration is performed by the same processing as the flowchart of FIG. Note that, in FIG. 24, steps that perform the same operations as those in FIG.
  • steps S201 to S204-1 are the same as steps S201 to S204 of FIG. 19A, and the control unit 4 converts the position coordinates of the transducer 1 and the signal conversion of the transmission / reception unit 3 from the parameter storage unit 19.
  • the readout of the gain and the transmission / reception operation of the ultrasonic signal are performed, the position coordinate and the signal conversion gain are calculated using the measured signal intensity ratio and the position coordinate and the signal conversion gain stored in the parameter storage unit 19, and then the parameters are calculated.
  • the control unit 4 reads out past calibration results (for example, the position coordinates and signal conversion gain calculated in the previous calibration) from the parameter storage unit 19 (step S254), and the position calculated in the current calibration.
  • step S255 The coordinates and the signal conversion gain are displayed together (step S255).
  • step S256 determines whether or not the sum of squares of errors between the current and past calibrated position coordinates and the signal conversion gain is larger than a predetermined value (step S256).
  • the control unit 4 displays an alert because it is considered that there is a failure or deterioration of the ultrasonic transmission / reception device 5 (step S257).
  • the determination method in step S256 is not limited to the sum of squares of errors, and whether or not one of the calibrated position coordinates of each transducer 1 or the signal response time of each transmission / reception unit 3 is greater than a predetermined value.
  • the determination may be made by using a time-series graph as shown in FIG. 24B, and the determination may be made based on whether the amount of change in the sum of squares is larger than a predetermined value.
  • the flow of operation as described above is used as the calibration mode, deterioration or failure of the ultrasonic transmission / reception device 5 can be monitored, and appropriate maintenance can be performed. Moreover, an appropriate measurement result can be acquired by grasping the degree of deterioration or failure.
  • FIG. 25 is a flowchart showing the operation in the calibration mode of the ultrasonic transmitting / receiving apparatus 5 according to the modification 2-5. Calibration is performed by the same processing as in the flowchart of FIG.
  • Steps S201 to S204-1 in FIG. 25 are the same as steps S201 to S204 in FIG. 19A, and the control unit 4 transmits the position coordinates of the transducer 1 and the signal conversion gain of the transmission / reception unit 3 from the parameter storage unit 19. Is read out, the transmission / reception operation of the ultrasonic signal is performed, and the position coordinates and the signal conversion gain (parameter set A) are calculated using the measured signal intensity ratio and the position coordinates and the signal conversion gain stored in the parameter storage unit 19. Then, it is stored in the storage unit 9. Next, the control unit 4 obtains an error between the position coordinates calculated in step S204 and the signal conversion gain (parameter set A) and the position coordinates read from the parameter storage unit 19 in step S201 and the signal conversion gain.
  • step S248 It is determined whether or not there is a value larger than the value of (step S248). For example, if there is no error larger than a predetermined value, the control unit 4 displays the calibration result (parameter set A) in step S251 and ends the calibration operation.
  • step S248 if there is a position coordinate or a signal conversion gain having a larger error than the predetermined value in step S248, the control unit 4 removes the signal strength ratio PRA related to them (step S249), and the remaining signal strength.
  • the ratio PRA the position coordinates and the signal conversion gain of the parameter storage unit 19, the position coordinates and the signal conversion gain (parameter set B) are calculated again in the same manner as in step S204, and then stored in the storage unit 9 (step S204-2).
  • control unit 4 displays the position coordinates and signal conversion gain (parameter set B) calculated at step 204-2 and (parameter set A) calculated at step S204-1 on the display unit 10, and the operator To select one of the parameter sets A and B via the operation unit 40 (step S251).
  • an object having a known shape and a physical property value such as sound speed and attenuation is arranged in the space 30 and the same operation as in the measurement mode is performed, so that the object in both the parameter sets A and B can be selected.
  • measurement results shape, distribution of physical property values, etc.
  • FIG. 26 shows display images 85-4, 85-5, and 85-6 of the shape images of the standard phantom calculated by transmitting and receiving ultrasonic signals to and from the standard phantom using the parameter sets A, B, and C, respectively. Including as well.
  • the parameter sets A, B, and C are the same as those described using FIG. 17 of Modification 1-4 of the second embodiment.
  • step S251 the user can easily compare and grasp the values of the plurality of parameter sets A, B, and C and the results of measuring the standard phantom using them. be able to. Therefore, the user's judgment as to whether or not to approve the selection of the parameter sets A and B and the calibration result can be supported by the display screen of FIG.
  • the position coordinates of the transducer 1 and the signal conversion gain of the transmission / reception unit 3 are respectively calibrated, so that the shape of the measurement target, the attenuation amount, etc. Physical property values can be measured with high accuracy.
  • the signal response times R1t and R2t are calibrated
  • the signal conversion gains R1A and R2A are calibrated. It is also possible to calibrate the position coordinates of 1, the signal response time of the transmission / reception unit 3, and the signal conversion gain of the transmission / reception unit 3. This makes it possible to measure the shape of the measurement target and the physical property values such as the sound speed and the attenuation amount with higher accuracy.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit such as an FPGA.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • the various information is described using the expression “aaa table”, but the various information may be expressed using a data structure other than the table.
  • the “aaa table” can be called “aaa information”.
  • each information is recorded in the storage unit 9 and the parameter storage unit 19 with the expressions “store”, “store”, and “write”. However, it is expressed as “register” or “set”. Also good.
  • control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
  • the present invention can be applied to an ultrasonic transmission / reception apparatus including a plurality of transducers.

Abstract

Provided is an ultrasonic transmission/reception apparatus capable of more precisely calculating the coordinates of the position of each transducer, and obtaining an image of a subject with high precision. In this ultrasonic transmission/reception apparatus, an electrical signal is inputted to a transmission unit, the transmission unit amplifies the electrical signal to generate a transmission signal and outputs the transmission signal to a transducer, and the transducer which has received the transmission signal converts the transmission signal to an ultrasonic signal and transmits the ultrasonic signal toward a specified space. The ultrasonic signal, which propagates through the specified space, is received by another transducer, and is converted to a reception signal which is an electrical signal, and a reception unit amplifies the reception signal and outputs the amplified reception signal. An image of a subject placed in the specified space is calculated on the basis of the amplified reception signal and one or more of a plurality of parameter values determined in advance. At this time, the parameter values include position information of the transducers and at least one of a signal response characteristic between the reception of the electrical signal by the transmission unit and the transmission of the ultrasonic signal by the transducer coupled to the transmission unit, and a signal response characteristic between the arrival of the ultrasonic signal at the transducer and the output of the amplified reception signal by the reception unit coupled to the transducer, and the ultrasonic signal is transmitted and received by the transmission unit and the reception unit, and the position information of the transducers and the signal response characteristics are calculated to perform calibration.

Description

超音波送受信装置、および、超音波送受信方法Ultrasonic transmission / reception device and ultrasonic transmission / reception method
 本発明は、超音波送受信装置に関し、特に、超音波信号を用いて物体を計測する装置に適用して有効な技術に関するものである。 The present invention relates to an ultrasonic transmission / reception apparatus, and more particularly to a technique effective when applied to an apparatus for measuring an object using an ultrasonic signal.
 対象物の内部に向かって超音波を送信し、対象物の内部を複数の経路で通過した超音波をそれぞれ受信して送信から受信までの伝搬時間等を計測し、伝搬時間と伝搬経路長(伝搬距離)等に基づいて対象物の物性値分布(音速分布や応力分布ならびに減衰量分布等)を算出する方法が、特許文献1、2等に提案されている。このような方法は、所定の物性値について、対象物の断面像が得られるため、超音波トモグラフィ法とも呼ばれている。具体的には、特許文献1の技術では、対象物の上面から内部に向かって超音波を送信し、対象物の裏面で反射されて対象物の上面で受信される複数の経路について超音波の伝搬時間を計測する。経路ごとに計測した伝搬時間と伝搬経路長とを用いて、マトリクス演算等により、音速分布や応力分布を求めている。一方、特許文献2の技術では、乳房等の対象物を液体の満たされたタンクに配置し、タンクを取り囲むようにリング状に配置された複数の振動子から超音波を送信し、複数の振動子で受信する。そして、超音波の伝搬速度や伝搬利得(強度の利得)等に基づいて、対象物内における減衰量分布を示す画像等を算出している。 Transmit ultrasonic waves toward the inside of the object, receive the ultrasonic waves that passed through the object through multiple paths, measure the propagation time from transmission to reception, etc., and determine the propagation time and propagation path length ( Patent Documents 1, 2 and the like propose a method for calculating a physical property value distribution (sound velocity distribution, stress distribution, attenuation amount distribution, etc.) of an object based on a propagation distance). Such a method is also referred to as an ultrasonic tomography method because a cross-sectional image of an object is obtained with respect to predetermined physical property values. Specifically, in the technique of Patent Document 1, ultrasonic waves are transmitted from the upper surface of the object toward the inside, and reflected by the back surface of the object and received by the upper surface of the object. Measure the propagation time. Using the propagation time and propagation path length measured for each path, the sound velocity distribution and stress distribution are obtained by matrix calculation or the like. On the other hand, in the technique of Patent Document 2, an object such as a breast is placed in a tank filled with liquid, ultrasonic waves are transmitted from a plurality of vibrators arranged in a ring shape so as to surround the tank, and a plurality of vibrations are transmitted. Receive at the child. Based on the ultrasonic wave propagation speed, propagation gain (intensity gain), and the like, an image showing the attenuation distribution in the object is calculated.
 また、特許文献3には、乳がん等の検出に用いられる、複数の振動子がリング状に配置された振動子アレイ等のように、振動子が複数配列された振動子アレイの振動子の位置座標を校正する方法が開示されている。この方法では、対象物を配置していない状態で、振動子のペアで超音波を送信および受信することにより、送信から受信までの信号遅延時間を計測し、その計測結果に基づいて、振動子の位置座標を推定し、位置座標を補償するキャリブレーションを行う。 Patent Document 3 discloses the position of a transducer in a transducer array in which a plurality of transducers are arranged, such as a transducer array in which a plurality of transducers are arranged in a ring shape, which is used for detecting breast cancer or the like. A method for calibrating coordinates is disclosed. In this method, a signal delay time from transmission to reception is measured by transmitting and receiving ultrasonic waves with a pair of transducers in a state where no object is arranged, and based on the measurement result, the transducers are measured. The position coordinates are estimated and calibration is performed to compensate the position coordinates.
特開2012-141230号公報JP 2012-141230 A 米国特許第8663113号明細書US Pat. No. 8,663,113 米国特許第8532951号明細書U.S. Pat. No. 8,532,951
 特許文献1,2のように、対象物における超音波の伝搬時間や伝搬経路長や伝搬利得等に基づいて対象物の物性値(音速、応力、減衰量等)の分布を算出する方法において、物性値を高精度に算出するためには、超音波の伝搬時間や伝搬経路長等を高精度に計測または算出する必要がある。例えば、音速を求めるためには、超音波の伝搬時間と伝搬距離(伝搬経路長)が必要である。応力は、音速から求められる。減衰量を求めるためには、超音波の伝搬利得と伝搬距離が必要である。 As in Patent Documents 1 and 2, in a method of calculating the distribution of physical property values (sound speed, stress, attenuation, etc.) of an object based on the propagation time, propagation path length, propagation gain, etc. of the ultrasonic wave in the object, In order to calculate physical property values with high accuracy, it is necessary to measure or calculate ultrasonic propagation time, propagation path length, and the like with high accuracy. For example, in order to obtain the sound speed, the propagation time and propagation distance (propagation path length) of the ultrasonic waves are required. The stress is obtained from the speed of sound. In order to obtain the attenuation, an ultrasonic wave propagation gain and a propagation distance are required.
 超音波の伝搬経路長等を精度よく求めるために、特許文献3に記載された技術では、振動子ペア間における送信から受信までの信号遅延時間から振動子間距離を算出し、各振動子の位置座標を推定し、位置座標をキャリブレーションしている。しかしながら、発明者らの実験やシミュレーションによると、特許文献3によってキャリブレーションされた振動子アレイを用いて超音波を送受信しても、超音波の伝搬空間にキャリブレーション実施時とは異なる物質が配置された場合には、精度よく信号遅延時間を算出することができないことがわかった。そのため、超音波の伝搬空間に対象物を配置して、実際に計測を行うと、精度よく信号遅延時間を算出することができない。 In order to obtain the ultrasonic propagation path length and the like with high accuracy, the technique described in Patent Document 3 calculates the inter-vibrator distance from the signal delay time from transmission to reception between the transducer pairs, and The position coordinates are estimated and the position coordinates are calibrated. However, according to the experiments and simulations of the inventors, even if ultrasonic waves are transmitted and received using the transducer array calibrated according to Patent Document 3, a substance different from that at the time of calibration is arranged in the ultrasonic wave propagation space. In this case, it was found that the signal delay time could not be calculated with high accuracy. Therefore, if an object is placed in the ultrasonic propagation space and actually measured, the signal delay time cannot be calculated with high accuracy.
 本発明の目的は、より高精度に各振動子の位置座標を算出し、対象物の画像を高精度に求めることのできる超音波送受信装置を提供することにある。 An object of the present invention is to provide an ultrasonic transmission / reception apparatus capable of calculating the position coordinates of each transducer with higher accuracy and obtaining an object image with higher accuracy.
 上記課題を解決するために、本発明は、複数の振動子を備える振動子アレイと、複数の振動子のうち少なくとも一つの振動子に接続された送信部と、複数の振動子のうち少なくとも一つの他の振動子に接続された受信部と、演算部と、制御部とを有する超音波送受信装置を提供する。このとき、送信部は、制御部から電気信号を受け取り、電気信号を増幅して送信信号を生成して、接続されている振動子に出力し、送信信号を受け取った振動子は、送信信号を超音波信号に変換して所定の空間に向かって送信する。所定の空間を伝搬してきた超音波信号を受信した他の振動子は、超音波信号を電気信号である受信信号に変換し、受信部は、受信信号を増幅して増幅後受信信号を出力する。演算部は、増幅後受信信号と、予め求めておいた複数のパラメータ値のうちの1以上とに基づいて、所定の空間に配置された対象物の画像を算出する。パラメータ値は、送信部と送信部に接続された振動子の間、および、振動子と振動子に接続された受信部の間、のうち少なくとも一方における信号応答特性と、振動子の位置情報と、を含む。制御部は、パラメータ値を調整するキャリブレーションモードを有する。キャリブレーションモードは、送信部及び受信部を動作させて超音波信号を送受信し、信号応答特性と、振動子の位置情報とを算出する。 In order to solve the above problems, the present invention provides a transducer array including a plurality of transducers, a transmission unit connected to at least one transducer among the plurality of transducers, and at least one of the plurality of transducers. Provided is an ultrasonic transmission / reception apparatus having a reception unit, a calculation unit, and a control unit connected to two other transducers. At this time, the transmission unit receives an electrical signal from the control unit, amplifies the electrical signal, generates a transmission signal, outputs the transmission signal to the connected transducer, and the transducer that receives the transmission signal transmits the transmission signal. It converts into an ultrasonic signal and transmits toward a predetermined space. The other transducers that have received the ultrasonic signal propagating in the predetermined space convert the ultrasonic signal into a received signal that is an electrical signal, and the receiving unit amplifies the received signal and outputs the amplified received signal. . The calculation unit calculates an image of the object arranged in a predetermined space based on the amplified received signal and one or more of a plurality of parameter values obtained in advance. The parameter value includes a signal response characteristic in at least one of the transmitter and the transducer connected to the transmitter, and between the transducer and the receiver connected to the transducer, and position information of the transducer. ,including. The control unit has a calibration mode for adjusting the parameter value. In the calibration mode, an ultrasonic signal is transmitted and received by operating the transmission unit and the reception unit, and signal response characteristics and position information of the transducer are calculated.
 本発明によれば、位置座標と信号応答特性の誤差をそれぞれ補償することができるため、対象物の画像を高精度に求めることができる。 According to the present invention, errors in position coordinates and signal response characteristics can be compensated, respectively, so that an image of an object can be obtained with high accuracy.
(a)第一実施形態の超音波送受信装置の構成を示すブロック図であり、(b)信号応答特性、超音波伝搬特性、信号伝搬特性の関係を示す説明図である。(A) It is a block diagram which shows the structure of the ultrasonic transmitter-receiver of 1st embodiment, (b) It is explanatory drawing which shows the relationship between a signal response characteristic, an ultrasonic propagation characteristic, and a signal propagation characteristic. 第二実施形態による超音波送受信装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the ultrasonic transmitter / receiver by 2nd embodiment. 第二実施形態による超音波送受信装置の(a)振動子アレイの平面図であり、(b)~(g)記憶部に記憶される情報例を示す図である。FIG. 6A is a plan view of an transducer array of an ultrasonic transmission / reception apparatus according to a second embodiment, and FIGS. 5B to 5G are diagrams illustrating examples of information stored in a storage unit. (a)~(f)第二実施形態による超音波送受信装置の振動子アレイの他の形状例を示す説明図である。(A)-(f) It is explanatory drawing which shows the other example of a shape of the transducer | vibrator array of the ultrasonic transmitter-receiver by 2nd embodiment. 第二実施形態による超音波送受信装置の動作例を説明する信号波形図であり、(a)一様な音速の液体が空間30に配置されている場合、(b)計測対象が配置されている場合をそれぞれ示す。It is a signal waveform diagram explaining the operation example of the ultrasonic transmission / reception apparatus by 2nd embodiment, (a) When the liquid of uniform sound speed is arrange | positioned in the space 30, (b) The measuring object is arrange | positioned. Each case is shown. 第二実施形態による超音波送受信装置のキャリブレーションモードの動作例を説明するシーケンス図である。It is a sequence diagram explaining the operation example of the calibration mode of the ultrasonic transmitter-receiver by 2nd embodiment. 第二実施形態による超音波送受信装置の制御部の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the control part of the ultrasonic transmitter / receiver by 2nd embodiment. (a)および(b)第二実施形態による超音波送受信装置のキャリブレーションモードの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the calibration mode of the ultrasonic transmitter-receiver by (a) and (b) 2nd embodiment. 第二実施形態による超音波送受信装置のキャリブレーションモードの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the calibration mode of the ultrasonic transmitter / receiver by 2nd embodiment. 第二実施形態による超音波送受信装置の計測モードの動作例を説明するシーケンス図である。It is a sequence diagram explaining the operation example of the measurement mode of the ultrasonic transmitter-receiver by 2nd embodiment. (a)および(b)第二実施形態による超音波送受信装置の計測モードの動作を示すフローチャートである。(A) And (b) It is a flowchart which shows operation | movement of the measurement mode of the ultrasonic transmitter-receiver by 2nd embodiment. 図9のキャリブレーションモードにおけるキャリブレーション結果の表示画面例を示す説明図。Explanatory drawing which shows the example of a display screen of the calibration result in the calibration mode of FIG. 第二実施形態による超音波送受信装置のキャリブレーションモードの変形例の動作を説明するフローチャートである。10 is a flowchart for explaining the operation of a modification of the calibration mode of the ultrasonic transmission / reception apparatus according to the second embodiment. 第二実施形態による超音波送受信装置のキャリブレーションモードの変形例の動作を説明するフローチャートである。10 is a flowchart for explaining the operation of a modification of the calibration mode of the ultrasonic transmission / reception apparatus according to the second embodiment. (a)第二実施形態による超音波送受信装置のキャリブレーションモードの変形例の動作を説明するフローチャートであり、(b)算出した位置と信号応答時間の変化を示すグラフである。(A) It is a flowchart explaining operation | movement of the modification of the calibration mode of the ultrasonic transmitter / receiver by 2nd embodiment, (b) It is a graph which shows the change of the calculated position and signal response time. (a)第二実施形態による超音波送受信装置のキャリブレーションモードの変形例の動作を説明するフローチャートであり、(b)計測モードの変形例を説明するフローチャートである。(A) It is a flowchart explaining operation | movement of the modification of the calibration mode of the ultrasonic transmitter / receiver by 2nd embodiment, (b) It is a flowchart explaining the modification of measurement mode. 図16(a)のキャリブレーションモードにおけるキャリブレーション結果の表示画面例を示す説明図。Explanatory drawing which shows the example of a display screen of the calibration result in the calibration mode of Fig.16 (a). 第三実施形態による超音波送受信装置の(a)振動子アレイの平面図であり、(b)~(g)記憶部に記憶される情報例を示す図である。FIG. 7A is a plan view of an transducer array of an ultrasonic transmission / reception apparatus according to a third embodiment, and FIGS. 5B to 5G are diagrams illustrating examples of information stored in storage units. (a)および(b)第三実施形態による超音波送受信装置のキャリブレーションモードの動作を示すフローチャートである。(A) And (b) It is a flowchart which shows operation | movement of the calibration mode of the ultrasonic transmitter-receiver by 3rd embodiment. 図19(a)のキャリブレーションモードにおけるキャリブレーション結果の表示画面例を示す説明図。Explanatory drawing which shows the example of a display screen of the calibration result in the calibration mode of Fig.19 (a). 第三実施形態による超音波送受信装置のキャリブレーションモードの変形例の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the modification of the calibration mode of the ultrasonic transmitter / receiver by 3rd embodiment. (a)第三実施形態による超音波送受信装置のキャリブレーションモードの変形例の動作を説明するフローチャートであり、(b)変換利得の変化を示すグラフである。(A) It is a flowchart explaining the operation | movement of the modification of the calibration mode of the ultrasonic transmitter / receiver by 3rd embodiment, (b) It is a graph which shows the change of conversion gain. 第三実施形態による超音波送受信装置のキャリブレーションモードの変形例の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the modification of the calibration mode of the ultrasonic transmitter / receiver by 3rd embodiment. (a)第三実施形態による超音波送受信装置のキャリブレーションモードの変形例の動作を説明するフローチャートであり、(b)振動子の位置と信号変換利得の変化を示すグラフである。(A) It is a flowchart explaining the operation | movement of the modification of the calibration mode of the ultrasonic transmitter / receiver by 3rd embodiment, (b) It is a graph which shows the change of the position of a transducer | vibrator, and a signal conversion gain. 第三実施形態による超音波送受信装置のキャリブレーションモードの変形例の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the modification of the calibration mode of the ultrasonic transmitter / receiver by 3rd embodiment. 図25のキャリブレーションモードにおけるキャリブレーション結果の表示画面例を示す説明図。FIG. 26 is an explanatory diagram illustrating a display screen example of a calibration result in the calibration mode of FIG. 25.
 対象物の物性値(音速、応力、減衰量等)の分布等を精度よく算出するためには、対象物における超音波の伝搬時間や伝搬経路長等を高精度に計測または算出する必要がある。そのため、超音波の送信から受信までの信号遅延時間を計測し、その計測結果に基づいて、振動子の位置座標を推定し、位置座標を補償することが望ましい。発明者らは、超音波の送信から受信までの信号遅延時間には、超音波を送信する振動子と受信する振動子との間における超音波伝搬時間の他に、超音波を送信する振動子に電気信号である送信信号を出力する送信部と振動子との間の信号応答時間、および、超音波を受信する振動子とその受信信号を受け取る受信部との間の信号応答時間が誤差として含まれていることを発見した。送信部と振動子間の信号応答時間は、送信部が制御部から送信すべき電気信号の入力を受けてから、送信部が電気信号を増幅して送信信号を生成し、整合層や音響レンズなどの構造を含む振動子がその送信信号を超音波に変換して放射(送信)するまでの時間である。受信部と振動子間の信号応答時間は、超音波が整合層や音響レンズなどの構造を含む振動子に到達してから、電気信号である受信信号に変換され、受信部が受信信号を増幅して出力するまでの時間である。 In order to accurately calculate the distribution of physical property values (sound speed, stress, attenuation, etc.) of an object, it is necessary to accurately measure or calculate the propagation time, propagation path length, etc. of the ultrasonic wave in the object. . Therefore, it is desirable to measure the signal delay time from transmission to reception of the ultrasonic wave, estimate the position coordinate of the transducer based on the measurement result, and compensate the position coordinate. Inventors of the present invention, in the signal delay time from the transmission of ultrasonic waves to the reception thereof, in addition to the ultrasonic wave propagation time between the ultrasonic wave transmitting transducer and the receiving transducer, an ultrasonic wave transmitting transducer The signal response time between the transmitter that outputs the transmission signal that is an electrical signal and the transducer, and the signal response time between the transducer that receives the ultrasonic wave and the receiver that receives the received signal are errors. I found it included. The signal response time between the transmission unit and the vibrator is such that the transmission unit receives an input of an electrical signal to be transmitted from the control unit, and then the transmission unit amplifies the electrical signal to generate a transmission signal. This is the time from when the transducer including the structure of FIG. The signal response time between the receiver and the transducer is converted into a received signal that is an electrical signal after the ultrasonic wave reaches the transducer including the matching layer and acoustic lens, and the receiver amplifies the received signal. It is the time until output.
 従来技術(例えば、特許文献3)のように、送信部と受信部の間の信号遅延時間を用いて振動子の位置座標を補償した場合、補償後の位置座標は、信号遅延時間に信号応答時間が含まれることによる誤差を含んでいる。この場合、超音波信号の伝搬空間の伝搬特性が、キャリブレーション実施時と同一であれば(すなわち、計測対象の物体(対象物)が伝搬空間に存在しなければ)、送信した信号が各送受信部で受信されるタイミングは所望の値と一致するため、一見すると計測結果から誤差を除去できたように見える。しかしながら、実際に計測を行う場合には、対象物が配置されるため、精度よく超音波の伝搬時間や伝搬経路を算出することができない。そのため、正確な音速や減衰量などの物性値を求めることはできない。 When the position coordinate of the transducer is compensated using the signal delay time between the transmission unit and the reception unit as in the prior art (for example, Patent Document 3), the compensated position coordinate is a signal response to the signal delay time. It contains an error due to the inclusion of time. In this case, if the propagation characteristic of the propagation space of the ultrasonic signal is the same as that at the time of calibration (that is, if the measurement target object (object) does not exist in the propagation space), the transmitted signal is transmitted and received Since the timing received by the unit coincides with a desired value, at first glance, it seems that the error has been removed from the measurement result. However, in the actual measurement, since the object is arranged, it is impossible to accurately calculate the propagation time and propagation path of the ultrasonic wave. For this reason, it is not possible to obtain an accurate physical property value such as sound velocity or attenuation.
 また、振動子の位置座標に信号応答時間の誤差(位置座標の関数ではない誤差)が含まれると、複数組の送信部と受信部と間の信号遅延時間を計測し、それぞれの信号遅延時間から振動子の位置座標を求めた場合、それぞれ異なる位置座標となる。そこで、例えば、複数の位置座標を平均して1つの位置座標を求めると、誤差が発生する。また、送信部と受信部の組み合わせそれぞれに対して個別に位置座標を与え、送受信部の組み合わせに応じて擬似的に振動子が移動したと考えることもできる。しかし、この場合は、送受信部の組み合わせ毎に定義された位置座標同士の関係性が不明なため、計測対象の音速や減衰量などの物性値を求めるマトリクス演算ができない。 Also, if the transducer position coordinates include an error in signal response time (an error that is not a function of position coordinates), the signal delay time between multiple sets of transmitters and receivers is measured, and each signal delay time When the position coordinates of the transducer are obtained from the above, they become different position coordinates. Therefore, for example, if one position coordinate is obtained by averaging a plurality of position coordinates, an error occurs. It can also be considered that the position coordinates are individually given to each combination of the transmission unit and the reception unit, and the vibrator is moved in a pseudo manner according to the combination of the transmission and reception units. However, in this case, since the relationship between the position coordinates defined for each combination of transmitting and receiving units is unknown, matrix calculation for obtaining physical property values such as sound speed and attenuation amount to be measured cannot be performed.
 また、複数の振動子から超音波を同時に送信し、平面波などの合成波を形成する場合は、送信部と振動子間における信号応答時間と、振動子と受信部間における信号応答時間をそれぞれ把握することが重要である。なぜなら、各振動子から空間に放射される超音波信号のタイミングが所望のタイミングからずれると、合成波の形状が崩れるためである。つまり、信号応答時間の誤差を位置座標に含めて補償すると、超音波信号の合成波は崩れてしまい、計測対象の正確な形状と音速や減衰量などの物性値を求めることができない。 Also, when transmitting ultrasonic waves from multiple transducers simultaneously to form a composite wave such as a plane wave, grasp the signal response time between the transmitter and transducer and the signal response time between the transducer and receiver. It is important to. This is because if the timing of the ultrasonic signal radiated from each transducer to the space deviates from the desired timing, the shape of the synthesized wave will collapse. In other words, if the error of the signal response time is included in the position coordinates to compensate, the synthesized wave of the ultrasonic signal is broken, and the accurate shape of the measurement target and the physical property values such as the sound speed and attenuation cannot be obtained.
 したがって、対象物の物性値(音速、応力、減衰量等)の分布等を精度よく算出するためには、送信から受信までの信号遅延時間に含まれる信号応答時間の誤差を除去し、振動子の位置座標を算出しなければならないことを発明者らは発見した。 Therefore, in order to accurately calculate the distribution of physical property values (sound speed, stress, attenuation, etc.) of the target object, the error of the signal response time included in the signal delay time from transmission to reception is removed, and the transducer The inventors have found that the position coordinates of must be calculated.
 また同様に、対象物の物性値として、減衰量等を求める場合、送信部から受信部までの信号利得(例えば、送信信号と受信信号の強度比)を求める必要があるが、この信号利得についても、超音波信号を送信する振動子と受信する振動子との間における超音波伝搬利得の他に、振動子に送信信号を出力する送信部と振動子との間の信号変換利得、および、超音波を受信する振動子とその受信信号を増幅する受信部との間の信号変換利得が誤差として含まれることを発明者らは発見した。送信部と振動子間の信号変換利得は、送信部が制御部から受け取った電気信号と、振動子が放射する超音波との間の信号利得である。受信部と振動子間の信号変換利得は、振動子に到達した超音波信号と、受信部による増幅後受信信号との間の信号利得である。 Similarly, when obtaining the attenuation amount or the like as the physical property value of the target object, it is necessary to obtain the signal gain from the transmission unit to the reception unit (for example, the intensity ratio between the transmission signal and the reception signal). In addition to the ultrasonic propagation gain between the transducer that transmits the ultrasonic signal and the transducer that receives the signal, the signal conversion gain between the transmitter and the transducer that outputs the transmission signal to the transducer, and The inventors have found that a signal conversion gain between a transducer that receives ultrasonic waves and a receiving unit that amplifies the received signal is included as an error. The signal conversion gain between the transmission unit and the transducer is a signal gain between the electric signal received by the transmission unit from the control unit and the ultrasonic wave radiated from the transducer. The signal conversion gain between the receiving unit and the transducer is a signal gain between the ultrasonic signal reaching the transducer and the received signal after amplification by the receiving unit.
 送信部からの受信部までの信号利得に、信号変換利得の誤差が含まれると、信号遅延時間の場合と同様に、精度よく対象物の物性値を算出することができない。 If the signal gain from the transmission unit to the reception unit includes an error in the signal conversion gain, the physical property value of the object cannot be calculated with high accuracy as in the case of the signal delay time.
 したがって、対象物の物性値(減衰量等)の分布等を精度よく算出するためには、送信から受信までの信号利得に含まれる信号変換利得の誤差を除去し、振動子の位置座標を算出しなければならない。 Therefore, in order to accurately calculate the distribution of physical property values (attenuation amount, etc.) of the target object, the error of the signal conversion gain included in the signal gain from transmission to reception is removed, and the position coordinates of the transducer are calculated. Must.
 <<第一実施形態>>
 そこで、本発明の第一実施形態では、以下のような超音波送受信装置を提供する。すなわち、図1のように、第一実施形態の超音波送受信装置は、複数の振動子1a~1d等を備える振動子アレイ2と、複数の振動子1a~1d等のうち少なくとも一つの振動子1aに接続された送信部6と、複数の振動子1a~1d等のうち少なくとも一つの他の振動子1dに接続された受信部7と、演算部20と、制御部4とを有する。送信部6は、制御部4から送信すべき電気信号S1を受けとり、これを増幅して送信信号S11を生成して、接続されている振動子1aに出力する。送信信号S11を受け取った振動子1aは、送信信号S11を超音波信号S21に変換して所定の空間(伝搬空間)30に向かって送信する。
<< First Embodiment >>
Therefore, in the first embodiment of the present invention, the following ultrasonic transmission / reception apparatus is provided. That is, as shown in FIG. 1, the ultrasonic transmitting / receiving apparatus according to the first embodiment includes a transducer array 2 including a plurality of transducers 1a to 1d and at least one transducer among the plurality of transducers 1a to 1d. The transmission unit 6 connected to 1a, the reception unit 7 connected to at least one other transducer 1d among the plurality of transducers 1a to 1d, the arithmetic unit 20, and the control unit 4. The transmission unit 6 receives the electric signal S1 to be transmitted from the control unit 4, amplifies it to generate a transmission signal S11, and outputs it to the connected transducer 1a. The transducer 1a that has received the transmission signal S11 converts the transmission signal S11 into an ultrasonic signal S21 and transmits the ultrasonic signal S21 toward a predetermined space (propagation space) 30.
 所定の空間30を伝搬してきた超音波信号S21が到達した他の振動子1dは、超音波信号S21を電気信号である受信信号S31に変換する。受信部7は、他の振動子1dから受信信号S31を増幅して増幅後受信信号S41を出力する。 The other transducer 1d to which the ultrasonic signal S21 that has propagated through the predetermined space 30 arrives converts the ultrasonic signal S21 into a reception signal S31 that is an electrical signal. The receiving unit 7 amplifies the received signal S31 from the other transducer 1d and outputs the amplified received signal S41.
 演算部20は、増幅後受信信号S41と、予め求めておいた複数のパラメータ値のうちの1以上とに基づいて、所定の空間30に配置された対象物の画像を算出する。複数のパラメータ値は、パラメータ記憶部19に格納されている。本実施形態では、パラメータ値は、送信部6が電気信号S1を受け取ってから送信部6に接続された振動子1aが超音波信号S21を送信するまでの間の信号応答特性、および、他の振動子1dに超音波信号S21が到達してから他の振動子1dに接続された受信部7が増幅後受信信号S41を出力するまでの間の信号応答特性、のうち少なくとも一方と、振動子1a、1dの位置情報とを含む。 The calculation unit 20 calculates an image of the object placed in the predetermined space 30 based on the amplified received signal S41 and one or more of a plurality of parameter values obtained in advance. The plurality of parameter values are stored in the parameter storage unit 19. In the present embodiment, the parameter value is a signal response characteristic between the time when the transmission unit 6 receives the electrical signal S1 and the time when the transducer 1a connected to the transmission unit 6 transmits the ultrasonic signal S21. At least one of signal response characteristics from when the ultrasonic signal S21 arrives at the transducer 1d to when the receiving unit 7 connected to the other transducer 1d outputs the received signal S41 after amplification, and the transducer 1a, 1d position information.
 制御部4は、演算部20が演算に用いるパラメータ値を調整するキャリブレーションモード4aを有する。キャリブレーションモード4aでは、制御部4は、送信部6および受信部7を動作させて超音波信号S21を送受信し、上述の信号応答特性R1、R2と、振動子1a、1dの位置情報とを算出する。 The control unit 4 has a calibration mode 4a for adjusting a parameter value used by the calculation unit 20 for calculation. In the calibration mode 4a, the control unit 4 operates the transmission unit 6 and the reception unit 7 to transmit / receive the ultrasonic signal S21, and obtains the signal response characteristics R1 and R2 and the position information of the transducers 1a and 1d. calculate.
 このように、信号応答特性R1(信号応答時間R1t・信号変換利得R1A),R2(信号応答時間R2t・信号変換利得R2A)および振動子1a,1dの位置情報を算出して、キャリブレーションを行うことにより、送信部6と振動子1a間、および、他の振動子1dと受信部7間の信号応答特性R1、R2が、送信部6が電気信号S1を受けてから、受信部7が増幅後受信信号S41を出力するまでの特性(信号伝搬特性PR(信号遅延時間PRt・信号利得PRA))に含まれることによる誤差を低減することが可能になる。よって、より高精度に各振動子1a,1dの位置情報や、振動子1a,1d間の超音波伝搬特性P1(超音波伝搬時間P1t・超音波伝搬利得P1A)を算出することができる。よって、演算部20が対象物の画像の算出に用いるパラメータ値を高精度に調整することができ、対象物の画像の精度を向上させることができる。 In this manner, the signal response characteristics R1 (signal response time R1t · signal conversion gain R1A), R2 (signal response time R2t · signal conversion gain R2A) and the positional information of the transducers 1a and 1d are calculated and calibration is performed. Thus, the signal response characteristics R1 and R2 between the transmission unit 6 and the transducer 1a and between the other transducer 1d and the reception unit 7 are amplified by the reception unit 7 after the transmission unit 6 receives the electric signal S1. It is possible to reduce errors caused by being included in the characteristics (signal propagation characteristics PR (signal delay time PRt · signal gain PRA)) until the subsequent reception signal S41 is output. Therefore, it is possible to calculate the position information of the transducers 1a and 1d and the ultrasonic propagation characteristics P1 (ultrasonic propagation time P1t and ultrasonic propagation gain P1A) between the transducers 1a and 1d with higher accuracy. Therefore, the parameter value used by the calculation unit 20 for calculating the image of the object can be adjusted with high accuracy, and the accuracy of the image of the object can be improved.
 例えば、制御部4は、キャリブレーションモード4aにおいて、送信部6が制御部4から電気信号S1を受け取ったタイミングT1から受信部7が増幅後受信信号S41を出力するタイミングT4までの信号遅延時間PRtを算出する(図1(b))。制御部4は、算出した信号遅延時間PRtに基づいて、信号応答特性R1、R2として、送信部6が電気信号S1を受け取ったタイミングT1から振動子1aにおいて超音波信号S21が送信されるタイミングT2までの送信時の信号応答時間(R1t=T2-T1)、および、超音波信号S21が振動子1dに受信されたタイミングT3から増幅後受信信号S41が受信部7から出力されるタイミングT4までの受信時の信号応答時間(R2t=T4-T3)の少なくとも一方を算出する。そして、制御部4は、各振動子1a,1dの位置情報や、振動子1a,1d間の超音波伝搬時間P1tをより高精度に算出する。 For example, in the calibration mode 4a, the control unit 4 performs the signal delay time PRt from the timing T1 when the transmission unit 6 receives the electrical signal S1 from the control unit 4 to the timing T4 when the reception unit 7 outputs the amplified reception signal S41. Is calculated (FIG. 1B). Based on the calculated signal delay time PRt, the control unit 4 transmits, as signal response characteristics R1 and R2, the timing T2 at which the ultrasonic signal S21 is transmitted from the transducer 1a from the timing T1 when the transmission unit 6 receives the electrical signal S1. Signal transmission time until transmission (R1t = T2-T1) and from timing T3 when the ultrasonic signal S21 is received by the transducer 1d to timing T4 when the amplified reception signal S41 is output from the receiving unit 7 At least one of the signal response times (R2t = T4-T3) at the time of reception is calculated. Then, the control unit 4 calculates the position information of each transducer 1a, 1d and the ultrasonic wave propagation time P1t between the transducers 1a, 1d with higher accuracy.
 また例えば、制御部4は、キャリブレーションモード4aにおいて、送信部6が制御部4から受け取った電気信号S1の強度A1と受信部7の出力する増幅後受信信号S41の強度A4との強度比A4/A1である信号利得PRAを求めてもよい。そして、制御部4は、強度比A4/A1に基づいて、信号応答特性R1として、電気信号S1の強度A1と振動子1aが送信する超音波信号S21の強度S2との間の送信時信号変換利得(R1A=A2/A1)、および、他の振動子1dに到達した超音波信号S21の強度A3と増幅後受信信号S41の強度A4との間の受信時信号変換利得(R2A=A4/A3)の少なくとも一方を算出することも可能である。そして、制御部4は、各振動子1a,1dの位置情報や、振動子1a,1d間の超音波伝搬利得P1Aをより高精度に算出する。 Further, for example, in the calibration mode 4a, the control unit 4 has an intensity ratio A4 between the intensity A1 of the electrical signal S1 received from the control unit 4 by the transmission unit 6 and the intensity A4 of the amplified reception signal S41 output from the reception unit 7. A signal gain PRA that is / A1 may be obtained. Based on the intensity ratio A4 / A1, the control unit 4 converts the signal during transmission between the intensity A1 of the electrical signal S1 and the intensity S2 of the ultrasonic signal S21 transmitted by the vibrator 1a as the signal response characteristic R1. Gain (R1A = A2 / A1) and signal conversion gain during reception (R2A = A4 / A3) between the intensity A3 of the ultrasonic signal S21 reaching the other transducer 1d and the intensity A4 of the amplified received signal S41 ) Can be calculated. Then, the control unit 4 calculates the position information of the transducers 1a and 1d and the ultrasonic wave propagation gain P1A between the transducers 1a and 1d with higher accuracy.
 制御部4は、キャリブレーションモード4aで算出した信号応答特性R1、R2、および、振動子1a、1dの位置情報によって、演算部20が画像の算出に用いるパラメータ記憶部19内のパラメータ値を調整することが可能である。 The control unit 4 adjusts the parameter value in the parameter storage unit 19 used by the calculation unit 20 for calculating the image, based on the signal response characteristics R1 and R2 calculated in the calibration mode 4a and the position information of the transducers 1a and 1d. Is possible.
 また、制御部4は、対象物に超音波信号を送信して、演算部20に画像を算出させる計測モード4bを有しており、キャリブレーションモード4aで算出した信号応答特性R1、R2、および、振動子1a、1dの位置情報によって、計測モード4bにおける送信部6の送信信号S11の送信条件および受信部7の受信信号S31の受信条件の少なくとも一方を調整することも可能である。 Further, the control unit 4 has a measurement mode 4b that transmits an ultrasonic signal to the object and causes the calculation unit 20 to calculate an image. The signal response characteristics R1 and R2 calculated in the calibration mode 4a, and It is also possible to adjust at least one of the transmission condition of the transmission signal S11 of the transmission unit 6 and the reception condition of the reception signal S31 of the reception unit 7 in the measurement mode 4b by the position information of the transducers 1a and 1d.
 さらに、振動子アレイ2に、振動子1a、1dの位置座標を変位させる駆動部(図1(a)では不図示)が備えられている場合、制御部4は、キャリブレーションモード4aで算出した位置情報に応じて、駆動部を動作させ、振動子1a,1dの位置座標を調整することも可能である。 Further, when the transducer array 2 includes a drive unit (not shown in FIG. 1A) for displacing the position coordinates of the transducers 1a and 1d, the control unit 4 calculates in the calibration mode 4a. It is also possible to adjust the position coordinates of the vibrators 1a and 1d by operating the drive unit according to the position information.
 これにより、演算部20は、受信部7から受け取った増幅後受信信号S41と、パラメータ記憶部19のパラメータ値とに基づいて、送信部6が接続された振動子1aと受信部7が接続された振動子1dとの間の超音波信号S21の超音波伝搬特性P1を、信号応答特性R1、R2による誤差を低減して求めることができる。求めた超音波信号S21の超音波伝搬特性P1に基づいて、対象物の物性値(例えば、音速、応力ならびに減衰量等)の分布を示す画像を精度よく算出することができる。これにより、超音波トモグラフィを実現できる。 Thereby, the calculation unit 20 is connected to the transducer 1a to which the transmission unit 6 is connected and the reception unit 7 based on the amplified reception signal S41 received from the reception unit 7 and the parameter value of the parameter storage unit 19. The ultrasonic propagation characteristic P1 of the ultrasonic signal S21 between the transducer 1d can be obtained by reducing errors due to the signal response characteristics R1 and R2. Based on the ultrasonic propagation characteristic P1 of the obtained ultrasonic signal S21, an image showing the distribution of physical property values (for example, sound speed, stress, attenuation, etc.) of the object can be accurately calculated. Thereby, ultrasonic tomography is realizable.
 対象物の物性値の画像を生成する場合、受信部7が接続された振動子1dは、送信部6が接続された振動子1aの送信した超音波信号S21の直接波が到達する位置に配置されていることが望ましい。例えば、振動子アレイ2は、図1(a)のように所定の伝搬空間30を取り囲むように配置することが可能である。 When generating an image of a physical property value of an object, the transducer 1d connected to the receiving unit 7 is arranged at a position where the direct wave of the ultrasonic signal S21 transmitted by the transducer 1a connected to the transmitting unit 6 reaches. It is desirable that For example, the transducer array 2 can be arranged so as to surround a predetermined propagation space 30 as shown in FIG.
 また、複数の振動子1a~1d等には、それぞれ送信部6と受信部7が接続されている構成にすることも可能である。これにより、複数の振動子1a~1dの任意の1以上の振動子から超音波信号S21を送信し、任意の1以上の振動子によって受信することが可能になるため、超音波振動S21を複数の経路で対象物を通過また反射等させて受信することができる。よって、対象物の画像を容易に算出することが可能になる。 Further, it is possible to adopt a configuration in which the transmitter 6 and the receiver 7 are connected to the plurality of vibrators 1a to 1d, respectively. Accordingly, the ultrasonic signal S21 can be transmitted from any one or more transducers of the plurality of transducers 1a to 1d and can be received by any one or more transducers. It is possible to receive the object by passing or reflecting it through the path. Therefore, it is possible to easily calculate the image of the object.
 このように、第一実施形態によれば、送信から受信までの信号伝搬特性PRに含まれる信号応答特性R1、R2の誤差を抑制して、振動子の位置座標を算出することができるため、対象物の物性値(減衰量等)の分布等を精度よく算出することができる。 Thus, according to the first embodiment, the position coordinates of the transducer can be calculated while suppressing errors in the signal response characteristics R1 and R2 included in the signal propagation characteristics PR from transmission to reception. The distribution of physical property values (attenuation amount, etc.) of the object can be calculated with high accuracy.
 以下の第二および第三実施形態では、超音波送受信装置をさらに具体的に説明する。 In the following second and third embodiments, the ultrasonic transmission / reception apparatus will be described more specifically.
 <<第二実施形態>>
 第二実施形態の超音波送受信装置について説明する。
<< Second Embodiment >>
An ultrasonic transmission / reception apparatus according to the second embodiment will be described.
 第二実施形態の超音波送受信装置は、信号応答特性R1、R2として、信号応答時間R1t、R2tを求める構成である。 The ultrasonic transmission / reception apparatus according to the second embodiment is configured to obtain signal response times R1t and R2t as signal response characteristics R1 and R2.
 図2は、第二実施形態による複数の振動子1を備える超音波送受信装置の構成例を示すブロック図である。図2において、第一実施形態の図1(a)と同様の構成について同じ符号を付している。 FIG. 2 is a block diagram showing a configuration example of an ultrasonic transmission / reception apparatus including a plurality of transducers 1 according to the second embodiment. In FIG. 2, the same reference numerals are given to the same configurations as those in FIG. 1A of the first embodiment.
 図2の超音波送受信装置の構成を以下説明する。超音波送受信装置5は、複数の振動子1(1a~1d等)を備える振動子アレイ2と、振動子1と接続され超音波信号S21(図1(a)、(b)参照)を送受信する送受信部3と、送受信部3を制御する制御部4と、記憶部9と、表示部10と、操作部(I/F)40とを備える。振動子アレイ2は、超音波を伝搬させる空間30を取り囲むように配置されている。記憶部9には、パラメータ記憶部19が配置されている。 2 will be described below. The ultrasonic transmission / reception device 5 transmits and receives an ultrasonic wave array S2 (see FIGS. 1A and 1B) connected to the vibrator 1 and the vibrator array 2 including a plurality of vibrators 1 (1a to 1d, etc.). A transmission / reception unit 3, a control unit 4 that controls the transmission / reception unit 3, a storage unit 9, a display unit 10, and an operation unit (I / F) 40. The transducer array 2 is disposed so as to surround a space 30 in which ultrasonic waves are propagated. A parameter storage unit 19 is disposed in the storage unit 9.
 送受信部3は、送信部6と、受信部7と、送信と受信を切り替える送受信スイッチ(T/R SW)8とを備える。1つの振動子1に1つの送受信部3が接続され、それぞれの送受信部3は独立に超音波信号を送受信することができる。制御部4は、各送受信部3に対して制御信号S51とS52というように異なる信号を出力して、異なる制御を行うことができる。例えば、制御部4は、送信を指示する制御信号S51を入力した送受信部3によって送信動作をさせ、受信を指示する制御信号S52を入力した送受信部3によって受信動作させることができる。 The transmission / reception unit 3 includes a transmission unit 6, a reception unit 7, and a transmission / reception switch (T / R SW) 8 for switching between transmission and reception. One transmission / reception unit 3 is connected to one transducer 1, and each transmission / reception unit 3 can independently transmit and receive an ultrasonic signal. The control unit 4 can output different signals such as control signals S51 and S52 to the transmission / reception units 3 to perform different controls. For example, the control unit 4 can perform a transmission operation by the transmission / reception unit 3 to which the control signal S51 instructing transmission is input, and can perform a reception operation by the transmission / reception unit 3 to which the control signal S52 instructing reception is input.
 送信部6は、例えば増幅器を備えて構成され、制御部4から入力された電気信号S1を所望の強度に増幅することにより送信信号S11を生成し、振動子1に出力する。振動子1は、整合層や音響レンズなどの構造を含み、送信部6から受け取った送信信号S11を超音波に変換して放射(送信)する。振動子1から放射される超音波信号の音圧は、振動子1に受け渡される送信信号S11の信号強度に応じて変化する。送信部6が生成する送信信号S11の信号強度は、制御信号S51によって設定される。 The transmission unit 6 includes, for example, an amplifier, amplifies the electric signal S1 input from the control unit 4 to a desired intensity, generates a transmission signal S11, and outputs the transmission signal S11 to the vibrator 1. The vibrator 1 includes a structure such as a matching layer and an acoustic lens, and converts (transmits) the transmission signal S11 received from the transmission unit 6 into ultrasonic waves. The sound pressure of the ultrasonic signal radiated from the vibrator 1 changes according to the signal intensity of the transmission signal S11 delivered to the vibrator 1. The signal strength of the transmission signal S11 generated by the transmission unit 6 is set by the control signal S51.
 送受信部3の送信動作における信号応答時間R1tは、制御部4から送信部6に電気信号S1が入力したタイミングT1から、振動子1から超音波信号S21が出力されるタイミング(T2)までの時間(T2-T1)である。送受信部3に送信動作における信号応答時間を調整する機能(例えば信号遅延回路)を配置し、制御信号S51によって所望の信号応答時間R1tに設定することも可能である。 The signal response time R1t in the transmission operation of the transmission / reception unit 3 is the time from the timing T1 when the electric signal S1 is input to the transmission unit 6 from the control unit 4 to the timing (T2) when the ultrasonic signal S21 is output from the transducer 1 (T2-T1). It is also possible to arrange a function (for example, a signal delay circuit) for adjusting the signal response time in the transmission operation in the transmission / reception unit 3, and set the desired signal response time R1t by the control signal S51.
 放射された超音波信号S21は、伝搬空間30を通過し、別の振動子1に到達する。振動子1は、整合層や音響レンズなどの構造を含み、到達した超音波信号S21を電気信号である受信信号S31に変換して出力する。受信部7は、例えば増幅器、フィルタ、および、アナログ-デジタル変換器を備えて構成され、振動子1が出力した電気信号(受信信号S31)を増幅し、所望の周波数帯域外のノイズを低減し、量子化して、増幅後受信信号S41を生成し、制御部4に出力する。受信部7の増幅器の利得やフィルタの定数などは、制御信号S52によって設定される。振動子1から出力される受信信号S31の電気信号の強度は、振動子1が受信する超音波信号S21の音圧に応じて変化する。送受信部3の受信動作における信号応答時間R2tは、振動子1に超音波信号S21が入力したタイミングT3から、受信部7から増幅後受信信号S41が出力されるタイミングT4までの時間(T4-T3)である。送受信部3に受信動作における信号応答時間を調整する機能(例えば信号遅延回路)を備え、制御信号S52によって所望の信号応答時間R2tに設定してもよい。 The emitted ultrasonic signal S21 passes through the propagation space 30 and reaches another transducer 1. The vibrator 1 includes structures such as a matching layer and an acoustic lens, and converts the arrived ultrasonic signal S21 into a reception signal S31 that is an electric signal and outputs the received signal S31. The receiving unit 7 includes, for example, an amplifier, a filter, and an analog-digital converter, amplifies the electrical signal (received signal S31) output from the vibrator 1, and reduces noise outside a desired frequency band. Then, the signal is quantized and an amplified reception signal S41 is generated and output to the control unit 4. The gain of the amplifier of the receiving unit 7 and the filter constant are set by the control signal S52. The intensity of the electrical signal of the reception signal S31 output from the vibrator 1 changes according to the sound pressure of the ultrasonic signal S21 received by the vibrator 1. The signal response time R2t in the reception operation of the transmission / reception unit 3 is a time (T4-T3) from timing T3 when the ultrasonic signal S21 is input to the transducer 1 to timing T4 when the amplified reception signal S41 is output from the reception unit 7. ). The transmitter / receiver 3 may be provided with a function (for example, a signal delay circuit) for adjusting a signal response time in the reception operation, and may be set to a desired signal response time R2t by the control signal S52.
 送受信スイッチ8は、受信部7と振動子1の接続を、送信動作の際に切断し、受信動作の際に短絡する。これにより、送信動作中に送信部6から振動子1に出力される高電圧の送信信号S11により、受信部7が破壊されることを防いでいる。 The transmission / reception switch 8 disconnects the connection between the receiving unit 7 and the vibrator 1 during the transmission operation and short-circuits the reception operation. This prevents the receiving unit 7 from being destroyed by the high-voltage transmission signal S11 output from the transmitting unit 6 to the vibrator 1 during the transmission operation.
 制御部4は、キャリブレーションモード4aと計測モード4bと演算部20を有する。制御部4は、CPU(Central Processing Unit)と、予めプログラムが格納されたメモリとを有し、CPUがプログラムを読み込んで実行することにより、キャリブレーションモード4aと計測モード4bと演算部20の機能をそれぞれソフトウエアにより実現する。なお、制御部4は、ソフトウエアによりその機能を実現する構成に限られるものではなく、制御部4の一部または全部を、ASIC(Application Specific Integrated Circuit)等のカスタムIC(Integrated Circuit)やFPGA(Field-Programmable Gate Array)等のプログラマブルIC等のハードウエアにより構成することも可能である。 The control unit 4 includes a calibration mode 4a, a measurement mode 4b, and a calculation unit 20. The control unit 4 has a CPU (Central Processing Unit) and a memory in which a program is stored in advance, and the CPU reads and executes the program, whereby the functions of the calibration mode 4a, the measurement mode 4b, and the calculation unit 20 are performed. Are realized by software. Note that the control unit 4 is not limited to a configuration that realizes the function by software, and a part or all of the control unit 4 may be a custom IC (Integrated Circuit) such as ASIC (Application Specific Integrated Circuit) or FPGA. It can also be configured by hardware such as a programmable IC such as (Field-Programmable Gate Array).
 キャリブレーションモード4aおよび計測モード4bでは、制御部4は、それぞれ予め定めた手順にしたがって、送受信部3を制御して、振動子アレイ2に囲まれた空間30に配置した計測対象に超音波信号S21を送信し、空間30を通過した超音波信号21を受信する。キャリブレーションモード4aでは、制御部4は、受信信号等を用いて、パラメータ値の1以上を算出し、パラメータ記憶部19に格納されているパラメータ値を調整(校正)する。一方、計測モード4bで得られた受信信号を用いて、演算部20は、得られた増幅後受信信号S41をパラメータ記憶部19に格納されているパラメータ値を用いて演算することにより、空間30に配置された対象物(以下、計測対象と呼ぶ)の形状と、超音波信号S21の音速や減衰量などの物性値を計測する。例えば、ある振動子1から送信された超音波信号S21は、計測対象を透過したり、計測対象の表面および内部構造の端面において反射したりしながら所定の経路で空間30を通過(伝搬)し、別の振動子1で受信される。演算部20は、パラメータ記憶部19に格納されているパラメータ値を用いて、超音波信号S21が空間30を伝搬する時間(超音波伝搬時間)を算出し、計測対象の音速を求めることができる。超音波伝搬時間は、ある振動子1から超音波信号が出力されてから、別のある振動子1に超音波信号が入力されるまでの時間(T3-T2)である。超音波伝搬時間と、2つの振動子1の距離から音速を求めることができる。異なる複数の伝搬経路について、それぞれ音速を求めてマトリクス演算等することにより、計測対象の音速分布を算出することができる。また、音速に基づいて、他の物性値を算出することも可能である。 In the calibration mode 4 a and the measurement mode 4 b, the control unit 4 controls the transmission / reception unit 3 according to a predetermined procedure, and transmits an ultrasonic signal to the measurement target arranged in the space 30 surrounded by the transducer array 2. S21 is transmitted and the ultrasonic signal 21 that has passed through the space 30 is received. In the calibration mode 4a, the control unit 4 calculates one or more parameter values using a received signal or the like, and adjusts (calibrates) the parameter values stored in the parameter storage unit 19. On the other hand, using the received signal obtained in the measurement mode 4b, the computing unit 20 computes the obtained received signal S41 after amplification using the parameter value stored in the parameter storage unit 19, thereby obtaining the space 30. And the physical property values such as the speed of sound and attenuation of the ultrasonic signal S21 are measured. For example, the ultrasonic signal S21 transmitted from a certain transducer 1 passes (propagates) through the space 30 through a predetermined path while being transmitted through the measurement target or reflected on the surface of the measurement target and the end face of the internal structure. And received by another vibrator 1. Using the parameter values stored in the parameter storage unit 19, the calculation unit 20 can calculate the time (ultrasonic propagation time) that the ultrasonic signal S <b> 21 propagates through the space 30 and obtain the sound speed of the measurement target. . The ultrasonic propagation time is a time (T3-T2) from when an ultrasonic signal is output from one transducer 1 to when an ultrasonic signal is input to another transducer 1. The sound speed can be obtained from the ultrasonic propagation time and the distance between the two transducers 1. The sound speed distribution of the measurement target can be calculated by obtaining the sound speed for each of a plurality of different propagation paths and performing matrix calculation or the like. Also, other physical property values can be calculated based on the speed of sound.
 記憶部9は、各送受信部3の送受信動作に関する設定や、送信部6に出力する電気信号S1の信号波形などの情報が記憶される。また、記憶部9のパラメータ記憶部19には、予め求めた各送受信部3の信号応答時間R1t、R2tや、各振動子1の振動子アレイ2における位置座標等の値が格納されている。また、記憶部9には、増幅後受信信号S41の波形や信号遅延時間(PRt=T4-T1)、超音波伝搬時間P1t、計測対象の形状・音速・減衰量などの計測結果も適宜記憶する。 The storage unit 9 stores information such as settings related to the transmission / reception operation of each transmission / reception unit 3 and the signal waveform of the electric signal S1 output to the transmission unit 6. The parameter storage unit 19 of the storage unit 9 stores values such as the signal response times R1t and R2t of each transmitter / receiver 3 obtained in advance and the position coordinates of each transducer 1 in the transducer array 2. In addition, the storage unit 9 also appropriately stores measurement results such as the waveform of the amplified received signal S41, the signal delay time (PRt = T4-T1), the ultrasonic wave propagation time P1t, the shape of the measurement target, the sound speed, and the amount of attenuation. .
 表示部10は、計測対象の計測した結果(画像)を表示したり、各振動子1の振動子アレイ2における位置座標や各送受信部3の信号応答時間R1t、R2tなどを表示したりする。これにあわせて、操作部40を通じ、操作者が制御部4に指示を与えたり、他機器と情報のやり取りを行ったりする。 The display unit 10 displays the measurement result (image) of the measurement target, displays the position coordinates of each transducer 1 in the transducer array 2, the signal response times R1t and R2t of each transmission / reception unit 3, and the like. In accordance with this, the operator gives an instruction to the control unit 4 or exchanges information with other devices through the operation unit 40.
 図3(a)は、振動子アレイ2の振動子1の配置の一例である。図3(b)~(g)は、記憶部9のパラメータ記憶部19に記憶されている情報例を示すテーブルである。図3(a)のように、振動子アレイ2は、直交するx軸とy軸で表現される平面に振動子1をリング状に配置した構造である。 FIG. 3A is an example of the arrangement of the transducers 1 in the transducer array 2. FIGS. 3B to 3G are tables showing examples of information stored in the parameter storage unit 19 of the storage unit 9. As shown in FIG. 3A, the transducer array 2 has a structure in which the transducers 1 are arranged in a ring shape on a plane expressed by the orthogonal x-axis and y-axis.
 このときパラメータ記憶部19には、振動子1a、1b、1cの位置座標が図3(b)のテーブルのように記憶されている。また、振動子1a、1b、1cに接続された送受信部3をそれぞれ3a,3b,3cで表し、送受信部3内の送信部6および受信部7をそれぞれ6a,6b,6cおよび7a、7b、7cで表すと、振動子1a、1b、1cと送受信部3a,3b,3cの送信部6との間の信号応答時間R1tおよび、振動子1a、1b、1cと送受信部3a,3b,3cの受信部7との間の信号応答時間R2tが、それぞれ図3(c)のテーブルのように、パラメータ記憶部19に記憶されている。たとえば、送受信部3aの送信動作における信号応答時間R1tは0.1μs、受信動作における信号応答時間R2tは0.3μsである。 At this time, the position coordinates of the transducers 1a, 1b, and 1c are stored in the parameter storage unit 19 as shown in the table of FIG. Further, the transmitting / receiving unit 3 connected to the vibrators 1a, 1b, 1c is represented by 3a, 3b, 3c, respectively, and the transmitting unit 6 and the receiving unit 7 in the transmitting / receiving unit 3 are respectively represented by 6a, 6b, 6c and 7a, 7b, 7c, the signal response time R1t between the transducers 1a, 1b, 1c and the transmission unit 6 of the transmission / reception units 3a, 3b, 3c, and the transducers 1a, 1b, 1c and the transmission / reception units 3a, 3b, 3c. The signal response time R2t with the receiving unit 7 is stored in the parameter storage unit 19 as in the table of FIG. For example, the signal response time R1t in the transmission operation of the transmission / reception unit 3a is 0.1 μs, and the signal response time R2t in the reception operation is 0.3 μs.
 また、パラメータ記憶部19には、空間30を所定の物質で満たした場合の各送受信部3の間の信号遅延時間PRtも、図3(d)に示すテーブルのように記憶されている。図3(d)において、振動子1a、1b、1cに接続された送受信部3a,3b,3c内の送信部6および受信部7をそれぞれ6a,6b,6cおよび7a、7b、7cで表す。たとえば、振動子アレイ2に囲まれた空間30を音速1500m/sの水で満たした場合、送受信部3a内の送信部6aに制御部4から電気信号S1が入力されたタイミングT1から、送受信部3b内の受信部7から増幅後受信信号S41が出力されたタイミングT4までの信号遅延時間PRtは、94.68μsである。これは、振動子1aと1bの位置座標から求められた振動子間の距離と音速を用いて求めた超音波伝搬時間P1tと、送受信部3aの送信動作における信号応答時間R1tと、送受信部3bの受信動作における信号応答時間R2tの和である。 The parameter storage unit 19 also stores the signal delay time PRt between the transmission / reception units 3 when the space 30 is filled with a predetermined substance as shown in the table of FIG. In FIG. 3D, the transmission unit 6 and the reception unit 7 in the transmission / reception units 3a, 3b, and 3c connected to the vibrators 1a, 1b, and 1c are represented by 6a, 6b, 6c, and 7a, 7b, and 7c, respectively. For example, when the space 30 surrounded by the transducer array 2 is filled with water having a sound velocity of 1500 m / s, the transmission / reception unit starts from the timing T1 when the electrical signal S1 is input from the control unit 4 to the transmission unit 6a in the transmission / reception unit 3a. The signal delay time PRt until the timing T4 when the amplified reception signal S41 is output from the reception unit 7 in 3b is 94.68 μs. This is because the ultrasonic wave propagation time P1t obtained using the distance between the transducers obtained from the position coordinates of the transducers 1a and 1b and the sound speed, the signal response time R1t in the transmission operation of the transmission / reception unit 3a, and the transmission / reception unit 3b. Is the sum of the signal response time R2t in the receiving operation.
 図3(e)は、振動子1bの位置座標がx軸に沿って振動子1a側に0.2mmずれている場合、パラメータ記憶部19に記憶されている位置座標のテーブルを示している。このような位置座標のずれ(誤差)は、振動子1bの製造ばらつきや振動子アレイ2の組み立て誤差などにより生じる。また、図3(f)は、送受信部3cの送信動作における信号応答時間R1tが、図3(c)のテーブルよりも0.1μs遅い場合の信号応答時間R1t,R2tを表すテーブルの例である。このような信号応答時間R1tの誤差は、各構成要素の経時劣化や使用環境の変化、振動子1cの製造ばらつき、送信部6cの製造ばらつき、振動子1cと送信部6cを接続するケーブルの製造ばらつき、送信部6cに制御部4から入力されるクロック信号のタイミング誤差などにより生じ得る。図3(e)および(f)に示す位置座標と信号応答時間R1t、R2tの場合、信号遅延時間PRtは、図3(g)に示すテーブルのようになる。図3(d)と(g)のテーブルの差は、振動子1bの位置座標の誤差と送受信部3cの送信動作における信号応答時間R1tの誤差によるものである。 FIG. 3E shows a table of position coordinates stored in the parameter storage unit 19 when the position coordinates of the vibrator 1b are shifted by 0.2 mm toward the vibrator 1a along the x axis. Such positional coordinate deviation (error) is caused by manufacturing variations of the transducer 1b, assembly errors of the transducer array 2, and the like. FIG. 3 (f) is an example of a table representing signal response times R1t and R2t when the signal response time R1t in the transmission operation of the transmission / reception unit 3c is 0.1 μs later than the table of FIG. 3 (c). . Such an error in the signal response time R1t is caused by deterioration of each component over time or change in usage environment, manufacturing variation of the transducer 1c, manufacturing variation of the transmission unit 6c, and manufacturing of a cable connecting the transducer 1c and the transmission unit 6c. This may occur due to variations, timing errors of the clock signal input from the control unit 4 to the transmission unit 6c, and the like. In the case of the position coordinates and the signal response times R1t and R2t shown in FIGS. 3E and 3F, the signal delay time PRt is as shown in the table shown in FIG. The difference between the tables in FIGS. 3D and 3G is due to the error in the position coordinates of the transducer 1b and the error in the signal response time R1t in the transmission operation of the transmission / reception unit 3c.
 なお、振動子1の位置座標は直交するx軸とy軸で表現することに限定されず、原点からの距離と角度で表現する極座標や3次元空間の座標、その他の任意の座標系でもよい。また、パラメータ記憶部19に記憶される上述のパラメータ値は、テーブルの形で格納される場合に限らず、他の形式で格納することも可能である。 The position coordinates of the vibrator 1 are not limited to being expressed by the orthogonal x-axis and y-axis, but may be polar coordinates expressed by a distance and an angle from the origin, coordinates in a three-dimensional space, or any other coordinate system. . Further, the above-described parameter values stored in the parameter storage unit 19 are not limited to being stored in the form of a table, but may be stored in other formats.
 図4は、第二実施形態による超音波送受信装置5の振動子アレイ2の他の形状例を示す図である。振動子アレイ2における振動子1の配置は、図3(a)のような円形に限らない。振動子アレイ2は、ある振動子1から送信された超音波信号S21が、計測対象を透過したり、計測対象の表面および内部構造の端面において反射したりした信号を別の振動子1によって受信できる形状であればよい。つまり、空間30に障害物がなければ、ある振動子1と別の振動子1とは見通しの利く状態(line of sight)であればよい。 FIG. 4 is a diagram showing another shape example of the transducer array 2 of the ultrasonic transmission / reception device 5 according to the second embodiment. The arrangement of the transducers 1 in the transducer array 2 is not limited to a circle as shown in FIG. The transducer array 2 receives, by another transducer 1, a signal in which the ultrasonic signal S 21 transmitted from a certain transducer 1 is transmitted through the measurement target or reflected from the surface of the measurement target and the end face of the internal structure. Any shape can be used. That is, as long as there is no obstacle in the space 30, it is only necessary that one vibrator 1 and another vibrator 1 are in a line-of-sight state.
 振動子アレイ2は、楕円形や多角形(図4(a))や、一部が凹む形状(図4(b))であってもよい。また、振動子アレイ2は、閉ループ形状に限らず、振動子アレイ2の一部が開いている形状(図3(c))でもよい。また、振動子アレイ2は、振動子サブアレイ11を複数備える形状(図3(d)、(e))でもよい。振動子サブアレイ11は、互いに離れているとは限らず、たとえば図3(a)の形状を複数の振動子サブアレイ11を組み合わせて構成してもよい。また、振動子アレイ2の形状は、2次元平面上に振動子1を配置した形状に限られず、円筒状や半球状など3次元に振動子1を配置した形状であってもよい(図3(f))。 The transducer array 2 may be oval, polygonal (FIG. 4A), or partially recessed (FIG. 4B). The transducer array 2 is not limited to a closed loop shape, and may be a shape in which a part of the transducer array 2 is open (FIG. 3C). Further, the transducer array 2 may have a shape including a plurality of transducer sub-arrays 11 (FIGS. 3D and 3E). The transducer subarrays 11 are not necessarily separated from each other. For example, the shape of FIG. 3A may be configured by combining a plurality of transducer subarrays 11. The shape of the transducer array 2 is not limited to the shape in which the transducers 1 are arranged on a two-dimensional plane, and may be a shape in which the transducers 1 are arranged in three dimensions such as a cylindrical shape or a hemisphere (FIG. 3). (F)).
 また、これらの振動子アレイ2の振動子に、モータなどの駆動装置を接続した構造とし、駆動装置によって振動子を変位させる構成とすることも可能である。 It is also possible to adopt a structure in which a driving device such as a motor is connected to the vibrators of these vibrator arrays 2 and the vibrator is displaced by the driving device.
 図5(a),(b)は、第二実施形態による超音波送受信装置5の動作例を説明する信号波形図である。図5(a)は、振動子アレイ2の内側の空間30を水等の所定の物質で見たし、音速分布を一定にした場合の例であり、キャリブレーションモード4aで用いられる。振動子1aからタイミングT2において超音波信号S21が送信され、振動子1b、1c、1dで超音波信号S21が受信される。振動子1b、1c、1dで超音波信号S21がそれぞれ受信されるタイミングT3b、T3c、T3dは、振動子1aと各振動子1b、1c、1dの距離に依存する。よって、振動子1aに最も近い位置にある振動子1bがまず超音波信号S21を受信し、ついで振動子1cが受信し、最後に振動子1dが受信する。 FIGS. 5A and 5B are signal waveform diagrams for explaining an operation example of the ultrasonic transmission / reception apparatus 5 according to the second embodiment. FIG. 5A shows an example in which the space 30 inside the transducer array 2 is viewed with a predetermined substance such as water and the sound velocity distribution is constant, and is used in the calibration mode 4a. The ultrasonic signal S21 is transmitted from the vibrator 1a at the timing T2, and the ultrasonic signal S21 is received by the vibrators 1b, 1c, and 1d. Timings T3b, T3c, and T3d at which the ultrasonic signals S21 are received by the transducers 1b, 1c, and 1d depend on the distance between the transducer 1a and the transducers 1b, 1c, and 1d. Therefore, the transducer 1b closest to the transducer 1a first receives the ultrasonic signal S21, then the transducer 1c receives, and finally the transducer 1d receives.
 図5(b)は、図5(a)の状態の空間30に音速の遅い物質で構成された計測対象Aを配置した例であり、計測モードで計測する時の状態である。計測対象Aを構成する物質は、周囲の水等の物質とは音響インピーダンスが異なる。この場合、振動子1aから送信された超音波信号S21は、計測対象Aの表面で一部のエネルギーが反射したり、計測対象Aの内部で信号が吸収または散乱されたりする。また、計測対象Aの内部では音速が遅くなる。振動子1cと1dでは、計測Aを透過した透過波が受信される。この透過波は、反射や吸収、散乱により信号強度が低下しており、受信タイミングT3c、T3dは図5(a)の場合(点線で表示)よりも遅くなる。一方、振動子1bでは、振動子1aから送信された超音波信号S21が物質Aを通らずに到達するため、図4(a)の場合と同じタイミングT3b-1に透過波が受信される。加えて、計測対象Aの表面で反射した反射波が伝搬距離の分だけ遅いタイミングT3b-2で受信される。さらに、振動子1aにおいても、計測対象Aの表面で反射した反射波が振動子1aと計測対象Aとの距離に応じたタイミングT3aで受信される。このように、各振動子1と計測対象Aとの位置関係により、透過波と反射波の受信タイミングや信号強度が決まるため、演算部20は、送信動作する振動子1と受信動作する振動子1の様々な組み合わせを用いてマトリクス演算する公知のトモグラフィ法を行うことにより、計測対象Aの形状と、音速や減衰量などの物性値を取得することができる。演算部20の演算方法については後で詳しく説明する。 FIG. 5B is an example in which the measurement object A composed of a substance having a slow sound speed is arranged in the space 30 in the state of FIG. 5A, and is a state when measurement is performed in the measurement mode. The substance constituting the measurement object A has an acoustic impedance different from that of the surrounding water or the like. In this case, part of the energy of the ultrasonic signal S21 transmitted from the transducer 1a is reflected on the surface of the measurement target A, or the signal is absorbed or scattered inside the measurement target A. In addition, the speed of sound is reduced inside the measurement object A. The vibrators 1c and 1d receive the transmitted wave that has passed through the measurement A. The signal intensity of the transmitted wave is reduced due to reflection, absorption, and scattering, and the reception timings T3c and T3d are later than in the case of FIG. 5A (indicated by a dotted line). On the other hand, in the transducer 1b, since the ultrasonic signal S21 transmitted from the transducer 1a arrives without passing through the substance A, the transmitted wave is received at the same timing T3b-1 as in FIG. In addition, the reflected wave reflected from the surface of the measuring object A is received at a timing T3b-2 that is delayed by the propagation distance. Further, also in the vibrator 1a, the reflected wave reflected from the surface of the measurement target A is received at a timing T3a corresponding to the distance between the vibrator 1a and the measurement target A. Thus, since the reception timing and signal intensity of the transmitted wave and the reflected wave are determined by the positional relationship between each transducer 1 and the measurement target A, the calculation unit 20 includes the transducer 1 that performs the transmission operation and the transducer that performs the reception operation. By performing a known tomography method that performs matrix calculation using various combinations of 1, the shape of the measurement target A and physical property values such as sound speed and attenuation can be acquired. The calculation method of the calculation unit 20 will be described in detail later.
 制御部4の動作について、図6~図11を用いて具体的に説明する。図6は、キャリブレーションモード4aの各部の動作を説明するシーケンス図である。図7は、制御部4の動作の全体の流れを示すフローチャートである。図8(a)、(b)および図9は、キャリブレーションモード4aにおける制御部7の詳しい動作を示すフローチャートである。図10は、計測モード4bの各部の動作を説明するシーケンス図である。図11(a)、(b)は、計測モード4bにおける制御部7の詳しい動作を示すフローチャートである。図12には、キャリブレーション結果の表示画面の例を示す。 The operation of the control unit 4 will be specifically described with reference to FIGS. FIG. 6 is a sequence diagram for explaining the operation of each part in the calibration mode 4a. FIG. 7 is a flowchart showing the overall flow of the operation of the control unit 4. FIGS. 8A, 8B, and 9 are flowcharts showing detailed operations of the control unit 7 in the calibration mode 4a. FIG. 10 is a sequence diagram for explaining the operation of each part in the measurement mode 4b. FIGS. 11A and 11B are flowcharts showing detailed operations of the control unit 7 in the measurement mode 4b. FIG. 12 shows an example of a calibration result display screen.
 図6に示すように、制御部4は、電源スイッチ、または、操作部40のキャリブレーション指示ボタンを操作者がオンにしてキャリブレーション開始指示信号S61が入力された場合、メモリ内のキャリブレーションモードプログラムを読み込んで実行することによりキャリブレーションモード4aをスタートさせる(図7のステップS601、S602参照)。なお、一定時間経過毎にキャリブレーション開始を、制御部4が操作者に促す表示を表示部10に表示させ、操作者からキャリブレーション開始の指示を受け付ける等の構成にしてもよい。 As shown in FIG. 6, when the operator turns on the power switch or the calibration instruction button of the operation unit 40 and the calibration start instruction signal S61 is input, the control unit 4 performs the calibration mode in the memory. The calibration mode 4a is started by reading and executing the program (see steps S601 and S602 in FIG. 7). Alternatively, a configuration may be adopted in which a display that prompts the operator to start calibration is displayed on the display unit 10 every time a predetermined time elapses, and an instruction to start calibration is received from the operator.
 なお、電源スイッチがオンにされる時点、もしくは、キャリブレーション指示ボタンがオンにされる時点など、ステップS602を開始する時点で、振動子アレイ2の内側の空間30は、音速が既知の物質、例えば水で満たされている。例えば、前日に電源スイッチが操作者によりオフにされる際に、操作者に空間30を例えば水で満たすように促す表示が表示部10に表示されるように構成することが可能である。これに従って操作者が水で空間を満たす動作をする。また、操作部40のキャリブレーション指示ボタンが2段階スイッチになっており、1段目が操作された時点で操作者に空間30を例えば水で満たすように促す表示を制御部4は表示部10に表示させ、水で満たしたことを操作者が操作部40に入力しなければ、2段目のスイッチが操作できないように構成することも可能である。また、空間30を例えば水で満たす装置(不図示)を超音波送受信装置5と組み合わせて用いたり、空間30を例えば水で満たす装置(不図示)を超音波送受信装置5が備えることで、ステップS602を開始する時点で空間30を水で満たすことも可能である。 It should be noted that at the time when step S602 is started, such as when the power switch is turned on or when the calibration instruction button is turned on, the space 30 inside the transducer array 2 is a substance having a known sound velocity, For example, it is filled with water. For example, when the power switch is turned off by the operator on the previous day, a display that prompts the operator to fill the space 30 with, for example, water can be displayed on the display unit 10. According to this, the operator operates to fill the space with water. The calibration instruction button of the operation unit 40 is a two-step switch, and the control unit 4 displays a display prompting the operator to fill the space 30 with, for example, water when the first step is operated. It is also possible to configure so that the second-stage switch cannot be operated unless the operator inputs to the operation unit 40 that the water has been filled. In addition, a device that fills the space 30 with water (not shown), for example, is used in combination with the ultrasonic transmission / reception device 5, or a device (not shown) that fills the space 30 with water, for example, is provided in the ultrasonic transmission / reception device 5. It is also possible to fill the space 30 with water at the start of S602.
 キャリブレーションモード4aについて、図6のシーケンス図を用いて具体的に説明する。キャリブレーションモード4aでは、制御部4は、記憶部9のパラメータ記憶部19にアクセスして、キャリブレーションのための各種パラメータ値を、読み出す(図8のステップS101参照)。このパラメータ値は、デフォルト値として設定された値、または、前回のキャリブレーションにより格納された値である。例えば、パラメータは、振動子アレイ2における各振動子1の位置座標、各送受信部3の送信動作および受信動作における信号応答時間R1t、R2t、各送受信部3の送信動作および受信動作における信号変換利得R1A、R2A、送信信号波形、受信フィルタ定数などを含む。 The calibration mode 4a will be specifically described with reference to the sequence diagram of FIG. In the calibration mode 4a, the control unit 4 accesses the parameter storage unit 19 of the storage unit 9 and reads various parameter values for calibration (see step S101 in FIG. 8). This parameter value is a value set as a default value or a value stored by the previous calibration. For example, the parameters are the position coordinates of each transducer 1 in the transducer array 2, the signal response times R1t and R2t in the transmission operation and reception operation of each transmission / reception unit 3, and the signal conversion gain in the transmission operation and reception operation of each transmission / reception unit 3. R1A, R2A, transmission signal waveform, reception filter constant, and the like are included.
 次に、制御部4は、図6のように、各送受信部3に対して、送受信動作指示信号S63を送信し、所定の送受信部3aに送信動作をさせ、他の送受信部3b、3cに受信動作させることにより超音波信号S21を空間30に伝搬させる(ステップS102)。 Next, as shown in FIG. 6, the control unit 4 transmits a transmission / reception operation instruction signal S63 to each transmission / reception unit 3, causes a predetermined transmission / reception unit 3a to perform a transmission operation, and causes the other transmission / reception units 3b and 3c to perform transmission operations. By performing the receiving operation, the ultrasonic signal S21 is propagated to the space 30 (step S102).
 具体的なステップS102の超音波伝搬動作は、図8(b)に示すように、送信動作させる振動子1を変更しながら制御部4が実施する。まず、制御部4は、送受信動作指示信号S63により、N=1番目の送受信部3を送信動作させる送受信部として選択し、残りの送受信部3を受信動作させる受信部として選択する(ステップS106、S107)。次に、制御部4は、送信部として選択した送受信部3の送信部6に、パラメータ記憶部19からパラメータ値として読み出した送信信号波形の電気信号S1を出力し、送信信号S11を生成させるとともに、受信部として選択した送受信部3に、パラメータ値として受信フィルタ定数等を設定し、受信動作を指示する。これにより、送信部として選択した送受信部3に接続された振動子1から、超音波信号S21が送信され、受信部として選択した送受信部3の受信部7に接続された振動子1によって受信される(ステップS108)。受信信号S31は、受信部7によってフィルタ処理および増幅処理等されて増幅後受信信号S41が生成され、制御部4に出力される。 As shown in FIG. 8B, the specific ultrasonic wave propagation operation in step S102 is performed by the control unit 4 while changing the transducer 1 to be transmitted. First, the control unit 4 selects the N = 1st transmission / reception unit 3 as a transmission / reception unit that performs a transmission operation and selects the remaining transmission / reception unit 3 as a reception unit that performs a reception operation according to the transmission / reception operation instruction signal S63 (step S106). S107). Next, the control unit 4 outputs the electrical signal S1 of the transmission signal waveform read out as the parameter value from the parameter storage unit 19 to the transmission unit 6 of the transmission / reception unit 3 selected as the transmission unit, and generates the transmission signal S11. Then, a reception filter constant or the like is set as a parameter value to the transmission / reception unit 3 selected as the reception unit, and a reception operation is instructed. Thereby, the ultrasonic signal S21 is transmitted from the transducer 1 connected to the transmission / reception unit 3 selected as the transmission unit, and is received by the transducer 1 connected to the reception unit 7 of the transmission / reception unit 3 selected as the reception unit. (Step S108). The reception signal S31 is filtered and amplified by the reception unit 7 to generate an amplified reception signal S41 and is output to the control unit 4.
 制御部4は、増幅後受信信号S41が受信部7から出力されたタイミングT4と、電気信号S1を送信部6に出力したタイミングT1との差である信号遅延時間PRtを算出し、送信部として選択した送受信部3と受信部として選択した送受信部3の組み合わせごとに算出し、記憶部9に書き込む(ステップS109)。記憶部9に書き込む情報は、信号遅延時間PRtの他に、増幅後受信信号S41の信号波形データなどを含んでいてもよい。 The control unit 4 calculates a signal delay time PRt that is a difference between the timing T4 at which the amplified reception signal S41 is output from the reception unit 7 and the timing T1 at which the electrical signal S1 is output to the transmission unit 6, and serves as the transmission unit. Calculation is made for each combination of the selected transmission / reception unit 3 and the transmission / reception unit 3 selected as the reception unit, and is written in the storage unit 9 (step S109). The information written in the storage unit 9 may include signal waveform data of the amplified received signal S41 in addition to the signal delay time PRt.
 制御部4は、上記ステップS107~S109の動作を、N個の送受信部3の全てを送信部として送信動作させるまで繰り返す(ステップS110、S111)。以上により、超音波信号S21を空間30に伝搬させるステップS102が終了する。なお、信号遅延時間PRtを算出して記憶部9に書き込むステップS109は、N個の送受信部3の全てを送信動作させことを判定したステップS110の後に、まとめて行ってもよい。 The control unit 4 repeats the operations in steps S107 to S109 until the transmission operation is performed with all the N transmitting / receiving units 3 as transmission units (steps S110 and S111). Thus, step S102 for propagating the ultrasonic signal S21 to the space 30 is completed. Note that step S109 for calculating and writing the signal delay time PRt to the storage unit 9 may be performed collectively after step S110 in which it is determined that all of the N transmission / reception units 3 are to be transmitted.
 なお、ステップS107において、制御部4が送信部として選択する送受信部3は1つに限られず、複数でもよい。複数の送受信部3を同時に送信動作させ、超音波信号の合成波を送信してもよい。また、制御部4が受信部として選択する送受信部3は、送信部として選択する送受信部3を除くすべてでなくてもよく、送信動作させる送受信部3との位置関係や振動子アレイ2の形状、振動子アレイ2の内側の環境に応じて選択された送受信部3としてもよい。たとえば、送信動作させる送受信部3に接続された振動子1に対してデフォルト値で所定の距離以上離れた振動子1に接続された送受信部3に対してのみ受信動作させることが可能である。さらに、送信動作をさせた送受信部3に、受信動作を指示して、送信した超音波信号S21の反射波を受信させてもよい。 In addition, in step S107, the transmission / reception part 3 which the control part 4 selects as a transmission part is not restricted to one, Plural may be sufficient. A plurality of transmission / reception units 3 may be simultaneously operated to transmit a composite wave of ultrasonic signals. Further, the transmission / reception unit 3 selected by the control unit 4 as the reception unit may not be all except the transmission / reception unit 3 selected as the transmission unit. The positional relationship with the transmission / reception unit 3 that performs the transmission operation and the shape of the transducer array 2 The transmission / reception unit 3 selected according to the environment inside the transducer array 2 may be used. For example, it is possible to perform a reception operation only on the transmission / reception unit 3 connected to the transducer 1 that is a predetermined distance or more away from the transducer 1 connected to the transmission / reception unit 3 to be transmitted. Further, the transmission / reception unit 3 that has performed the transmission operation may be instructed to perform the reception operation and receive the reflected wave of the transmitted ultrasonic signal S21.
 つぎに、制御部4は、図8(a)のステップS103へ進み、ステップS109で記憶した全ての送受信部3についての信号遅延時間PRtに関する情報を記憶部9から読み出す。そして、全ての信号遅延時間PRtに基づいて、新なパラメータ値を算出する(ステップS104)。具体的には、新たなパラメータ値として、振動子アレイ2における全ての振動子1の位置座標と、全ての送受信部3の送信動作における信号応答時間R1tおよび受信動作における信号応答時間R2tを求める。ステップ104の詳しい動作は、後で詳細に説明する。 Next, the control unit 4 proceeds to step S103 in FIG. 8A, and reads out information on the signal delay time PRt for all the transmission / reception units 3 stored in step S109 from the storage unit 9. Then, a new parameter value is calculated based on all the signal delay times PRt (step S104). Specifically, the position coordinates of all the transducers 1 in the transducer array 2, the signal response time R1t in the transmission operation of all the transmission / reception units 3, and the signal response time R2t in the reception operation are obtained as new parameter values. The detailed operation of step 104 will be described later in detail.
 つぎに、制御部4は、ステップS104で求めた新たなパラメータ値(位置座標と信号応答時間R1t,R2t)を、キャリブレーションされたパラメータ値として記憶部9のパラメータ記憶部19に書き込むとともに、表示部10に表示する(ステップS105)。 Next, the control unit 4 writes the new parameter values (position coordinates and signal response times R1t, R2t) obtained in step S104 into the parameter storage unit 19 of the storage unit 9 as calibrated parameter values and displays them. The information is displayed on the unit 10 (step S105).
 そして、制御部4は、キャリブレーション結果(新たなパラメータ値)で計測モードを行ってよいかどうかを操作者に確認する表示を表示部10に表示する(図7のステップS603)。操作者が同意した場合には、制御部4は、計測モード(ステップS604)へ進む。一方、操作者が、このキャリブレーション後のパラメータ値で計測モードを行うことが適切ではないと判断した場合には、メンテナンス(ステップS607)等を指示することが可能である。なお、ステップS603で操作者が同意した後に、パラメータ記憶部19にキャリブレーションされたパラメータ値を書き込むように構成することも可能である。また、キャリブレーション結果の操作者への確認(ステップS603)を省略し、キャリブレーションが終了したことを知らせるのみにするなど簡略化してもよい。あるいは、超音波送受信装置が休止状態や次に説明する計測開始指示を受け付け可能な状態などの他の状態に遷移することで代替してもよい。 Then, the control unit 4 displays on the display unit 10 a display for confirming to the operator whether or not the measurement mode may be performed based on the calibration result (new parameter value) (step S603 in FIG. 7). If the operator agrees, the control unit 4 proceeds to the measurement mode (step S604). On the other hand, if the operator determines that it is not appropriate to perform the measurement mode with the parameter values after calibration, maintenance (step S607) or the like can be instructed. Note that it is also possible to write the calibrated parameter value in the parameter storage unit 19 after the operator agrees in step S603. Further, it may be simplified such that confirmation of the calibration result to the operator (step S603) is omitted, and only that the calibration is completed is notified. Or you may substitute by changing to other states, such as a state which can receive the measurement start instruction demonstrated below and an ultrasonic transmission / reception apparatus.
 以上のステップ602,603によれば、振動子アレイ2における振動子1の位置座標と送受信部3の信号応答時間をキャリブレーションすることができる。 According to the above steps 602 and 603, the position coordinates of the transducer 1 in the transducer array 2 and the signal response time of the transmission / reception unit 3 can be calibrated.
 ここで、制御部4が、上記ステップ104において新たなパラメータ値を求める動作を図9のフローチャートを用いて詳しく説明する。まず、制御部4は、上述のステップS101でパラメータ記憶部19から読み出したパラメータ値(振動子の位置座標、信号応答時間R1t、R2t)と、空間30に満たされた物質の音速とに基づいて、信号遅延時間PRtを算出する(ステップS164)。具体的には、制御部4は、送信と受信を行った振動子1間の距離を、パラメータ記憶部19から読み出した振動子の位置座標から算出し、これを音速で割ることにより、現在のパラメータ値(デフォルト)の超音波伝搬時間P1tを算出する。さらに、制御部4は、算出した超音波伝搬時間P1tと、これらの振動子に接続された送受信部3の信号応答時間R1t、R2tとを加算することにより、デフォルトの信号遅延時間PRtを算出する。 Here, the operation in which the control unit 4 obtains a new parameter value in step 104 will be described in detail with reference to the flowchart of FIG. First, the control unit 4 is based on the parameter values (vibrator position coordinates, signal response times R1t, R2t) read from the parameter storage unit 19 in step S101 and the sound speed of the substance filled in the space 30. The signal delay time PRt is calculated (step S164). Specifically, the control unit 4 calculates the distance between the transducers 1 that have transmitted and received from the position coordinates of the transducers read from the parameter storage unit 19, and divides this by the sound speed, The ultrasonic propagation time P1t of the parameter value (default) is calculated. Further, the control unit 4 calculates the default signal delay time PRt by adding the calculated ultrasonic propagation time P1t and the signal response times R1t and R2t of the transmission / reception unit 3 connected to these transducers. .
 つぎに、制御部4は、ステップS103で読み出した信号遅延時間PRtと、ステップS164で算出したデフォルトの信号遅延時間PRtとの差を算出する(ステップS165)。これにより、ステップS103で読み出した信号遅延時間PRtは、ステップS102で実際に超音波を送受信して計測した信号遅延時間であるから、デフォルトの信号遅延時間PRtとの差が所定値以下(例えば、信号遅延時間差の二乗和が所定値以内)であれば、ステップS101でパラメータ記憶部19から読み出したパラメータ値の位置座標および信号応答時間R1t、R2tは、現在の振動子1の位置座標および送受信部の信号応答時間R1t、R2tとの差が所定値以内である。よって、制御部4は、両者の差が所定値以内である場合、新たな位置座標および信号応答時間R1t、R2tの算出を行わず、そのままステップS105へ進む(ステップS166)。一方、ステップS166において、差が、所定値よりも大きければ、現在の振動子1の位置座標および送受信部の信号応答時間R1t、R2tを算出するため、ステップS167に進む。 Next, the control unit 4 calculates the difference between the signal delay time PRt read in step S103 and the default signal delay time PRt calculated in step S164 (step S165). Thereby, since the signal delay time PRt read out in step S103 is the signal delay time actually measured by transmitting and receiving ultrasonic waves in step S102, the difference from the default signal delay time PRt is not more than a predetermined value (for example, If the sum of squares of the signal delay time difference is within a predetermined value), the position coordinates of the parameter values and the signal response times R1t and R2t read from the parameter storage unit 19 in step S101 are the current position coordinates of the transducer 1 and the transmission / reception unit. The signal response times R1t and R2t are within a predetermined value. Therefore, when the difference between the two is within the predetermined value, the control unit 4 does not calculate the new position coordinates and the signal response times R1t and R2t, and proceeds to step S105 as it is (step S166). On the other hand, if the difference is larger than the predetermined value in step S166, the process proceeds to step S167 to calculate the current position coordinates of the transducer 1 and the signal response times R1t and R2t of the transmission / reception unit.
 ステップS167~S173では、新たな位置座標および信号応答時間R1t、R2tを設定し、新たな位置座標および信号応答時間R1t、R2tから算出した信号遅延時間PRtと、ステップS102で計測した信号遅延時間PRtとの差の二乗和が最小となるように、最小二乗法で新たな位置座標および信号応答時間R1t、R2tを算出する。 In steps S167 to S173, new position coordinates and signal response times R1t and R2t are set, the signal delay time PRt calculated from the new position coordinates and signal response times R1t and R2t, and the signal delay time PRt measured in step S102. The new position coordinates and signal response times R1t and R2t are calculated by the least square method so that the sum of squares of the difference between the two is minimized.
 まず、N=1番目の振動子のX座標を予め定めたステップサイズで予め定めた範囲で変化させ、他の位置座標及び信号応答時間R1t、R2tはパラメータ記憶部19から読み出した値を用いて、信号遅延時間PRtを算出する。これにより、新たな位置座標X、Yおよび信号応答時間R1t、R2tから算出した信号遅延時間PRtと、ステップS102で計測した信号遅延時間PRtとの差の二乗和が最小となる位置座標Xを算出する(ステップS168)。つぎに、N=1番目の振動子のY座標を予め定めたステップサイズで予め定めた範囲で変化させ、X座標はステップS168で算出した座標を用い、信号応答時間R1t、R2tはパラメータ記憶部19から読み出した値を用いて、信号遅延時間PRtを算出する。これにより、新たな位置座標X、Yおよび信号応答時間R1t、R2tから算出した信号遅延時間PRtと、ステップS102で計測した信号遅延時間PRtとの差の二乗和が最小となる位置座標Yを算出する(ステップS169)。 First, the X coordinate of the N = 1st vibrator is changed within a predetermined range with a predetermined step size, and other position coordinates and signal response times R1t and R2t are obtained using values read from the parameter storage unit 19. The signal delay time PRt is calculated. As a result, the position coordinate X that minimizes the sum of squares of the difference between the signal delay time PRt calculated from the new position coordinates X and Y and the signal response times R1t and R2t and the signal delay time PRt measured in step S102 is calculated. (Step S168). Next, the Y coordinate of the N = 1st vibrator is changed within a predetermined range with a predetermined step size, the X coordinate is the coordinate calculated in step S168, and the signal response times R1t and R2t are parameter storage units. The signal delay time PRt is calculated using the value read from 19. Thereby, the position coordinate Y that minimizes the sum of squares of the difference between the signal delay time PRt calculated from the new position coordinates X and Y and the signal response times R1t and R2t and the signal delay time PRt measured in step S102 is calculated. (Step S169).
 つぎに、N=1番目の振動子が接続されている送受信部3の送信部6の信号応答時間R1tを、予め定めたステップサイズで予め定めた範囲で変化させ、振動子の位置座標はステップS168、169で算出した座標を用い、信号応答時間R2tはパラメータ記憶部19から読み出した値を用いて、信号遅延時間PRtを算出する。これにより、新たな位置座標X,Yと信号応答時間R1t、R2tから算出した信号遅延時間PRtと、ステップS102で計測した信号遅延時間PRtとの差の二乗和が最小となる信号応答時間R1tを算出する(ステップS170)。同様に、N=1番目の振動子が接続されている送受信部3の受信部7の信号応答時間R2tを、予め定めたステップサイズで予め定めた範囲で変化させ、振動子の位置座標はステップS168、169で算出した座標を用い、信号応答時間R1tはステップS170で算出した値を用いて、信号遅延時間PRtを算出する。これにより、新たな位置座標X,Yと信号応答時間R1t、R2tから算出した信号遅延時間PRtと、ステップS102で計測した信号遅延時間PRtとの差の二乗和が最小となる信号応答時間R2tを算出する(ステップS171)。 Next, the signal response time R1t of the transmission unit 6 of the transmission / reception unit 3 to which the N = 1st transducer is connected is changed within a predetermined range with a predetermined step size, and the position coordinates of the transducer are stepped. Using the coordinates calculated in S168 and 169, the signal response time R2t is calculated using the value read from the parameter storage unit 19, and the signal delay time PRt is calculated. Accordingly, the signal response time R1t that minimizes the sum of squares of the difference between the signal delay time PRt calculated from the new position coordinates X and Y and the signal response times R1t and R2t and the signal delay time PRt measured in step S102 is obtained. Calculate (step S170). Similarly, the signal response time R2t of the reception unit 7 of the transmission / reception unit 3 to which the N = 1st transducer is connected is changed within a predetermined range with a predetermined step size, and the position coordinates of the transducer are set in steps. The signal delay time PRt is calculated using the coordinates calculated in S168 and 169 and the signal response time R1t using the value calculated in step S170. Thereby, the signal response time R2t that minimizes the sum of squares of the difference between the signal delay time PRt calculated from the new position coordinates X and Y and the signal response times R1t and R2t and the signal delay time PRt measured in step S102 is obtained. Calculate (step S171).
 上記ステップS168~171を、全て(N個)の振動子1について繰り返す(ステップS172,173)。これにより、ステップS102で計測した信号遅延時間PRtとの誤差が最小な、新たな位置座標および信号応答時間R1t、R2tを、新たなパラメータ値として算出でき、ステップS104が終了する。 The above steps S168 to 171 are repeated for all (N) vibrators 1 (steps S172 and 173). As a result, new position coordinates and signal response times R1t and R2t with a minimum error from the signal delay time PRt measured in step S102 can be calculated as new parameter values, and step S104 is completed.
 なお、上記ステップ168~171においては、差の二乗和が最小となる値を算出する際、差の二乗和が所定の値以下になった場合や、差の減少量が所定の値以下になった場合や、演算回数が所定の回数に達した場合などに、差の二乗和が最小となったと判断してもよい。 In the above steps 168 to 171, when calculating the value that minimizes the sum of squares of the difference, if the sum of squares of the difference is less than or equal to a predetermined value, or the amount of decrease in the difference is less than or equal to the predetermined value. When the number of calculations reaches a predetermined number, it may be determined that the sum of squares of the difference is minimized.
 また、ステップS168~171において、送受信部3間の信号遅延時間差の二乗和を求める際に、各送受信部3間(振動子1間)の信号遅延時間PRtに重み付けしてもよい。たとえば、図3(d),(e)のように、振動子アレイ2が振動子サブアレイ11の組み合わせで構成される場合、振動子サブアレイ11毎に振動子1の位置座標と信号応答時間の誤差は傾向を持つと考えられるため、振動子サブアレイ11毎に重み付けするなどである。あるいは、振動子サブアレイ11の端に位置する振動子1とそれ以外に位置する振動子1には構造上の差異があるため、これを考慮して重み付けすることも可能である。 In steps S168 to S171, when the sum of squares of the signal delay time difference between the transmission / reception units 3 is obtained, the signal delay time PRt between the transmission / reception units 3 (between the transducers 1) may be weighted. For example, as shown in FIGS. 3D and 3E, when the transducer array 2 is configured by a combination of the transducer subarrays 11, an error between the position coordinates of the transducer 1 and the signal response time for each transducer subarray 11. Is considered to have a tendency, so that each transducer subarray 11 is weighted. Alternatively, since there is a structural difference between the vibrator 1 located at the end of the vibrator sub-array 11 and the vibrator 1 located outside the vibrator sub-array 11, it is possible to perform weighting in consideration of this.
 また、振動子1は素子形状や整合層、音響レンズ等の構造により超音波信号の送受信に指向性を持つ。そのため、ステップ168~171において、信号応答時間R1t、R2tには、その構造の振動子1に典型的な指向性を加味してもよい。また、振動子サブアレイ11の端に位置する振動子1とそれ以外に位置する振動子1で典型的な指向性の特性が大きく異なる場合があるため、その場合には、振動子1の振動子サブアレイ11内における位置に応じて、信号応答時間R1t、R2tにそれぞれに適した典型的な指向性を加味してもよい。 In addition, the vibrator 1 has directivity for transmitting and receiving ultrasonic signals due to the element shape, the matching layer, the acoustic lens, and the like. For this reason, in steps 168 to 171, the signal response times R 1 t and R 2 t may be added with directivity typical to the vibrator 1 having the structure. In addition, in some cases, typical directivity characteristics may be greatly different between the vibrator 1 located at the end of the vibrator sub-array 11 and the vibrator 1 located at other positions. Depending on the position in the sub-array 11, typical directivity suitable for each of the signal response times R1t and R2t may be added.
 なお、上記ステップS164~S173により位置座標と信号応答時間R1t、R2tを算出するステップS104において、1組の振動子1と送受信部3が持つパラメータの数は、振動子1間の距離と送受信部3の送信動作における信号応答時間R1t、送受信部3の受信動作における信号応答時間R2tの3つである。したがって、振動子1と送受信部3がN組ある場合、パラメータの数は3N個となる。これに対し、測定される信号遅延時間PRtは、振動子1と送受信部3の組同士の組み合わせであるため、N×(N-1)個である。つまり、パラメータ3N個をN×(N-1)個の連立方程式で求めることになる。Nが4以上であれば、3N個のパラメータはその他の誤差要因を除けば一意に求まる。よって、1組の送信動作する振動子1と送受信部3に対して、所定の距離以上離れた振動子1と送受信部3のみが受信動作するなどの制約を設けてもよい。この場合、受信動作する振動子1と送受信部3の組を半数に減らしたとしても、Nが7以上であれば、3N個のパラメータを一意に求めることができる。なお、各振動子1間の距離が分かれば、三辺測量の原理などにより各振動子1の相対的な位置関係である位置座標を求めることができるため、これを利用して受信動作をする振動子1の数を低減してもよい。 In step S104 in which the position coordinates and the signal response times R1t and R2t are calculated in steps S164 to S173, the number of parameters of the pair of transducers 1 and the transmission / reception unit 3 is the distance between the transducers 1 and the transmission / reception unit. The signal response time R1t in the transmission operation 3 and the signal response time R2t in the reception operation of the transmission / reception unit 3 are three. Therefore, when there are N sets of transducers 1 and transmission / reception units 3, the number of parameters is 3N. On the other hand, the signal delay time PRt to be measured is N × (N−1) because it is a combination of the transducer 1 and the transceiver 3. That is, 3N parameters are obtained by N × (N−1) simultaneous equations. If N is 4 or more, 3N parameters can be uniquely obtained except for other error factors. Therefore, a restriction may be provided such that only the transducer 1 and the transmission / reception unit 3 that are separated by a predetermined distance or more perform a reception operation on the transducer 1 and the transmission / reception unit 3 that perform a transmission operation. In this case, even if the number of the transducers 1 and the transmission / reception units 3 that perform the reception operation is reduced to half, if N is 7 or more, 3N parameters can be uniquely obtained. If the distance between the transducers 1 is known, the position coordinates that are the relative positional relationship of the transducers 1 can be obtained by the principle of triangulation, and the reception operation is performed using this. The number of vibrators 1 may be reduced.
 なお、上述のステップS104で求めた位置座標や信号応答時間の値が、キャリブレーション前(デフォルト)の値と所定値以上異なっている場合、他のパラメータ(送信信号波形や、送信動作における信号変換利得R1A、受信動作における信号変換利得R2A、受信フィルタ定数等のパラメータ)についても同様に補正してもよい。これらの補正後のパラメータ値についても、キャリブレーションされたパラメータ値としてパラメータ記憶部19に書き込む。 When the position coordinates and signal response time values obtained in step S104 described above differ from the values before calibration (default) by a predetermined value or more, other parameters (transmission signal waveform, signal conversion in transmission operation) The gain R1A, the signal conversion gain R2A in the reception operation, and the parameters such as the reception filter constant may be corrected in the same manner. These corrected parameter values are also written in the parameter storage unit 19 as calibrated parameter values.
 次に、図7の計測モード(ステップS604)について、図10、図11を用いて詳しく説明する。 Next, the measurement mode (step S604) in FIG. 7 will be described in detail with reference to FIGS.
 上述したステップS603で操作者が同意した場合、もしくは、操作部40を介して操作者が計測を指示した場合、制御部4は、計測モードを実行する(ステップ604)。計測モードを開始する前に、操作者は、計測対象を振動子アレイ2の内側の空間30に設置する。なお、計測対象が振動子アレイ2の内側の空間30に設置されたことをトリガに、自動制御プログラムなどによって制御部4が自動的に計測モードを開始してもよい。 When the operator agrees in step S603 described above, or when the operator instructs measurement via the operation unit 40, the control unit 4 executes the measurement mode (step 604). Before starting the measurement mode, the operator places a measurement target in the space 30 inside the transducer array 2. Note that the control unit 4 may automatically start the measurement mode by an automatic control program or the like, triggered by the fact that the measurement target is installed in the space 30 inside the transducer array 2.
 まず、図10および図11(a)のように、制御部4は、記憶部9のパラメータ記憶部19から各種パラメータの値を読み出す(ステップS112)。このパラメータには、各振動子1の位置座標、各送受信部3の信号応答時間R1t,R2tが含まれている。この他に、送信信号波形、送信信号強度、送受信部3の信号変換利得R1A,R2A、受信フィルタ定数などが含まれていてもよい。振動子の位置座標および信号応答時間R1t,R2tは、キャリブレーションモード602でキャリブレーションされた値である。 First, as shown in FIGS. 10 and 11A, the control unit 4 reads the values of various parameters from the parameter storage unit 19 of the storage unit 9 (step S112). This parameter includes the position coordinates of each transducer 1 and the signal response times R1t and R2t of each transceiver 3. In addition, a transmission signal waveform, transmission signal strength, signal conversion gains R1A and R2A of the transmission / reception unit 3, reception filter constants, and the like may be included. The position coordinates of the transducer and the signal response times R1t and R2t are values calibrated in the calibration mode 602.
 次に、制御部4は、各送受信部3に対して、送受信動作指示信号63を送信し、所定の送受信部3aに送信動作をさせ、他の送受信部3b、3cに受信動作させることにより超音波信号S21を空間30に伝搬させる(ステップS113)。 Next, the control unit 4 transmits a transmission / reception operation instruction signal 63 to each transmission / reception unit 3, causes the predetermined transmission / reception unit 3 a to perform transmission operation, and causes the other transmission / reception units 3 b and 3 c to perform reception operation. The sound wave signal S21 is propagated to the space 30 (step S113).
 具体的なステップS113の超音波伝搬動作は、図11(b)に示すように、送信動作させる振動子1を変更しながら制御部4が実施する。まず、N=1番目の送受信部3を送信動作させる送受信部として選択し、残りの送受信部3を受信動作させる受信部として選択する(ステップS117、S118)。次に、制御部4は、送信部として選択した各送受信部3の送信部6に、パラメータ記憶部19からパラメータ値として読み出した送信信号波形の電気信号S1を出力し、送信信号S11を生成させるとともに、受信部として選択した送受信部3に、パラメータ値として受信フィルタ定数等を設定し、受信動作を指示する(ステップS119)。これにより、送信部として選択したN番目の送受信部3に接続された振動子1から、超音波信号S21が送信される(ステップS119)。 Specific ultrasonic wave propagation operation in step S113 is performed by the control unit 4 while changing the vibrator 1 to be transmitted as shown in FIG. 11B. First, the N = 1 first transmission / reception unit 3 is selected as a transmission / reception unit that performs a transmission operation, and the remaining transmission / reception units 3 are selected as reception units that perform a reception operation (steps S117 and S118). Next, the control unit 4 outputs the electrical signal S1 of the transmission signal waveform read out as the parameter value from the parameter storage unit 19 to the transmission unit 6 of each transmission / reception unit 3 selected as the transmission unit, and generates the transmission signal S11. At the same time, a reception filter constant or the like is set as a parameter value to the transmission / reception unit 3 selected as the reception unit and a reception operation is instructed (step S119). Thereby, the ultrasonic signal S21 is transmitted from the transducer 1 connected to the Nth transceiver unit 3 selected as the transmission unit (step S119).
 続けて、送信部として選択したN番目の送受信部3を、今度は受信部として選択し、パラメータ値として受信フィルタ定数等を設定し、受信動作を指示する(ステップS120)。これにより、N番目の送受信部3から送信された超音波信号S21は、図5(b)に示したように、空間30に配置された計測対象Aを透過し、一部は、計測対象により反射され、透過波および反射波がN番目のぞく送受信部3に接続された振動子1で受信されるとともに、計測対象による反射波は、超音波信号S21を送信したN番目の送受信部3に接続された振動子1においても受信される(ステップS121)。各振動子1の受信信号S31は、接続された送受信部3の受信部7によってフィルタ処理および増幅処理等されて増幅後受信信号S41が生成され、制御部4に出力される。 Subsequently, the Nth transmitting / receiving unit 3 selected as the transmitting unit is selected as a receiving unit, a receiving filter constant or the like is set as a parameter value, and a receiving operation is instructed (step S120). As a result, the ultrasonic signal S21 transmitted from the Nth transmitter / receiver 3 passes through the measurement target A arranged in the space 30 as shown in FIG. 5B, and a part thereof depends on the measurement target. Reflected and transmitted waves and reflected waves are received by the vibrator 1 connected to the Nth transmitter / receiver 3, and the reflected wave from the measurement target is connected to the Nth transmitter / receiver 3 that has transmitted the ultrasonic signal S 21. The received transducer 1 also receives the signal (step S121). The reception signal S31 of each transducer 1 is filtered and amplified by the reception unit 7 of the connected transmission / reception unit 3 to generate an amplified reception signal S41 and is output to the control unit 4.
 制御部4は、増幅後受信信号S41が受信部7から出力されたタイミングT4と、電気信号S1を送信部6に出力したタイミングT1との差である信号遅延時間PRtを算出する。また、増幅後受信信号S41の信号強度を算出してもよい。算出した信号遅延時間PRt等は、送信部として選択した送受信部3と受信部として選択した送受信部3の組み合わせごとに、記憶部9に書き込む(ステップS122)。記憶部9に書き込む情報は、信号遅延時間PRtおよび強度情報の他に、増幅後受信信号S41の信号波形データなどを含んでいてもよい。 The control unit 4 calculates a signal delay time PRt that is a difference between the timing T4 at which the amplified reception signal S41 is output from the reception unit 7 and the timing T1 at which the electrical signal S1 is output to the transmission unit 6. Further, the signal strength of the amplified received signal S41 may be calculated. The calculated signal delay time PRt and the like are written in the storage unit 9 for each combination of the transmission / reception unit 3 selected as the transmission unit and the transmission / reception unit 3 selected as the reception unit (step S122). The information to be written in the storage unit 9 may include signal waveform data of the received signal S41 after amplification in addition to the signal delay time PRt and the intensity information.
 上記ステップS118~S122の動作を、N個の送受信部3の全てを送信部として送信動作させるまで繰り返す(ステップS123、S124)。なお、信号遅延時間PRtおよびの算出と記憶のステップS122は繰り返し判定S123の後にまとめて行ってもよい。 The operations in steps S118 to S122 are repeated until all the N transmission / reception units 3 perform transmission operations (steps S123 and S124). Note that step S122 for calculating and storing the signal delay time PRt may be performed after the repetition determination S123.
 なお、ステップS118において、制御部4が送信部として選択する送受信部3は1つに限られず、複数でもよい。複数の送受信部3を同時に送信動作させ、超音波信号の合成波を送信してもよい。また、制御部4が受信部として選択する送受信部3は、送信動作させる送受信部3との位置関係や振動子アレイ2の形状、振動子アレイ2の内側の環境に応じて選択された一部の送受信部3としてもよい。 In addition, in step S118, the transmission / reception part 3 which the control part 4 selects as a transmission part is not restricted to one, Plural may be sufficient. A plurality of transmission / reception units 3 may be simultaneously operated to transmit a composite wave of ultrasonic signals. The transmission / reception unit 3 selected as the reception unit by the control unit 4 is a part selected according to the positional relationship with the transmission / reception unit 3 that performs the transmission operation, the shape of the transducer array 2, and the environment inside the transducer array 2. The transmission / reception unit 3 may be used.
 つぎに、制御部4は、図11(a)のステップS114へ進み、ステップS113で記憶した全ての送受信部3についての信号遅延時間PRtを記憶部9から読み出す。増幅後受信信号S41の信号強度が記憶部9に書き込まれている場合には、これも読み込む。制御部4の演算部20は、読み出した信号遅延時間PRt、信号強度、および、ステップS112で読み出したキャリブレーション後の振動子の位置座標等のパラメータを用いて、計測対象の形状と、音速および減衰量等の物性値の分布(マップ)とを算出し、算出した形状と物性値の分布(マップ)を記憶部9に格納(記憶)する(ステップS115)。具体的には、計測対象の形状画像は、一般的な超音波撮像装置と同様に、計測対象で反射された超音波信号を受信した振動子の受信信号を、空間30に設定した複数の受信時焦点について整相加算(受信ビームフォーミング)し、整相加算後の信号強度を輝度に変換することにより生成できる。また、この後生成方法を説明する音速分布または減衰量分布において、音速または減衰量の分布の境界を検出することにより、形状画像を生成することも可能である。音速分布画像は、以下のように生成することができる。演算部20は、読み出した信号遅延時間PRtから、ステップS112で読み込んだキャリブレーション後のパラメータである各送受信部3の信号応答時間R1t,R2tを減算することにより、その超音波を送受信した振動子1間の超音波信号S21の超音波伝搬時間P1tを求める。また、ステップS112で読み込んだキャリブレーション後のパラメータである振動子1の位置座標により、その超音波信号S21を送受信した振動子1間の距離を算出する。求めた振動子間の距離を超音波伝搬時間P1tで割ることにより、超音波信号S21の平均音速を求める。これを超音波信号S21を送受信したすべての送受信部3(振動子1)の組み合わせについて算出することにより、計測対象に様々な角度から超音波信号S21を送信した場合の、それぞれの角度における平均音速を求めることができる。平均音速は、超音波が通過(伝搬)した経路の音速分布の平均であるから、様々な経路における平均音速に矛盾を生じないように、マトリクス演算等の公知のトモグラフィ法の演算処理を用いることにより、計測対象の音速分布(音速マップ)を算出することができる。これにより、振動子アレイ2が配置されている平面の計測対象の音速分布画像を生成することができる。また、増幅後受信信号S41の信号強度を記憶部9から読み込んだ場合には、減衰量分布画像を以下のように生成することができる。演算部20は、増幅後受信信号S41の信号強度と、送信部6に制御部4が出力した電気信号S1の信号強度と、ステップS112で読み込んだ送受信部3の信号変換利得R1A、R2Aから、超音波信号S21の送受信を行った振動子1間における平均減衰量を算出することができる。平均減衰量は、超音波信号S21の通過(伝搬)した経路の減衰量分布の平均である。よって、さまざまな角度から超音波信号S21を送信した場合の平均減衰量を用いて、マトリクス演算等の公知のトモグラフィ法の演算処理を用いることにより、計測対象の減衰量分布(減衰量マップ)を算出することができる。これにより、振動子アレイ2が配置されている平面の計測対象の減衰量分布画像を生成することができる。 Next, the control unit 4 proceeds to step S114 in FIG. 11A, and reads out the signal delay times PRt for all the transmission / reception units 3 stored in step S113 from the storage unit 9. When the signal strength of the received signal S41 after amplification is written in the storage unit 9, this is also read. The calculation unit 20 of the control unit 4 uses the parameters such as the read signal delay time PRt, the signal intensity, and the position coordinates of the transducer after calibration read in step S112, the shape of the measurement target, the sound speed, A physical property value distribution (map) such as an attenuation amount is calculated, and the calculated shape and physical property value distribution (map) are stored (stored) in the storage unit 9 (step S115). Specifically, the shape image of the measurement target is a plurality of receptions set in the space 30 by receiving signals from the transducer that has received the ultrasonic signal reflected by the measurement target, as in a general ultrasonic imaging apparatus. It can be generated by performing phasing addition (reception beam forming) for the time focus and converting the signal intensity after phasing addition into luminance. It is also possible to generate a shape image by detecting the boundary of the sound velocity or attenuation distribution in the sound velocity distribution or attenuation distribution that describes the generation method. The sound speed distribution image can be generated as follows. The calculation unit 20 subtracts the signal response times R1t and R2t of each transmission / reception unit 3 that are the parameters after calibration read in step S112 from the read signal delay time PRt, thereby transmitting and receiving the ultrasonic wave. The ultrasonic wave propagation time P1t of the ultrasonic signal S21 between 1 is obtained. Further, the distance between the transducers 1 that have transmitted and received the ultrasonic signal S21 is calculated from the position coordinates of the transducers 1 that are the parameters after calibration read in step S112. The average sound speed of the ultrasonic signal S21 is obtained by dividing the obtained distance between the transducers by the ultrasonic wave propagation time P1t. By calculating this for all combinations of the transmission / reception units 3 (vibrators 1) that transmit and receive the ultrasonic signal S21, the average sound velocity at each angle when the ultrasonic signal S21 is transmitted from various angles to the measurement target. Can be requested. Since the average sound speed is an average of the sound speed distribution of the path through which the ultrasonic wave has passed (propagated), a known tomography method such as matrix calculation is used so as not to contradict the average sound speed in various paths. Thus, the sound speed distribution (sound speed map) to be measured can be calculated. Thereby, it is possible to generate a sound velocity distribution image of the measurement target on the plane where the transducer array 2 is arranged. When the signal intensity of the amplified received signal S41 is read from the storage unit 9, an attenuation distribution image can be generated as follows. The arithmetic unit 20 calculates the signal strength of the amplified received signal S41, the signal strength of the electrical signal S1 output from the control unit 4 to the transmission unit 6, and the signal conversion gains R1A and R2A of the transmission / reception unit 3 read in step S112. It is possible to calculate the average attenuation amount between the transducers 1 that have transmitted and received the ultrasonic signal S21. The average attenuation is an average of the attenuation distribution of the path through which the ultrasonic signal S21 passes (propagated). Therefore, the attenuation distribution (attenuation map) of the measurement target is obtained by using the calculation processing of a known tomography method such as matrix calculation using the average attenuation when the ultrasonic signal S21 is transmitted from various angles. Can be calculated. Thereby, it is possible to generate an attenuation distribution image of the measurement target on the plane on which the transducer array 2 is arranged.
 なお、計測モードでの動作は、複数の信号強度や信号周波数、信号波形などで実施してもよい。 The operation in the measurement mode may be performed with a plurality of signal strengths, signal frequencies, signal waveforms, and the like.
 算出した計測対象の形状、および、音速や減衰量などの物性値の分布(マップ)は、形状および物性値の値等の情報とともに、表示部10に表示する(ステップS116)。なお、これらの計測結果は、記憶部9からステップS112で読み出されたキャリブレーション後の各種パラメータ値とともに表示してもよい。各種パラメータ値を表示することで、計測結果と超音波送受信装置5の特性とを関連付けて管理することができる。 The calculated shape of the measurement target and the distribution (map) of physical property values such as sound speed and attenuation are displayed on the display unit 10 together with information such as the shape and physical property value (step S116). Note that these measurement results may be displayed together with various parameter values after calibration read from the storage unit 9 in step S112. By displaying various parameter values, the measurement result and the characteristics of the ultrasonic transmission / reception apparatus 5 can be managed in association with each other.
 上記ステップS116が終了したならば、制御部4は、表示部10に電源をオフにして計測を終了するか、計測を継続するかどうかを、操作者に尋ねる表示を表示させる(図6のステップS605)。操作部40を介して、操作者が電源をオフにしないこと(No)を選択した場合、制御部4は、ステップS604に戻り、計測モードを繰り返す。一方、操作者が電源をオフにすること(Yes)を選択した場合、制御部4は、振動子アレイ2の内側の空間30に所定の液体(例えば水)を満たすように促す表示を表示部10に表示させる。これを見た操作者が、所定の液体を空間30に満たし、そのことを操作部40を介して制御部4に通知(確認)した場合には、制御部4は、電源をオフにする。これにより、次に、電源がオンにされた場合(ステップS601)から、空間30に所定の液体が満たされた状態であるので、操作者の手を煩わせることなく、キャリブレーションモードを実行することができる(ステップS602)。 When step S116 is completed, the control unit 4 causes the display unit 10 to display a display asking the operator whether to turn off the power and end the measurement or to continue the measurement (step in FIG. 6). S605). If the operator selects not to turn off the power (No) via the operation unit 40, the control unit 4 returns to step S604 and repeats the measurement mode. On the other hand, when the operator selects to turn off the power (Yes), the control unit 4 displays a display that prompts the interior space 30 of the transducer array 2 to fill a predetermined liquid (for example, water). 10 is displayed. When the operator who sees this fills the space 30 with a predetermined liquid and notifies (confirms) this to the control unit 4 via the operation unit 40, the control unit 4 turns off the power. Accordingly, since the space 30 is filled with a predetermined liquid from the next time the power is turned on (step S601), the calibration mode is executed without bothering the operator. (Step S602).
 なお、計測結果の表示(ステップS116)の後、操作部40を介して、操作者から計測結果確認信号の入力を受け付ける構成にすることも可能である。あるいは、超音波送受信装置が休止状態や計測開始指示を受け付け可能な状態などの他の状態に遷移するように構成することも可能である。 It should be noted that after the measurement result is displayed (step S116), the measurement result confirmation signal can be received from the operator via the operation unit 40. Alternatively, the ultrasonic transmission / reception apparatus can be configured to transition to another state such as a pause state or a state where a measurement start instruction can be accepted.
 上述してきたように、本実施形態によれば、キャリブレーションされた振動子1の位置座標と、送受信部3の信号応答時間R1t、R2tと、測定された信号遅延時間と超音波受信信号強度を用いて、計測対象の形状と音速や減衰量などの物性値を高精度に計測することができる。 As described above, according to the present embodiment, the position coordinates of the calibrated transducer 1, the signal response times R1t and R2t of the transmission / reception unit 3, the measured signal delay time, and the ultrasonic reception signal intensity By using this, it is possible to measure the shape of the measurement object and the physical property values such as the sound speed and the attenuation amount with high accuracy.
 ここで、上記ステップS105において、キャリブレーション結果を表示部10に表示する態様について、図12を用いて説明する。表示部10には、キャリブレーション後の位置座標と信号応答時間R1t,R2tの値をそのまま表示することが可能である。また、既知の形状と音速や減衰量などの物性値を持つ物体に対して、例えば図11(a),(b)の計測モードと同様に超音波信号を送受信させ、キャリブレーションされた位置座標と信号応答時間R1t,R2tを用いてマトリクス演算(超音波トモグラフィ法)し、算出した同物体の形状と音速や減衰量などの物性値の画像として表示することも可能である。図12は、キャリブレーション結果を表示する表示部10の画面例であり、位置座標と信号応答時間R1t,R2tの値を表示する表示領域81~84と、既知の形状と音速と減衰量を持つ物体(標準ファントム)に対して超音波信号を送受信させ、キャリブレーションされた位置座標と信号応答時間R1t,R2tを用いて超音波トモグラフィ法により算出した標準ファントムの形状画像と音速画像と減衰量画像をそれぞれ表示する表示領域85~87とを含む。表示領域81、82には、各振動子1のキャリブレーション後のX座標およびY座標の値と初期値(キャリブレーション前の値)との差(誤差)がグラフとしてそれぞれ表示されている。表示領域83,84には、各振動子1のキャリブレーション後の信号応答時間R1t,R2tと初期値(キャリブレーション前の値)との差(誤差)がグラフとしてそれぞれ表示されている。また、図12の表示画面には、表示領域81~87に示されたキャリブレーション結果を見たユーザから、図7のステップS603においてキャリブレーション結果を承認の操作を受け付けるキャリブレーション結果承認スイッチ(オブジェクト)89を表示することも可能である。また、表示画面には、ユーザから、キャリブレーションモード4aを再実施する指示を受け付けるキャリブレーション再実施スイッチ(オブジェクト)88を併せて表示することも可能である。図12のような表示画面をステップS105において表示することにより、ユーザは、キャリブレーション結果の値と、このキャリブレーション結果を用いて物体(標準ファントム)を計測した場合の画像を容易に把握することができる。よって、キャリブレーション結果を承認するか、再実施するかのユーザの判断を表示画面によって支援することができる。 Here, a mode in which the calibration result is displayed on the display unit 10 in step S105 will be described with reference to FIG. The display unit 10 can display the position coordinates after calibration and the values of the signal response times R1t and R2t as they are. Further, for example, an ultrasonic signal is transmitted / received to / from an object having a known shape and a physical property value such as sound velocity and attenuation amount in the same manner as in the measurement mode of FIGS. And signal response times R1t and R2t can be used to perform matrix calculation (ultrasonic tomography method) and display the calculated shape of the same object and an image of physical property values such as sound speed and attenuation. FIG. 12 is a screen example of the display unit 10 that displays the calibration result, and has display areas 81 to 84 that display values of position coordinates and signal response times R1t and R2t, and a known shape, sound speed, and attenuation. An ultrasonic signal is transmitted to and received from an object (standard phantom), and the shape image, sound velocity image, and attenuation amount of the standard phantom calculated by the ultrasonic tomography method using the calibrated position coordinates and signal response times R1t and R2t. Display areas 85 to 87 for displaying images. In the display areas 81 and 82, the differences (errors) between the values of the X and Y coordinates after calibration of each transducer 1 and the initial values (values before calibration) are displayed as graphs. In the display areas 83 and 84, the differences (errors) between the signal response times R1t and R2t after calibration of the transducers 1 and the initial values (values before calibration) are displayed as graphs. In the display screen of FIG. 12, a calibration result approval switch (object that accepts an operation for approving the calibration result in step S603 of FIG. 7 from the user who has seen the calibration results shown in the display areas 81 to 87. ) 89 can also be displayed. In addition, a calibration re-execution switch (object) 88 that accepts an instruction to re-execute the calibration mode 4a from the user can also be displayed on the display screen. By displaying the display screen as shown in FIG. 12 in step S105, the user can easily grasp the value of the calibration result and the image when the object (standard phantom) is measured using the calibration result. Can do. Therefore, it is possible to support the user's judgment on whether to approve the calibration result or to re-execute it on the display screen.
 さらに、同物体(標準ファントム)の既知の形状と音速や減衰量などの物性値を基に、キャリブレーション結果を微調整してもよい。例えば、キャリブレーションモード4aにおいて、空間30を満たした水の温度が想定と異なり、ステップS104で用いた空間30を満たした水の音速が1%速かった場合、同物体の形状の画像は1%小さく表示される。この場合、振動子1同士の距離(位置座標)に関するキャリブレーションされたパラメータ値も同様に1%短くなっている。そこで、振動子1同士の距離が1%長くなるように微調整するのである。このように、キャリブレーションされたパラメータ値の確からしさを高めることも可能である。 Furthermore, the calibration result may be finely adjusted based on the known shape of the same object (standard phantom) and physical property values such as sound speed and attenuation. For example, in the calibration mode 4a, when the temperature of the water filling the space 30 is different from the assumption, and the sound speed of the water filling the space 30 used in step S104 is 1% faster, the image of the shape of the object is 1% It is displayed small. In this case, the calibrated parameter value related to the distance (positional coordinate) between the transducers 1 is also shortened by 1%. Therefore, fine adjustment is performed so that the distance between the vibrators 1 is increased by 1%. In this way, it is possible to increase the certainty of the calibrated parameter value.
 なお、上述の制御部4のキャリブレーションモード4aは、計測した信号遅延時間と、パラメータ値から求めた信号遅延時間との差が最小になるように、新たなパラメータ値を算出する構成であったが、キャリブレーションモードにおけるパラメータ値の算出方法はこの方法に限られるものではなく、他の方法を用いることも可能である。以下、変形例として、他の算出方法を用いるキャリブレーションモード4aについて説明する。 The calibration mode 4a of the control unit 4 described above is configured to calculate a new parameter value so that the difference between the measured signal delay time and the signal delay time obtained from the parameter value is minimized. However, the method of calculating the parameter value in the calibration mode is not limited to this method, and other methods can be used. Hereinafter, as a modification, a calibration mode 4a using another calculation method will be described.
 <変形例1-1>
 変形例1-1は、振動子アレイ2の内側の空間30を満たす物質の音速を変えて、複数の音速状態を形成し、その都度信号遅延時間を測定することにより、振動子1の位置座標と、信号応答時間R1t、R2tをキャリブレーションする例について説明する。
<Modification 1-1>
In the modified example 1-1, the sound velocity of the substance filling the space 30 inside the transducer array 2 is changed to form a plurality of sound velocity states, and the signal delay time is measured each time. An example of calibrating the signal response times R1t and R2t will be described.
 図13は、変形例1-1のキャリブレーションモード4a(図6のステップS602)の動作を説明するフローチャートである。なお、図13において、図8(a)のステップと同様の動作をするステップには同じ符号を付している。 FIG. 13 is a flowchart for explaining the operation of the calibration mode 4a (step S602 in FIG. 6) of the modified example 1-1. In FIG. 13, steps that perform the same operation as the step of FIG.
 まず、制御部4は、パラメータ記憶部19から振動子1の位置座標と、送受信部3の信号応答時間等のパラメータを読み出す(ステップS101)。次に、制御部4は、第1の音速物質(例えば、所定の第1の温度に調整した水)の配置を行う(ステップS132)。具体的には、制御部4は、第1の音速物質で空間30を満たすように操作者に促す(ステップS132)。例えば、制御部4は、所定の表示を表示部10に表示する。操作者が、第1の音速物質で空間30を満たしたことを、操作部40の操作を介して制御部4が確認したならば、超音波信号の送受信動作を行う(ステップS102-1)。ステップS102-1の動作は、図8(b)の動作(ステップS106~S111)と同様であり、超音波信号S21を空間30に送信し、信号遅延時間PRtを計測し、記憶部9に記憶する。ただし、ステップS110において繰り返し回数を設定する所定値は、図8(a)のステップS102において図8(b)をステップS106~S111を実行する場合よりも低減することができる。 First, the control unit 4 reads parameters such as the position coordinates of the transducer 1 and the signal response time of the transmission / reception unit 3 from the parameter storage unit 19 (step S101). Next, the control unit 4 arranges a first sonic material (for example, water adjusted to a predetermined first temperature) (step S132). Specifically, the control unit 4 prompts the operator to fill the space 30 with the first sonic substance (step S132). For example, the control unit 4 displays a predetermined display on the display unit 10. If the control unit 4 confirms that the operator has filled the space 30 with the first sonic substance through the operation of the operation unit 40, an ultrasonic signal transmission / reception operation is performed (step S102-1). The operation in step S102-1 is the same as the operation in FIG. 8B (steps S106 to S111). The ultrasonic signal S21 is transmitted to the space 30, the signal delay time PRt is measured, and stored in the storage unit 9. To do. However, the predetermined value for setting the number of repetitions in step S110 can be reduced as compared to the case of executing steps S106 to S111 in FIG. 8B in step S102 of FIG.
 次に、制御部4は、第2の音速物質(例えば、所定の第2の温度に調整した水)の配置を行う(ステップS134)。具体的には、第2の音速物質で空間30を満たすように操作者に促す(ステップS134)。例えば、制御部4は、所定の表示を表示部10に表示する。操作者が、第2の音速物質で空間30を満たしたことを、操作部40の操作を介して制御部4が確認したならば、超音波信号の送受信動作を行う(ステップS102-2)。ステップS102-2の動作は、図8(b)の動作(ステップS106~S111)と同様であり、超音波信号S21を空間30に送信し、信号遅延時間PRtを計測し、記憶部9に記憶する。ただし、ステップS110において繰り返し回数を設定する所定値は、図8(a)のステップS102において図8(b)をステップS106~S111を実行する場合よりも低減することができる。なお、第1の音速物質と第2の音速物質は、同じ物質の温度を変更して実現してもよいし、溶液の濃度を変更して実現してもよいし、物質の種類を変えて実現するなどしてもよい。 Next, the control unit 4 arranges a second sonic material (for example, water adjusted to a predetermined second temperature) (step S134). Specifically, the operator is prompted to fill the space 30 with the second sonic material (step S134). For example, the control unit 4 displays a predetermined display on the display unit 10. If the control unit 4 confirms that the operator has filled the space 30 with the second sonic substance through the operation of the operation unit 40, an ultrasonic signal transmission / reception operation is performed (step S102-2). The operation in step S102-2 is the same as the operation in FIG. 8B (steps S106 to S111). The ultrasonic signal S21 is transmitted to the space 30, the signal delay time PRt is measured, and stored in the storage unit 9. To do. However, the predetermined value for setting the number of repetitions in step S110 can be reduced as compared to the case of executing steps S106 to S111 in FIG. 8B in step S102 of FIG. The first sonic substance and the second sonic substance may be realized by changing the temperature of the same substance, or may be realized by changing the concentration of the solution, or by changing the type of substance. It may be realized.
 なお、上記ステップS132およびS134において、制御部4が第1および第2の音速物質で空間30を配置する動作は、操作者に促すのではなく、超音波送受信装置5が自動的に空間30を第1の音速物質と第2の音速物質で満たすように構成することも可能である。例えば、空間30に第1の音速物質および第2の音速物質を選択的に供給し、供給した音速物質で空間30を満たす装置を、超音波送受信装置5に備える構成とする。 In the above steps S132 and S134, the operation in which the control unit 4 arranges the space 30 with the first and second sound velocity substances does not prompt the operator, but the ultrasonic transmission / reception device 5 automatically creates the space 30. It is also possible to configure so as to be filled with the first sonic material and the second sonic material. For example, the ultrasonic transmitting / receiving apparatus 5 includes a device that selectively supplies the first sonic substance and the second sonic substance to the space 30 and fills the space 30 with the supplied sonic substance.
 つぎに、制御部4は、上述のステップS102-1、102-2において、第1及び第2の音速物質で空間30をそれぞれ満たして測定した信号遅延時間PRtを、記憶部9から読み込み(ステップS103)、第1の音速物質を配置して測定した信号遅延時間PRt1と第2の音速物質を配置して測定した信号遅延時間PRt2の差を算出する(ステップS137)。信号遅延時間PRt1と信号遅延時間PRt2に含まれる送受信部3の信号応答時間R1t、R2tは等しいため、その差(PRt1-PRt2)は、空間30を超音波信号S21が伝搬した超音波伝搬時間P1tの差である。このとき、振動子1の位置座標は音速物質に依らず一定であるため、信号伝搬時間の差(PRt1-PRt2)と音速の差から振動子1間の距離を算出できる。制御部4は、算出した振動子1間の距離から、各振動子1の位置座標を最小二乗法によって求め、パラメータ記憶部19に記憶する(ステップS138)。その後、求めた振動子1の位置座標と、測定した信号遅延時間PRt1、PRt2を用いて、送受信部3の信号応答時間R1t、R2tを最小二乗法によって求め、パラメータ記憶部19に記憶する(ステップS139)。これらステップS138およびS139の動作は、図9のステップS164~S173の動作と同様に行う。最後に、振動子1の位置座標と信号応答時間R1t、R2tのキャリブレーション結果を表示部10に表示する(ステップS105)。 Next, the control unit 4 reads the signal delay time PRt measured by filling the space 30 with the first and second sound velocity substances in the above-described steps S102-1, 102-2 from the storage unit 9 (step S102-1). S103), a difference between the signal delay time PRt1 measured by arranging the first sonic substance and the signal delay time PRt2 measured by arranging the second sonic substance is calculated (step S137). Since the signal response times R1t and R2t of the transmission / reception unit 3 included in the signal delay time PRt1 and the signal delay time PRt2 are equal, the difference (PRt1−PRt2) is an ultrasonic propagation time P1t in which the ultrasonic signal S21 has propagated through the space 30. Is the difference. At this time, since the position coordinates of the transducer 1 are constant regardless of the sound velocity substance, the distance between the transducers 1 can be calculated from the difference in signal propagation time (PRt1−PRt2) and the difference in sound velocity. The control unit 4 obtains the position coordinates of each transducer 1 from the calculated distance between the transducers 1 by the least square method and stores it in the parameter storage unit 19 (step S138). Thereafter, using the obtained position coordinates of the transducer 1 and the measured signal delay times PRt1 and PRt2, the signal response times R1t and R2t of the transmission / reception unit 3 are obtained by the least square method and stored in the parameter storage unit 19 (step S139). The operations in steps S138 and S139 are performed in the same manner as the operations in steps S164 to S173 in FIG. Finally, the calibration results of the position coordinates of the transducer 1 and the signal response times R1t and R2t are displayed on the display unit 10 (step S105).
 以上のキャリブレーションモードの動作を用いると、振動子アレイ2における振動子1の位置座標と送受信部3の信号応答時間をそれぞれより高精度にキャリブレーションすることができる。 By using the above calibration mode operation, the position coordinates of the transducer 1 in the transducer array 2 and the signal response time of the transmission / reception unit 3 can be calibrated with higher accuracy.
 <変形例1-2>
 変形例1-2では、振動子アレイ2が、振動子1の位置を調整する駆動部を備え、送受信部3が信号応答時間を調整する機能を備えている。このような構成に適したキャリブレーションモード4aの動作について説明する。
<Modification 1-2>
In Modification 1-2, the transducer array 2 includes a drive unit that adjusts the position of the transducer 1, and the transmission / reception unit 3 has a function of adjusting the signal response time. The operation of the calibration mode 4a suitable for such a configuration will be described.
 図14は、変形例1-2のキャリブレーションモード4a(図6のステップS602)の動作を説明するフローチャートである。なお、図14において、図8(a)のステップと同様の動作をするステップには同じ符号を付している。 FIG. 14 is a flowchart for explaining the operation of the calibration mode 4a (step S602 in FIG. 6) of the modified example 1-2. In FIG. 14, steps that perform the same operations as those in FIG. 8A are denoted by the same reference numerals.
 制御部4は、パラメータ記憶部19から振動子1の位置座標と送受信部3の信号応答時間R1t、R2tを読み込む(ステップS101)。制御部4は、振動子1の駆動部と、送受信部3の調整機能を制御し、各振動子1の位置座標と送受信部3の信号応答時間を、ステップS101で読み込んだ位置座標と信号応答時間R1t、R2tの値に調整する(ステップS141)。そして、超音波信号の送受信動作を行う(ステップS102)。ステップS102の動作は、図8(b)の動作と同様であり、超音波信号S21を送信し、信号遅延時間PRtを計測し、記憶部9に記憶する。 The control unit 4 reads the position coordinates of the transducer 1 and the signal response times R1t and R2t of the transmission / reception unit 3 from the parameter storage unit 19 (step S101). The control unit 4 controls the driving unit of the transducer 1 and the adjustment function of the transmission / reception unit 3, and the position coordinates of each transducer 1 and the signal response time of the transmission / reception unit 3 are read in step S <b> 101 and the signal response. Adjustments are made to the values of time R1t and R2t (step S141). Then, an ultrasonic signal transmission / reception operation is performed (step S102). The operation in step S102 is the same as the operation in FIG. 8B. The ultrasonic signal S21 is transmitted, the signal delay time PRt is measured, and stored in the storage unit 9.
 つぎに、ステップ102で測定した信号遅延時間PRtを記憶部9から読み込む(ステップS103)。読み込んだ信号遅延時間PRtと、ステップS142で調整した位置座標および信号応答時間R1t、R2tを用いて、図8(a)のステップS104と同様に図9のステップS164~S173の動作によって、位置座標と信号応答時間R1t、R2tを算出した後、パラメータ記憶部19へ記憶する(ステップS104-1)。ステップ104の具体的な動作は、図9のステップS164~S173の動作と同様である。 Next, the signal delay time PRt measured in step 102 is read from the storage unit 9 (step S103). Using the read signal delay time PRt, the position coordinates adjusted in step S142, and the signal response times R1t and R2t, the position coordinates are obtained by the operations in steps S164 to S173 in FIG. 9 in the same manner as in step S104 in FIG. And signal response times R1t and R2t are calculated and stored in the parameter storage unit 19 (step S104-1). The specific operation in step 104 is the same as the operation in steps S164 to S173 in FIG.
 つぎに、制御部4は、ステップS104-1で算出された信号遅延時間PRtと、予め定めておいた好ましい位置座標および信号応答時間における信号遅延時間PRt’との誤差の二乗和を算出し、誤差の二乗和が収束したかどうかの判定を行う(ステップS142)。例えば、誤差の二乗和が所定の値以下になった場合や、前回の誤差の二乗和からの減少量が所定の値以下になった場合や、上記ステップS141,S102~S103およびS104-1を所定の回数実施した場合には、収束したと判定する。なお、好ましい位置座標および信号応答時間は、例えば振動子アレイ2の形状から求めた振動子1の理想的な位置および信号応答時間から求めた値を用いる。 Next, the control unit 4 calculates the sum of squares of errors between the signal delay time PRt calculated in step S104-1, and the signal delay time PRt ′ in the preferable position coordinates and signal response time determined in advance. It is determined whether the error sum of squares has converged (step S142). For example, when the error sum of squares is less than a predetermined value, or when the amount of decrease from the previous error sum of squares is less than a predetermined value, the above steps S141, S102 to S103 and S104-1 are performed. If it has been carried out a predetermined number of times, it is determined that it has converged. The preferred position coordinates and signal response time use values obtained from the ideal position and signal response time of the transducer 1 obtained from the shape of the transducer array 2, for example.
 上記ステップS142において誤差の二乗和が収束していない場合、上記ステップS141において調整された振動子1の位置座標と信号応答時間が、適切ではないことを意味する。よって、ステップS104-1で算出してパラメータ記憶部19に記憶した位置座標と信号応答時間を、調整すべき値として採用し(更新し)(ステップS143)、ステップS141に戻り、各振動子1の位置座標と送受信部3の信号応答時間をステップS143で採用(更新)した値に調整する。その後、ステップS102、S103、S104-1、S142を繰り返す。 If the error sum of squares does not converge in step S142, it means that the position coordinates and signal response time of the vibrator 1 adjusted in step S141 are not appropriate. Therefore, the position coordinates and the signal response time calculated in step S104-1 and stored in the parameter storage unit 19 are adopted (updated) as values to be adjusted (step S143), the process returns to step S141, and each transducer 1 Are adjusted to the values adopted (updated) in step S143. Thereafter, steps S102, S103, S104-1, and S142 are repeated.
 一方、上記ステップS142において、誤差の二乗和が収束していた場合は、上記ステップS104-1で算出してパラメータ記憶部19に記憶した位置座標と信号応答時間R1t、R2tをキャリブレーション結果として表示する(ステップS105-1)。 On the other hand, if the error sum of squares has converged in step S142, the position coordinates calculated in step S104-1 and stored in the parameter storage unit 19 and the signal response times R1t and R2t are displayed as calibration results. (Step S105-1).
 本変形例1-2のキャリブレーションモードの動作によれば、振動子1の位置を調整する駆動部と送受信部3の信号応答時間を調整する機能に含まれる誤差をあわせて補償することができるため、より高精度に振動子1の位置座標と送受信部3の信号応答時間R1t,R2tをキャリブレーションすることができる。また、本来の好ましい振動子1の位置座標と送受信部3の信号応答時間R1t、R2tにおいて、計測が可能となる。 According to the operation of the calibration mode of the modification 1-2, it is possible to compensate for errors included in the function of adjusting the signal response time of the driving unit that adjusts the position of the transducer 1 and the transmission / reception unit 3. Therefore, the position coordinates of the transducer 1 and the signal response times R1t and R2t of the transmission / reception unit 3 can be calibrated with higher accuracy. In addition, measurement can be performed at the originally preferred position coordinates of the vibrator 1 and the signal response times R1t and R2t of the transmission / reception unit 3.
 <変形例1-3>
 変形例1-3のキャリブレーションモードは、キャリブレーションされた振動子1の位置座標と送受信部3の信号応答時間に関する過去の情報を記憶する。具体的には、制御部4は、過去に行ったキャリブレーションにより求めた信号応答特性と振動子の位置情報を記憶部9に格納しておく。これにより、過去のキャリブレーション結果を表示等することで、超音波送受信装置5の劣化や故障などを検知することを可能にする。
<Modification 1-3>
In the calibration mode of the modified example 1-3, past information on the calibrated position coordinates of the transducer 1 and the signal response time of the transmission / reception unit 3 is stored. Specifically, the control unit 4 stores in the storage unit 9 the signal response characteristics and the position information of the vibrator obtained by calibration performed in the past. Thereby, it is possible to detect deterioration or failure of the ultrasonic transmission / reception apparatus 5 by displaying the past calibration result.
 図15は、変形例1-3による超音波送受信装置5のキャリブレーションモードでの動作例を説明する制御部4のフローチャートである。なお、図15において、図14のステップと同様の動作をするステップには同じ符号を付している。 FIG. 15 is a flowchart of the control unit 4 for explaining an operation example in the calibration mode of the ultrasonic transmission / reception device 5 according to Modification 1-3. In FIG. 15, steps that perform the same operations as those in FIG. 14 are denoted by the same reference numerals.
 図15において、ステップS101~S104-1は、図14のステップS101、S102、S103、S104-1と同様である。つぎに、制御部4は、過去のキャリブレーション結果(例えば、前回のキャリブレーションで算出した位置座標および信号応答時間)をパラメータ記憶部19から読み込み(ステップS144)、今回のキャリブレーションで算出した位置座標と信号応答時間とともに表示する(ステップS145)。つぎに、制御部4は、今回と過去のキャリブレーションされた位置座標と信号応答時間の差(誤差)の二乗和を算出し、所定の値よりも大きいかどうかを判定する(ステップS146)。なお、ステップS146の判定方法は、誤差の二乗和に限らず、キャリブレーションされた各振動子1の位置座標または各送受信部3の信号応答時間のうちの1つが所定の値よりも大きいかどうかで判定としてもよいし、過去のキャリブレーションおよび今回のキャリブレーションにおける二乗和の変化を図15(b)のように時系列なグラフにし、二乗和の変化量が所定の値よりも大きいかどうかで判定してもよい。 In FIG. 15, steps S101 to S104-1 are the same as steps S101, S102, S103, and S104-1 in FIG. Next, the control unit 4 reads the past calibration result (for example, the position coordinates and signal response time calculated in the previous calibration) from the parameter storage unit 19 (step S144), and the position calculated in the current calibration. The coordinates and the signal response time are displayed (step S145). Next, the control unit 4 calculates the sum of squares of the difference (error) between the current and past calibrated position coordinates and the signal response time, and determines whether it is larger than a predetermined value (step S146). Note that the determination method in step S146 is not limited to the sum of squares of errors, and whether one of the calibrated position coordinates of each transducer 1 or the signal response time of each transmission / reception unit 3 is greater than a predetermined value. Whether the change in the sum of squares in the past calibration and the current calibration is a time-series graph as shown in FIG. 15B, and whether the change amount of the sum of squares is larger than a predetermined value. You may judge by.
 ステップS146において、誤差が所定の値よりも大きいと判定された場合には、超音波送受信装置5の故障または劣化等があると考えられるので、アラートを表示する(ステップS147)。 If it is determined in step S146 that the error is larger than the predetermined value, an alert is displayed (step S147) because it is considered that there is a failure or deterioration of the ultrasonic transmission / reception device 5.
 以上のような動作のフローをキャリブレーションモードとして用いれば、超音波送受信装置5の劣化や故障をモニタでき、適切なメンテナンスを実施することができる。また、劣化や故障の度合いを把握することで、適切な計測結果を取得することができる。 If the flow of operation as described above is used as the calibration mode, deterioration or failure of the ultrasonic transmission / reception device 5 can be monitored, and appropriate maintenance can be performed. Moreover, an appropriate measurement result can be acquired by grasping the degree of deterioration or failure.
 <変形例1-4>
 変形例1-4のキャリブレーションモードは、誤差の大きな位置座標や信号応答時間を除去してキャリブレーションを行う。
<Modification 1-4>
In the calibration mode of Modification 1-4, calibration is performed by removing position coordinates and signal response times with large errors.
 図16(a)は、変形例1-4による超音波送受信装置5の制御部4のキャリブレーションモードでの動作を示すフローチャートであり、図16(b)は、計測モードでの動作を示すフローチャートである。 FIG. 16A is a flowchart showing the operation in the calibration mode of the control unit 4 of the ultrasonic transmission / reception apparatus 5 according to Modification 1-4, and FIG. 16B is a flowchart showing the operation in the measurement mode. It is.
 キャリブレーションモードの図16(a)のステップS101~S103,S104-1は、図14のステップS101,102,103,104-1と同様であり、制御部4は、ステップS104-1において位置座標と信号応答時間を算出し、記憶部9へ記憶する。ステップS104-1で算出した位置座標と信号応答時間をパラメータセットAと呼ぶ。 Steps S101 to S103 and S104-1 in FIG. 16A in the calibration mode are the same as steps S101, 102, 103, and 104-1 in FIG. 14, and the control unit 4 determines the position coordinates in step S104-1. The signal response time is calculated and stored in the storage unit 9. The position coordinates and signal response time calculated in step S104-1 are referred to as parameter set A.
 つぎに、制御部4は、ステップS104-1で算出された位置座標と信号応答時間(パラメータセットA)と、ステップS101でパラメータ記憶部19から読み出した位置座標と信号応答時間との誤差を求め、所定の値よりも大きなものがあるかどうかを判定する(ステップS148)。例えば、誤差が所定値よりも大きなものがなければ、ステップS151でキャリブレーション結果(パラメータセットA)を表示してキャリブレーション動作を終了する。 Next, the control unit 4 obtains an error between the position coordinates and signal response time (parameter set A) calculated in step S104-1, and the position coordinates and signal response time read from the parameter storage unit 19 in step S101. Then, it is determined whether there is a larger value than the predetermined value (step S148). For example, if there is no error larger than a predetermined value, the calibration result (parameter set A) is displayed in step S151, and the calibration operation is terminated.
 一方、ステップS148において、所定の値よりも誤差が大きい位置座標または信号応答時間があった場合、制御部4は、それらが関与する信号遅延時間PRtを除去(消去)し(ステップS149)、残った信号遅延時間PRtと、パラメータ記憶部19の位置座標および信号応答時間を用いて、再度、位置座標と信号応答時間をステップS104-1と同様に算出し、記憶部9へ記憶する(ステップS104-2)。ステップS104-2で算出した位置座標と信号応答時間をパラメータセットBと呼ぶ。そして、制御部4は、ステップ104-2で算出した位置座標と信号応答時間(パラメータセットB)と、ステップS104-1で算出した位置座標と信号応答時間(パラメータセットA)とを表示部10に表示し、操作者にパラメータセットAおよびBの一方を操作部40を介して選択させる(ステップS151)。 On the other hand, when there is a position coordinate or a signal response time having an error larger than a predetermined value in step S148, the control unit 4 removes (erases) the signal delay time PRt related to them (step S149) and remains. Using the signal delay time PRt, the position coordinates of the parameter storage unit 19 and the signal response time, the position coordinates and the signal response time are calculated again in the same manner as in step S104-1, and stored in the storage unit 9 (step S104). -2). The position coordinates and signal response time calculated in step S104-2 are referred to as parameter set B. Then, the control unit 4 displays the position coordinates and signal response time (parameter set B) calculated in step 104-2, and the position coordinates and signal response time (parameter set A) calculated in step S104-1. And one of the parameter sets A and B is selected by the operator via the operation unit 40 (step S151).
 こうすることで、故障や劣化が疑われる振動子1や送受信部3に関する信号遅延時間が他の振動子1や送受信部3のキャリブレーション結果に影響することを防ぐ。しかし、故障や劣化が疑われる振動子1や送受信部3についてもキャリブレーションできていることも十分に考えられるため、ステップS104-1で得られたキャリブレーション結果(パラメータセットA)と、ステップS104-2で得られたキャリブレーション結果(パラメータセットB)の双方をステップS151で表示する構成としている。なお、ステップS151において、操作者に1つを選択させるのではなく、たとえば、制御部4が、誤差の二乗和の小さいキャリブレーション結果を自動的に選択し、表示するなどしてもよい。また、操作者に選択させる際、既知の形状と音速や減衰量などの物性値を持つ物体を空間30に配置し、計測モードと同様の動作をさせて、パラメータセットAとB双方における物体の計測結果(形状や物性値の分布等)を表示するとよい。こうすることで、操作者はパラメータセットAとBによる画像の違いを認識しやすくなり、結果として選択しやすくなる。 By doing this, it is possible to prevent the signal delay time related to the vibrator 1 and the transmission / reception unit 3 suspected of being broken or deteriorated from affecting the calibration results of the other transducers 1 and the transmission / reception unit 3. However, since it can be considered that the transducer 1 and the transmission / reception unit 3 suspected of being broken or deteriorated can be calibrated, the calibration result (parameter set A) obtained in step S104-1 and the step S104 Both the calibration results (parameter set B) obtained in -2 are displayed in step S151. In step S151, instead of allowing the operator to select one, for example, the control unit 4 may automatically select and display a calibration result with a small error sum of squares. In addition, when selecting the operator, an object having a known shape and a physical property value such as sound speed and attenuation is arranged in the space 30 and the same operation as in the measurement mode is performed, so that the object in both the parameter sets A and B can be selected. The measurement result (shape, distribution of physical property values, etc.) may be displayed. By doing so, the operator can easily recognize the difference between the images of the parameter sets A and B, and as a result, can be easily selected.
 なお、上述のステップ148の判定条件は、上述した条件以外に様々考えられる。たとえば、算出された位置座標または信号応答時間と、パラメータ記憶部19に記憶されている位置座標または信号応答時間との差の二乗和が、所定の値より大きいかどうかで判定してもよい。あるいは、判定のステップS148を省略し、常にパラメータセットAとBの両方のキャリブレーション結果を算出してもよい。また、算出された位置座標または信号応答時間と、パラメータ記憶部19に記憶されている位置座標または信号応答時間との誤差の最大値を最小化したり、各振動子1と各送受信部3に重み付けした上で、誤差の二乗和を最小化したりしてもよい。たとえば、振動子アレイ2が振動子サブアレイ11の組み合わせで構成される場合、振動子サブアレイ11毎に振動子1の位置座標と信号応答時間の誤差は傾向を持つと考えられるため、振動子サブアレイ11毎に重み付けすることが可能である。あるいは、振動子サブアレイ11の端に位置する振動子1とそれ以外に位置する振動子1には構造上の差異があるため、これを考慮して重み付けすることも可能である。 It should be noted that the determination condition in step 148 described above can be variously considered in addition to the above-described conditions. For example, the determination may be made based on whether the sum of squares of the difference between the calculated position coordinates or signal response time and the position coordinates or signal response time stored in the parameter storage unit 19 is greater than a predetermined value. Alternatively, the determination step S148 may be omitted, and the calibration results of both parameter sets A and B may always be calculated. Further, the maximum value of the error between the calculated position coordinate or signal response time and the position coordinate or signal response time stored in the parameter storage unit 19 is minimized, or each transducer 1 and each transmission / reception unit 3 is weighted. In addition, the sum of squared errors may be minimized. For example, when the transducer array 2 is configured by a combination of the transducer subarrays 11, the transducer subarray 11 is considered to have an error in the position coordinates of the transducer 1 and the signal response time for each transducer subarray 11. Each can be weighted. Alternatively, since there is a structural difference between the vibrator 1 located at the end of the vibrator sub-array 11 and the vibrator 1 located outside the vibrator sub-array 11, it is possible to perform weighting in consideration of this.
 一方、計測モードでは、図16(b)に示したように、図11(a)のステップS112~S114と同様に行う。ただし、図16(b)のステップS112でキャリブレーション後のパラメータを読み込む際に、制御部4は、キャリブレーションモードのステップS148において誤差が所定値以下であった場合には、ステップS151で表示されたパラメータセットAを、ステップS148において誤差が所定値より大きかった場合には、ステップS151で選択されたパラメータセットBを読み込む。そして、制御部4は、ステップS113,S114を実行することにより、超音波信号の送受信を行って、測定した信号遅延時間PRtと増幅後受信信号S41の信号強度を読み出す。つぎに、制御部4は、上述のステップS148において誤差が所定値より大きく、ステップS151においてパラメータセットBが選択されていたかどうかを判定し(ステップS152)、パラメータセットBが選択されていた場合には、ステップS114で読み込んだ信号遅延時間と信号強度のデータから、上述のステップS149で信号遅延時間が除去された振動子1と送受信部3の組のデータを除去(消去)する(ステップS153)。残った信号遅延時間と信号強度で、図11(a)のステップS115と同様に、計測対象の形状や、物性値(音速や減衰量)の分布を算出し(ステップS115)、算出結果(計測結果)を表示部10に表示する(ステップS116)。 On the other hand, in the measurement mode, as shown in FIG. 16B, the measurement is performed in the same manner as steps S112 to S114 in FIG. However, when reading the parameters after calibration in step S112 in FIG. 16B, the control unit 4 displays in step S151 if the error is less than or equal to a predetermined value in step S148 in the calibration mode. If the error is greater than the predetermined value in step S148, the parameter set B selected in step S151 is read. And the control part 4 performs transmission / reception of an ultrasonic signal by performing step S113, S114, and reads the signal strength of the measured signal delay time PRt and the amplified received signal S41. Next, the control unit 4 determines whether or not the error is larger than the predetermined value in the above-described step S148, and the parameter set B is selected in step S151 (step S152), and when the parameter set B is selected. Removes (erase) data of the set of the transducer 1 and the transmission / reception unit 3 from which the signal delay time has been removed in step S149 described above from the data of the signal delay time and signal intensity read in step S114 (step S153). . Similar to step S115 in FIG. 11A, the remaining signal delay time and signal intensity are used to calculate the shape of the measurement target and the distribution of physical property values (sound speed and attenuation) (step S115), and the calculation result (measurement) (Result) is displayed on the display unit 10 (step S116).
 一方、上記ステップS151においてパラメータセットAが選択されていた場合、ならびに、ステップS148において誤差が所定値以下であったため、パラメータセットAがキャリブレーション結果としてステップS151において表示された場合(ステップS152)、制御部4は、ステップS114で読み込んだ信号遅延時間と信号強度をそのまま用いて、計測対象の形状や、物性値(音速や減衰量)の分布を算出し(ステップS115)、算出結果(計測結果)を表示部10に表示する(ステップS116)。 On the other hand, when the parameter set A is selected in step S151 and when the parameter set A is displayed as the calibration result in step S151 because the error is equal to or smaller than the predetermined value in step S148 (step S152). The control unit 4 uses the signal delay time and the signal intensity read in step S114 as they are to calculate the shape of the measurement target and the distribution of physical property values (sound speed and attenuation) (step S115), and the calculation result (measurement result). ) Is displayed on the display unit 10 (step S116).
 なお、キャリブレーションモードのステップS151においてパラメータセットA,Bを両方選択し、計測モードでの動作時にそれぞれのパラメータセットA、Bを用いて、それぞれ計測対象の形状や、物性値(音速や減衰量)の分布を算出し、複数の算出結果(計測結果)を表示するようにしてもよい。その場合、操作者や計測結果の利用者が、複数の計測結果から最も適したもの(所望の結果)を選択するなどすればよい。 It should be noted that both parameter sets A and B are selected in step S151 in the calibration mode, and the shape and physical property values (sound speed and attenuation amount) of the measurement target are used by using each parameter set A and B when operating in the measurement mode. ) Distribution and a plurality of calculation results (measurement results) may be displayed. In that case, an operator or a user of measurement results may select the most suitable one (desired result) from a plurality of measurement results.
 ここで、上記ステップS151において、キャリブレーション結果を表示部10に表示する態様について、図17を用いて説明する。図17の表示画面は、図12と同様に、キャリブレーション後の位置座標と信号応答時間R1t,R2tの値を表示する表示領域181~184を含む。また、既知の形状と音速や減衰量などの物性値を持つ標準ファントムに対して、例えば図16(b)の計測モードと同様に超音波信号を送受信させて算出した同物体の形状画像や物性値画像等を表示する表示領域85-1,85-2、85-3をさらに含む。表示領域181~184には、各振動子1のキャリブレーション後のX座標、Y座標、信号応答時間R1t,R2tの値と、初期値(キャリブレーション前の値)との差(誤差)が、出現頻度のグラフとしてパラメータセットA,B,Cごとにそれぞれ表示されている。表示領域85-1,85-2,85-3には、図17の例では、パラメータセットA,B,Cを用いて算出した標準ファントムの形状画像がそれぞれ表示されている。パラメータセットA、Bは、それぞれ図16(a)のキャリブレーションモードのステップS104-1,104-2においてそれぞれ求めたものである。パラメータセットCは、上述のステップ148の判定条件をパラメータセットA,Bの場合とは異なる判定条件にして、ステップS104-1またはS104-2で算出したパラメータセットである。異なる判定条件とは、上述したように、例えば、各振動子1と各送受信部3に重み付けした上で、誤差の二乗和を最小化する判定条件等を用いることができる。図17のような表示画面をステップS151において表示することにより、ユーザは、複数のパラメータセットA,B,Cの値と、これらを用いて物体(標準ファントム)を計測した結果を容易に比較して把握することができる。よって、パラメータセットA,Bの選択やキャリブレーション結果を承認するか否かについてのユーザの判断を表示画面によって支援することができる。 Here, a mode in which the calibration result is displayed on the display unit 10 in step S151 will be described with reference to FIG. The display screen of FIG. 17 includes display areas 181 to 184 for displaying the position coordinates after calibration and the values of the signal response times R1t and R2t, as in FIG. Further, for example, a shape image and physical properties of the same object calculated by transmitting and receiving an ultrasonic signal to a standard phantom having a known shape and physical property values such as sound velocity and attenuation amount, for example, in the measurement mode of FIG. It further includes display areas 85-1, 85-2, 85-3 for displaying value images and the like. In the display areas 181 to 184, the difference (error) between the X coordinate, Y coordinate, signal response time R1t, R2t after calibration of each transducer 1 and the initial value (value before calibration) is Each of the parameter sets A, B, and C is displayed as an appearance frequency graph. In the display areas 85-1, 85-2, and 85-3, in the example of FIG. 17, standard phantom shape images calculated using the parameter sets A, B, and C are displayed, respectively. The parameter sets A and B are respectively obtained in steps S104-1 and 104-2 in the calibration mode in FIG. The parameter set C is a parameter set calculated in step S104-1 or S104-2 with the determination conditions in step 148 described above being different from those in the case of parameter sets A and B. As described above, for example, a determination condition that minimizes the sum of squares of errors after weighting each transducer 1 and each transmission / reception unit 3 can be used as the different determination conditions. By displaying the display screen as shown in FIG. 17 in step S151, the user can easily compare the values of the plurality of parameter sets A, B, and C and the results of measuring the object (standard phantom) using them. Can be grasped. Therefore, it is possible to support the user's judgment as to whether to approve the selection of the parameter sets A and B and the calibration result by using the display screen.
 以上、第二実施形態に係る超音波送受信装置の構成を適用すれば、振動子1の位置座標と送受信部3の信号応答時間をそれぞれキャリブレーションすることにより、計測対象の形状と音速や減衰量などの物性値を高精度に計測することが可能になる。 As described above, when the configuration of the ultrasonic transmission / reception apparatus according to the second embodiment is applied, the shape of the measurement target, the sound speed, and the attenuation amount are obtained by calibrating the position coordinates of the transducer 1 and the signal response time of the transmission / reception unit 3. It is possible to measure physical property values such as with high accuracy.
 また、キャリブレーション動作時に振動子1の位置や信号応答時間の設定を補正し、補正後の状態で再度キャリブレーション動作を繰り返すことにより、振動子1の位置座標と送受信部3の信号応答時間をそれぞれ高精度にキャリブレーションすることが可能になる。 Further, the position of the vibrator 1 and the setting of the signal response time are corrected during the calibration operation, and the calibration operation is repeated again in the corrected state, thereby obtaining the position coordinates of the vibrator 1 and the signal response time of the transmission / reception unit 3. Each can be calibrated with high accuracy.
 <<第三実施形態>>
 第三実施形態の超音波送受信装置について説明する。
<< Third embodiment >>
An ultrasonic transmission / reception apparatus according to the third embodiment will be described.
 第三実施形態の超音波送受信装置は、第二実施形態と同様であるが、第二実施形態は、信号応答特性R1、R2として、信号応答時間R1t、R2tを算出したが、第三実施形態では、信号変換利得R1A、R2Aを算出してキャリブレーションを行う構成である。 The ultrasonic transmission / reception apparatus of the third embodiment is the same as that of the second embodiment, but the second embodiment calculates the signal response times R1t and R2t as the signal response characteristics R1 and R2, but the third embodiment Then, the signal conversion gains R1A and R2A are calculated and the calibration is performed.
 第三実施形態による超音波送受信装置の構成は、第二実施形態の図2の構成と同様であるので説明を省略する。 The configuration of the ultrasonic transmission / reception apparatus according to the third embodiment is the same as the configuration of FIG.
 図1(b)に示したように、送信部6が制御部4から受け取った電気信号S1の強度をA1、振動子1aが送信する超音波信号S21の強度をA2、他の振動子1dに到達した超音波信号S21の強度をA3、受信部7の出力する増幅後受信信号S41の強度をA4とする。送信時の信号変換利得R1Aは、A2/A1で表され、受信時の信号変換利得R2Aは、A4/A3で表される。電気信号S1と増幅後受信信号S41の信号強度比(信号利得)PRAは、A4/A1で表される。 As shown in FIG. 1B, the intensity of the electrical signal S1 received by the transmitter 6 from the controller 4 is A1, the intensity of the ultrasonic signal S21 transmitted by the transducer 1a is A2, and the other transducer 1d is transmitted. The intensity of the reached ultrasonic signal S21 is A3, and the intensity of the amplified received signal S41 output from the receiving unit 7 is A4. The signal conversion gain R1A at the time of transmission is represented by A2 / A1, and the signal conversion gain R2A at the time of reception is represented by A4 / A3. The signal strength ratio (signal gain) PRA of the electric signal S1 and the amplified received signal S41 is represented by A4 / A1.
 記憶部9のパラメータ記憶部19には、予め求めた各送受信部3の信号変換利得R1A、R2Aや、各振動子1の振動子アレイ2における位置座標等の値が格納されている。 The parameter storage unit 19 of the storage unit 9 stores previously obtained values such as the signal conversion gains R1A and R2A of each transmission / reception unit 3 and the position coordinates of each transducer 1 in the transducer array 2.
 図18(a)は、振動子アレイ2の振動子1の配置の一例である。図18(b)~(g)は、記憶部9のパラメータ記憶部19に記憶されている情報例を示すテーブルである。パラメータ記憶部19には、振動子1a、1b、1cの位置座標が図18(b)のテーブルのように記憶されている。また、振動子1a、1b、1cと送受信部3a,3b,3cの送信部6との間の信号変換利得R1Aおよび、振動子1a、1b、1cと送受信部3a,3b,3cの受信部7との間の信号変換利得R2Aが、それぞれ図18(c)のテーブルのように、パラメータ記憶部19に記憶されている。たとえば、送受信部3aの送信動作における信号変換利得R1Aは1kPa/V、受信動作における信号変換利得R2Aは1mV/Paである。 FIG. 18A shows an example of the arrangement of the transducers 1 in the transducer array 2. FIGS. 18B to 18G are tables showing examples of information stored in the parameter storage unit 19 of the storage unit 9. The parameter storage unit 19 stores the position coordinates of the transducers 1a, 1b, and 1c as shown in the table of FIG. Further, the signal conversion gain R1A between the transducers 1a, 1b, 1c and the transmission unit 6 of the transmission / reception units 3a, 3b, 3c, and the reception unit 7 of the transducers 1a, 1b, 1c and the transmission / reception units 3a, 3b, 3c. The signal conversion gain R2A between and is stored in the parameter storage unit 19 as shown in the table of FIG. For example, the signal conversion gain R1A in the transmission operation of the transmission / reception unit 3a is 1 kPa / V, and the signal conversion gain R2A in the reception operation is 1 mV / Pa.
 また、パラメータ記憶部19には、空間30を所定の物質で満たした場合の各送受信部3の間の送信信号と受信信号の信号強度比(PRA)A4/A1も、図18(d)に示すテーブルのように記憶されている。図18(d)において、振動子アレイ2に囲まれた空間30は減衰量が0dBとみなせる物質で満たされており、超音波信号S21のエネルギーが距離に比例して減衰するとした場合、送信信号と受信信号の信号強度比(PRA=A4/A1)は、-28.45dBである。これは、振動子1aと1bの位置座標から求められた振動子間の距離に比例する超音波伝搬利得P1Aと、送受信部3aの送信部6aの送信動作における信号変換利得R1Aと、送受信部3bの受信部7bの受信動作における信号変換利得R2Aの和である。 Further, in the parameter storage unit 19, the signal intensity ratio (PRA) A4 / A1 of the transmission signal and the reception signal between the transmission / reception units 3 when the space 30 is filled with a predetermined substance is also shown in FIG. It is stored like the table shown. In FIG. 18D, the space 30 surrounded by the transducer array 2 is filled with a substance whose attenuation can be regarded as 0 dB, and when the energy of the ultrasonic signal S21 is attenuated in proportion to the distance, the transmission signal The signal intensity ratio (PRA = A4 / A1) of the received signal is −28.45 dB. This is because the ultrasonic wave propagation gain P1A proportional to the distance between the transducers obtained from the position coordinates of the transducers 1a and 1b, the signal conversion gain R1A in the transmission operation of the transmission unit 6a of the transmission / reception unit 3a, and the transmission / reception unit 3b This is the sum of the signal conversion gain R2A in the receiving operation of the receiving unit 7b.
 図18(e)は、振動子1bの位置座標がx軸に沿って振動子1a側に0.2mmずれている場合、パラメータ記憶部19に記憶されている位置座標のテーブルを示している。このような位置座標のずれ(誤差)は、振動子1bの製造ばらつきや振動子アレイ2の組み立て誤差などにより生じる。また、図18(f)は、送受信部3cの送信動作における信号変換利得が、図18(c)のテーブルよりも0.1kPa/V低い場合の信号変換利得R1A,R2Aを表すテーブルの例である。このような信号変換利得R1Aの誤差は、各構成要素の経時劣化や使用環境の変化、振動子1cの製造ばらつき、送信部6cの製造ばらつき、振動子1cと送信部6cを接続するケーブルの製造ばらつき、送信部6cに制御部4から入力される電気信号S1の強度誤差などにより生じ得る。図18(e)および(f)に示す位置座標と信号変換利得R1A、R2Aの場合、信号強度比PRAは、図18(g)に示すテーブルのようになる。図18(d)と(g)のテーブルの差は、振動子1bの位置座標の誤差と送受信部3cの送信動作における信号変換利得の誤差によるものである。 FIG. 18E shows a table of position coordinates stored in the parameter storage unit 19 when the position coordinates of the vibrator 1b are shifted by 0.2 mm toward the vibrator 1a along the x axis. Such positional coordinate deviation (error) is caused by manufacturing variations of the transducer 1b, assembly errors of the transducer array 2, and the like. FIG. 18 (f) is an example of a table showing signal conversion gains R1A and R2A when the signal conversion gain in the transmission operation of the transmission / reception unit 3c is 0.1 kPa / V lower than the table of FIG. 18 (c). is there. Such an error in the signal conversion gain R1A is due to deterioration with time of each component or change in use environment, manufacturing variation of the transducer 1c, manufacturing variation of the transmission unit 6c, and manufacturing of a cable connecting the transducer 1c and the transmission unit 6c. This may be caused by variations, an intensity error of the electric signal S1 input from the control unit 4 to the transmission unit 6c, and the like. In the case of the position coordinates and the signal conversion gains R1A and R2A shown in FIGS. 18E and 18F, the signal intensity ratio PRA is as shown in the table shown in FIG. The difference between the tables in FIGS. 18D and 18G is due to the error of the position coordinate of the transducer 1b and the error of the signal conversion gain in the transmission operation of the transmission / reception unit 3c.
 制御部4の動作について、具体的に説明する。制御部4の全体の動作の流れは、第二実施形態の図7と同様である。 The operation of the control unit 4 will be specifically described. The overall operation flow of the control unit 4 is the same as in FIG. 7 of the second embodiment.
 図7のステップS601のキャリブレーションモード4aでは、制御部4は、図19(a)、(b)のフローのようにキャリブレーションを行う。図19(a)、(b)のフローにおいて、第二実施形態の図8(a)、(b)のフローと同様のステップは、同じ符号を付し、説明を省略する。 In the calibration mode 4a of step S601 in FIG. 7, the control unit 4 performs calibration as shown in the flow of FIGS. 19 (a) and 19 (b). In the flow of FIGS. 19A and 19B, the same steps as those in the flow of FIGS. 8A and 8B of the second embodiment are denoted by the same reference numerals, and description thereof is omitted.
 制御部4は、記憶部9のパラメータ記憶部19から各種パラメータ値を、読み込む(図19(a)のステップS201)。パラメータは、振動子アレイ2における各振動子1の位置座標、各送受信部3の送信動作および受信動作における信号変換利得R1A、R2A、送信信号波形、受信フィルタ定数などを含む。次に、制御部4は、所定の送受信部3aに送信動作をさせ、他の送受信部3b、3cに受信動作させることにより超音波信号S21を空間30に伝搬させる(ステップS202)。具体的には、図19(b)に示すように、第二実施形態の図8のステップS106~108と同様に、送信動作させる送受信部3と、受信動作させる受信部を選択し、送信部6に電気信号S1を出力し、振動子1から超音波信号S21を送信させ、選択した送受信部3の受信部7に受信させ、増幅後受信信号S41を得る。 The control unit 4 reads various parameter values from the parameter storage unit 19 of the storage unit 9 (step S201 in FIG. 19A). The parameters include position coordinates of each transducer 1 in the transducer array 2, signal conversion gains R1A and R2A, transmission signal waveforms, reception filter constants, and the like in the transmission and reception operations of each transmission / reception unit 3. Next, the control unit 4 causes the predetermined transmission / reception unit 3a to perform transmission operation, and causes the other transmission / reception units 3b and 3c to perform reception operation to propagate the ultrasonic signal S21 to the space 30 (step S202). Specifically, as shown in FIG. 19 (b), as in steps S106 to S108 in FIG. 8 of the second embodiment, the transmission / reception unit 3 that performs transmission operation and the reception unit that performs reception operation are selected, and the transmission unit 6 outputs the electrical signal S1, causes the transducer 1 to transmit the ultrasonic signal S21, and causes the reception unit 7 of the selected transmission / reception unit 3 to receive the signal, thereby obtaining an amplified reception signal S41.
 制御部4は、電気信号S1の強度A1と、増幅後受信信号S41の強度A4の比である信号強度比PRAを算出し、記憶する(ステップS209)。これを、振動子1を変更しながら繰り返す(ステップS110、S111)。 The control unit 4 calculates and stores a signal intensity ratio PRA that is a ratio of the intensity A1 of the electric signal S1 and the intensity A4 of the amplified received signal S41 (step S209). This is repeated while changing the vibrator 1 (steps S110 and S111).
 つぎに、制御部4は、図17(a)のステップS203へ進み、ステップS209で記憶した全ての送受信部3についての信号強度比PRAを記憶部9から読み出す。そして、全ての信号強度比PRAに基づいて、全ての送受信部3の送信動作における信号変換利得R1Aおよび受信動作における信号変換利得R2Aを最小二乗法によって算出(計算)する(ステップS204)。最小二乗法による信号変換利得R1A,R2Aの算出方法は、第二実施形態において、図9を用いて説明した方法と同様の方法を用いることができるので、ここでは詳しい説明を省略する。 Next, the control unit 4 proceeds to step S203 in FIG. 17A, and reads out the signal intensity ratio PRA for all the transmission / reception units 3 stored in step S209 from the storage unit 9. Based on all signal strength ratios PRA, the signal conversion gain R1A in the transmission operation and the signal conversion gain R2A in the reception operation of all the transmission / reception units 3 are calculated (calculated) by the least square method (step S204). Since the method of calculating the signal conversion gains R1A and R2A by the least square method can be the same as the method described with reference to FIG. 9 in the second embodiment, detailed description thereof is omitted here.
 つぎに、制御部4は、ステップS204で求めた位置座標と信号変換利得R1A,R2Aを、キャリブレーションされたパラメータ値として記憶部9のパラメータ記憶部19に書き込むとともに、表示部10に表示する(ステップS205)。 Next, the control unit 4 writes the position coordinates and signal conversion gains R1A and R2A obtained in step S204 as calibrated parameter values in the parameter storage unit 19 of the storage unit 9 and displays them on the display unit 10 ( Step S205).
 つぎに、制御部4の計測モード(図6のステップS604)について説明する。第三実施形態の計測モードは、第二実施形態の図11(a)、(b)の計測モードと同様である。第三実施形態の計測モードが第二実施形態の計測モードと異なる点のみ以下説明する。ステップS112で読み込むパラメータには、第二実施形態とは異なり、送受信部3の信号変換利得R1A,R2Aが常に含まれ、この信号変換利得R1A,R2Aは、キャリブレーションモード602でキャリブレーションされた値である。また、図11(b)のステップS122では、第二実施形態とは異なり、信号伝搬時間PRtの他に、電気信号S1と増幅後受信信号S41の信号強度比PRAを常に算出し、記憶部9に書き込む(ステップS122)。さらに、図11(a)のステップS114では、信号伝搬時間PRtと、信号強度比PRAとを記憶部9から読み込む。ステップS115では、読み込んだ信号伝搬時間PRt、信号強度比PRA、および、ステップS112で読み出した振動子の位置座標等のパラメータを用いて、計測対象の形状と、減衰量等の物性値の分布(マップ)とを算出する。具体的な減衰量マップの算出方法は、第二実施形態で述べた方法と同様であり、簡単に説明すると、演算部20は、信号強度比PRAと、ステップS112で読み込んだ送受信部3の信号変換利得R1A、R2Aから、超音波信号S21の送受信を行った振動子1間における平均減衰量を算出し、さまざまな角度から超音波信号S21を送信した場合の平均減衰量を用いて公知のトモグラフィ法により、計測対象の減衰量分布(減衰量マップ)を算出する。また、第二実施形態と同様に、信号伝搬時間PRtに基づいて、計測対象の音速分布(音速マップ)を算出することも可能である。 Next, the measurement mode (step S604 in FIG. 6) of the control unit 4 will be described. The measurement mode of the third embodiment is the same as the measurement mode of FIGS. 11A and 11B of the second embodiment. Only the difference between the measurement mode of the third embodiment and the measurement mode of the second embodiment will be described below. Unlike the second embodiment, the parameters read in step S112 always include the signal conversion gains R1A and R2A of the transmission / reception unit 3, and the signal conversion gains R1A and R2A are values calibrated in the calibration mode 602. It is. In step S122 of FIG. 11B, unlike the second embodiment, in addition to the signal propagation time PRt, the signal strength ratio PRA between the electric signal S1 and the amplified received signal S41 is always calculated, and the storage unit 9 (Step S122). Further, in step S114 of FIG. 11A, the signal propagation time PRt and the signal strength ratio PRA are read from the storage unit 9. In step S115, using the parameters such as the read signal propagation time PRt, the signal intensity ratio PRA, and the position coordinates of the transducer read in step S112, the shape of the measurement target and the distribution of physical property values such as attenuation ( Map). A specific method for calculating the attenuation map is the same as the method described in the second embodiment. Briefly, the calculation unit 20 calculates the signal intensity ratio PRA and the signal of the transmission / reception unit 3 read in step S112. From the conversion gains R1A and R2A, an average attenuation amount between the transducers 1 that have transmitted and received the ultrasonic signal S21 is calculated, and a known tomo is used using the average attenuation amount when the ultrasonic signal S21 is transmitted from various angles. The attenuation distribution (attenuation map) of the measurement target is calculated by the graphic method. As in the second embodiment, it is also possible to calculate the sound speed distribution (sound speed map) to be measured based on the signal propagation time PRt.
 ここで、上記ステップS205において、キャリブレーション結果を表示部10に表示する態様について、図20の表示画面例を用いて説明する。図20の表示画面は、図12と同様に、キャリブレーション後の位置座標(X、Y座標)と信号変換利得R1A,R2Aの値を領域81~84に表示することが可能であるし、標準ファントムに対して、キャリブレーション後の位置座標と信号応答時間R1t,R2tを用いて超音波を送受信して算出した形状画像と、音速分布や減衰量分布等の物性値画像と表示領域85~87にそれぞれ表示することも可能である。また、図20の表示画面には、図12と同様に、キャリブレーション結果承認スイッチ89や、キャリブレーション再実施スイッチ88を併せて表示することも可能である。図20のような表示画面をステップS205において表示することにより、ユーザは、キャリブレーション結果の値と、このキャリブレーション結果を用いて標準ファントムを計測した場合の画像を容易に把握することができる。よって、キャリブレーション結果を承認するか、再実施するかのユーザの判断を表示画面によって支援することができる。 Here, the manner in which the calibration result is displayed on the display unit 10 in step S205 will be described with reference to the display screen example of FIG. The display screen of FIG. 20 can display the position coordinates (X, Y coordinates) after calibration and the values of the signal conversion gains R1A and R2A in the areas 81 to 84, as in FIG. A shape image calculated by transmitting and receiving ultrasonic waves using the position coordinates after calibration and signal response times R1t and R2t with respect to the phantom, a physical property value image such as a sound velocity distribution and an attenuation distribution, and display areas 85 to 87 It is also possible to display them respectively. In addition, on the display screen of FIG. 20, a calibration result approval switch 89 and a calibration re-execution switch 88 can be displayed together as in FIG. By displaying the display screen as shown in FIG. 20 in step S205, the user can easily grasp the value of the calibration result and the image when the standard phantom is measured using the calibration result. Therefore, it is possible to support the user's judgment on whether to approve the calibration result or to re-execute it on the display screen.
 さらに、同物体(標準ファントム)の既知の形状と音速や減衰量などの物性値を基に、キャリブレーション結果を微調整してもよい。例えば、キャリブレーションモード4aにおいて、空間30を満たした水の温度が想定と異なり、ステップS104で用いた空間30を満たした水の音速が1%速かった場合、同物体の形状の画像は1%小さく表示される。この場合、振動子1同士の距離(位置座標)に関するキャリブレーションされたパラメータ値も同様に1%短くなっている。そこで、振動子1同士の距離が1%長くなるように微調整するのである。このように、キャリブレーションされたパラメータ値の確からしさを高めることも可能である。 Furthermore, the calibration result may be finely adjusted based on the known shape of the same object (standard phantom) and physical property values such as sound speed and attenuation. For example, in the calibration mode 4a, when the temperature of the water filling the space 30 is different from the assumption, and the sound speed of the water filling the space 30 used in step S104 is 1% faster, the image of the shape of the object is 1% It is displayed small. In this case, the calibrated parameter value related to the distance (positional coordinate) between the transducers 1 is also shortened by 1%. Therefore, fine adjustment is performed so that the distance between the vibrators 1 is increased by 1%. In this way, it is possible to increase the certainty of the calibrated parameter value.
 上述してきたように、本実施形態によれば、キャリブレーションされた信号変換利得R1A、R2Aと、測定された信号強度比PRA等を用いて、計測対象の減衰量や音速などの物性値の分布を高精度に計測することができる。 As described above, according to the present embodiment, using the calibrated signal conversion gains R1A and R2A and the measured signal intensity ratio PRA or the like, the distribution of physical property values such as the attenuation amount and sound speed of the measurement target Can be measured with high accuracy.
 以下、変形例として、他の算出方法を用いるキャリブレーションモード4aについて説明する。 Hereinafter, as a modification, the calibration mode 4a using another calculation method will be described.
 <変形例2-1>
 変形例2-1は、振動子アレイ2の内側の空間30を満たす物質の減衰率を変えて、複数の減衰率状態を形成し、その都度信号強度比PRAを測定することにより、振動子1の位置座標と、信号変換利得R1A、R2Aをキャリブレーションする例について説明する。
<Modification 2-1>
In the modified example 2-1, by changing the attenuation rate of the substance filling the space 30 inside the transducer array 2 to form a plurality of attenuation rate states, and measuring the signal intensity ratio PRA each time, the transducer 1 An example of calibrating the position coordinates and the signal conversion gains R1A and R2A will be described.
 図21は、変形例2-1のキャリブレーションモード4aの動作を説明するフローチャートであり、図13のステップと同様の動作をするステップには同じ符号を付している。 FIG. 21 is a flowchart for explaining the operation of the calibration mode 4a of the modified example 2-1. Steps that perform the same operations as those in FIG. 13 are denoted by the same reference numerals.
 まず、制御部4は、パラメータ記憶部19から振動子1の位置座標と、送受信部3の信号変換利得等のパラメータを読み出し(ステップS201)、第1の減衰率物質(例えば、所定の第1の濃度で混合物を加えた水)で空間30を満たすように操作者に促す(ステップS232)。操作者が、第1の減衰率物質で空間30を満たしたならば、制御部4は、超音波信号の送受信動作を行う(ステップS202-1)。ステップS202-1の動作は、図19(b)の動作と同様であり、受信信号と送信信号の強度比(信号強度比PRA)を計測し、記憶する。 First, the control unit 4 reads parameters such as the position coordinates of the transducer 1 and the signal conversion gain of the transmission / reception unit 3 from the parameter storage unit 19 (step S201), and a first attenuation factor substance (for example, a predetermined first The operator is prompted to fill the space 30 with water added with a mixture at a concentration of (step S232). If the operator fills the space 30 with the first attenuation factor substance, the control unit 4 performs an ultrasonic signal transmission / reception operation (step S202-1). The operation in step S202-1 is the same as the operation in FIG. 19B, and the intensity ratio (signal intensity ratio PRA) between the received signal and the transmitted signal is measured and stored.
 次に、第2の減衰率物質(例えば第2の濃度で混合物を加えた水)で空間30を満たすように操作者に促し(ステップS234)、超音波信号の送受信動作を行う(ステップS202-2)。ステップS202-2の動作は、図19(b)の動作と同様であり、信号強度比PRAを計測し、記憶する。複数の減衰率物質で空間30において測定した信号強度比PRAを読み出し(ステップS236)、第1の減衰率物質を配置して測定した信号強度比PRA1と第2の減衰率物質を配置して測定した信号強度比PRA2の差を算出する(ステップS237)。信号強度比PRA1と信号強度比PRA2に含まれる送受信部3の信号変換利得R1A、R2Aは等しいため、その差(PRA1-PRA2)は、空間30を超音波信号S21が伝搬する際の超音波伝搬利得P1Aの差である。このとき、振動子1の位置座標は減衰率物質に依らず一定なので、信号伝搬利得の差(PRA1-PRA2)と減衰率の差から振動子1間の距離を算出できる。制御部4は、算出した振動子1間の距離から、各振動子1の位置座標を最小二乗法によって図13のステップS138と同様に求め、パラメータ記憶部19に記憶する(ステップS238)。その後、求めた振動子1の位置座標と、測定した信号強度比PRA1、PRt2を用いて、送受信部3の信号変換利得R1A、R2Aを最小二乗法によって求め、パラメータ記憶部19に記憶する(ステップS239)。最後に、振動子1の位置座標と信号変換利得R1A、R2Aのキャリブレーション結果を表示部10に表示する(ステップS205)。 Next, the operator is prompted to fill the space 30 with a second attenuation material (for example, water added with a mixture at the second concentration) (step S234), and an ultrasonic signal transmission / reception operation is performed (step S202-). 2). The operation in step S202-2 is the same as the operation in FIG. 19B, and the signal intensity ratio PRA is measured and stored. The signal intensity ratio PRA measured in the space 30 with a plurality of attenuation factor substances is read (step S236), and the signal intensity ratio PRA1 measured by arranging the first attenuation substance and the second attenuation factor substance are arranged and measured. The difference in the signal intensity ratio PRA2 is calculated (step S237). Since the signal conversion gains R1A and R2A of the transmission / reception unit 3 included in the signal intensity ratio PRA1 and the signal intensity ratio PRA2 are equal, the difference (PRA1−PRA2) is an ultrasonic propagation when the ultrasonic signal S21 propagates through the space 30. This is the difference in gain P1A. At this time, since the position coordinates of the vibrator 1 are constant regardless of the attenuation factor substance, the distance between the vibrators 1 can be calculated from the difference in signal propagation gain (PRA1−PRA2) and the difference in attenuation factor. The control unit 4 obtains the position coordinates of each transducer 1 from the calculated distance between the transducers 1 by the least square method in the same manner as step S138 in FIG. 13, and stores it in the parameter storage unit 19 (step S238). Thereafter, using the obtained position coordinates of the transducer 1 and the measured signal intensity ratios PRA1 and PRt2, the signal conversion gains R1A and R2A of the transmission / reception unit 3 are obtained by the least square method and stored in the parameter storage unit 19 (step) S239). Finally, the position coordinates of the transducer 1 and the calibration results of the signal conversion gains R1A and R2A are displayed on the display unit 10 (step S205).
 なお、ステップS232やS234は、操作者に促すのではなく、超音波送受信装置5が自動的に空間30を第1の減衰率物質と第2の減衰率物質で満たすようにしても良いし、空間30を第1の減衰率物質と第2の減衰率物質で満たす装置と超音波送受信装置5とを組み合わせて用いると良い。 In steps S232 and S234, instead of prompting the operator, the ultrasonic transceiver 5 may automatically fill the space 30 with the first attenuation material and the second attenuation material, A device that fills the space 30 with the first attenuation material and the second attenuation material and the ultrasonic transmission / reception device 5 may be used in combination.
 以上のキャリブレーションモードの動作を用いると、振動子アレイ2における振動子1の位置座標と送受信部3の信号変換利得をそれぞれより高精度にキャリブレーションすることができる。 By using the above calibration mode operation, the position coordinates of the transducer 1 in the transducer array 2 and the signal conversion gain of the transmission / reception unit 3 can be calibrated with higher accuracy.
 <変形例2-2>
 変形例2-2として、図22に、キャリブレーションモードの動作例のフローチャートを示す。複数の電気信号S1の信号強度A1において、信号強度比(A4/A1)を測定し、位置座標と、信号強度毎の信号変換利得をキャリブレーションする例である。
<Modification 2-2>
As a modified example 2-2, FIG. 22 shows a flowchart of an operation example in the calibration mode. In this example, the signal intensity ratio (A4 / A1) is measured for the signal intensity A1 of the plurality of electric signals S1, and the position coordinates and the signal conversion gain for each signal intensity are calibrated.
 制御部4は、パラメータ記憶部19からデフォルトの振動子1の位置座標と、送受信部3の信号変換利得を読み込み(ステップS201)、電気信号S1の強度A1として、第1の送信電気信号強度を設定する(ステップS241-1)。たとえば、送受信部3に設定可能な電気信号S1の強度の中間値(典型値)などを設定する。そして、図19(a)のステップS202、203と同様に、超音波信号を送受信させ(ステップS202-1)、測定した信号強度比PRAを読み込み(ステップS203-1)、さらにステップS204と同様に、位置座標と信号変換利得の算出した後、記憶部9に記憶する(ステップS204-1)。 The control unit 4 reads the position coordinates of the default transducer 1 and the signal conversion gain of the transmission / reception unit 3 from the parameter storage unit 19 (step S201), and sets the first transmission electric signal intensity as the intensity A1 of the electric signal S1. Setting is made (step S241-1). For example, an intermediate value (typical value) of the intensity of the electric signal S1 that can be set in the transmission / reception unit 3 is set. Then, similarly to steps S202 and S203 in FIG. 19A, an ultrasonic signal is transmitted / received (step S202-1), the measured signal intensity ratio PRA is read (step S203-1), and similarly to step S204. After calculating the position coordinates and the signal conversion gain, they are stored in the storage unit 9 (step S204-1).
 次に、電気信号S1の強度A1として、第2の送信電気信号強度を設定する(ステップS241-2)。たとえば、送受信部3に設定可能な電気信号S1の強度の最大値などである。そして、上記ステップS202-1~204-1と同様に、超音波信号を送受信させ(ステップS202-2)、測定した信号強度比PRAを読み出し(ステップS203-2)、位置座標と信号変換利得の算出を行う(ステップS204-2)。 Next, the second transmission electric signal intensity is set as the intensity A1 of the electric signal S1 (step S241-2). For example, it is the maximum value of the intensity of the electric signal S1 that can be set in the transmission / reception unit 3. Then, as in the above steps S202-1 to 204-1, the ultrasonic signal is transmitted and received (step S202-2), the measured signal intensity ratio PRA is read (step S203-2), and the position coordinates and the signal conversion gain are calculated. Calculation is performed (step S204-2).
 最後に、ステップS204-1、S204-2で算出した各送信電気信号強度A1における位置座標と、信号変換利得を表示する(ステップS205)。 Finally, the position coordinates and signal conversion gain at each transmission electric signal intensity A1 calculated in steps S204-1 and S204-2 are displayed (step S205).
 また、複数種類の送信電気信号強度A1におけるキャリブレーション結果を、図22(b)のように、送信電気信号強度A1と送受信部3の送信動作における信号変換利得との関係や、ステップS202-1,S202-2における受信電気信号強度A4と送受信部3の受信動作における信号変換利得の関係をグラフ等として表示することも可能である。送受信部3を構成する増幅器などの電子回路は、入出力信号の電圧が大きくなると増幅率が次第に低下していき、電源電圧に制限されたある振幅以上の電圧を出力できなくなる。したがって、計測モードでの動作において、得られた送信電気信号強度A1と受信電気信号強度A4に応じてそれぞれに適した信号変換利得を補償するとよい。なお、送信電気信号強度A1の代わりに送信超音波信号強度A2を用いたり、受信電気信号強度A4の代わりに受信超音波信号強度A3を用いてもよい。 Further, as shown in FIG. 22 (b), the calibration results for a plurality of types of transmission electric signal strengths A1 are shown in the relationship between the transmission electric signal strength A1 and the signal conversion gain in the transmission operation of the transmission / reception unit 3, or in step S202-1. , S202-2, the relationship between the received electrical signal strength A4 and the signal conversion gain in the reception operation of the transceiver 3 can be displayed as a graph or the like. In an electronic circuit such as an amplifier constituting the transmission / reception unit 3, the amplification factor gradually decreases as the voltage of the input / output signal increases, and it becomes impossible to output a voltage having a certain amplitude or more limited by the power supply voltage. Therefore, in the operation in the measurement mode, it is preferable to compensate the signal conversion gain suitable for each of the obtained transmission electric signal strength A1 and reception electric signal strength A4. The transmission ultrasonic signal intensity A2 may be used instead of the transmission electric signal intensity A1, or the reception ultrasonic signal intensity A3 may be used instead of the reception electric signal intensity A4.
 なお、電気信号S1の強度の他に、受信部7の増幅器利得やフィルタ定数などを切り替えてキャリブレーションを実施してもよい。これにより受信部7の各種設定時における信号変換利得が分かるため、より高精度なキャリブレーションができる。同様に、信号周波数や信号波形を変えてキャリブレーションしてもよい。 In addition to the intensity of the electric signal S1, calibration may be performed by switching the amplifier gain, the filter constant, and the like of the receiving unit 7. Thereby, since the signal conversion gain at the time of various settings of the receiving unit 7 is known, more accurate calibration can be performed. Similarly, calibration may be performed by changing the signal frequency or signal waveform.
 以上の動作フローを適用すれば、振動子1と送受信部3の信号強度に対する非線形性を考慮して、振動子アレイ2における振動子1の位置座標と送受信部3の信号変換利得をキャリブレーションすることができる。 If the above operation flow is applied, the position coordinates of the transducer 1 in the transducer array 2 and the signal conversion gain of the transmission / reception unit 3 are calibrated in consideration of nonlinearity with respect to the signal intensity of the transducer 1 and the transmission / reception unit 3. be able to.
 <変形例2-3>
 変形例2-3では、振動子アレイ2が、振動子1の位置を調整する駆動部を備え、送受信部3が信号変換利得を調整する機能を備えている。このような構成に適したキャリブレーションモード4aの動作について説明する。
<Modification 2-3>
In Modification 2-3, the transducer array 2 includes a drive unit that adjusts the position of the transducer 1, and the transmission / reception unit 3 has a function of adjusting the signal conversion gain. The operation of the calibration mode 4a suitable for such a configuration will be described.
 図23は、変形例2-3のキャリブレーションモード4aの動作を説明するフローチャートであり、図14のフローチャートと同様の処理によりキャリブレーションを行う。なお、図23において、図19(a)のステップと同様の動作をするステップには同じ符号を付している。 FIG. 23 is a flowchart for explaining the operation of the calibration mode 4a of the modified example 2-3, and calibration is performed by the same processing as the flowchart of FIG. In FIG. 23, steps that perform the same operations as those in FIG. 19A are denoted by the same reference numerals.
 制御部4は、パラメータ記憶部19から振動子1の位置座標と送受信部3の信号変換利得R1A、R2Aを読み込む(ステップS201)。制御部4は、振動子アレイ2の駆動部と、送受信部3の調整機能を制御し、各振動子1の位置座標と送受信部3の信号変換利得を、ステップS201で読み出した位置座標と信号変換利得R1A、R2Aの値に調整(補償)する(ステップS251)。そして、超音波信号の送受信動作を行う(ステップS202)。ステップS202の動作は、図19(b)の動作と同様であり、信号強度比PRAを計測し、記憶する。 The control unit 4 reads the position coordinates of the transducer 1 and the signal conversion gains R1A and R2A of the transmission / reception unit 3 from the parameter storage unit 19 (step S201). The control unit 4 controls the drive unit of the transducer array 2 and the adjustment function of the transmission / reception unit 3, and the position coordinates and signals of the transducers 1 and the signal conversion gain of the transmission / reception unit 3 read out in step S <b> 201. Adjustment (compensation) is performed to the values of the conversion gains R1A and R2A (step S251). Then, an ultrasonic signal transmission / reception operation is performed (step S202). The operation in step S202 is the same as the operation in FIG. 19B, and the signal intensity ratio PRA is measured and stored.
 その後、図19(a)のステップ203、204と同様に、信号強度比PRAを読み出し(ステップS203)、測定した信号強度比PRAと、S241で調整した位置座標および信号変換利得R1A、R2Aを用いて、位置座標と信号変換利得R1A、R2Aを算出した後、パラメータ記憶部19へ記憶する(ステップS204-3)。 Thereafter, as in steps 203 and 204 of FIG. 19A, the signal strength ratio PRA is read (step S203), and the measured signal strength ratio PRA, the position coordinates adjusted in S241, and the signal conversion gains R1A and R2A are used. The position coordinates and the signal conversion gains R1A and R2A are calculated and stored in the parameter storage unit 19 (step S204-3).
 つぎに、制御部4は、ステップS204-3で新たに算出された信号強度比PRAと、予め定めた好ましい位置座標および信号変換利得PRA’との誤差の二乗和を算出し、誤差の二乗和が収束したかどうかの判定を行う(ステップS252)。ステップS252において、誤差の二乗和が収束していないと判定した場合は、ステップS204において算出した位置座標と信号変換利得を、調整すべき値として採用し(更新し)(ステップS253)、ステップS251に戻り、各振動子1の位置と送受信部3の信号変換利得をステップS253で採用した値に調整する。そして、ステップS202~S204-3、S252を繰り返す。なお、好ましい位置座標および信号変換利得は、例えば振動子アレイ2の形状から求めた振動子1の理想的な位置および信号変換利得から求めた値を用いる。 Next, the control unit 4 calculates the sum of squares of errors between the signal intensity ratio PRA newly calculated in step S204-3, the predetermined preferred position coordinates and the signal conversion gain PRA ′, and the sum of squares of errors. It is determined whether or not has converged (step S252). If it is determined in step S252 that the error sum of squares has not converged, the position coordinates and signal conversion gain calculated in step S204 are adopted (updated) as values to be adjusted (step S253), and step S251. Returning to the step, the position of each transducer 1 and the signal conversion gain of the transmission / reception unit 3 are adjusted to the values adopted in step S253. Steps S202 to S204-3 and S252 are repeated. The preferred position coordinates and signal conversion gain use values obtained from the ideal position and signal conversion gain of the transducer 1 obtained from the shape of the transducer array 2, for example.
 一方、ステップS252において、誤差の二乗和が収束したと判定した場合は、パラメータ記憶部19に記憶されている位置座標と信号変換利得R1A、R2Aをキャリブレーション結果として表示する(ステップS105)。 On the other hand, if it is determined in step S252 that the sum of squared errors has converged, the position coordinates and signal conversion gains R1A and R2A stored in the parameter storage unit 19 are displayed as calibration results (step S105).
 本変形例2-3をキャリブレーションモードの動作によれば、振動子1の位置を調整する駆動部と送受信部3の信号変換利得を調整する機能に含まれる誤差をあわせて補償することができるため、より高精度に振動子1の位置座標と送受信部3の信号変換利得R1A,R2Aをキャリブレーションすることができる。また、本来の好ましい振動子1の位置座標と送受信部3の信号変換利得R1A、R2Aにおいて、計測が可能となる。 According to the operation of the modification 2-3 in the calibration mode, it is possible to compensate for errors included in the function of adjusting the signal conversion gain of the driving unit that adjusts the position of the transducer 1 and the transmission / reception unit 3. Therefore, the position coordinates of the transducer 1 and the signal conversion gains R1A and R2A of the transmission / reception unit 3 can be calibrated with higher accuracy. In addition, measurement is possible using the originally preferred position coordinates of the vibrator 1 and the signal conversion gains R1A and R2A of the transmission / reception unit 3.
 <変形例2-4>
 変形例2-4のキャリブレーションモードは、キャリブレーションされた振動子1の位置座標と送受信部3の信号変換利得に関する過去の情報を記憶し、表示することで、超音波送受信装置5の劣化や故障などを検知する。
<Modification 2-4>
In the calibration mode of the modified example 2-4, past information on the calibrated position coordinates of the transducer 1 and the signal conversion gain of the transmission / reception unit 3 is stored and displayed. Detect failure.
 図24は、変形例2-4による超音波送受信装置5のキャリブレーションモードでの動作例を説明する制御部4のフローチャートであり、図15のフローチャートと同様の処理によりキャリブレーションを行う。なお、図24において、図19(a)のステップと同様の動作をするステップには同じ符号を付している。 FIG. 24 is a flowchart of the control unit 4 for explaining an example of the operation in the calibration mode of the ultrasonic transmission / reception apparatus 5 according to the modification 2-4. Calibration is performed by the same processing as the flowchart of FIG. Note that, in FIG. 24, steps that perform the same operations as those in FIG.
 図24において、ステップS201~S204-1は、図19(a)のステップS201~S204と同様であり、制御部4は、パラメータ記憶部19から振動子1の位置座標と送受信部3の信号変換利得の読み出し、超音波信号の送受信動作を行い、測定した信号強度比とパラメータ記憶部19に記憶されている位置座標および信号変換利得を用いて、位置座標と信号変換利得を算出し、その後パラメータ記憶部19に記憶する。つぎに、制御部4は、過去のキャリブレーション結果(例えば、前回のキャリブレーションで算出した位置座標および信号変換利得)をパラメータ記憶部19から読み出し(ステップS254)、今回のキャリブレーションで算出した位置座標と信号変換利得とともに表示する(ステップS255)。つぎに、制御部4は、今回と過去のキャリブレーションされた位置座標と信号変換利得の誤差の二乗和が、所定の値よりも大きいかどうかを判定する(ステップS256)。ステップS256において、誤差が所定の値よりも大きいと判定された場合には、制御部4は、超音波送受信装置5の故障または劣化等があると考えられるので、アラートを表示する(ステップS257)。なお、ステップS256の判定方法は、誤差の二乗和に限らず、キャリブレーションされた各振動子1の位置座標または各送受信部3の信号応答時間のうちの1つが所定の値よりも大きいかどうかで判定としてもよいし、キャリブレーション結果を図24(b)のように時系列なグラフにし、二乗和の変化量が所定の値よりも大きいかどうかで判定してもよい。 In FIG. 24, steps S201 to S204-1 are the same as steps S201 to S204 of FIG. 19A, and the control unit 4 converts the position coordinates of the transducer 1 and the signal conversion of the transmission / reception unit 3 from the parameter storage unit 19. The readout of the gain and the transmission / reception operation of the ultrasonic signal are performed, the position coordinate and the signal conversion gain are calculated using the measured signal intensity ratio and the position coordinate and the signal conversion gain stored in the parameter storage unit 19, and then the parameters are calculated. Store in the storage unit 19. Next, the control unit 4 reads out past calibration results (for example, the position coordinates and signal conversion gain calculated in the previous calibration) from the parameter storage unit 19 (step S254), and the position calculated in the current calibration. The coordinates and the signal conversion gain are displayed together (step S255). Next, the control unit 4 determines whether or not the sum of squares of errors between the current and past calibrated position coordinates and the signal conversion gain is larger than a predetermined value (step S256). When it is determined in step S256 that the error is larger than the predetermined value, the control unit 4 displays an alert because it is considered that there is a failure or deterioration of the ultrasonic transmission / reception device 5 (step S257). . Note that the determination method in step S256 is not limited to the sum of squares of errors, and whether or not one of the calibrated position coordinates of each transducer 1 or the signal response time of each transmission / reception unit 3 is greater than a predetermined value. Alternatively, the determination may be made by using a time-series graph as shown in FIG. 24B, and the determination may be made based on whether the amount of change in the sum of squares is larger than a predetermined value.
 以上のような動作のフローをキャリブレーションモードとして用いれば、超音波送受信装置5の劣化や故障をモニタでき、適切なメンテナンスを実施することができる。また、劣化や故障の度合いを把握することで、適切な計測結果を取得することができる。 If the flow of operation as described above is used as the calibration mode, deterioration or failure of the ultrasonic transmission / reception device 5 can be monitored, and appropriate maintenance can be performed. Moreover, an appropriate measurement result can be acquired by grasping the degree of deterioration or failure.
 <変形例2-5>
 変形例2-5のキャリブレーションモードは、誤差の大きな位置座標や信号変換利得を除去してキャリブレーションを行う。
<Modification 2-5>
In the calibration mode of Modified Example 2-5, calibration is performed by removing position coordinates and signal conversion gains with large errors.
 図25は、変形例2-5による超音波送受信装置5のキャリブレーションモードでの動作を示すフローチャートである。図16(a)のフローチャートと同様の処理によりキャリブレーションを行う。 FIG. 25 is a flowchart showing the operation in the calibration mode of the ultrasonic transmitting / receiving apparatus 5 according to the modification 2-5. Calibration is performed by the same processing as in the flowchart of FIG.
 図25のステップS201~S204-1は、図19(a)のステップS201~204と同様であり、制御部4は、パラメータ記憶部19から振動子1の位置座標と送受信部3の信号変換利得を読み出し、超音波信号の送受信動作を行い、測定した信号強度比とパラメータ記憶部19に記憶されている位置座標および信号変換利得を用いて、位置座標と信号変換利得(パラメータセットA)を算出し、その後記憶部9へ記憶する。つぎに、制御部4は、ステップS204で算出された位置座標と信号変換利得(パラメータセットA)と、ステップS201でパラメータ記憶部19から読み出した位置座標と信号変換利得との誤差を求め、所定の値よりも大きなものがあるかどうかを判定する(ステップS248)。制御部4は、例えば、誤差が所定値よりも大きなものがなければ、ステップS251でキャリブレーション結果(パラメータセットA)を表示してキャリブレーション動作を終了する。 Steps S201 to S204-1 in FIG. 25 are the same as steps S201 to S204 in FIG. 19A, and the control unit 4 transmits the position coordinates of the transducer 1 and the signal conversion gain of the transmission / reception unit 3 from the parameter storage unit 19. Is read out, the transmission / reception operation of the ultrasonic signal is performed, and the position coordinates and the signal conversion gain (parameter set A) are calculated using the measured signal intensity ratio and the position coordinates and the signal conversion gain stored in the parameter storage unit 19. Then, it is stored in the storage unit 9. Next, the control unit 4 obtains an error between the position coordinates calculated in step S204 and the signal conversion gain (parameter set A) and the position coordinates read from the parameter storage unit 19 in step S201 and the signal conversion gain. It is determined whether or not there is a value larger than the value of (step S248). For example, if there is no error larger than a predetermined value, the control unit 4 displays the calibration result (parameter set A) in step S251 and ends the calibration operation.
 一方、ステップS248において、所定の値よりも誤差が大きい位置座標または信号変換利得があった場合、制御部4は、それらが関与する信号強度比PRAを除去し(ステップS249)、残った信号強度比PRAと、パラメータ記憶部19の位置座標および信号変換利得を用いて、再度、位置座標と信号変換利得(パラメータセットB)をステップS204と同様に算出し、その後記憶部9へ記憶する(ステップS204-2)。そして、制御部4は、ステップ204-2で算出した位置座標と信号変換利得(パラメータセットB)と、ステップS204-1で算出した(パラメータセットA)とを表示部10に表示し、操作者にパラメータセットAおよびBの一方を操作部40を介して選択させる(ステップS251)。また、操作者に選択させる際、既知の形状と音速や減衰量などの物性値を持つ物体を空間30に配置し、計測モードと同様の動作をさせて、パラメータセットAとB双方における物体の計測結果(形状や物性値の分布等)を表示することも可能である。これにより、操作者はパラメータセットAとBによる画像の違いを認識しやすくなり、結果として選択しやすくなる。 On the other hand, if there is a position coordinate or a signal conversion gain having a larger error than the predetermined value in step S248, the control unit 4 removes the signal strength ratio PRA related to them (step S249), and the remaining signal strength. Using the ratio PRA, the position coordinates and the signal conversion gain of the parameter storage unit 19, the position coordinates and the signal conversion gain (parameter set B) are calculated again in the same manner as in step S204, and then stored in the storage unit 9 (step S204-2). Then, the control unit 4 displays the position coordinates and signal conversion gain (parameter set B) calculated at step 204-2 and (parameter set A) calculated at step S204-1 on the display unit 10, and the operator To select one of the parameter sets A and B via the operation unit 40 (step S251). In addition, when selecting the operator, an object having a known shape and a physical property value such as sound speed and attenuation is arranged in the space 30 and the same operation as in the measurement mode is performed, so that the object in both the parameter sets A and B can be selected. It is also possible to display measurement results (shape, distribution of physical property values, etc.). As a result, the operator can easily recognize the difference between the images of the parameter sets A and B, and as a result, can be easily selected.
 図25のフローによれば、故障や劣化が疑われる振動子1や送受信部3に関する信号遅延時間が、他の振動子1や送受信部3のキャリブレーション結果に影響することを防ぐことができる。なお、故障や劣化が疑われる振動子1や送受信部3についてもキャリブレーションできていることも十分に考えられるため、ステップS204-1、ステップ204-2で得られたキャリブレーション結果(パラメータセットAおよびB)の双方を表示する。 25, it is possible to prevent the signal delay time related to the transducer 1 and the transmission / reception unit 3 suspected of being broken or deteriorated from affecting the calibration results of the other transducers 1 or the transmission / reception unit 3. In addition, since it is fully considered that the transducer 1 and the transmission / reception unit 3 suspected of being broken or deteriorated can be calibrated, the calibration results (parameter set A) obtained in step S204-1 and step 204-2. And B) are both displayed.
 ここで、上記ステップS251において、キャリブレーション結果を表示部10に表示する態様について、図26を用いて説明する。図26の表示画面は、図17の表示画面と同様であり、キャリブレーション後の位置座標と信号変換利得R1A,R2Aの値をパラメータセットA,B,Cごとに表示する表示領域181~184と、パラメータセットA,B,Cをそれぞれ用いて標準ファントムに対して超音波信号を送受信させた算出した標準ファントムの形状画像を表示領域85-4,85-5、85-6とを図17と同様に含む。パラメータセットA,B,Cについては、第二実施形態の変形例1-4の図17のを用いて説明したものと同様である。図26のような表示画面をステップS251において表示することにより、ユーザは、複数のパラメータセットA,B,Cの値と、これらを用いて標準ファントムを計測した結果を容易に比較して把握することができる。よって、パラメータセットA,Bの選択やキャリブレーション結果を承認するか否かについてのユーザの判断を図26の表示画面によって支援することができる。 Here, a mode in which the calibration result is displayed on the display unit 10 in step S251 will be described with reference to FIG. The display screen of FIG. 26 is the same as the display screen of FIG. 17, and display areas 181 to 184 for displaying the position coordinates after calibration and the values of the signal conversion gains R1A and R2A for each of the parameter sets A, B, and C FIG. 17 shows display images 85-4, 85-5, and 85-6 of the shape images of the standard phantom calculated by transmitting and receiving ultrasonic signals to and from the standard phantom using the parameter sets A, B, and C, respectively. Including as well. The parameter sets A, B, and C are the same as those described using FIG. 17 of Modification 1-4 of the second embodiment. By displaying the display screen as shown in FIG. 26 in step S251, the user can easily compare and grasp the values of the plurality of parameter sets A, B, and C and the results of measuring the standard phantom using them. be able to. Therefore, the user's judgment as to whether or not to approve the selection of the parameter sets A and B and the calibration result can be supported by the display screen of FIG.
 以上、第三実施形態に係る超音波送受信装置の構成を適用すれば、振動子1の位置座標と送受信部3の信号変換利得をそれぞれキャリブレーションすることにより、計測対象の形状と減衰量などの物性値を高精度に計測することが可能になる。 As described above, when the configuration of the ultrasonic transmission / reception apparatus according to the third embodiment is applied, the position coordinates of the transducer 1 and the signal conversion gain of the transmission / reception unit 3 are respectively calibrated, so that the shape of the measurement target, the attenuation amount, etc. Physical property values can be measured with high accuracy.
 また、第二実施形態では信号応答時間R1t、R2tをキャリブレーションし、第三実施形態では信号変換利得R1A,R2Aをキャリブレーションする構成であったが、両者を組み合わせて実施することにより、振動子1の位置座標と送受信部3の信号応答時間、送受信部3の信号変換利得をそれぞれキャリブレーションすることも可能になる。これにより、計測対象の形状と音速や減衰量などの物性値をより高精度に計測することが可能になる。 Further, in the second embodiment, the signal response times R1t and R2t are calibrated, and in the third embodiment, the signal conversion gains R1A and R2A are calibrated. It is also possible to calibrate the position coordinates of 1, the signal response time of the transmission / reception unit 3, and the signal conversion gain of the transmission / reception unit 3. This makes it possible to measure the shape of the measurement target and the physical property values such as the sound speed and the attenuation amount with higher accuracy.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えばFPGAのような集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment. Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit such as an FPGA. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
 また、図3および図18では「aaaテーブル」の表現にて各種情報を説明したが、各種情報は、テーブル以外のデータ構造で表現されていてもよい。データ構造に依存しないことを示すために「aaaテーブル」を「aaa情報」と呼ぶことができる。また、「格納する」「記憶する」「書き込む」の表現にて記憶部9やパラメータ記憶部19に各情報を記録することを説明したが、「登録する」または「設定する」と表現されてもよい。 3 and FIG. 18, the various information is described using the expression “aaa table”, but the various information may be expressed using a data structure other than the table. In order to show that it does not depend on the data structure, the “aaa table” can be called “aaa information”. In addition, it has been described that each information is recorded in the storage unit 9 and the parameter storage unit 19 with the expressions “store”, “store”, and “write”. However, it is expressed as “register” or “set”. Also good.
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。 Also, the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
 本発明は、複数の振動子を備える超音波送受信装置に適用することができる。 The present invention can be applied to an ultrasonic transmission / reception apparatus including a plurality of transducers.
1 振動子
2 振動子アレイ
3 送受信部
4 制御部
5 超音波送受信装置
6 送信部
7 受信部
8 送受信スイッチ
9 記憶部
10 表示部
11 振動子サブアレイ
S1、S2 送受信部設定信号
T1 電気信号の入力タイミング
T2 超音波信号の放射タイミング
T3 超音波信号の到達タイミング
T4 増幅後受信信号の出力タイミング
A1 送信される電気信号強度
A2 送信時の超音波信号強度
A3 受信時の超音波信号強度
A4 増幅後受信信号強度
DESCRIPTION OF SYMBOLS 1 Vibrator 2 Vibrator array 3 Transmission / reception part 4 Control part 5 Ultrasonic transmission / reception apparatus 6 Transmission part 7 Reception part 8 Transmission / reception switch 9 Storage part 10 Display part 11 Transducer subarray S1, S2 Transmission / reception part setting signal T1 Input timing of electric signal T2 Ultrasound signal emission timing T3 Ultrasound signal arrival timing T4 Amplified reception signal output timing A1 Transmitted electric signal intensity A2 Transmission ultrasonic signal intensity A3 Reception ultrasonic signal intensity A4 Amplified reception signal Strength

Claims (15)

  1.  複数の振動子を備える振動子アレイと、前記複数の振動子のうち少なくとも一つの振動子に接続された送信部と、前記複数の振動子のうち少なくとも一つの他の振動子に接続された受信部と、演算部と、制御部とを有し、
     前記送信部は、前記制御部から電気信号を受け取り、前記電気信号を増幅して送信信号を生成して、接続されている前記振動子に出力し、前記送信信号を受け取った前記振動子は、前記送信信号を超音波信号に変換して所定の空間に向かって送信し、
     前記所定の空間を伝搬してきた前記超音波信号が到達した前記他の振動子は、前記超音波信号を電気信号である受信信号に変換し、前記受信部は、前記受信信号を増幅して増幅後受信信号を出力し、
     前記演算部は、前記増幅後受信信号と、予め求めておいた複数のパラメータ値のうちの1以上とに基づいて、前記所定の空間に配置された対象物の画像を算出し、
     前記パラメータ値は、前記送信部と前記送信部に接続された前記振動子の間、および、前記振動子と前記振動子に接続された前記受信部の間、のうち少なくとも一方における信号応答特性と、前記振動子の位置情報と、を含み、
     前記制御部は、前記パラメータ値を調整するキャリブレーションモードを有し、前記キャリブレーションモードは、前記送信部及び受信部を動作させて前記超音波信号を送受信し、前記信号応答特性と、前記振動子の位置情報とを算出することを特徴とする超音波送受信装置。
    A transducer array including a plurality of transducers, a transmitter connected to at least one transducer among the plurality of transducers, and a reception connected to at least one other transducer among the plurality of transducers Unit, a calculation unit, and a control unit,
    The transmission unit receives an electrical signal from the control unit, amplifies the electrical signal to generate a transmission signal, outputs the transmission signal to the connected transducer, and the transducer that receives the transmission signal The transmission signal is converted into an ultrasonic signal and transmitted toward a predetermined space,
    The other transducer that has reached the ultrasonic signal that has propagated through the predetermined space converts the ultrasonic signal into a received signal that is an electrical signal, and the receiving unit amplifies and amplifies the received signal. Output the received signal after
    The calculation unit calculates an image of an object arranged in the predetermined space based on the amplified reception signal and one or more of a plurality of parameter values obtained in advance,
    The parameter value is a signal response characteristic in at least one of the transmitter and the transducer connected to the transmitter, and the transducer and the receiver connected to the transducer. And position information of the vibrator,
    The control unit has a calibration mode for adjusting the parameter value. In the calibration mode, the transmission unit and the reception unit are operated to transmit and receive the ultrasonic signal, the signal response characteristic, and the vibration An ultrasonic transmission / reception apparatus that calculates position information of a child.
  2.  請求項1に記載の超音波送受信装置において、前記信号応答特性は、前記送信部が前記電気信号を受け取ってから前記送信部に接続された前記振動子が前記超音波信号を送信するまでの間の送信時信号応答特性、および、前記他の振動子に前記超音波信号が到達してから前記他の振動子に接続された前記受信部が前記増幅後受信信号を出力するまでの間の受信時信号応答特性、のうち少なくとも一方であることを特徴とする超音波送受信装置。 2. The ultrasonic transmission / reception apparatus according to claim 1, wherein the signal response characteristic is a period from when the transmission unit receives the electrical signal until the transducer connected to the transmission unit transmits the ultrasonic signal. Signal response characteristics during transmission, and reception from when the ultrasonic signal reaches the other transducer until the reception unit connected to the other transducer outputs the amplified received signal An ultrasonic transmission / reception apparatus characterized by having at least one of time signal response characteristics.
  3.  請求項1に記載の超音波送受信装置において、前記制御部は、前記キャリブレーションモードにおいて、前記送信部が前記制御部から前記電気信号を受け取ってから前記受信部が前記増幅後受信信号を出力するまでの信号遅延時間を算出し、前記信号遅延時間に基づいて、前記信号応答特性として、前記送信部が前記制御部から前記電気信号を受け取ってから前記振動子が超音波信号を送信するまでの送信時信号応答時間、および、前記他の振動子に前記超音波信号が到達してから前記受信部が前記増幅後受信信号を出力するまでの受信時信号応答時間の少なくとも一方を算出することを特徴とする超音波送受信装置。 2. The ultrasonic transmission / reception apparatus according to claim 1, wherein, in the calibration mode, the control unit receives the electrical signal from the control unit and then the reception unit outputs the amplified reception signal in the calibration mode. Signal delay time until the transducer transmits an ultrasonic signal after the transmission unit receives the electrical signal from the control unit as the signal response characteristics based on the signal delay time Calculating at least one of a transmission signal response time and a reception signal response time from when the ultrasonic signal reaches the other transducer until the receiving unit outputs the amplified reception signal. A featured ultrasonic transmission / reception apparatus.
  4.  請求項1に記載の超音波送受信装置において、前記制御部は、前記送信部が前記制御部から受け取った前記電気信号と前記受信部の出力する増幅後受信信号との強度比を求め、前記強度比に基づいて、前記信号応答特性として、前記電気信号と前記振動子が送信する前記超音波信号との間の送信時信号変換利得、および、前記他の振動子に到達した前記超音波信号と前記増幅後受信信号との間の受信時信号変換利得の少なくとも一方を算出することを特徴とする超音波送受信装置。 2. The ultrasonic transmission / reception apparatus according to claim 1, wherein the control unit obtains an intensity ratio between the electrical signal received by the transmission unit from the control unit and an amplified reception signal output from the reception unit, and the intensity. Based on the ratio, as the signal response characteristics, a signal conversion gain at the time of transmission between the electrical signal and the ultrasonic signal transmitted by the transducer, and the ultrasonic signal reaching the other transducer and An ultrasonic transmission / reception apparatus that calculates at least one of the signal conversion gains during reception between the amplified reception signals.
  5.  請求項1に記載の超音波送受信装置において、前記制御部は、前記キャリブレーションモードで算出した前記信号応答特性および前記位置情報によって、前記演算部が前記画像の算出に用いる前記パラメータ値を調整することを特徴とする超音波送受信装置。 The ultrasonic transmission / reception apparatus according to claim 1, wherein the control unit adjusts the parameter value used by the calculation unit to calculate the image based on the signal response characteristic and the position information calculated in the calibration mode. An ultrasonic transmission / reception device.
  6.  請求項1に記載の超音波送受信装置において、前記制御部は、前記対象物に超音波信号を送信して、前記演算部に前記画像を算出させる計測モードを有し、前記キャリブレーションモードで算出した前記信号応答特性および前記位置情報に基づいて、前記計測モードにおける前記送信部の送信信号の送信条件および前記受信部の前記受信信号の受信条件の少なくとも一方を調整することを特徴とする超音波送受信装置。 The ultrasonic transmission / reception apparatus according to claim 1, wherein the control unit has a measurement mode in which an ultrasonic signal is transmitted to the object and the calculation unit calculates the image, and the calculation is performed in the calibration mode. And adjusting at least one of a transmission signal transmission condition of the transmission unit and a reception condition of the reception signal of the reception unit in the measurement mode based on the signal response characteristic and the position information. Transmitter / receiver.
  7.  請求項1に記載の超音波送受信装置において、前記振動子の位置座標を変位させる駆動部をさらに有し、
     前記制御部は、前記キャリブレーションモードで算出した前記位置情報に応じて、前記駆動部を動作させ、前記振動子の位置座標を調整することを特徴とする超音波送受信装置。
    The ultrasonic transmission / reception apparatus according to claim 1, further comprising a drive unit that displaces a position coordinate of the transducer.
    The ultrasonic transmission / reception apparatus, wherein the control unit operates the drive unit according to the position information calculated in the calibration mode to adjust the position coordinates of the transducer.
  8.  請求項1に記載の超音波送受信装置において、前記演算部は、前記受信信号と前記パラメータ値とに基づいて、前記送信部がされた前記振動子と前記受信部が接続された前記他の振動子との間の前記超音波信号の伝搬特性を求め、前記超音波信号の伝搬特性に基づいて、前記対象物の物性値の画像を算出することを特徴とする超音波送受信装置。 2. The ultrasonic transmission / reception apparatus according to claim 1, wherein the calculation unit is configured to determine, based on the reception signal and the parameter value, the other vibration in which the transmission unit and the reception unit are connected to each other. An ultrasonic transmission / reception apparatus characterized in that a propagation characteristic of the ultrasonic signal with a child is obtained, and an image of a physical property value of the object is calculated based on the propagation characteristic of the ultrasonic signal.
  9.  請求項1に記載の超音波送受信装置において、前記振動子アレイは、前記所定の空間を取り囲むように配置されており、
     前記受信部が接続された前記他の振動子は、前記送信部が接続された前記振動子の送信した前記超音波信号の直接波が到達する位置に配置されていることを特徴とする超音波送受信装置。
    The ultrasonic transmission / reception apparatus according to claim 1, wherein the transducer array is disposed so as to surround the predetermined space,
    The other transducer to which the receiving unit is connected is disposed at a position where the direct wave of the ultrasonic signal transmitted by the transducer to which the transmitting unit is connected reaches. Transmitter / receiver.
  10.  請求項1に記載の超音波送受信装置において、前記複数の振動子には、それぞれ前記送信部と前記受信部が接続されていることを特徴とする超音波送受信装置。 2. The ultrasonic transmission / reception device according to claim 1, wherein the transmission unit and the reception unit are connected to the plurality of transducers, respectively.
  11.  請求項1に記載の超音波送受信装置において、前記キャリブレーションモードは、前記送信部及び受信部を動作させて、複数の前記振動子の組の間で前記超音波信号を送受信し、前記送信部に入力された前記電気信号と、前記受信部の出力する増幅後受信信号とに基づいて、所定の算出方法により、前記信号応答特性と、前記振動子の位置情報とを算出することを特徴とする超音波送受信装置。 2. The ultrasonic transmission / reception apparatus according to claim 1, wherein in the calibration mode, the transmission unit and the reception unit are operated to transmit and receive the ultrasonic signal between a plurality of sets of the transducers, and the transmission unit. Calculating the signal response characteristics and the position information of the transducer by a predetermined calculation method based on the electric signal input to the signal and the amplified received signal output from the receiver. Ultrasonic transmitter / receiver.
  12.  請求項1に記載の超音波送受信装置において、前記キャリブレーションモードは、前記所定の空間に物性値の異なる複数の物質を順に配置し、その都度前記振動子の組の間で前記超音波信号を送受信し、得られた前記増幅後受信信号と、前記送信部に入力された前記電気信号とに基づいて、前記信号応答特性と、前記振動子の位置情報とを算出することを特徴とする超音波送受信装置。 2. The ultrasonic transmission / reception apparatus according to claim 1, wherein in the calibration mode, a plurality of substances having different physical property values are sequentially arranged in the predetermined space, and each time the ultrasonic signal is transmitted between the set of transducers. The signal response characteristic and the position information of the transducer are calculated based on the amplified reception signal transmitted and received and the electric signal input to the transmission unit. Sound wave transmitter / receiver.
  13.  請求項1に記載の超音波送受信装置において、前記キャリブレーションモードは、前記送信部に入力する電気信号の強度を異なる複数種類の強度に順に設定し、複数種類の強度ごとに前記超音波信号を送受信し、得られた前記増幅後受信信号と、前記送信部に入力された前記電気信号とに基づいて、前記信号応答特性と、前記振動子の位置情報とを算出することを特徴とする超音波送受信装置。 2. The ultrasonic transmission / reception apparatus according to claim 1, wherein in the calibration mode, intensities of electric signals input to the transmission unit are sequentially set to different types of intensities, and the ultrasonic signals are set for each of the plural types of intensities. The signal response characteristic and the position information of the transducer are calculated based on the amplified reception signal transmitted and received and the electric signal input to the transmission unit. Sound wave transmitter / receiver.
  14.  請求項11に記載の超音波送受信装置において、前記制御部は、過去に行った前記キャリブレーションにより求めた前記信号応答特性と前記振動子の位置情報を記憶部に格納しておくことを特徴とする超音波送受信装置。 The ultrasonic transmission / reception apparatus according to claim 11, wherein the control unit stores the signal response characteristic obtained by the calibration performed in the past and position information of the transducer in a storage unit. Ultrasonic transmitter / receiver.
  15.  送信部に電気信号を入力し、前記送信部で前記電気信号を増幅して送信信号を生成して、振動子に出力し、前記送信信号を受け取った前記振動子は、前記送信信号を超音波信号に変換して所定の空間に向かって送信し、
     前記所定の空間を伝搬してきた前記超音波信号を前記他の振動子で受信して、電気信号である受信信号に変換し、前記受信信号を受信部が増幅して増幅後受信信号を出力し、
     前記増幅後受信信号と、予め求めておいた複数のパラメータ値のうちの1以上とに基づいて、前記所定の空間に配置された対象物の画像を算出する超音波送受信方法であって、
     前記パラメータ値は、前記送信部と前記送信部に接続された前記振動子の間、および、前記振動子と前記振動子に接続された前記受信部の間、のうち少なくとも一方における信号応答特性と、前記振動子の位置情報と、を含み、
     前記送信部及び受信部によって前記超音波信号を送受信し、前記信号応答特性と、前記振動子の位置情報とを算出するキャリブレーションモードを有することを特徴とする超音波送受信方法。
    An electric signal is input to the transmission unit, the electric signal is amplified by the transmission unit to generate a transmission signal, and the transmission signal is output to the transducer. The transducer that receives the transmission signal transmits the transmission signal to the ultrasonic wave Convert it into a signal and send it to a given space,
    The ultrasonic signal propagating in the predetermined space is received by the other transducer, converted into a received signal that is an electrical signal, and the received signal is amplified by a receiving unit and an amplified received signal is output. ,
    An ultrasonic transmission / reception method for calculating an image of an object arranged in the predetermined space based on the amplified reception signal and one or more of a plurality of parameter values obtained in advance,
    The parameter value is a signal response characteristic in at least one of the transmitter and the transducer connected to the transmitter, and the transducer and the receiver connected to the transducer. And position information of the vibrator,
    An ultrasonic transmission / reception method comprising: a calibration mode for transmitting and receiving the ultrasonic signal by the transmission unit and the reception unit and calculating the signal response characteristic and position information of the transducer.
PCT/JP2015/084699 2015-12-10 2015-12-10 Ultrasonic transmission/reception apparatus and ultrasonic transmission/reception method WO2017098641A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/084699 WO2017098641A1 (en) 2015-12-10 2015-12-10 Ultrasonic transmission/reception apparatus and ultrasonic transmission/reception method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/084699 WO2017098641A1 (en) 2015-12-10 2015-12-10 Ultrasonic transmission/reception apparatus and ultrasonic transmission/reception method

Publications (1)

Publication Number Publication Date
WO2017098641A1 true WO2017098641A1 (en) 2017-06-15

Family

ID=59013954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084699 WO2017098641A1 (en) 2015-12-10 2015-12-10 Ultrasonic transmission/reception apparatus and ultrasonic transmission/reception method

Country Status (1)

Country Link
WO (1) WO2017098641A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113768541A (en) * 2021-10-27 2021-12-10 之江实验室 Complex curved surface ultrasonic array transducer array position error correction method
US20220313204A1 (en) * 2021-03-30 2022-10-06 Fujifilm Healthcare Corporation Ultrasonic ct device, method for controlling the same, and program for controlling ultrasonic ct device
US11622747B2 (en) 2020-01-27 2023-04-11 Fujifilm Healthcare Corporation Ultrasonic CT device, control method of ultrasonic CT device, and ultrasonic transmission and reception device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0556981A (en) * 1991-09-05 1993-03-09 Matsushita Electric Ind Co Ltd Medical image evaluating device
JP2008164465A (en) * 2006-12-28 2008-07-17 Ricoh Elemex Corp Ultrasound flowmeter
JP2011158470A (en) * 2010-01-07 2011-08-18 Panasonic Corp Ultrasonic flowmeter
US8663113B2 (en) * 2011-08-11 2014-03-04 Delphinus Medical Technologies, Inc. Method for imaging a volume of tissue
JP2015212654A (en) * 2014-05-02 2015-11-26 株式会社Ihiエアロスペース Ultrasonic flaw detection inspection method and ultrasonic flaw detection inspection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0556981A (en) * 1991-09-05 1993-03-09 Matsushita Electric Ind Co Ltd Medical image evaluating device
JP2008164465A (en) * 2006-12-28 2008-07-17 Ricoh Elemex Corp Ultrasound flowmeter
JP2011158470A (en) * 2010-01-07 2011-08-18 Panasonic Corp Ultrasonic flowmeter
US8663113B2 (en) * 2011-08-11 2014-03-04 Delphinus Medical Technologies, Inc. Method for imaging a volume of tissue
JP2015212654A (en) * 2014-05-02 2015-11-26 株式会社Ihiエアロスペース Ultrasonic flaw detection inspection method and ultrasonic flaw detection inspection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11622747B2 (en) 2020-01-27 2023-04-11 Fujifilm Healthcare Corporation Ultrasonic CT device, control method of ultrasonic CT device, and ultrasonic transmission and reception device
US20220313204A1 (en) * 2021-03-30 2022-10-06 Fujifilm Healthcare Corporation Ultrasonic ct device, method for controlling the same, and program for controlling ultrasonic ct device
CN113768541A (en) * 2021-10-27 2021-12-10 之江实验室 Complex curved surface ultrasonic array transducer array position error correction method
CN113768541B (en) * 2021-10-27 2024-02-13 之江实验室 Method for correcting position error of array element of complex curved surface ultrasonic array transducer

Similar Documents

Publication Publication Date Title
KR102181339B1 (en) Elasticity detection method and device
JP2015531474A (en) Ultrasonic phased array test equipment
US11439368B2 (en) Acoustic wave processing device, signal processing method for acoustic wave processing device, and program
WO2017098641A1 (en) Ultrasonic transmission/reception apparatus and ultrasonic transmission/reception method
JP2018179518A (en) Ultrasonic flaw detection device, ultrasonic flaw detection method, and product manufacturing method
JP6852603B2 (en) Ultrasound diagnostic equipment, transmission condition setting method, and program
JP6598667B2 (en) Subject information acquisition apparatus and control method thereof
JP2012010943A (en) Ultrasonic diagnosis apparatus and ultrasonic diagnosis method
JP6305752B2 (en) Ultrasonic diagnostic apparatus and ultrasonic probe
JP2012170467A (en) Ultrasound probe and ultrasound diagnostic apparatus
US10849598B2 (en) Ultrasonic measurement apparatus, ultrasonic imaging apparatus, and ultrasonic measurement method
JPH0595946A (en) Ultrasonic sound speed measuring method and ultrasonic diagnostic apparatus with sound speed measuring means
JP5380114B2 (en) Ultrasonic diagnostic apparatus and ultrasonic diagnostic apparatus control method
JP5127255B2 (en) Ultrasonic probe, ultrasonic diagnostic apparatus, and ultrasonic probe output control method
JP2017070317A (en) Ultrasound diagnostic device and pulse wave measurement method
JP7147399B2 (en) Ultrasonic signal processing device, ultrasonic diagnostic device, and ultrasonic signal processing method
US20160206288A1 (en) Ultrasonic probe, ultrasonic imaging apparatus, and method for controlling the same
JP5331839B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
JP5269626B2 (en) Ultrasonic diagnostic equipment
US20180214135A1 (en) Sound speed calculation system and sound speed calculation method
JP2020130736A (en) Ultrasound diagnostic apparatus, ultrasound diagnostic method, and program
KR101815575B1 (en) Acoustic Pyrometry Method and System using the Measured Time Delays of Sound Propagation including the Wall Reflections
JP2015107200A (en) Ultrasonic diagnostic device and control method of the same
KR20230152117A (en) Acoustic imaging and measurements using windowed nonlinear frequency modulated chirps
JP5289482B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15910257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP