JPH0595946A - Ultrasonic sound speed measuring method and ultrasonic diagnostic apparatus with sound speed measuring means - Google Patents

Ultrasonic sound speed measuring method and ultrasonic diagnostic apparatus with sound speed measuring means

Info

Publication number
JPH0595946A
JPH0595946A JP3261756A JP26175691A JPH0595946A JP H0595946 A JPH0595946 A JP H0595946A JP 3261756 A JP3261756 A JP 3261756A JP 26175691 A JP26175691 A JP 26175691A JP H0595946 A JPH0595946 A JP H0595946A
Authority
JP
Japan
Prior art keywords
sound
memory
sound velocity
wave
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3261756A
Other languages
Japanese (ja)
Inventor
Taihou Ri
太宝 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare Japan Corp
Original Assignee
Yokogawa Medical Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Medical Systems Ltd filed Critical Yokogawa Medical Systems Ltd
Priority to JP3261756A priority Critical patent/JPH0595946A/en
Publication of JPH0595946A publication Critical patent/JPH0595946A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PURPOSE:To realize an ultrasonic diagnostic apparatus which measures an ultrasonic propagation speed of a tissue in a noninvasive manner from outside. CONSTITUTION:A transmitting vibrator 1 transmits an ultrasonic wave varying an angle thetai of emission at an angle adjustor 13 and a receiving vibrator 2 receives the ultrasonic wave with an angle thetaj being varied by an angle adjustor 14. Time tij elapsed during the period is measured with a time measuring circuit 17 to be stored into a tij memory 18. An assumed sound speed distribution chart is stored into the sound speed memory 19 and a sound line tracking computation circuit 20 sets a sound line path varying an angle of wave reception of the transmitting/receiving vibrators on the sound speed memory 19 based on the sound speed distribution chart while a required time tij of the operation is stored into a tij' memory 21. A comparator 22 inputs an error data by comparison between the tij and tij' into a controller 23, with which an assumed sound speed distribution stored in the sound speed memory 19 is corrected to minimize the error data inputted thereby determining a sound speed from a sound speed distribution obtained finally.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超音波診断装置に関し、
特に超音波の生体内を伝播する音速を無侵襲に測定し、
音速分布の不均一に基づく誤差の少ない画像を得る音速
測定法及び音速測定手段を備えた超音波診断装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic diagnostic apparatus,
Especially, the sound velocity of ultrasonic waves propagating in the body is measured non-invasively,
The present invention relates to an ultrasonic diagnostic apparatus equipped with a sound velocity measuring method and a sound velocity measuring means for obtaining an image with few errors due to nonuniform sound velocity distribution.

【0002】[0002]

【従来の技術】超音波診断装置は超音波探触子から超音
波信号を被検体内に照射して、被検体内の組織や病変部
から反射されてくる信号を超音波探触子で受波し、その
反射信号により形成される断層像をCRTに表示して診
断の用に供する装置である。
2. Description of the Related Art An ultrasonic diagnostic apparatus irradiates an ultrasonic signal from an ultrasonic probe into a subject and receives the signal reflected from a tissue or a lesion in the subject with the ultrasonic probe. It is a device for displaying a tomographic image formed by the reflected signal on the CRT and using it for diagnosis.

【0003】この超音波診断装置において得られる情報
は一般に反射波の強さの情報であって、音響インピーダ
ンスの不連続性及び構造上の不連続性を反映している。
近時、上記のようなBモード像を表示する超音波診断装
置では、分解能の向上が図られ、表示された画像に基づ
く診断がほぼ定着しているが、異なる情報を診断情報に
加えたいという要求が高まり、音速等の相違による特性
抽出を臨床的に行おうとする試みがなされている。
The information obtained by this ultrasonic diagnostic apparatus is generally information on the intensity of reflected waves and reflects discontinuity in acoustic impedance and structural discontinuity.
Recently, in the ultrasonic diagnostic apparatus that displays the B-mode image as described above, the resolution is improved and the diagnosis based on the displayed image is almost established, but it is desired to add different information to the diagnostic information. Due to increasing demands, attempts have been made to clinically perform characteristic extraction based on differences in sound velocity and the like.

【0004】このように生体内を伝播する超音波の速
度、特に生体組織の局部音速値を臨床的に測定すること
は、超音波診断装置による診断に極めて有用と考えられ
ている。
It is considered that clinically measuring the velocity of the ultrasonic wave propagating in the living body, in particular, the local sound velocity value of the living tissue is extremely useful for diagnosis by the ultrasonic diagnostic apparatus.

【0005】[0005]

【発明が解決しようとする課題】ところで、生体内にお
ける音速は決して一様ではなく、異なる媒質を通過する
毎に音速は変化し、送波から受波に至る間の行程におい
て多くの媒質を経由するために、超音波探触子の送波部
の送波用振動子から反射体を経て受波部の受波用振動子
に至る距離とパルス間隔から得られる時間差によって各
媒質における音速を求めることはできない。
By the way, the speed of sound in a living body is not uniform at all, and the speed of sound changes every time it passes through different media, and it passes through many media in the process from transmission to reception. In order to achieve this, the speed of sound in each medium is determined by the time difference obtained from the distance from the wave-transmitting oscillator of the wave-transmitting part of the ultrasonic probe to the wave-receiving oscillator of the wave-receiving part through the reflector and the pulse interval. It is not possible.

【0006】従来、生体組織の音速測定法としては次の
ような方法がある。 (イ)送受2個の振動子を向い合わせて配置し、その間
に乳房などを挾んで振動子間の距離と超音波の伝播時間
から音速を求める方法。
Conventionally, there are the following methods for measuring the sound velocity of living tissue. (A) A method in which two transducers are arranged facing each other, and a breast or the like is sandwiched between them to obtain the speed of sound from the distance between the transducers and the propagation time of ultrasonic waves.

【0007】(ロ)断層像を合成する場合に設定した音
速設定値を音速とする方法。 (ハ)所定距離離れた2組の振動子をそれぞれ送信用と
受信用に用い、その間の超音波の伝播時間と、超音波の
受波角度と、2振動子間の距離とから被測定点に至る超
音波の伝播速度を求めることにより音速を知る方法。
(B) A method in which the sound velocity set value set when synthesizing tomographic images is used as the sound velocity. (C) Two sets of transducers, which are separated by a predetermined distance, are used for transmission and reception, respectively, and the ultrasonic wave propagation time between them, the ultrasonic wave reception angle, and the distance between the two transducers make the measured point. A method of knowing the speed of sound by obtaining the propagation velocity of ultrasonic waves reaching to.

【0008】併しながら、上記の方法には次のような問
題点がある。以下に示す各項目は上記の各項目に対応し
て記述してある。 (イ)乳房のような体表面に突出している組織の測定に
限られ、例えば、肝臓などの臓器の音速は測定できな
い。
On the other hand, the above method has the following problems. The following items are described corresponding to the above items. (A) The measurement is limited to the tissue protruding from the body surface such as the breast, and the sound velocity of organs such as the liver cannot be measured.

【0009】(ロ)音速設定により画像のピント合わせ
を行うことは、操作者のパタン認識を必要とするため時
間がかかり、操作者が疲労するなど実用的ではない。 (ハ)超音波の送信経路と受信経路が直線であると仮定
しており、生体内部特に皮膚下部の筋肉や脂肪層などの
異なる音速をもつ組織の境界に生ずる屈折の影響による
誤差が大きいため、臨床装置として使用できない。
(B) Focusing an image by setting the speed of sound requires time for the operator to recognize the pattern, which is time consuming and impractical for the operator. (C) It is assumed that the transmission and reception paths of ultrasonic waves are straight lines, and there is a large error due to the influence of refraction that occurs inside the living body, especially at the boundaries of tissues with different sound speeds such as muscles and fat layers under the skin. , Cannot be used as a clinical device.

【0010】本発明は上記の点に鑑みてなされたもの
で、その目的は、組織の超音波伝播速度を外部から無侵
襲に測定する音速測定法を実現し、音速測定手段を備え
た超音波診断装置を提供することにある。
The present invention has been made in view of the above points, and an object thereof is to realize a sonic velocity measuring method for externally and non-invasively measuring an ultrasonic wave propagation velocity of a tissue and to provide an ultrasonic wave having a sonic velocity measuring means. To provide a diagnostic device.

【0011】[0011]

【課題を解決するための手段】被測定部を任意の領域に
分割してそれぞれの領域に仮想の音速値を定めた仮想音
速分布を作って格納する段階と、少なくとも2個の異な
る位置に配置した送信手段と受信手段との間でそれぞれ
送受信角度を変えながら超音波の送受を行い、それぞれ
の角度における時間を測定する段階と、前記仮想音速分
布に基づき、音線近似手法を用いて送信から受信に至る
超音波の経路とその所要伝播時間を超音波入射角度と受
波角度を変えながら演算する段階と、前記実測伝播時間
と前記仮想音速分布に基づく仮想伝播時間とを同一送信
角度同一受信角度の場合について比較し、その差の累積
値である誤差関数を求める段階と、仮想音速分布を繰り
返し変更して前記誤差関数の値を最小にする収束演算を
行うことを特徴とするものである。又、第2の発明は、
照射角度θi を変えながら測定対象に超音波を送波する
送波振動子と、反射された超音波を入射角度θj を変え
ながら受波する受波振動子と、音線を形成し、前記送波
振動子の送波指向性を制御する第1の角度調節器と、前
記受波振動子の指向性を制御すると共に、受波信号を整
相加算する第2の角度調節器と、超音波送波から反射波
受波までの時間を各指向方向θi ,θj について計測す
る時間計測回路と、該時間計測回路で得た時間データt
ijを格納するt ijメモリと、任意に与えられた仮想音速
の分布を格納する音速メモリと、該音速メモリに格納さ
れている仮想音速分布に基づき音線近似手法を用いて送
信波束及び受信波束の伝播経路を追跡しながら伝播時間
ij′を計算する音線追跡演算回路と、該音線追跡演算
回路の出力の仮想音線による伝播時間tij′を格納する
ij′メモリと、前記tijメモリと前記tij′メモリと
に格納されているデータを比較して誤差を求める比較器
と、該比較器の出力の誤差データが入力され、該誤差デ
ータの変化に基づいて前記音速メモリに格納されている
音速分布を繰り返し変更して、前記比較器の出力の誤差
データの値を最小にするための制御を行うコントローラ
と、前記音速メモリに格納されている音速値及び音速分
布を表示する表示器とを具備することを特徴とするもの
である。
[Means for Solving the Problem] The portion to be measured can be placed in any area.
Virtual sound that has been divided and virtual sound velocity values have been set for each area
The step of creating and storing the velocity distribution, and at least two different
Between the transmitting means and the receiving means arranged at the
Transmitting and receiving ultrasonic waves while changing the transmitting and receiving angle,
Measuring the time at the angle of
From transmission to reception using sound ray approximation method based on cloth
The ultrasonic wave path and its required propagation time are received as the ultrasonic wave incident angle.
Calculation while changing the wave angle, and the actual propagation time
And the virtual propagation time based on the virtual sound velocity distribution are transmitted at the same time.
Accumulate the difference by comparing the case of the same reception angle
The step of obtaining the error function, which is a value, and the virtual sound velocity distribution are repeated.
The convergence operation that returns and changes to minimize the value of the error function
It is characterized by performing. The second invention is
Irradiation angle θiTransmit ultrasonic waves to the measurement target while changing the
Incident angle θ of transmitting ultrasonic wave and reflected ultrasonic wavejChange
While forming a sound ray with the receiving transducer that receives the
A first angle adjuster for controlling the transmission directivity of the oscillator;
Controls the directivity of the receiving oscillator and adjusts the received signal.
The second angle adjuster for phase addition and the reflected wave from the ultrasonic wave transmission
The time until the wave is receivedi, ΘjAbout
Time measuring circuit and time data t obtained by the time measuring circuit
ijStoring t ijMemory and arbitrary given virtual speed of sound
Sound velocity memory for storing the distribution of
The sound ray approximation method is used to send the virtual sound velocity distribution.
Propagation time while tracing the propagation paths of the wave packet and received wave packet
tijRay tracing calculation circuit for calculating ′, and the ray tracing calculation circuit
Propagation time t by virtual sound ray of output of circuitijStore ′
t ij′ Memory and tijMemory and tij′ With memory
Comparator that calculates the error by comparing the data stored in
And the error data of the output of the comparator is input, and the error data
Stored in the sonic memory based on changes in data
Repeatedly changing the sound velocity distribution, the error of the output of the comparator
Controller that controls to minimize the value of data
And the sound velocity value and sound velocity component stored in the sound velocity memory.
Characterized by comprising an indicator for displaying cloth
Is.

【0012】[0012]

【作用】送波振動子は第1の角度調節器により照射角度
θi を変化させながら照射し、受波振動子は第2の角度
調節器により入射角度θj を変化させながら受波する。
この間の経過時間を時間計測回路は測定してtijメモリ
に格納する。音速メモリには仮想音速分布が格納されて
おり、この音速分布図に基づいて音線追跡演算回路は音
線メモリ上で送受波振動子の送受波角度を変化させて、
それぞれに対応する音線経路を設定し、その所要時間t
ij′を、tij′メモリに格納する。
The wave-transmitting oscillator irradiates while changing the irradiation angle θ i by the first angle adjuster, and the wave-receiving oscillator receives wave while changing the incident angle θ j by the second angle adjuster.
The time measuring circuit measures the elapsed time during this period and stores it in the t ij memory. A virtual sound velocity distribution is stored in the sound velocity memory, and based on this sound velocity distribution map, the sound ray tracking calculation circuit changes the wave transmission / reception angle of the wave transmission / reception oscillator on the sound ray memory,
The sound ray path corresponding to each is set, and the required time t
ij ′ is stored in the t ij ′ memory.

【0013】比較器はtijメモリとtij′メモリの対応
する各データを比較して誤差データを求め、コントロー
ラは入力される誤差データを最小にするように音線メモ
リに格納されている音線分布を修正し、修正された音線
分布により音速を求める。
The comparator compares the corresponding data in the t ij memory and the corresponding data in the t ij ′ memory to obtain error data, and the controller outputs the sound stored in the sound ray memory so as to minimize the input error data. The line distribution is corrected, and the sound velocity is calculated from the corrected sound line distribution.

【0014】[0014]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。ここで、本発明が実施しようとする方法の
説明をする。図2は生体内の超音波の伝播を平面的に示
した図である。図において、1は超音波を送波する送波
振動子、2は生体内から反射してきた超音波を受波する
受波振動子である。送波振動子1は体表3の垂線に対し
て角度θi で超音波を出射する。この超音波は体表組織
4と体内組織5との境界面で屈折し、次に体内組織5と
肝臓6との境界面で屈折して肝臓6に入射される。反射
点Qで反射された超音波は同様に各境界面で屈折しなが
ら受波振動子2に角度θj で入射する。
Embodiments of the present invention will now be described in detail with reference to the drawings. Now, the method to be carried out by the present invention will be described. FIG. 2 is a plan view showing the propagation of ultrasonic waves in the living body. In the figure, 1 is a wave-transmitting oscillator that transmits ultrasonic waves, and 2 is a wave-receiving oscillator that receives ultrasonic waves reflected from the inside of a living body. The wave transmission oscillator 1 emits ultrasonic waves at an angle θ i with respect to the perpendicular of the body surface 3. This ultrasonic wave is refracted at the boundary surface between the body surface tissue 4 and the body tissue 5, and then refracted at the boundary surface between the body tissue 5 and the liver 6, and is incident on the liver 6. Similarly, the ultrasonic wave reflected at the reflection point Q is refracted at each boundary surface and is incident on the wave receiving oscillator 2 at an angle θ j .

【0015】送波振動子1で送波された超音波が受波振
動子2に到達する間の伝播時間を測定して得た時間をt
ijとする。送波出射角度θi と受波入射角度θj を変え
ながら測定した伝播時間の実測値を次のように記録す
る。
The time obtained by measuring the propagation time during which the ultrasonic wave transmitted by the wave-transmitting oscillator 1 reaches the wave-receiving oscillator 2 is t.
ij . The measured values of the propagation time measured while changing the outgoing angle θ i of the transmitted wave and the incident angle θ j of the received wave are recorded as follows.

【0016】 tij(θi ,θj ) i=1,2,…,n、j=1,2,…,m (本明細書を通じてi,jは上記の範囲の数とする。) 次に、仮想音速分布図を作ってその音速に基づき超音波
伝播経路を想定して、それぞれの音速を求める方法の説
明図を図3に示す。図に示すように送波振動子1と受波
振動子2を含む平面を格子状に分割し、各格子点の音速
を平均値を1540m/sとして適宜想定して設定す
る。
T iji , θ j ) i = 1, 2, ..., N, j = 1, 2, ..., M (i and j are numbers in the above range throughout this specification) Next FIG. 3 shows an explanatory diagram of a method of creating a virtual sound velocity distribution map, assuming an ultrasonic wave propagation path based on the sound velocity, and obtaining each sound velocity. As shown in the figure, the plane including the wave-transmitting oscillator 1 and the wave-receiving oscillator 2 is divided into a lattice shape, and the sound velocity at each lattice point is appropriately set assuming an average value of 1540 m / s.

【0017】送波振動子1から角度θi で出射された超
音波の波束のこの平面における伝播経路及び伝播時間t
i ′を求め、同時に受波振動子2から角度θj で出射さ
れた超音波の波束のこの平面における伝播経路及び伝播
時間tj ′を求める。この計算を両波束が交差するまで
続ける。θi 及びθj を変えて得た伝播時間の計算値を
次のように記録する。
The propagation path and the propagation time t of the wave packet of the ultrasonic wave emitted from the transmitting oscillator 1 at an angle θ i in this plane.
'seek, at the same time the propagation path and propagation time in this plane of the ultrasound wave packet emitted from reception transducer 2 at an angle θ j t j' i seek. Continue this calculation until both wave packets intersect. The calculated propagation times obtained by changing θ i and θ j are recorded as follows.

【0018】tij′(θi ,θj )=ti′+tj ′ 伝播経路及び伝播時間の計算を音線追跡法を用いて行
う。格子内の経路は次のように規定して描く。即ち、一
般に、空間的に速度が線形に変化する場では音線は円弧
を画く。この方法としては、音線の伝播方向に三角形を
展開し、三角形内の音速分布を線形音速場に近似して求
める。図4に線形音速場に近似した三角形を示す。頂点
Pの座標をx1 ,y1 、音速をc1 とし、同様にQ点,
R点のそれをそれぞれx2 ,y2 ,c2 及びx3
3 ,c3 とする。三角形内の任意の点x,yにおける
音速c(x,y)は次式で求められる。
T ij ′ (θ i , θ j ) = t i ′ + t j ′ The propagation path and the propagation time are calculated by using the ray tracing method. The path in the lattice is defined and drawn as follows. That is, generally, in a field where the velocity linearly changes spatially, the sound ray draws an arc. In this method, a triangle is expanded in the direction of sound ray propagation, and the sound velocity distribution within the triangle is approximated to a linear sound velocity field. FIG. 4 shows a triangle that approximates a linear sound velocity field. The coordinates of the vertex P are x 1 and y 1 , the speed of sound is c 1, and similarly the Q point,
Let it be that of the R point by x 2 , y 2 , c 2 and x 3 , respectively.
Let y 3 and c 3 . The sound velocity c (x, y) at an arbitrary point x, y in the triangle is calculated by the following equation.

【0019】 c(x,y)= cx ・x + cy ・y + co ………(1) (1)式の定数cx ,cy ,co は頂点P,Q,Rにお
ける音速値c1 ,c2 ,c3 で決めることができる。
[0019] c (x, y) = c x · x + c y · y + c o ......... (1) (1) equation constants c x, c y, c o vertices P, Q, in the R It can be determined by the sound velocity values c 1 , c 2 and c 3 .

【0020】 x1 ・ cx + y1 ・ cy +co = c1 x2 ・ cx + y2 ・ cy +co = c2 x3 ・ cx + y3 ・ cy +co = c3 図4においてP点を通過する音線の方向ベクトルを
x ,Ay とすれば、超音波の軌跡は次の方程式で表さ
れる円となる。
X 1 · c x + y 1 · c y + c o = c 1 x 2 · c x + y 2 · c y + c o = c 2 x 3 · c x + y 3 · c y + c o = c 3 In FIG. 4, if the direction vectors of the sound ray passing through point P are A x and A y , the trajectory of the ultrasonic wave will be a circle represented by the following equation.

【0021】 (x-xo ) 2 + (y-yo ) 2 ={ c1 /( cx Ay -cy Ax )}2 ………(2) ここで、xo ,yo は次の方程式を満たす直線上の点で
ある。 cx xo + cy yo + co = 0 このようにして、三角形を展開して、三角形の各頂点で
の音速値を各格子点の音速値の補間値として求める。三
角形内を(1)式で示す線形音速場で近似し、三角形内
での音線経路を(2)式で示す円の円弧の一部で表現
し、この円弧を接続して音線を形成する。このようにし
て得た音線経路の始点と終点との間の伝播時間を各三角
形中の伝播時間を累積計算することにより求める。
(Xx o ) 2 + (yy o ) 2 = {c 1 / (c x A y -c y A x )} 2 (2) where x o and y o are the following equations. It is a point on a straight line that satisfies. c x x o + c y y o + c o = 0 In this way, the triangle is expanded and the sound velocity value at each vertex of the triangle is obtained as an interpolated value of the sound velocity value at each lattice point. The inside of the triangle is approximated by the linear sound velocity field shown in equation (1), the sound ray path in the triangle is represented by a part of the circular arc of the circle shown in equation (2), and the arcs are connected to form a sound ray. To do. The propagation time between the start point and the end point of the sound ray path thus obtained is obtained by cumulatively calculating the propagation time in each triangle.

【0022】図2で求めた伝播時間の実測値tijと、伝
播時間の計算値tij′との差をeとし、次式により演算
する。
The difference between the measured value t ij of the propagation time obtained in FIG. 2 and the calculated value t ij ′ of the propagation time is defined as e, and is calculated by the following equation.

【0023】[0023]

【数1】 [Equation 1]

【0024】この差eは仮想音測分布が体内の音速分布
を的確に反映していないことから生じたものと考える。
このため、図3の仮想音速分布を変えて超音波の経路を
計算し直して求め、tij′を再度求める。この過程を
(3)式のeが最小になるまで繰り返し、最小になった
場合の経路を体内の音速分布による経路として、その時
の各格子点の音速が体内の音速分布に等しいものとす
る。
It is considered that this difference e is caused by the fact that the virtual sound distribution does not accurately reflect the sound velocity distribution in the body.
Therefore, the virtual sound velocity distribution in FIG. 3 is changed, the path of the ultrasonic wave is recalculated, and t ij ′ is calculated again. This process is repeated until e in the equation (3) becomes the minimum, and the path when it becomes the minimum is set as the path by the sound velocity distribution in the body, and the sound velocity at each lattice point at that time is equal to the sound velocity distribution in the body.

【0025】(3)式の計算はニュートン法などの収束
計算手法を用いて行う。以下にニュートン法について説
明する。 測定値をx1 ,x2 ,…,xp ,…,xN 推定値をy1 ,y2 ,…,yp ,…,yN とする。xp は(3)式のtij,yp はtij′に相当す
る。推定値のコントロールパラメータはc1 ,c2
…,cq ,…,cM である。上記において、p=1,
2,…,N、q=1,2,…,Mである。誤差関数er
は次式で求められる。
The calculation of equation (3) is performed using a convergence calculation method such as the Newton method. The Newton method will be described below. Let x 1 , x 2 , ..., X p , ..., X N estimated values be y 1 , y 2 , ..., Y p , ..., y N. x p corresponds to t ij and y p in equation (3) correspond to t ij ′. The estimated control parameters are c 1 , c 2 ,
..., c q , ..., c M. In the above, p = 1,
2, ..., N, q = 1, 2, ..., M. Error function e r
Is calculated by the following formula.

【0026】[0026]

【数2】 [Equation 2]

【0027】(4)式はcq の関数である。er の最小
値はer をcq で微分することにより求めればよいが実
際にはer とcq との関係の式が未知なために演算はで
きない。そのため、cq を次々と用いて試行錯誤の結果
によりer の最小値を求める以外にはない。これを努め
て速く求める手法の一つがニュートン法である。
Equation (4) is a function of c q . the minimum value of e r formula of the relationship between e r and c q may actually to be determined by differentiating e r in c q can not calculation for unknown. Therefore, there is no choice but to find the minimum value of e r by trial and error using c q one after another. Newton's method is one of the methods to strive for this and obtain quickly.

【0028】図5はニュートン法の説明のための図であ
る。図において8は(4)式に示す誤差曲線である。
FIG. 5 is a diagram for explaining the Newton method. In the figure, 8 is the error curve shown in equation (4).

【0029】[0029]

【数3】 [Equation 3]

【0030】その過程を繰り返して行くと最小誤差min
(er )に達すると考えられる。1からMまでのM個の
qに対して(cq o が同一過程で試行される。これをベ
クトルで書けば(5)式のようになる。
When the process is repeated, the minimum error min
It is thought that ( er ) will be reached. (C q o is tried in the same process for M qs from 1 to M. If this is written as a vector, it becomes as shown in equation (5).

【0031】[0031]

【数4】 [Equation 4]

【0032】この(5)式がニュートン法の一般式であ
る。(5)式においてk,k+1は回数を示す数字であ
る。この式の意味はk=0においてc1 以外は一定とし
てc 1 のみを変化させる。この時の変化のステップはΔ
cである。c1 が終ればc2 のみを変化させ、cM まで
を行った後、k=1として同様な演算を行う。kは予め
決めておいた値まで実施するものである。
The equation (5) is a general equation of the Newton method.
It In the equation (5), k and k + 1 are numbers indicating the number of times.
It The meaning of this expression is c at k = 01Other than constant
C 1Change only. The change step at this time is Δ
c. c1If is over c2Change only cMUntil
After that, the same calculation is performed with k = 1. k is in advance
It will be implemented up to the decided value.

【0033】次に上記のような原理に基づく音速測定法
を実施する装置の実施例について説明する。図1は本発
明の一実施例の装置のブロック図である。図において、
図2と同等の部分には同一の符号を付してある。図中、
11は送信するためのパルスを作り、又、装置の動作の
タイミングを定めるクロックを発生するクロック発振
器、12は送波するための高周波信号を発生し、この高
周波信号をクロックパルスで変調し、必要な電力レベル
に増幅する等の処理を行う送信回路である。
Next, an embodiment of an apparatus for carrying out the sound velocity measuring method based on the above principle will be described. FIG. 1 is a block diagram of an apparatus according to an embodiment of the present invention. In the figure,
The same parts as those in FIG. 2 are designated by the same reference numerals. In the figure,
Reference numeral 11 denotes a clock oscillator that generates a pulse for transmission and also generates a clock that determines the timing of operation of the device, and 12 generates a high-frequency signal for transmission, and modulates this high-frequency signal with the clock pulse. It is a transmission circuit that performs processing such as amplification to various power levels.

【0034】13は送波される超音波を目標に焦点を結
ばせるために音線を形成し、音線の指向方向を変化させ
る角度調節器で、音線の角度の調節は電気的に行うもの
に限らず、機械的に送波振動子1を動かして角度を調節
するものであっても良い。この角度調節器13によって
決められる送波振動子1の超音波入射角度を体表3の垂
線に対してθi とする。
An angle adjuster 13 forms a sound ray for focusing the transmitted ultrasonic wave on a target and changes the direction of the sound ray. The angle of the sound ray is electrically adjusted. However, the angle may be adjusted by mechanically moving the wave transmission oscillator 1. Let the ultrasonic wave incident angle of the wave-transmitting oscillator 1 determined by the angle adjuster 13 be θ i with respect to the vertical line of the body surface 3.

【0035】14は受波振動子2の受信信号のビームフ
ォーミングを行うと共に、受波信号の到来方向への受波
振動子2の受信指向性を制御する角度調節器で、受波振
動子2への超音波入射角度をθj に設定する。15は受
信信号を増幅,検波などの処理をする受信回路である。
Reference numeral 14 is an angle adjuster for performing beamforming of the received signal of the wave receiving oscillator 2 and controlling the receiving directivity of the wave receiving oscillator 2 in the arrival direction of the wave receiving signal. Set the angle of incidence of the ultrasonic waves on θ j to θ j . Reference numeral 15 is a receiving circuit that amplifies the received signal and performs processing such as detection.

【0036】16は受信回路15の出力のアナログ信号
をディジタル信号に変換するAD変換器、17はAD変
換器16の出力が入力されて、別に入力されているクロ
ック発振器11からのクロックと比較して、送信から受
信までに要した時間tijを計測する時間計測回路であ
る。計測された時間データはtijメモリ18に格納され
る。時間tijというのは角度θi で入射された超音波を
θj の角度の受波振動子2で受けた場合に要する時間
で、すべてのi,jについて行った時間の集合である。
Reference numeral 16 is an AD converter for converting an analog signal output from the receiving circuit 15 into a digital signal. Reference numeral 17 is input with the output from the AD converter 16 and compared with a clock from the clock oscillator 11 which is input separately. A time measuring circuit for measuring the time t ij required from transmission to reception. The measured time data is stored in the t ij memory 18. The time t ij is the time required when the ultrasonic wave incident at the angle θ i is received by the wave receiving oscillator 2 having the angle θ j , and is a set of times performed for all i and j.

【0037】19は、既述のように図3に示す格子を生
体内に仮想し、各格子点に仮想音速を設定して格納する
音速メモリである。20は音速メモリ19に格納されて
いる各格子点における仮想音速を用いて、その場内に三
角形を展開して音線の経路を算出し、送波振動子1側と
受波振動子2側からの音線が交差した場合の経路を通過
するに要する時間tij′を送波振動子1と受波振動子2
の角度θi とθj を変化させてすべてのiとjについて
計算する音線追跡演算回路である。
Reference numeral 19 is a sonic velocity memory for virtualizing the lattice shown in FIG. 3 in the living body as described above, setting a virtual sonic velocity at each lattice point, and storing it. Reference numeral 20 is a virtual sound velocity at each lattice point stored in the sound velocity memory 19, and a triangle is expanded in the field to calculate the path of the sound ray. From the transmitting oscillator 1 side and the receiving oscillator 2 side. The time t ij ′ required to pass through the path when the sound rays of
This is a sound ray tracing calculation circuit that calculates angles for all i and j by changing the angles θ i and θ j .

【0038】21は音線追跡演算回路20で算出された
各角度における所要時間tij′を格納するtij′メモリ
である。22はtijメモリ18とtij′メモリ21とに
格納されているデータを読み出して比較し、(3)式の
演算を行う比較器である。比較器22で演算された誤差
データeはコントローラ23に入力される。コントロー
ラ23は音速メモリ19の各格子点のアドレスとデータ
とを認識しており、図3に示す速度分布における時間を
実測時間と比較して得た誤差データeと、例えば座標
(a1 ,b1 )のデータをΔc変化させた時の誤差デー
タeとを比較して、誤差が大きくなっていれば同一座標
の格子点の音速をΔc変化させ、小さくなっていれば他
の格子点の音速を変化させて同様の演算を行わせるため
の音速変更の制御を音速メモリ19に行う。Δcは予め
定めた各格子点の音速を変化させる音速のステップであ
る。
Reference numeral 21 is a t ij ′ memory that stores the required time t ij ′ at each angle calculated by the sound ray tracing calculation circuit 20. Reference numeral 22 is a comparator which reads out the data stored in the t ij memory 18 and the t ij ′ memory 21, compares them, and performs the operation of the equation (3). The error data e calculated by the comparator 22 is input to the controller 23. The controller 23 recognizes the address and data of each lattice point of the sonic velocity memory 19, and the error data e obtained by comparing the time in the velocity distribution shown in FIG. 3 with the actual measurement time and, for example, the coordinates (a 1 , b). Compare the data of 1 ) with the error data e when Δc is changed, and if the error is large, change the sound speed of the grid point of the same coordinate by Δc, and if the error is small, change the sound speed of the other grid point. Is controlled by the sonic velocity memory 19 so as to perform a similar calculation. Δc is a sound velocity step for changing the sound velocity of each predetermined grid point.

【0039】24は音速メモリ19に格納されている各
格子点の音速値を表示する表示器で、操作者は音速と音
速分布とを知ることができる。次に上記のように構成さ
れた実施例の動作を説明する。クロック発振器11はク
ロックを発生して送信回路12に送る。送信回路12で
発生した高周波信号はトリガで変調され、変調された高
周波信号は電力増幅されて角度調節器13に入力され
る。角度調節器13は入力された信号でビームを形成さ
せ、送波探触子1から出射される超音波の音線の出射角
度をθi とする。
Reference numeral 24 is a display for displaying the sound velocity value of each lattice point stored in the sound velocity memory 19, and the operator can know the sound velocity and the sound velocity distribution. Next, the operation of the embodiment configured as described above will be described. The clock oscillator 11 generates a clock and sends it to the transmission circuit 12. The high frequency signal generated in the transmission circuit 12 is modulated by a trigger, and the modulated high frequency signal is power-amplified and input to the angle adjuster 13. The angle adjuster 13 forms a beam with the input signal, and sets the emission angle of the acoustic ray of the ultrasonic wave emitted from the wave transmission probe 1 to θ i .

【0040】受波振動子2が受波する音線は、角度調節
器14でθj 方向からの音線のみとなっている。この信
号は角度調節器14で整相加算されて受信回路15で増
幅,検波等の処理を受け、AD変換器16でディジタル
信号に変換されて時間計測回路17に入力される。
The sound ray received by the wave receiving oscillator 2 is only the sound ray from the θ j direction in the angle adjuster 14. This signal is subjected to phasing addition in the angle adjuster 14, subjected to processing such as amplification and detection in the receiving circuit 15, converted into a digital signal in the AD converter 16 and input to the time measuring circuit 17.

【0041】時間計測回路17にはクロック信号が入力
されていて、このクロック信号(送波時間と同じ)と受
波信号とから伝播時間tijを計測し、tijメモリ18に
格納する。
A clock signal is input to the time measuring circuit 17, and the propagation time t ij is measured from this clock signal (same as the transmission time) and the received signal and stored in the t ij memory 18.

【0042】一方、音速メモリ17には図3に示す格子
を仮想し、各格子点に任意に想定された速度が格納され
ている。音速追跡演算回路20は各格子点の仮想速度を
読み出し、(1)式と(2)式の演算を行って音線の軌
跡を算出し、この経路の所要伝播時間tij′を求めてt
ij′メモリ21に格納する。
On the other hand, the sonic velocity memory 17 stores the imaginary lattice shown in FIG. 3 and the arbitrarily assumed velocity at each lattice point. The sound velocity tracking calculation circuit 20 reads the virtual velocity of each lattice point, calculates the locus of the sound ray by performing the calculation of the equations (1) and (2), obtains the required propagation time t ij ′ of this path, and calculates t.
ij ′ is stored in the memory 21.

【0043】比較器22はtijメモリ18とtij′メモ
リ21とに格納されているデータを読み出して(3)式
の演算を行って誤差データeを算出する。この誤差デー
タeはコントローラ23に入力される。
The comparator 22 reads out the data stored in the t ij memory 18 and the t ij ′ memory 21 and performs the operation of the equation (3) to calculate the error data e. This error data e is input to the controller 23.

【0044】コントローラ23は誤差データeの変化に
応じて音速メモリ19に格納されているデータにデータ
変化のステップΔcずつ変化させて誤差データeが小さ
くなるように音速を選択する。音速メモリ19に格納さ
れている音速データが誤差データeを最小にするように
全格子点について設定されれば、測定を終了する。音速
メモリ19のデータは表示器24に逐次表示され、操作
者は音速と音速分布を知ることができる。
The controller 23 changes the data stored in the sonic velocity memory 19 according to the change in the error data e by the data change step Δc, and selects the sonic velocity so that the error data e becomes smaller. When the sound speed data stored in the sound speed memory 19 is set for all grid points so as to minimize the error data e, the measurement is ended. The data of the sonic velocity memory 19 is sequentially displayed on the display 24, and the operator can know the sonic velocity and the sonic velocity distribution.

【0045】[0045]

【発明の効果】以上詳細に説明したように本発明によれ
ば、組織を伝播する超音波の速度を外部から無侵襲に測
定できるようになり、実用上の効果は大きい。
As described in detail above, according to the present invention, the velocity of the ultrasonic wave propagating through the tissue can be externally and non-invasively measured, and the practical effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の装置のブロック図である。FIG. 1 is a block diagram of an apparatus according to an embodiment of the present invention.

【図2】生体内の超音波の伝播を平面的に示した図であ
る。
FIG. 2 is a plan view showing the propagation of ultrasonic waves in a living body.

【図3】超音波伝播経路を求めるための仮想音速分布を
示す図である。
FIG. 3 is a diagram showing a virtual sound velocity distribution for obtaining an ultrasonic wave propagation path.

【図4】音線経路を求めるために線形音速場に近似して
設けた三角形の図である。
FIG. 4 is a diagram of a triangle provided to approximate a linear sound velocity field for obtaining a sound ray path.

【図5】ニュートン法の説明図である。FIG. 5 is an explanatory diagram of a Newton method.

【符号の説明】[Explanation of symbols]

1 送波振動子 2 受波振動子 13,14 角度調節器 17 時間計測回路 18 tijメモリ 19 音速メモリ 20 音線追跡演算回路 21 tij′メモリ 22 比較器 23 コントローラ 24 表示器1 wave transmitter 2 wave receiver 13, 14 angle adjuster 17 time measuring circuit 18 t ij memory 19 sound velocity memory 20 sound ray tracing arithmetic circuit 21 t ij ′ memory 22 comparator 23 controller 24 indicator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被測定部を任意の領域に分割してそれぞ
れの領域に仮想の音速値を定めた仮想音速分布を作って
格納する段階と、 少なくとも2個の異なる位置に配置した送信手段と受信
手段との間でそれぞれ送受信角度を変えながら超音波の
送受を行い、それぞれの角度における時間を測定する段
階と、 前記仮想音速分布に基づき、音線近似手法を用いて送信
から受信に至る超音波の経路とその所要伝播時間を超音
波入射角度と受波角度を変えながら演算する段階と、 前記実測伝播時間と前記仮想音速分布に基づく仮想伝播
時間とを同一送信角度同一受信角度の場合について比較
し、その差の累積値である誤差関数を求める段階と、 仮想音速分布を繰り返し変更して前記誤差関数の値を最
小にする収束演算を行うことを特徴とする超音波の音速
測定法。
1. A step of dividing a part to be measured into arbitrary regions and creating and storing a virtual sound velocity distribution in which virtual sound velocity values are defined in each region, and transmitting means arranged at at least two different positions. Ultrasonic waves are transmitted and received while changing the transmission and reception angles with the receiving means, and a step of measuring the time at each angle, based on the virtual sound velocity distribution, from the transmission to the reception using the sound ray approximation method. A step of calculating the path of the sound wave and its required propagation time while changing the ultrasonic incident angle and the receiving angle, and the case where the actual propagation time and the virtual propagation time based on the virtual sound velocity distribution are the same transmission angle and the same reception angle A step of comparing and calculating an error function which is a cumulative value of the difference, and a convergence operation for repeatedly changing the virtual sound velocity distribution to minimize the value of the error function. Fast measurement method.
【請求項2】 照射角度θi を変えながら測定対象に超
音波を送波する送波振動子(1)と、 反射された超音波を入射角度θj を変えながら受波する
受波振動子(2)と、 音線を形成し、前記送波振動子(1)の送波指向性を制
御する第1の角度調節器(13)と、 前記受波振動子(2)の指向性を制御すると共に、受波
信号を整相加算する第2の角度調節器(14)と、 超音波送波から反射波受波までの時間を各指向方向
θi ,θj について計測する時間計測回路(17)と、 該時間計測回路(17)で得た時間データtijを格納す
るtijメモリ(18)と、 任意に与えられた仮想音速の分布を格納する音速メモリ
(19)と、 該音速メモリ(19)に格納されている仮想音速分布に
基づき音線近似手法を用いて送信波束及び受信波束の伝
播経路を追跡しながら伝播時間tij′を計算する音線追
跡演算回路(20)と、 該音線追跡演算回路(20)の出力の仮想音線による伝
播時間tij′を格納するtij′メモリ(21)と、 前記tijメモリ(18)と前記tij′メモリ(21)と
に格納されているデータを比較して誤差を求める比較器
(22)と、 該比較器(22)の出力の誤差データが入力され、該誤
差データの変化に基づいて前記音速メモリ(19)に格
納されている音速分布を繰り返し変更して、前記比較器
(22)の出力の誤差データの値を最小にするための制
御を行うコントローラ(23)と、 前記音速メモリ(19)に格納されている音速値及び音
速分布を表示する表示器(24)とを具備することを特
徴とする音速測定手段を備えた超音波診断装置。
2. A wave-transmitting oscillator (1) for transmitting ultrasonic waves to a measuring object while changing an irradiation angle θ i, and a wave-receiving oscillator for receiving reflected ultrasonic waves while changing an incident angle θ j. (2) a first angle adjuster (13) that forms a sound ray and controls the transmission directivity of the wave transmission oscillator (1), and the directivity of the wave reception oscillator (2). A second angle adjuster (14) for controlling and phasing and adding the received signals, and a time measuring circuit for measuring the time from the ultrasonic wave transmission to the reflected wave reception for each pointing direction θ i , θ j (17), a t ij memory (18) for storing time data t ij obtained by the time measuring circuit (17), a sonic velocity memory (19) for storing a distribution of an arbitrary given virtual sonic velocity, Propagation of transmission wave packet and reception wave packet using sound ray approximation method based on virtual sound velocity distribution stored in sound velocity memory (19) Propagation time t ij while tracking path 'acoustic ray tracing calculation circuit for calculating (20) and, the sound ray tracing calculation circuit (20) the propagation time t ij by the virtual sound ray of the output of' t ij for storing ' The memory (21), a comparator (22) for comparing the data stored in the t ij memory (18) and the data stored in the t ij ′ memory (21) to obtain an error, and a comparator (22) The error data of the output is input, and the sound velocity distribution stored in the sound velocity memory (19) is repeatedly changed based on the change of the error data to minimize the value of the error data of the output of the comparator (22). A sound velocity measuring means comprising: a controller (23) for controlling the sound velocity and a display (24) for displaying a sound velocity value and a sound velocity distribution stored in the sound velocity memory (19). The equipped ultrasonic diagnostic equipment.
JP3261756A 1991-10-09 1991-10-09 Ultrasonic sound speed measuring method and ultrasonic diagnostic apparatus with sound speed measuring means Pending JPH0595946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3261756A JPH0595946A (en) 1991-10-09 1991-10-09 Ultrasonic sound speed measuring method and ultrasonic diagnostic apparatus with sound speed measuring means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3261756A JPH0595946A (en) 1991-10-09 1991-10-09 Ultrasonic sound speed measuring method and ultrasonic diagnostic apparatus with sound speed measuring means

Publications (1)

Publication Number Publication Date
JPH0595946A true JPH0595946A (en) 1993-04-20

Family

ID=17366270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3261756A Pending JPH0595946A (en) 1991-10-09 1991-10-09 Ultrasonic sound speed measuring method and ultrasonic diagnostic apparatus with sound speed measuring means

Country Status (1)

Country Link
JP (1) JPH0595946A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001026555A1 (en) * 1999-10-15 2001-04-19 Hitachi Medical Corporation Ultrasonic imaging device
EP2177164A1 (en) 2008-09-25 2010-04-21 Fujifilm Corporation Ultrasound diagnostic apparatus
EP2306186A2 (en) 2009-09-30 2011-04-06 Fujifilm Corporation Ultrasound diagnostic apparatus and signal processing method thereof
WO2012002421A1 (en) 2010-06-30 2012-01-05 富士フイルム株式会社 Ultrasound diagnosis device and ultrasound diagnosis method
JP2012196309A (en) * 2011-03-22 2012-10-18 Fujifilm Corp Ultrasound diagnostic apparatus and method of producing ultrasound image
WO2013073514A1 (en) 2011-11-14 2013-05-23 富士フイルム株式会社 Ultrasonic diagnosis device and method
US8708910B2 (en) 2010-06-30 2014-04-29 Fujifilm Corporation Ultrasonic diagnosis apparatus and ultrasonic diagnosis method
US9052268B2 (en) 2011-03-22 2015-06-09 Fujifilm Corporation Ultrasound diagnostic apparatus and method of producing ultrasound image
US20150196274A1 (en) * 2012-09-28 2015-07-16 Fujifilm Corporation Ultrasound inspection apparatus, ultrasound inspection method and recording medium
CN107307882A (en) * 2016-04-26 2017-11-03 江阴美兆门诊部有限公司 A kind of application method of the B ultrasound physical examination group control system based on intelligent navigation detection angle
US10874375B2 (en) 2010-06-30 2020-12-29 Fujifilm Corporation Ultrasound diagnostic device and ultrasound diagnostic method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001026555A1 (en) * 1999-10-15 2001-04-19 Hitachi Medical Corporation Ultrasonic imaging device
JP4711583B2 (en) * 1999-10-15 2011-06-29 株式会社日立メディコ Ultrasonic imaging device
US8372008B2 (en) 2008-09-25 2013-02-12 Fujifilm Corporation Ultrasound diagnostic apparatus and ultrasound diagnostic method
EP2177164A1 (en) 2008-09-25 2010-04-21 Fujifilm Corporation Ultrasound diagnostic apparatus
JP2010099452A (en) * 2008-09-25 2010-05-06 Fujifilm Corp Ultrasound diagnostic apparatus and ultrasound diagnostic method
US9241690B2 (en) 2008-09-25 2016-01-26 Fujifilm Corporation Ultrasound diagnostic apparatus and ultrasound diagnostic method
JP2011072566A (en) * 2009-09-30 2011-04-14 Fujifilm Corp Ultrasound diagnostic apparatus and signal processing method thereof
EP2306186A2 (en) 2009-09-30 2011-04-06 Fujifilm Corporation Ultrasound diagnostic apparatus and signal processing method thereof
WO2012002421A1 (en) 2010-06-30 2012-01-05 富士フイルム株式会社 Ultrasound diagnosis device and ultrasound diagnosis method
US8708910B2 (en) 2010-06-30 2014-04-29 Fujifilm Corporation Ultrasonic diagnosis apparatus and ultrasonic diagnosis method
US10874375B2 (en) 2010-06-30 2020-12-29 Fujifilm Corporation Ultrasound diagnostic device and ultrasound diagnostic method
US10918355B2 (en) 2010-06-30 2021-02-16 Fujifilm Corporation Ultrasound diagnostic device and ultrasound diagnostic method
JP2012196309A (en) * 2011-03-22 2012-10-18 Fujifilm Corp Ultrasound diagnostic apparatus and method of producing ultrasound image
US9052268B2 (en) 2011-03-22 2015-06-09 Fujifilm Corporation Ultrasound diagnostic apparatus and method of producing ultrasound image
WO2013073514A1 (en) 2011-11-14 2013-05-23 富士フイルム株式会社 Ultrasonic diagnosis device and method
US20150196274A1 (en) * 2012-09-28 2015-07-16 Fujifilm Corporation Ultrasound inspection apparatus, ultrasound inspection method and recording medium
US10687786B2 (en) * 2012-09-28 2020-06-23 Fujifilm Corporation Ultrasound inspection apparatus, ultrasound inspection method and recording medium
CN107307882A (en) * 2016-04-26 2017-11-03 江阴美兆门诊部有限公司 A kind of application method of the B ultrasound physical examination group control system based on intelligent navigation detection angle

Similar Documents

Publication Publication Date Title
US5172343A (en) Aberration correction using beam data from a phased array ultrasonic scanner
JP6054089B2 (en) Ultrasonic diagnostic apparatus, medical image processing apparatus, and medical image processing program
JP4584458B2 (en) Development of Doppler angle in ultrasonic color flow / Doppler
JP2001187054A (en) Numerical optimization of ultrasound beam path
US20120238877A1 (en) Ultrasound diagnostic apparatus and ultrasound image producing method
JPH0595946A (en) Ultrasonic sound speed measuring method and ultrasonic diagnostic apparatus with sound speed measuring means
JP5714221B2 (en) Ultrasonic diagnostic apparatus and ultrasonic transmission / reception method
JP5588924B2 (en) Ultrasonic diagnostic equipment
US20090099455A1 (en) Ultrasound diagnosis method and apparatus
WO1997048341A1 (en) Ultrasonic diagnosis apparatus
JP2012170467A (en) Ultrasound probe and ultrasound diagnostic apparatus
JP5281107B2 (en) Ultrasonic diagnostic apparatus and ultrasonic image generation method
KR20170045985A (en) Ultrasound imaging apparatus and controlling method for the same
JPS6253182B2 (en)
JP2013244159A (en) Ultrasonic diagnostic equipment and method for estimating sound velocity
CN102958446B (en) Diagnostic ultrasound equipment and medical image-processing apparatus
JP2012192133A (en) Ultrasound diagnostic apparatus and ultrasound image producing method
JPH0499566A (en) Ultrasonic diagnostic device
US20180214135A1 (en) Sound speed calculation system and sound speed calculation method
JPH069561B2 (en) Ultrasonic diagnostic equipment
JP5289482B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
JP5247844B2 (en) Ultrasonic diagnostic apparatus and ultrasonic image generation method
US12059305B2 (en) Ultrasonic diagnostic device, medical image processing device, and medical image processing method
JP2012192075A (en) Ultrasound diagnostic apparatus and ultrasound image generation method
JP3332089B2 (en) Ultrasound imaging device