WO2001026555A1 - Ultrasonic imaging device - Google Patents

Ultrasonic imaging device Download PDF

Info

Publication number
WO2001026555A1
WO2001026555A1 PCT/JP2000/007114 JP0007114W WO0126555A1 WO 2001026555 A1 WO2001026555 A1 WO 2001026555A1 JP 0007114 W JP0007114 W JP 0007114W WO 0126555 A1 WO0126555 A1 WO 0126555A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
transducer
delay time
delay
sound
Prior art date
Application number
PCT/JP2000/007114
Other languages
French (fr)
Japanese (ja)
Inventor
Ryuichi Shinomura
Takashi Azuma
Shinichiro Umemura
Yuichi Miwa
Hiroshi Kanda
Hirotaka Baba
Tatsuya Hayashi
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Priority to JP2001529349A priority Critical patent/JP4711583B2/en
Publication of WO2001026555A1 publication Critical patent/WO2001026555A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52046Techniques for image enhancement involving transmitter or receiver
    • G01S7/52049Techniques for image enhancement involving transmitter or receiver using correction of medium-induced phase aberration
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/34Sound-focusing or directing, e.g. scanning using electrical steering of transducer arrays, e.g. beam steering
    • G10K11/341Circuits therefor
    • G10K11/346Circuits therefor using phase variation

Definitions

  • the present invention relates to an ultrasonic imaging apparatus for extracting a tissue in a subject as an image using ultrasonic waves, and particularly to an ultrasonic beamformer used for the same.
  • An ultrasonic device for example, an ultrasonic imaging device used for medical image diagnosis obtains a tomographic image of a soft tissue of a living body or an image of a blood flow flowing through the living body in almost real time using an ultrasonic pulse reflection method. It can be displayed on a monitor and observed, and it is said to be highly safe because it does not expose the subject to radiation, unlike a diagnostic imaging device that uses radiation. Applied in the field.
  • an ultrasonic probe is used for transmitting an ultrasonic wave into a subject and receiving an echo signal from inside the subject.
  • One of the scanning methods of the ultrasonic imaging apparatus is an electronic scanning method.
  • the electronic scanning type ultrasonic probe arranges elongated rod-shaped transducers in a one-dimensional array, and gives a predetermined delay time to each transducer for driving.
  • the ultrasonic probe transmits an ultrasonic beam converging at a predetermined depth and a predetermined direction in the subject.
  • the received wave is obtained by synthesizing a received signal from each transducer of the ultrasonic probe with a given delay time for each transducer and combining the received signals from a given depth and direction.
  • the processing part that sets the delay time for each transducer and gives the delay time to each transducer is called an ultrasonic beamformer.
  • the ultrasonic probe uses ultrasonic waves generated by many transducers arranged in a one-dimensional array. A lens layer for converging in a direction orthogonal to the arrangement direction is provided.
  • the phasing circuit of the ultrasonic imaging apparatus since the phasing circuit of the ultrasonic imaging apparatus has recently been digitized, it has become possible to easily and accurately control the delay time and phasing in the transmission and reception of ultrasonic waves.
  • the ultrasonic waves transmitted from each transducer do not converge at the focal point only through a medium with a constant sound velocity.
  • the transmitted pulse is converted from an electric signal into an ultrasonic wave by the piezoelectric vibrator, and reaches a desired focal position through the lens layer on the probe surface and the living tissue.
  • sound refraction occurs at the interface between the two in the arrangement direction of the piezoelectric vibrators.
  • the delay time it is necessary to incorporate the effect of this refraction. Since the refraction angle is obtained by Snell's law, it is possible to calculate the delay time by obtaining the refraction path of the sound.
  • the ultrasonic imaging device captures tomographic images of about 30 frames per second while moving the focus position during the capturing of one frame by 50 in the horizontal direction (azimuth direction) and in the depth direction (distance direction). Needs to be changed by about 20.
  • the number of transducers in a single aperture varies from 32 to 192, depending on the transducer. From these facts, it is necessary to set the delay time for one vibrator at a very high speed even if it is calculated. However, there is a limit to the amount of computation that can be performed in real-time with the MPU (Micro Processor Unit) mounted on a real ultrasonic imaging device, even in light of the arithmetic processing performance of a DSP (Digital Signal Processor).
  • MPU Micro Processor Unit
  • a method of storing data in which the delay time for each focus position is calculated in advance for each probe in a storage medium such as a hard disk, or a method for real-time processing is to perform an approximate calculation using a formula.
  • probes that are specialized for the organ, site, and symptom to be diagnosed are used as probes of the ultrasonic imaging apparatus, and the types thereof are increasing. Therefore, a considerably large-capacity storage device is required to store the delay time data.
  • the number of transducers will increase further. Data amount is increasing.
  • the method of obtaining the delay time by approximation calculation may be insufficient in accuracy with the conventional calculation accuracy depending on conditions. Since the accuracy is determined by the ratio between the period at the center frequency of the probe and the error time, a probe that transmits a pulse with a high center frequency, that is, a pulse with a short period, like a high-definition probe has been developed. The demands on the accuracy of the delay time become stricter. Therefore, a more accurate approximation method is required. In addition, considering the application to a two-dimensional probe, it is necessary to shorten the calculation time for one transducer, so going in a more severe direction is the same as the former case.
  • the image used for ultrasonic diagnosis has been significantly improved in comparison with the conventional image in combination with the adoption of the digital phasing technology, but the image obtained by the ultrasonic imaging apparatus is an X-ray apparatus. There is a demand for further improvement in image quality when compared with images obtained by other modalities such as X-ray CT and MRI.
  • the delay time control data for beam formation is calculated based on the measured or estimated value. Is what you want.
  • This sound velocity correction technique is described in, for example, Japanese Patent Application Laid-Open Nos. 8-317923 and 10-66694 filed by the present applicant.
  • the inventors of the present invention believe that this can be improved by forming a beam by incorporating the refraction in the ultrasonic wave propagation path.
  • the refraction in the ultrasonic wave propagation path the refraction by the lens layer is the first problem, but the refraction of the ultrasonic wave occurs only at the interface between the lens layer and the subject. Les ,.
  • the living body to be diagnosed by the ultrasonic imaging device is composed of various tissues such as fat, muscle fibers, various organs, and blood. Since the speed of sound is different in each of these tissues, subtle refraction of ultrasonic waves occurs at the interface. Of these refractions, it is easiest to incorporate the refraction effect of the fatty layer into beamforming.
  • the ultrasonic pulse penetrates the fat layer when the ultrasound probe is applied percutaneously to see any of the skin. In other words, refraction by the fat layer cannot be avoided unless a transcutaneous probe is used.
  • the fat layer is the outermost part of the living tissue, the effect of refraction on the focal position has the greatest effect.
  • the subcutaneous fat has a certain thickness within the caliber of the probe, so it is easier to incorporate it into the calculation than in the case of other tissues such as blood vessels. is there. Disclosure of the invention
  • the present invention has been made in view of the above, and a first object of the present invention is to further improve the image quality of an ultrasonic image compared to the current state.
  • a second object of the present invention is to provide an ultrasonic imaging apparatus capable of setting a delay time in consideration of the effect of ultrasonic refraction by a lens layer and / or a fat layer of an ultrasonic probe. It is in.
  • a third object of the present invention is to set a delay time in consideration of the influence of refraction by the lens layer or / and fat layer and the ultrasonic wave propagation speed of each subject.
  • An object of the present invention is to provide an ultrasonic imaging apparatus.
  • the present invention employs a method of obtaining a delay time by using an algorithm having a sufficient approximation accuracy and a fast calculation, and taking into account the influence of ultrasonic refraction by the lens layer and the fat layer.
  • an ultrasonic imaging apparatus includes: an ultrasonic probe having an arrayed transducer; and transmitting, focusing, and receiving when transmitting or Z and receiving ultrasonic waves to a subject.
  • Delay control means for controlling a delay time with respect to each transducer for performing focusing; and the transmitting or transmitting by incorporating a refraction effect of ultrasound by an ultrasound propagation medium between the arrayed transducers and a set focal position. It is characterized by comprising a refraction correction delay data generating means for generating a delay time for performing forcing of a received wave and supplying the delay time to the delay control means, and a display unit for displaying an ultrasonic image.
  • the delay control means stores in advance delay time data obtained based on the average sound velocity of the living body, and performs ultrasonic transmission and reception for obtaining refraction correction data using the stored delay time data in advance.
  • the refraction correction delay data generating means uses parameters relating to the ultrasonic probe including a lens layer thickness of the probe, a sound velocity of the lens layer, and an arrangement pitch of the transducer, and calculates a relationship between the transducer and a designated focal point.
  • the delay time to be given to each transducer is calculated by calculation, taking into account the ultrasonic refraction effect in the ultrasonic propagation path between them.
  • the refraction correction delay data generating means includes: a parameter relating to the ultrasonic probe including a lens layer thickness, a lens layer sound velocity, a pitch between transducers; a fat layer thickness of the subject and a sound velocity of the fat layer; The delay time to be given to each transducer is calculated by using the sound velocity data of the weave, taking into account the ultrasonic refraction effect in the ultrasonic propagation path between the transducer and the designated focal point. Further, the refraction correction delay data generation control means may calculate the delay time using a parameter recursively solved from a parameter relating to a sound path from the vibrator next to the vibrator to be calculated to the focal point. Obtained by calculation.
  • the ultrasonic imaging apparatus of the present invention comprises: means for detecting data relating to a layer structure of a subject for refraction correction from a screen of the display unit on which an ultrasonic image is displayed; and an output of the layer structure data detecting means.
  • the layer structure data detecting means includes a caliper for displaying two movable cursors on the screen and measuring a distance between the cursors on the screen.
  • the ultrasonic imaging apparatus of the present invention comprises: an ultrasonic probe having an arrayed transducer; Delay control means for controlling a delay time for each transducer to perform transmission focusing or reception focusing at the time of transmitting or z and receiving ultrasonic waves to the subject, and a structure forming a layer in the subject.
  • Means for measuring the thickness means for measuring the speed of sound of the portion of the layer structure, and the layer thickness measured by the layer thickness measuring means and the sound speed in the layer structure measured by the sound speed measuring means.
  • a delay time to be given to each transducer in consideration of an ultrasonic refraction effect in an ultrasound propagation path between the transducer and a designated focal point, and a refraction correction delay control to be supplied to the delay control means.
  • the sound velocity measuring means calculates the delay time error of each receiving channel by using the output of a delay circuit that performs phasing processing of the echo signals received by the plurality of transducers, and calculates the delay time error in the subject from the delay error. Includes sound speed measurement means for determining sound speed. Further, the sound velocity measuring means includes means for specifying a sound velocity measuring region to a fat layer of the subject and a tissue portion at a part of the fat layer, and measuring a sound velocity for each of the tissue layers.
  • the ultrasonic imaging apparatus of the present invention uses the parameters related to the ultrasonic probe including the lens layer thickness of the ultrasonic probe, the sound velocity of the lens layer, and the transducer array pitch, and the ultrasonic wave exits the transducer.
  • a program to make a computer execute a method to calculate the delay time to be applied to each transducer taking into account the effect of refraction from when the lens reaches the specified focal point, or the lens layer thickness, the sound velocity of the lens layer
  • the ultrasonic The program has a built-in program that allows a computer to execute a method of calculating the delay time given to each transducer taking into account the effect of refraction from exiting the transducer until reaching the designated focal point. are doing.
  • FIG. 1 is a block diagram showing a schematic configuration example of an ultrasonic imaging apparatus according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing an embodiment of an ultrasonic beamformer without the ultrasonic imaging apparatus shown in FIG. 1
  • FIG. 3 is a diagram showing the relationship between the transducer array and the ultrasonic image
  • FIG. 4 is a diagram showing the relationship between the transducer array and the delay time during the transmission and reception of the ultrasound
  • FIG. FIG. 6 is a flowchart showing a flow of tomographic image imaging to which an example of refraction correction is applied.
  • FIG. 6 is a diagram showing an example of a method for measuring a layer thickness based on an image displayed on an image display unit.
  • FIG. 1 is a block diagram showing a schematic configuration example of an ultrasonic imaging apparatus according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing an embodiment of an ultrasonic beamformer without the ultrasonic imaging apparatus shown in FIG. 1
  • FIG. 3
  • FIG. 7 is a diagram showing refraction of an ultrasonic pulse.
  • FIG. 8 is a flowchart illustrating a first example of a procedure for calculating a delay time for refraction correction according to the present invention.
  • FIG. 9 is a flowchart illustrating a procedure for calculating a delay time for refraction correction according to the present invention.
  • FIG. 10 is a flowchart for explaining a second example, FIG. 10 is a diagram for explaining a relationship between a focal position and a transmitting aperture position in a phased array probe, FIG. 11 is an explanatory diagram of a refraction state of an ultrasonic pulse, and FIG. Illustration of the discrete Newton method, FIG.
  • FIG. 13 is a flowchart illustrating a third example of the procedure of delay time calculation for refraction correction according to the present invention
  • FIG. 14 is a procedure of delay time calculation for refraction correction according to the present invention.
  • Flowchart illustrating a fourth example of FIG. 15 is an explanatory diagram of a refraction state of an ultrasonic pulse in a convex type probe
  • FIG. 16 is a block diagram showing a schematic configuration of another embodiment of the ultrasonic imaging apparatus according to the present invention
  • FIG. FIG. 18 is a block diagram showing a schematic configuration of still another embodiment of the ultrasonic imaging apparatus
  • FIG. 18 is a graph showing a time required to reach a focal point from each transducer
  • FIG. 19 is provided with a switch for a refraction correction function.
  • FIG. 20 is a block diagram showing a device configuration for obtaining a sound speed for refraction correction
  • FIG. 21 is a diagram showing a screen display example of sound speed measurement.
  • FIG. 1 is a schematic configuration diagram illustrating an example of an ultrasonic imaging apparatus according to the present invention.
  • the ultrasonic imaging apparatus 100 includes a main body 10, an ultrasonic probe 20, and a cap.
  • the main body 10 of the ultrasonic imaging apparatus includes a control unit 11, a memory 12, an image display unit 13, and an ultrasonic beam former 14.
  • the control unit 11 is connected to an input unit 15 such as a keyboard and a pointing device.
  • the ultrasonic probe 20 is detachable from the main body 10 of the ultrasonic imaging apparatus, and an appropriate probe is selected and attached according to a diagnosis target of the subject 30.
  • the ultrasonic probe 20 includes a transducer array 21 and a memory 22.
  • the memory 12 of the main body 10 stores a table of data unique to the probe corresponding to the ID number of the probe, and data such as a sound velocity in a subcutaneous fat layer and a sound velocity in a living tissue.
  • the transducer-specific data referred to here includes, for example, the thickness of the lens layer, the sound velocity in the lens layer, and the transducer pitch. In the case of a hive or convex type probe, it refers to the radius of the probe, and in the case of an oblique type probe, it refers to parameters such as the oblique angle.
  • the ultrasonic beam former 14 controls the operation of the transducer array 21 in the ultrasonic probe 20 under the control of the control unit 11.
  • Ultrasonic image data is obtained by scanning an ultrasonic beam in a subject using this ultrasonic beamformer.
  • the control unit 11 displays an ultrasonic tomographic image of the subject 30 on the image display unit 13 based on the obtained ultrasonic image data.
  • FIG. 2 is a block diagram illustrating an example of an ultrasonic beamformer.
  • the ultrasonic beamformer includes an operation control circuit 41, a pulser 42, a preamplifier and an AD converter 43, a delay circuit 44, and an addition circuit 45.
  • a delay time is calculated and controlled by a calculation and control circuit 41.
  • the arithmetic and control circuit 41 may be realized by a computer and software. In this case, a program for delay time calculation is recorded on a recording medium such as a ROM, and the calculation and control circuit 41 is realized by a configuration in which the program is read by a computer.
  • the beamforming mechanism for transmitting and receiving is as follows. First, each of the transducers 25 of the transducer array 21 included in the ultrasonic probe 20 from the arithmetic and control circuit 41. , 25 ,, 25 2> ..., 25 n , a pulse signal is sent at a timing shifted by the delay time of each oscillator. Each pulser 42 that receives the pulse signal immediately sends the pulse signal to the transducer 25 connected to itself. , 25 ⁇ 25 2 ,. Send to Transducer 25. , 25 1 ; 25 2 ,..., 25 n generate ultrasonic waves corresponding to the voltage due to their piezoelectricity, and transmit the ultrasonic waves into the subject 30.
  • the ultrasonic waves reflected in the subject 30 return to the transducer array 21 of the ultrasonic probe 20 again, and the individual transducers 25. , 25 "25 2) ⁇ , is converted into an electric signal by a piezoelectric at 25 n, are amplified by preamplifier and AZD converter 43 is converted into a digital signal.
  • the digital signal, the arithmetic and control circuit 41 The delay time is adjusted by the delay circuit 44 adjusted by the signal from the controller and the signal is added to the adder circuit 45 to be added, whereby the phasing addition is performed.
  • the ultrasonic image I is a point F nl , F n2 , F n3 , (where n is an integer from 1 to N) It consists of N received beam data. This point F nl , F n2 , F n3 ,..., Is measured by a single ultrasonic beam.
  • FIG. 3 if I is an ultrasonic image, the ultrasonic image I is a point F nl , F n2 , F n3 , (where n is an integer from 1 to N) It consists of N received beam data. This point F nl , F n2 , F n3 ,..., Is measured by a single ultrasonic beam.
  • FIG. 4 is a diagram schematically showing an ultrasonic probe that transmits an ultrasonic pulse toward the focal point F dockand detects a reflected signal from the focal point F religious.
  • Figure 4 shows how the wavefront moves at regular time intervals Ts.
  • the ultrasonic pulse transmitted from the transducer 25 within the bore of the ultrasonic probe is used.
  • An ultrasonic wave is transmitted with a delay time for each vibrator so that it converges at the focal point Flust.
  • transducers 25 located at both ends of the aperture.
  • the delay time ⁇ given to the j-th oscillator 25” is the oscillator 25 as shown. Is the time until a virtual ultrasound wavefront WA at position 25 n reaches the oscillation surface of the vibrator 25 ".
  • the wavefront WB of the reflected wave propagates as shown in Fig. 4 (b), and the oscillators 25 at both ends. , 25n, and arrives at the transducer surface of the transducer 25 ”with a delay time ⁇ ”.
  • the child adds the phased signals by shifting the minute delay time in each of the ultrasonic probe diameter in the vibrator 25 0 to 25 n, it is possible to pick up the reflected signal from the focal point F " .
  • this transmission / reception operation is a method known as a dynamic focus method, that is, transmission is performed by focusing on a specific depth located in a region of interest (R0I: Region of Interest) within a subject. Transmits a sound wave, and changes the focal position of the received wave from shallow to deep, from region to region as the transmitted ultrasonic pulse travels through the subject during reception. Is used to obtain the received beam signal of When the measurement of one beam is completed, the beam position is sequentially shifted to the adjacent direction (azimuth direction), and the same transmission / reception operation is repeated to obtain N reception beam signals to form an image.
  • R0I Region of Interest
  • the former is a scanning method used for sector-type probes. In this method, all transducers of the probe are used for transmission and reception every time, and the beam direction is changed radially. In this case, when the beam direction is in relation to the transmission aperture, in other words, the focal point of transmission and reception is slightly in front of the aperture. This has great significance in the calculation of the delay time later.
  • the latter is a method used for a linear probe and a convex probe.
  • This method differs from the former in that it does not use all transducers provided in the probe for one transmission.
  • a probe with a total number of transducers of 192 channels and a transmission of 64 channels in diameter Is used.
  • transmission and reception are performed with the aperture positioned in front of the beam, and movement of the beam position is performed by moving the aperture, so that the focus is always in front of the aperture, contrary to the former case. How to transmit waves.
  • step 11 recognition of the ultrasonic probe 20 attached to the main body 10 of the ultrasonic imaging apparatus is performed. I do. This recognition is performed by reading a parameter such as a probe ID number stored in the memory 22 of the ultrasonic probe 20.
  • FIG. 6 is a schematic diagram of a diagnostic screen displayed on the image display unit 13 at this time, and an image of a somewhat blurred target is displayed because no correction is applied.
  • the image shown in Fig. 6 is an image taken by a convex type probe, and a subcutaneous fat layer is shown on the side in contact with the probe.
  • step 13 the diagnostician measures and inputs the thickness of this fat layer. Specifically, the measurement is performed using a caliper conventionally provided in an ultrasonic imaging apparatus. In Fig. 6, the cursor of the caliper is positioned at the point where the fat layer indicated by A starts and the point where the fat layer indicated by B ends. Is determined. (In the example shown, 13 corrupt) This value can be used as the thickness of the fat layer. Fatty layer thickness entered by the diagnostician After that, all processes are executed in the diagnostic device.
  • the imaging mode is entered, and the diagnostician instructs the beamformer 14 from the input unit 15 via the control unit 11 of the ultrasonic imaging apparatus to the beamformer 14 in step 14.
  • the beamformer 14 calculates the delay time after the refractive index correction described later has been performed by the arithmetic and control circuit 41 in step 15.
  • the delay time calculated here is the delay time given to each transducer for transmission corresponding to the focal depth of the transmission, and the delay given to each transducer to form one ultrasonic reception beam. This is the time, that is, the delay time for continuously changing the focal position of the received wave as described above.
  • step 16 when the transducer array of the ultrasonic probe is excited using the determined transmission delay time, the ultrasonic array is converged to the focal point specified on the first ultrasonic beam line. An ultrasonic beam is transmitted.
  • step 17 the received signal from the transducer array of the ultrasonic probe is phased using the receiving delay time calculated in step 15, and added to obtain the first received beam signal. can get.
  • step 18 it is determined whether signal acquisition from all points in the imaging screen has been completed. That is, when an ultrasonic image is formed by N ultrasonic beams, it is determined whether an ultrasonic beam of the Nth address has been obtained. If not completed, the flow returns to step 14 to change the beam position and perform transmission / reception. This is repeated, and when the scanning of the entire imaging range has been completed for the scanning in the depth direction and the scanning in the horizontal direction, the diagnostic images have been captured. After taking the diagnostic image, proceed to step 19, display it on the image display section 13, and end. In the image display, instead of displaying all the data for all points of a single diagnostic image after completing the data collection, each time data for one received beam is obtained in step 17, it is displayed as an image. You may make it display in the part 13 sequentially. This is possible by utilizing the function of the digital 'scan' converter provided in the ultrasonic imaging device.
  • the ultrasonic probe is provided with a transducer row arranged one-dimensionally at a transducer pitch p, and a lens layer having a thickness arranged in front of the transducer row.
  • the lens layer is for converging the ultrasonic waves generated from the transducer row in a direction perpendicular to the transducer row (a direction perpendicular to the plane of FIG. 7).
  • the sound velocity in the living tissue existing inside the fat layer of the living body is uniform on average, and that the fat layer has a certain thickness within the transmission aperture of the ultrasonic probe.
  • the ultrasonic wave transmitted from the transducer propagates through the three layers of the lens layer, the fat layer, and the living tissue to reach the focal point, and the refraction becomes a three-layer problem.
  • the electric pulse signal is converted into ultrasonic waves by a piezoelectric vibrator 25 "having a matching layer on the front surface.
  • the ultrasonic waves generated by the vibrator 25 '' travel through the lens layer of thickness by a distance Xl in the array direction of the vibrator row, enter the subcutaneous fat layer at an incident angle, and at the boundary between the lens layer and the fat layer.
  • the refracted (refraction angle of 0 2 ) ultrasonic wave travels through the thick subcutaneous fat layer by a distance x 2 in the direction of the array of transducer rows, and enters the living tissue below the fat layer at an incident angle ⁇ 2 I do.
  • the ultrasonic wave refracted at the interface between the fat layer and the living tissue travels in the living tissue in a diagonal direction of ⁇ 3 in the array direction of the vibrator row and d 3 in the depth direction. Reach the focus within.
  • Equation 1 is established between the refraction angle 0 ⁇ ⁇ , and the above.
  • the sound speed C is determined by the material of the lens, and can be measured. It is known. In the following description, the sound speeds c 2 and c 3 are also empirically assumed to be known as approximate values, and the following description is advanced. An embodiment will be described later. Incidentally, speed of sound Cl in the memory 22 of the ultrasonic probe 20, also, the sound velocity c 2, c 3 are assumed to be held in memory 12 of the ultrasonic imaging apparatus main body 10.
  • the variables left behind when the variables are dropped are the lateral displacement Xl in the lens layer and the lateral displacement x in the fat layer x 2, there is a choice about the or leave any lateral movement amount x 3 in a living body, a most advantageous and Do Runowa chi 3 under a number of conditions when considering the magnitude of the error This is because the speed of sound gradually increases in the lens layer, fat layer, and living tissue, so that the path of the sound wave passing through each layer gradually lays down, and under many imaging conditions.
  • the thickness is the largest, so in the actual system, the sound path in the living tissue has the largest lateral movement. Kikunaru -.. Since turn seek directly computing a large amount of Ru method der to reduce most the relative error, in the normal imaging conditions become better by obtaining the x 3 and teeth force, regardless of the condition the lens layer thin top, thickness imaging conditions thickness and body tissue of the fat layer in relation to the thickness of the focal length of different is the depth of the imaging site. Yotsute fat layer, the x 2 There may be an algorithm that considers whether to leave or leave x 3 and then solve a polynomial of one variable, but here, the explanation of the method is omitted and only the method of obtaining x 3 will be described. I do.
  • Equation 3 Eliminate X x 2 from the simultaneous equations to obtain Equation 3.
  • the calculation unit of the ultrasonic beamformer in the actual ultrasonic imaging device uses the MPU or DSP as described above.
  • DSP digital signal processor
  • all calculations are converted to sum of products.
  • the square root is equivalent to 32 sums of products. Since the division depends on the value, the number of calculations is not known before the calculation. Therefore, transforming Equation 3 into a form without square root and division is important when using a DSP, and Equation 4 is the result of the operation.
  • I (x) ((c , 2 one c 3 2) x_ one c 3 2 d 3 2)
  • Equation 4 is a 12th-order equation, it is a rational polynomial and is differentiable in the entire range, so it can be approximated as a straight line sufficiently near the solution. It is only necessary that X satisfy the condition that it is always near the solution.
  • Equation 4 has an inflection point near the solution because it also has a solution of gl (x) + g 2 (x), so the position where the approximate value is found needs to be closer to the true solution than this inflection point. It is. Using x + pXd 3 ZF as the starting point of the approximate solution, using the notation in the figure as appropriate for that condition. An X at the vibrator position N and we do x N is determined by the following equation 5. From now on, the left side of Equation 4 is expressed as f (x). d 3 f (x N — t ten pd 3 / F)
  • UPF f (x N , + pd, / F), 5) A method of calculating the delay time of each transducer in real time using this recurrence formula will be described with reference to a flowchart.
  • a probe such as a linear probe or a convex probe, whose transmission plane is orthogonal to the line segment connecting the focal point and the center transducer of the aperture, is used.
  • the case of calculating the delay time will be described. Under this condition, since the focal point is in front of the aperture, the delay time of each transducer is symmetrical within the aperture. In other words, it is enough to calculate only one half.
  • the delay time is calculated one by one toward the outside, starting from the transducer at the center of the aperture.
  • the oscillator number N be 1 (the next oscillator with respect to the center oscillator).
  • x. 0, X!
  • For oscillator number N l! Is calculated by Equation 5 as follows.
  • e 3 arctan (x Zd 3 )
  • ⁇ 2 arcsin (c 2 sin ⁇ 3 , C 3 )
  • Te - x tens phi 2 + 2 2 tens dc 2 + x 3 2 tens d 3 _z c 3 then proceeds to step 24, the transducer number is incremented by one, moved to the vibrator the adjacent, step Step 25
  • x 2 is calculated by the recurrence recurrence formula (Equation 5), and the delay time ⁇ with respect to the oscillator of the oscillator number 2 is calculated based on the x 2 by using Formula 6. This operation is performed for all the transducers having a diameter.
  • step 25 If the determination in step 25 is "YES", it means that the delay time for all transducers has been calculated for this depth of focus, so the process proceeds to step 26, where the calculation result is output from the control circuit to the delay circuit. You. If the next depth of focus to be calculated is given to the ultrasonic beamformer, the same procedure is repeated for the all-diameter transducer. By repeating this for all the depths of focus, imaging is performed in which a shift due to refraction has been corrected.
  • the line connecting the focal point and the center transducer of the aperture such as the oblique type probe, the sector type probe, and the phased array type probe, is not orthogonal to the transmission plane.
  • the delay time for a type of probe, or the delay time for a type of probe in which the angle between the line connecting the focal point and the center transducer of the aperture and the transmitting surface changes The method for calculating the following is described.
  • the relationship between the focal position, the aperture, and the vibrator row depends on the magnitude of the oblique angle 0, as schematically shown in FIG. (1)
  • the perpendicular foot A dropped from the focal point F to the plane where the transducers are aligned enters the transmission aperture
  • step 33 X is obtained by the graduation formula (formula 5), and in step 34, the delay time ⁇ is obtained from X by formula 6.
  • step 34 the process moves to the next vibrator in step 35, and the processes in steps 33 to 35 are repeated until it is determined in step 36 that the vibrator has reached the end of the aperture. With this, the depth of focus and the focus direction are delayed by all transducers. Since the delay time has been calculated, the calculation result is output from the operation / control circuit to the delay circuit in step 38. If the next depth of focus and the direction of focus to be calculated are given to the ultrasonic beamformer, the same calculation is performed again for all the transducers within the aperture. By repeating this for all the depths of focus and the focal directions, imaging is performed in which deviation due to refraction is corrected.
  • the approximate value of the delay time can be obtained with sufficient accuracy (1/10 of the center frequency).
  • This method has a sufficient accuracy compared with the conventional approximation formula, and has no loop in the algorithm as compared with the method of obtaining the accuracy by using the iteration, so that the calculation speed is considerably faster.
  • a real-time high-speed delay time calculation algorithm including refraction by a fat layer as in the present invention has been realized. Furthermore, it is significantly advantageous in that errors do not accumulate as compared with the calculation of a general grading formula.
  • Equation 3 can be regarded as a straight line near the solution, there is no need to calculate the slope from the derivative, and we use x + p X d 3 / F, x + p as the two points that clearly sandwich the solution. , ⁇ ⁇ ⁇
  • the solution is obtained as the following equation as a dividing point. Therefore, the processing speed can be improved by using the recurrence equation (Equation 7) instead of the recurrence equation (Equation 5). fix ⁇ + p d./F)
  • FIG. 11 it is assumed that the sound emitted from the transducer N at the transducer position X N at an angle of 0 N into the lens layer reaches the focal point F.
  • this angle 0 N is obtained, the refraction angle in each layer is obtained, so that the sound path is determined and the delay time can be determined.
  • sound is first emitted at an appropriate angle, and the side of the focal point through which the sound passes is calculated. If the sound is increased 0 N if impassable farther than the focal, to reduce the 0 N if impassable the near focus.
  • the algorithm used in the ultrasonic beamformer according to the present embodiment is an improvement of the two-Juton-Raphson method, which can be applied to a system having no explicit function. That is, think as follows. First, assuming that an ultrasonic wave is emitted at an appropriate angle 0, the magnitude of the shift is ⁇ (0). Since this ⁇ ⁇ ⁇ ⁇ becomes 0, 0 is the solution to be found, and in order to find the derivative of ⁇ ⁇ ⁇ , the deviation ⁇ ( ⁇ + d0) when emitted at an angle of ⁇ + d0 is found. As shown in FIG.
  • Equation 8 As the shift amount, besides using ⁇ , a method using ⁇ or a method using the sum of squares of ⁇ and ⁇ can be considered. However, in this embodiment, a case where ⁇ X is used will be described.
  • the angle ⁇ ⁇ ⁇ ⁇ with respect to the next vibrator (vibrator of number 0) is used.
  • step 53 a deviation ⁇ ⁇ (0 + d0) between the path of the ultrasonic wave and the target focal position when the ultrasonic wave is radiated from the transducer of number 1 at an angle of 0 + d0 is determined.
  • the convex type probe unlike the linear type probe, it is calculated as follows.
  • the probe When observing an object with a convex probe, the probe is pressed against the object and observed, so the fat layer also bends along the probe. Assuming that the fat layer is concentric with the structure of the convex probe, the sound path is as shown in Figure 15.
  • the two methods for calculating the deviation ⁇ when leaving the element and passing near the focal point and the method for finding the deviation ⁇ when leaving the focal point and passing near the element are basically the same. This system is not symmetrical because the reflection conditions and the sound path cannot go to the left half of Fig. 15, and the former method has good solution stability. Since it is not, it is desirable to solve by the latter method.
  • Equation 10 which is a modification of Equation 9, and ⁇ 4 0 It can be obtained by using + arctan (-f '(x 3 )) instead.
  • step 54 a new 0 is obtained by extrapolation from equation 8. Subsequently, the process returns from step 55 to step 52, and uses the new 0 obtained in step 54 to shift ⁇ (0). Ask for.
  • step 53 a deviation ⁇ ( ⁇ + d0) between the path of the ultrasonic wave when the ultrasonic wave is emitted at the new angle ⁇ + d0 and the target focal position is obtained.
  • step 54 a new 0 is obtained by extrapolation from equation (8).
  • step 56 the delay time ⁇ is calculated from the obtained ⁇ by the following equation 11.
  • the oscillator number is increased by one, and the processing from step 42 is repeated. If it is determined in step 58 that the calculation has been completed for all the transducers within the working diameter, the process proceeds to step 59 and outputs the calculation result.
  • the flowchart shown in Fig. 13 is based on the calculation of the recurrence formula in the flowchart shown in Fig. 8 and the calculation of the deviation from the focal position and the extrapolation. This is equivalent to what is replaced by the calculation processing of a new 0 by the above and the judgment processing of the number of loops for performing the loop processing of this part. Also in the case of the second method, when the focal point is not in front of the transmission aperture, the transmission aperture is determined in advance to 0 at the end vibrator before imaging, and that value is stored. A plurality of zeros at the transducer at the end of the transmission aperture are obtained for different subcutaneous fat layer thicknesses.
  • This 0 is read and used to solve the recurrence equation as the first term of the recurrence equation.
  • the flow of this calculation is shown in the flowchart of FIG. The details are easily explained by the fact that the relationship between the calculation process in FIG. 8 and the calculation process in FIG. 9 and the relationship between the calculation process in FIG. 13 and the calculation process in FIG. 14 are exactly the same in the first method.
  • This method of pre-calculating the parameters for the transducer at the end of the aperture is a measure to prevent the DSP or MPU mounted on the current intermediate-level ultrasonic imaging device from having a margin, and a high-speed arithmetic processing unit can be mounted.
  • the first method all calculations for each fat layer thickness are performed in advance within a conceivable range, and all calculation results before imaging are stored in the memory 22 of the ultrasonic probe 20 as data. It is a way to keep it. Then, when the ultrasonic probe 20 is connected to the ultrasonic imaging apparatus main body 10, the contents are transferred to the memory 12 of the ultrasonic imaging apparatus main body 10. During imaging, a delay time is calculated by the ultrasonic beamformer 14 with respect to this parameter and the depth of focus given by the control unit 11, and the delay time is given to the transducer array 21, and transmitted to the subject 30. I do. The reception is also phased by this delay time, and the control unit 11 calculates a diagnostic image and outputs it to the image display unit 13.
  • the second method data calculated in advance is stored in a medium such as a CD-ROM and attached to the ultrasonic probe.
  • the method is to install data from the CD-ROM or the like into the memory 12 of the ultrasonic imaging apparatus body 10 before or when using the probe.
  • the operation after installation is exactly the same as the first method.
  • FIG. 16 is a schematic configuration diagram showing another example of the ultrasonic imaging apparatus according to the present invention.
  • the same functional portions as in FIG. 1 are denoted by the same reference numerals as in FIG. 1, and redundant description will be omitted.
  • the input of the thickness of the subcutaneous fat layer has been performed by the diagnostician. That is, as shown in FIG. 6, when the diagnostician specifies a start portion and an end portion of the fat layer on the diagnostic screen of the diagnostic apparatus, the distance is displayed on the screen. This value was entered by the diagnostician.
  • the ultrasonic imaging apparatus shown in FIG. 16 includes a fat layer thickness calculation unit 16 in the control unit 11 so that screen output related to the subcutaneous fat layer can be directly input to the ultrasonic beamformer 14. It is something that has been done.
  • the fat layer thickness calculation mode as shown in FIG. 6, when the diagnostician designates a portion A where the subcutaneous fat layer starts and a portion B where the subcutaneous fat layer starts by using a pointing device or the like, the fat layer thickness calculating section 16 calculates a distance between them. The calculation result is sent to beamformer 14.
  • FIG. 17 is a schematic configuration diagram showing another example of the ultrasonic imaging apparatus according to the present invention.
  • This ultrasonic imaging apparatus makes it possible to fine-tune the parameters relating to the fat layer, and to cope with a fat layer having a uniform thickness and non-constant thickness.
  • the ultrasonic imaging apparatus having the configuration shown in FIG. 1 was provided with an input device and a parameter calculation unit 17 so that the sound speed of the fat layer held by the ultrasonic beamformer could be varied.
  • a parameter corresponding to an input value is calculated in an input device and a parameter calculation unit 17, and the value is input to the ultrasonic beam former 14.
  • FIG. 19 shows an embodiment in which the examiner can select them.
  • the table having the thickness shown in Fig. 19 (b) and the table of sound speed are prepared in advance and installed in the device.
  • the examiner observes the image 170 displayed on the monitor 120, and obtains the image by referring to the depth scale 160.
  • the thickness of the layer is read from the force, and a similar thickness is selected with switch SW2 (140) or the like, and the sound speed can be similarly selected with switch SW1 (150).
  • switch SW1 and switch SW2 can be operated independently, so that the examiner can select values that are appropriate for each value.
  • a numerical value may be used, or a selection may be made between a fat layer and a muscle layer.
  • the fat layer 170 can be read as approximately 2 cm from the depth scale 160 shown on the screen of FIG. 19, 2 cm is selected by the layer thickness setting switch 140 provided on the console 130. Then, the screen Thickness is displayed at the top as 2cm. Next, the sound speed is set by operating the sound speed setting switch 150 in a predetermined direction. It is advisable to display those input values on the screen to confirm the selected values.
  • the indication may be a numerical value such as 1450m / s, but may be an expression such as hard muscle, muscle, normal, fat, or high fat.
  • the switch can be a rotary type or anything. Of course, a touch panel may be used.
  • FIG. 20 shows another embodiment of the present invention.
  • the sound speed of a living body having a layer structure is obtained, and the refraction correction processing of the above-described embodiment is performed based on the sound speed.
  • FIG. 20 is a block diagram showing an embodiment of a part for obtaining the sound speed in the ultrasonic imaging apparatus.
  • reference numeral 200 denotes a digitally controllable digital delay unit that delay-controls a plurality of ultrasonic signals received by the probe and outputs a reception beam signal, and has a circuit having a number of channels corresponding to the number of transducers used for reception. have.
  • Reference numeral 210 denotes a delay data error estimator that inputs a plurality of signals delayed by the digital delay unit 200 and estimates an error of the digital delay data subjected to delay control with respect to true delay data by calculation
  • 220 denotes a digital delay unit A digital delay control unit that controls the operation of each of the 200 channels.
  • the ultrasonic imaging apparatus of the present embodiment further includes a sound speed corresponding delay time recording unit 230 that stores delay times due to a plurality of medium sound speeds in advance, and a delay obtained by the delay error estimation unit 210.
  • a new delay time is calculated from the error, and the calculated delay time is compared with a value stored in the sound speed corresponding delay time recording unit 230, and a delay time comparing unit 240 which outputs data closest to the stored value, and a sound speed corresponding delay
  • the sound speed data recording unit 250 that records the medium sound speed based on the delay time data stored in the time recording unit 230, and the delay time from the delay time recording location that matches the output of the delay time comparison unit 240
  • a medium sound speed selection unit 260 for selecting the medium sound speed with reference to the recording unit;
  • the output line of the medium sound speed selection unit 260 is connected to the arithmetic and control circuit 41 shown in FIG.
  • the digital delay control unit 220 is connected so as to be controlled by the arithmetic and control circuit
  • the delay circuit is digitally controllable, a delay error estimator 210 is provided at the output thereof, and a digital delay controller 220 is added to the arithmetic and control circuit 41. Further, as described above, by newly providing the sound speed corresponding delay time recording unit 230, the delay time comparing unit 240, the sound speed data recording unit 250, and the medium sound speed selecting unit 260, the ultrasonic imaging apparatus of the present embodiment can realize the true medium sound speed. Refraction correction with a sound speed almost equal to that of the above becomes possible.
  • delay time data obtained by assuming the sound velocity in the living body to be, for example, the equal sound velocity of the average value of the living body is calculated and output from the control circuit 42 to the digital delay unit 2 and the ultrasonic wave is transmitted into the subject. .
  • the focal point of the transmission is set to an appropriate depth.
  • the delay time data D based on the same sound speed as the transmission wave is supplied from the calculation / control circuit 41 to the digital delay unit 200 via the digital delay unit 220, and the received signal is delay-controlled.
  • the correlation processing method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 8-317923 can be used.
  • D cl output from delay error estimation section 210 is input to delay time comparison section 240.
  • the delay time comparing unit 240 compares the data recorded in the sound speed corresponding delay time recording unit 230 with the input data D cl , selects the delay time data closest to D cl, and sends it to the medium sound speed selecting unit 260. Output.
  • the medium sound speed selection unit 260 selects the sound speed of the input data. This selection can be made by associating the storage address of the data of the sound speed corresponding delay time recording unit 230 with the sound speed data of the sound speed recording unit 250. Therefore, the sound speed corresponding delay time recording unit 230 and the sound speed recording unit 250 can be integrated into one. ,
  • the sound speed data selected by the medium sound speed selection unit 260 is fed back to the digital delay control unit via the arithmetic and control circuit 41.
  • This feedback circuit Is for repetition of the above operation in order to obtain an accurate sound speed. If necessary, the arithmetic and control circuit 41 issues a command to repeatedly execute the above operation. With the above operation, the sound velocity in the living body can be measured as an estimated value.
  • the data D cl output by the delay error estimation unit 210 and the data recorded in the sound speed corresponding delay time recording unit 230 are two-dimensional distribution data. It is useful to be able to use the curve fitting method because the amount of information to be handled can be reduced. Furthermore, it is useful to obtain the difference of the delay time distribution and to fit a first-order straight line to the difference delay time sequence because the amount of information to be handled is further reduced.
  • FIG. 21 is an ultrasonic tomographic image of the subject displayed on the monitor of the ultrasonic imaging apparatus.
  • 170 is a fat layer
  • 190 is a tissue region deeper than the fat layer 170.
  • the sound speed of the fat layer 170 is determined.
  • the focal position is set using the above-mentioned cursor of the caliber at an appropriate depth position inside the fat layer 170, for example, a measurement position near the boundary between the fat layer 170 and the tissue region, and the value is measured.
  • a signal for giving the focal position is supplied to the arithmetic / control circuit 41.
  • the arithmetic control circuit 41 is provided with a gating function.
  • the gating function may be linked to the caliber function.
  • the reflected signal from the fat layer 170 is taken into the digital delay unit 200 by this gating function, and the sound speed is obtained in accordance with the operation description of the configuration shown in FIG.
  • the desired sound velocity may be at a certain point, but it is desirable to determine the sound velocity at multiple points and then determine the average sound velocity from them.
  • the sound velocity in the tissue region deeper than the fat layer 170 is determined.
  • the focal position for measurement is set to the position 190 shown in Fig. 21.
  • the above-mentioned caliber function is also used for this setting.
  • a signal for giving a focal position is supplied to the arithmetic and control circuit 41, and thereafter, an ultrasonic pulse is transmitted from the probe and a reflected signal thereof is received.
  • a reflection signal from the focal position is captured by the above-mentioned gating function.
  • the speed of sound is obtained from the reflected signal.
  • the sound speed obtained here indicates the average sound speed between the probe surface and the measurement point.
  • the sound velocity in the tissue region can be obtained from the above two measurements.
  • the average speed of sound was measured first fat layer, then the obtained fat layer and the average speed of sound including both tissue region put c a and code.
  • the sound velocity c 2 in the tissue region can be obtained by Expression 13.
  • This embodiment considers the correction of the distance measurement function of the carrier used for the sound velocity measurement. That is, the distance measurement function of the caliper incorporated in the ultrasonic imaging apparatus is performed by an operation based on the speed of sound initially set in the apparatus. Therefore, it is desirable that the distance measured by the caliper of l f , 1 ⁇ used in Equation 13 be used after being corrected to the value based on the actual sound speed.
  • the present embodiment corresponds to this.
  • the ultrasonic imaging apparatus is driven to acquire an ultrasonic tomographic image of a section including the region of interest (R0I), and the tomographic image is displayed on a monitor.
  • the refraction correction execution switch 310 arranged on the operation panel of the ultrasonic imaging apparatus shown in FIG. 19 is turned on.
  • This refraction correction execution switch 310 performs refraction correction when turned on, and refraction when turned off. This enables normal imaging without correction.
  • a caliper 300 consisting of two points of force is displayed on the screen of the monitor 120.
  • an input operating device such as a trackball or a joystick
  • one cursor of the caliper 300 is moved to the body surface of the subject, and the other cursor is moved to the end of the fat layer to fix the input information.
  • Operating the key (Enter key) 320 specifies the fat layer to be measured.
  • the force sol positioned at the end of the fat layer is moved into the region of interest at a point deeper than that, and the sound velocity in the tissue is operated by operating the key 320. Identify measurement points for measurement.
  • the data of the measurement points input by the above two-step operation are read into the control unit 11, and the calculation of the above-described sound velocity measurement method is executed.
  • the device setting sound speed is v. , Its sound velocity V. Caliber Depth at x. , Assuming the measured average sound velocity of the fat layer c fn , the true thickness l ft of the fat layer can be obtained from Eq.
  • Various methods other than those described above can be used to determine the sound speed and distance of a living body having a layered structure.
  • the refraction correction method described above is programmed and incorporated into the device as an automatic sequence, and repeatedly executed every few frames during imaging to update the set values, if there are multiple inspection sites Move the probe as shown The refraction correction is performed automatically, so the image is always good.
  • a normal image is displayed on the left of the screen, and a right image is displayed on the left side of the screen using a method in which a displayed image is marked to distinguish between a normal image and a refraction corrected image.
  • a refraction-corrected image is displayed. Even if the image at the point of interest is good, the image may be distorted in other regions in the case of a complex biological structure. Therefore, simultaneous display makes it possible to compare images with and without refraction correction in real time, which is effective for the user. It is also useful to specify the diagnosis site as R0I, acquire an image with refractive correction applied only to that site, fit it into a normal image, and display it.
  • the effect of refraction due to the lens layer and the fat layer (or the muscle layer, etc.) can be reduced, so that the image quality of an ultrasonic image can be improved.
  • the sound velocity of each layer of the subject having a layered structure can be measured, and the influence of the refraction of the ultrasonic wave in each layer can be reduced by taking the value into account, thereby further improving the image quality. can do.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Multimedia (AREA)
  • Acoustics & Sound (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

An ultrasonic imaging device having refraction correction delay data creating means for creating a delay time for focusing the transmitted or received wave in consideration of the effect of refraction of ultrasonic wave by an ultrasonic propagation medium between arrayed vibrators and the preset focal point and supplying the delay time to delay control means so as to create an excellent ultrasonic image while preventing any focal shift of the ultrasonic wave transmission/reception due to refraction of the ultrasonic wave caused at the interface between a lens layer of an ultrasonic probe and the fat layer of the subject and at the interface between the fat layer and the biological tissue present under the fat layer.

Description

明 細 書 超音波撮像装置 技術分野  Description Ultrasonic imaging equipment Technical field
本発明は、 超音波を用いて被検体内組織を画像として抽出する超音波撮像装 置に係り、 特にそれに用いられる超音波ビームフォ一マに関するものである。 背景技術  The present invention relates to an ultrasonic imaging apparatus for extracting a tissue in a subject as an image using ultrasonic waves, and particularly to an ultrasonic beamformer used for the same. Background art
超音波装置、 例えば医療画像診断に用いられる超音波撮像装置は、 超音波パ ルス反射法を用いて生体の軟部組織の断層像や生体内を流れる血流像等をほぼ リアルタイムで得て、 それをモニタに表示して観察でき、 また、 放射線を用い る画像診断装置のように放射線被曝を被検体に与えないことから安全性も高い とされ、 更に小型で安価なことも加わり、 広く医療の分野で応用されている。 超音波撮像装置では、 被検体内への超音波の送信及び被検体内からのエコー 信号の受信のために超音波探触子が用いられる。 超音波撮像装置の走査方式の 一つに電子走査方式がある。 電子走査型の超音波探触子は細長い棒状の振動子 を一次元アレイ状に配列し、 各振動子毎に所定の遅延時間を与えて駆動する。 これにより超音波探触子から被検体内の所定の深度、 所定の方向に収束する超 音波ビームを送信する。 受波は、 超音波探触子の各振動子からの受波信号に振 動子毎に所定の遅延時間を与えて合成することで、 所定の深度、 方向からの受 波信号を捕らえる。 このように振動子毎に遅延時間を設定し、 各振動子にその 遅延時間を与える処理部分を超音波ビームフォーマという。  An ultrasonic device, for example, an ultrasonic imaging device used for medical image diagnosis obtains a tomographic image of a soft tissue of a living body or an image of a blood flow flowing through the living body in almost real time using an ultrasonic pulse reflection method. It can be displayed on a monitor and observed, and it is said to be highly safe because it does not expose the subject to radiation, unlike a diagnostic imaging device that uses radiation. Applied in the field. In an ultrasonic imaging apparatus, an ultrasonic probe is used for transmitting an ultrasonic wave into a subject and receiving an echo signal from inside the subject. One of the scanning methods of the ultrasonic imaging apparatus is an electronic scanning method. The electronic scanning type ultrasonic probe arranges elongated rod-shaped transducers in a one-dimensional array, and gives a predetermined delay time to each transducer for driving. As a result, the ultrasonic probe transmits an ultrasonic beam converging at a predetermined depth and a predetermined direction in the subject. The received wave is obtained by synthesizing a received signal from each transducer of the ultrasonic probe with a given delay time for each transducer and combining the received signals from a given depth and direction. The processing part that sets the delay time for each transducer and gives the delay time to each transducer is called an ultrasonic beamformer.
電子走査により良好な超音波画像を得るには、 超音波ビームの走査範囲全域 にわたり、 各振動子毎に正確な遅延時間を与えて送波することが必要となる。 この方法によってのみ、 予定している焦点位置に超音波を歪んだり広がったり することなく集めることが可能となるからである。 受波に関しても同様な操作 を行うことで受信エコー信号のビーム形成が行われる。 なお、 超音波探触子に は、 一次元アレイ状に配列された多数の振動子から発生される超音波を振動子 の配列方向と直交する方向に収束させるためのレンズ層が設けられている。 特に、 近年、 超音波撮像装置の整相回路がデジタル化されて以来、 超音波の 送受信における遅延時間の制御及び整相を容易かつ精度良く行うことが可能と なった。 しかし、 各振動子から送波された超音波は音速一定の媒質のみを通つ て焦点に集まるわけではない。 送波パルスは圧電振動子で電気信号から超音波 に変換された後、 探触子表面のレンズ層と生体組織を通って所望の焦点位置に 到達する。 このとき、 レンズ層と生体組織では音速が異なるので、 両者の界面 で圧電振動子の配列方向に音の屈折が起こる。 遅延時間の計算には、 この屈折 による効果を織り込む必要がある。 屈折角はスネルの法則で求まるので、 音の 屈折経路を求めることで遅延時間を計算することが可能である。 In order to obtain a good ultrasonic image by electronic scanning, it is necessary to provide an accurate delay time for each transducer and transmit it over the entire scanning range of the ultrasonic beam. Only with this method is it possible to focus the ultrasound at the intended focal point without distorting or spreading it. The same operation is performed on the received wave to form the beam of the received echo signal. The ultrasonic probe uses ultrasonic waves generated by many transducers arranged in a one-dimensional array. A lens layer for converging in a direction orthogonal to the arrangement direction is provided. In particular, since the phasing circuit of the ultrasonic imaging apparatus has recently been digitized, it has become possible to easily and accurately control the delay time and phasing in the transmission and reception of ultrasonic waves. However, the ultrasonic waves transmitted from each transducer do not converge at the focal point only through a medium with a constant sound velocity. The transmitted pulse is converted from an electric signal into an ultrasonic wave by the piezoelectric vibrator, and reaches a desired focal position through the lens layer on the probe surface and the living tissue. At this time, since the sound speed is different between the lens layer and the living tissue, sound refraction occurs at the interface between the two in the arrangement direction of the piezoelectric vibrators. In calculating the delay time, it is necessary to incorporate the effect of this refraction. Since the refraction angle is obtained by Snell's law, it is possible to calculate the delay time by obtaining the refraction path of the sound.
し力 しながら、 超音波撮像装置は、 1秒間に 30フレーム程度の断層像を撮像 するが、 1 フレームの撮像中に焦点位置を横方向 (方位方向) に 50、 深さ方向 (距離方向) に 20程度変える必要がある。 一つの口径内にある振動子の数は探 触子にもよるが、 32個から 192個程度である。 これらのことから、 一つの振動 子に対する遅延時間の設定を、 仮に計算によって行うとしてもかなり高速に行 うことが必要である。 し力 し、 現実の超音波撮像装置に搭載する MPU(Micro Processor Unit)あるレヽは DSP (Digital Signal Processor) などの演算処理性 能に照らしても、 リアルタイム処理できる計算量には限界がある。 そのため現 状の超音波撮像装置においては、 予め探触子毎に各焦点位置に対する遅延時間 を計算したデータをハードディスクなどの記憶媒体に記憶しておく方法、 ある いは、 リアルタイム処理に間に合うような計算式を用いた近似計算を行う方法 のいずれかで対処している。  The ultrasonic imaging device captures tomographic images of about 30 frames per second while moving the focus position during the capturing of one frame by 50 in the horizontal direction (azimuth direction) and in the depth direction (distance direction). Needs to be changed by about 20. The number of transducers in a single aperture varies from 32 to 192, depending on the transducer. From these facts, it is necessary to set the delay time for one vibrator at a very high speed even if it is calculated. However, there is a limit to the amount of computation that can be performed in real-time with the MPU (Micro Processor Unit) mounted on a real ultrasonic imaging device, even in light of the arithmetic processing performance of a DSP (Digital Signal Processor). For this reason, in the current ultrasonic imaging apparatus, a method of storing data in which the delay time for each focus position is calculated in advance for each probe in a storage medium such as a hard disk, or a method for real-time processing. One of the methods is to perform an approximate calculation using a formula.
現在、 超音波撮像装置の探触子は、 診断対象臓器、 部位、 症状等に特化した 探触子が用いられており、 その種類は增える一方である。 そのため、 前述の遅 延時間のデータを記憶しておくにはかなり大容量の記憶装置が必要となる。 し かし、 超音波撮像装置は、 価格等の制約から余り大容量の記憶装置を搭載する ことは現実的ではない。 特に、 後から開発された探触子も使えるといった拡張 性を超音波撮像装置に持たせる場合に困難が生じる。 また、 今後主流となるで あろう 2次元探触子においては更に振動子数が増えることから、 記憶すべきデ ータ量がより増大する方向にある。 At present, probes that are specialized for the organ, site, and symptom to be diagnosed are used as probes of the ultrasonic imaging apparatus, and the types thereof are increasing. Therefore, a considerably large-capacity storage device is required to store the delay time data. However, it is not realistic to mount an extremely large-capacity storage device on an ultrasonic imaging device due to price and other restrictions. In particular, difficulties arise when the ultrasonic imaging device has expandability such that a probe developed later can be used. Also, in the two-dimensional probe, which will become the mainstream in the future, the number of transducers will increase further. Data amount is increasing.
一方、 近似計算で遅延時間を求める方法は、 従来の計算精度では、 条件によ つて精度不足となることがある。 精度は探触子の中心周波数での周期と誤差時 間の比で決まるので、 高精細な探触子のように中心周波数が高い、 すなわち周 期の短いパルスを送波する探触子が開発されるにつれて遅延時間の精度に対す る要求は厳しくなる。 故に、 近似方式は更に精度の高いものが必要となる。 ま た、 2次元探触子への適用を考えると、一つの振動子に関する計算時間をより短 くする必要が出てくるので、 より厳しい方向に向かうことは前者の場合と同様 である。  On the other hand, the method of obtaining the delay time by approximation calculation may be insufficient in accuracy with the conventional calculation accuracy depending on conditions. Since the accuracy is determined by the ratio between the period at the center frequency of the probe and the error time, a probe that transmits a pulse with a high center frequency, that is, a pulse with a short period, like a high-definition probe has been developed. The demands on the accuracy of the delay time become stricter. Therefore, a more accurate approximation method is required. In addition, considering the application to a two-dimensional probe, it is necessary to shorten the calculation time for one transducer, so going in a more severe direction is the same as the former case.
超音波診断に供される画像は前記デジタル整相技術の採用とも相俟って、 従 来と比較し格段の画質向上が達成されたが、超音波撮像装置で得られる画像は、 X線装置、 X線 CT装置や MRI装置等の他のモダリティで得られる画像と比較し た場合には更なる画質向上が要望されている。  The image used for ultrasonic diagnosis has been significantly improved in comparison with the conventional image in combination with the adoption of the digital phasing technology, but the image obtained by the ultrasonic imaging apparatus is an X-ray apparatus. There is a demand for further improvement in image quality when compared with images obtained by other modalities such as X-ray CT and MRI.
上記超音波画像の画質向上策として、 被検体内の超音波の音速を補正する技 術が最近開発されつつある。 従来の超音波撮像装置では、 超音波を被検体内の 焦点位置へ集束させるための遅延制御データを、 生体の平均的な音速に基づい て設定していたが、被検体には筋肉質の者や脂肪の多い者等個体差があるため、 全ての被検体へその制御データを使用した場合には、 平均的には良い画像と言 える画像が得られるが、 被検体毎に最良の画像が得られるとは言えず、 その改 善が望まれていた。 上記音速補正技術はこれへの対応策とされているもので、 検査される被検体毎に体内の超音波伝播速度を測定または推定することにより、 その値でビーム形成のための遅延時間制御データを求めるものである。 この音 速補正技術は、 本願出願人が特許出願した、 例えば特開平 8— 317923号ゃ特開 平 10—66694号に記載されている。  As a measure for improving the image quality of the ultrasonic image, a technique for correcting the sound speed of the ultrasonic wave in the subject has been recently developed. In a conventional ultrasonic imaging apparatus, delay control data for focusing an ultrasonic wave to a focal position in a subject is set based on an average sound velocity of a living body. Due to individual differences such as those with a lot of fat, when the control data is used for all subjects, an image that is good on average is obtained, but the best image is obtained for each subject. It could not be said that it could be improved, and its improvement was desired. The above-mentioned sound velocity correction technology is a countermeasure for this. By measuring or estimating the ultrasonic wave propagation velocity in the body for each subject to be examined, the delay time control data for beam formation is calculated based on the measured or estimated value. Is what you want. This sound velocity correction technique is described in, for example, Japanese Patent Application Laid-Open Nos. 8-317923 and 10-66694 filed by the present applicant.
しかし、 超音波画像の画質は、 この音速補正技術を採用しても更に改善の余 地が残されていると考えられる。 それは超音波伝播経路における屈折を織り込 んでビーム形成することで改善されると本発明の発明者等は考えている。 超音 波の伝播経路における屈折としては、 レンズ層による屈折が先ず問題として挙 げられるが、 超音波の屈折が起きるのはレンズ層と被検体との境界面に限らな レ、。 超音波撮像装置の診断対象である生体は脂肪や筋繊維、 各種臓器、 血液な ど多様な組織からなる。 これらの組織中ではそれぞれ音速が異なるので、 その 境界面で微妙に超音波の屈折が起きる。 これらの屈折の中でも、 脂肪層による 屈折効果をビーム形成に取り込むことが最も容易である。 However, it is considered that there is still room for improvement in the image quality of ultrasonic images even if this sound velocity correction technology is adopted. The inventors of the present invention believe that this can be improved by forming a beam by incorporating the refraction in the ultrasonic wave propagation path. As the refraction in the ultrasonic wave propagation path, the refraction by the lens layer is the first problem, but the refraction of the ultrasonic wave occurs only at the interface between the lens layer and the subject. Les ,. The living body to be diagnosed by the ultrasonic imaging device is composed of various tissues such as fat, muscle fibers, various organs, and blood. Since the speed of sound is different in each of these tissues, subtle refraction of ultrasonic waves occurs at the interface. Of these refractions, it is easiest to incorporate the refraction effect of the fatty layer into beamforming.
その理由は、 以下に挙げるように主に 3つある。 第一に、 脂肪層は必ず皮下 に存在するので、 どの ,を見るにも経皮的に超音波探触子を当てるときには 超音波パルスは脂肪層を透過する。 つまり脂肪層による屈折は、 経皮的な探触 子を用いる限り避けられなレ、。 第二に、 脂肪層は生体組織の中で一番外側にあ ることから、 屈折がもたらす焦点位置へのずれの影響は一番大きい。 第三に、 皮下脂肪は探触子の口径内では一定の厚みを持っていると仮定しても良いと考 えられるので、 血管など、 他の組織の場合に比べ計算に取り込むことが容易で ある。 発明の開示  There are three main reasons: First, since the fat layer always exists under the skin, the ultrasonic pulse penetrates the fat layer when the ultrasound probe is applied percutaneously to see any of the skin. In other words, refraction by the fat layer cannot be avoided unless a transcutaneous probe is used. Second, since the fat layer is the outermost part of the living tissue, the effect of refraction on the focal position has the greatest effect. Thirdly, it is possible to assume that the subcutaneous fat has a certain thickness within the caliber of the probe, so it is easier to incorporate it into the calculation than in the case of other tissues such as blood vessels. is there. Disclosure of the invention
本発明は以上に鑑み成されたもので、 その第一の目的は、 超音波画像の画質 を現状よりも更に向上することにある。  The present invention has been made in view of the above, and a first object of the present invention is to further improve the image quality of an ultrasonic image compared to the current state.
本発明の第二の目的は、 超音波探触子のレンズ層または/及び脂肪層による 超音波の屈折の影響を考慮して遅延時間を設定することができる超音波撮像装 置を提供することにある。  A second object of the present invention is to provide an ultrasonic imaging apparatus capable of setting a delay time in consideration of the effect of ultrasonic refraction by a lens layer and / or a fat layer of an ultrasonic probe. It is in.
更に、 本発明の第三の目的は、 上記レンズ層または/"及び脂肪層による屈折 の影響と、 個々の被検体の超音波伝播速度とを併せて考慮して遅延時間を設定 することができる超音波撮像装置を提供することにある。  Furthermore, a third object of the present invention is to set a delay time in consideration of the influence of refraction by the lens layer or / and fat layer and the ultrasonic wave propagation speed of each subject. An object of the present invention is to provide an ultrasonic imaging apparatus.
脂肪層による超音波の屈折を考慮する場合、 予め遅延時間を計算して記憶装 置に保存しておく方式を取ろうとすると、 各脂肪層厚さに対し全て計算してお く必要があるので大容量の記憶装置が必要になる。 また、 個人差によって脂肪 層の音速が微妙に異なる場合、 その場で計算出来る方が有利である。 従って、 本発明では、 近似精度が十分で且つ計算が速く済むアルゴリズムを用い、 レン ズ層及び脂肪層による超音波の屈折の影響を考慮して遅延時間を求める手法を 採用する。 すなわち、 本発明の代表的な例における超音波撮像装置は、 配列振動子を備 えた超音波探触子と、 超音波を被検体に対し送信または Z及び受信の際に送波 フォーカシングまたは受波フォーカシングを行うために各振動子に対する遅延 時間を制御する遅延制御手段と、 前記配列振動子と設定された焦点位置との間 の超音波伝播媒体による超音波の屈折効果を織り込んで前記送波または受波の フォー力シングを行う遅延時間を生成し前記遅延制御手段へ供給する屈折補正 遅延データ生成手段と、 超音波画像を表示する表示ュニットを備えたことを特 徴としている。 そして、 前記遅延制御手段には予め生体の平均音速によって求 められた遅延時間データが記憶され、 その記憶された遅延時間データを用いて 屈折補正データを求めるための超音波送受信が先行して行われる。 前記屈折 補正遅延データ生成手段は、 探触子のレンズ層厚、 レンズ層の音速、 振動子の 配列ピッチを含む前記超音波探触子に関するパラメータを用い、 前記振動子と 指定された焦点との間の超音波伝播経路における超音波屈折効果を考慮して各 振動子に与える遅延時間を演算により求める。 また、 前記屈折補正遅延データ 生成手段は、 レンズ層厚、 レンズ層の音速、 振動子間ピッチを含む前記超音波 探触子に関するパラメータ、 並びに被検体の脂肪層厚と脂肪層の音速、 生体組 織の音速のデータを用い、 前記振動子と指定された焦点との間の超音波伝播経 路における超音波屈折効果を考慮して各振動子に与える遅延時間を演算により 求める。 さらに、 前記屈折補正遅延データ生成制御手段は、 計算の対象となる 振動子の隣の振動子から前記焦点に至る音の経路に関するパラメータから漸化 式的に解かれたパラメータを用いて遅延時間を演算により求める。 When considering the refraction of ultrasonic waves by the fat layer, if it is necessary to calculate the delay time in advance and store it in the storage device, it is necessary to calculate all for each fat layer thickness. A large-capacity storage device is required. If the sound velocity of the fat layer is slightly different due to individual differences, it is advantageous to be able to calculate on the spot. Therefore, the present invention employs a method of obtaining a delay time by using an algorithm having a sufficient approximation accuracy and a fast calculation, and taking into account the influence of ultrasonic refraction by the lens layer and the fat layer. That is, an ultrasonic imaging apparatus according to a representative example of the present invention includes: an ultrasonic probe having an arrayed transducer; and transmitting, focusing, and receiving when transmitting or Z and receiving ultrasonic waves to a subject. Delay control means for controlling a delay time with respect to each transducer for performing focusing; and the transmitting or transmitting by incorporating a refraction effect of ultrasound by an ultrasound propagation medium between the arrayed transducers and a set focal position. It is characterized by comprising a refraction correction delay data generating means for generating a delay time for performing forcing of a received wave and supplying the delay time to the delay control means, and a display unit for displaying an ultrasonic image. The delay control means stores in advance delay time data obtained based on the average sound velocity of the living body, and performs ultrasonic transmission and reception for obtaining refraction correction data using the stored delay time data in advance. Will be The refraction correction delay data generating means uses parameters relating to the ultrasonic probe including a lens layer thickness of the probe, a sound velocity of the lens layer, and an arrangement pitch of the transducer, and calculates a relationship between the transducer and a designated focal point. The delay time to be given to each transducer is calculated by calculation, taking into account the ultrasonic refraction effect in the ultrasonic propagation path between them. Further, the refraction correction delay data generating means includes: a parameter relating to the ultrasonic probe including a lens layer thickness, a lens layer sound velocity, a pitch between transducers; a fat layer thickness of the subject and a sound velocity of the fat layer; The delay time to be given to each transducer is calculated by using the sound velocity data of the weave, taking into account the ultrasonic refraction effect in the ultrasonic propagation path between the transducer and the designated focal point. Further, the refraction correction delay data generation control means may calculate the delay time using a parameter recursively solved from a parameter relating to a sound path from the vibrator next to the vibrator to be calculated to the focal point. Obtained by calculation.
また、 本発明の超音波撮像装置は、 超音波画像が表示された前記表示ュニッ トの画面から屈折補正用の被検体の層構造に関するデータを検出する手段と、 この層構造データ検出手段の出力を用いて被検体の層構造による超音波の屈折 の影響を考慮に入れた遅延制御データを生成する手段とを備えたことを特徴と している。 そして、 前記層構造データ検出手段は画面上において移動可能な 2 点のカーソルを表示し、 それらの画面上でのカーソル間距離を計測するキヤリ パを含む。  Further, the ultrasonic imaging apparatus of the present invention comprises: means for detecting data relating to a layer structure of a subject for refraction correction from a screen of the display unit on which an ultrasonic image is displayed; and an output of the layer structure data detecting means. Means for generating delay control data taking into account the effect of ultrasound refraction due to the layer structure of the subject using the method. The layer structure data detecting means includes a caliper for displaying two movable cursors on the screen and measuring a distance between the cursors on the screen.
そして、 本発明の超音波撮像装置は、 配列振動子を備えた超音波探触子と、 超音波を被検体に対し送信または z及び受信の際に送波フォーカシングまたは 受波フォーカシングを行うために各振動子に対する遅延時間を制御する遅延制 御手段と、 前記被検体における層を成す構造の厚さを測定する手段と, 前記層 構造の部分の音速を測定する手段と、 前記層厚測定手段によつて測定された層 厚と前記音速測定手段によって測定された層構造中の音速とを用いて、 前記振 動子と指定された焦点との間の超音波伝播経路における超音波屈折効果を考慮 して各振動子に与える遅延時間を求め前記遅延制御手段へ供給する屈折補正遅 延制御手段と、 超音波画像を表示する表示ュニットを備えたことを特徴として いる。 そして、 前記音速測定手段は、 複数の振動子が受信したエコー信号を整 相処理する遅延回路の出力を用いて各受信チャンネルの遅延時間誤差を演算に より求め、 この遅延誤差から被検体内の音速を求める音速計測手段を含む。 ま た、 前記音速計測手段は, 音速計測領域を被検体の脂肪層と、 この脂肪層の內 部の組織部とに特定して、 各々について音速を計測する手段を含む。 And the ultrasonic imaging apparatus of the present invention comprises: an ultrasonic probe having an arrayed transducer; Delay control means for controlling a delay time for each transducer to perform transmission focusing or reception focusing at the time of transmitting or z and receiving ultrasonic waves to the subject, and a structure forming a layer in the subject. Means for measuring the thickness, means for measuring the speed of sound of the portion of the layer structure, and the layer thickness measured by the layer thickness measuring means and the sound speed in the layer structure measured by the sound speed measuring means. A delay time to be given to each transducer in consideration of an ultrasonic refraction effect in an ultrasound propagation path between the transducer and a designated focal point, and a refraction correction delay control to be supplied to the delay control means. Means, and a display unit for displaying an ultrasonic image. The sound velocity measuring means calculates the delay time error of each receiving channel by using the output of a delay circuit that performs phasing processing of the echo signals received by the plurality of transducers, and calculates the delay time error in the subject from the delay error. Includes sound speed measurement means for determining sound speed. Further, the sound velocity measuring means includes means for specifying a sound velocity measuring region to a fat layer of the subject and a tissue portion at a part of the fat layer, and measuring a sound velocity for each of the tissue layers.
さらに、 本発明の超音波撮像装置は、 超音波探触子のレンズ層厚、 レンズ 層の音速、 振動子配列ピッチを含む超音波探触子に関するパラメータを用い、 超音波が前記振動子を出てから指定された焦点に到達するまでに屈折する効果 を考慮して各振動子に与える遅延時間を計算する方法をコンピュータに実行さ せるためのプログラムを、 または、 レンズ層厚、 レンズ層の音速、 振動子間ピ ッチを含む超音波探触子に関するパラメータ、 並びに被検体の脂肪層厚と脂肪 層の音速と脂肪層を除いた生体組織の音速のデータとを用い、 超音波が前記振 動子を出てから指定された焦点に到達するまでに屈折する効果を考慮して各振 動子に与える遅延時間を計算する方法をコンピュータに実行させるためのプロ グラムを内蔵したことを特徴としている。 図面の簡単な説明  Further, the ultrasonic imaging apparatus of the present invention uses the parameters related to the ultrasonic probe including the lens layer thickness of the ultrasonic probe, the sound velocity of the lens layer, and the transducer array pitch, and the ultrasonic wave exits the transducer. A program to make a computer execute a method to calculate the delay time to be applied to each transducer taking into account the effect of refraction from when the lens reaches the specified focal point, or the lens layer thickness, the sound velocity of the lens layer Using the parameters related to the ultrasonic probe including the pitch between the transducers, and the data of the fat thickness of the subject, the sound velocity of the fat layer, and the sound velocity of the living tissue excluding the fat layer, the ultrasonic The program has a built-in program that allows a computer to execute a method of calculating the delay time given to each transducer taking into account the effect of refraction from exiting the transducer until reaching the designated focal point. are doing. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の一実施形態による超音波撮像装置の概略構成例を示すブロッ ク図、 図 2は図 1に示す超音波撮像装置ないの超音波ビームフォーマの一実施 形態を示すブロック図、図 3は振動子アレイと超音波画像の関係を示す図、図 4 は超音波送受波時の振動子アレイと遅延時間の関係を示す図、 図 5は本発明の 屈折補正の一例を適用した断層像撮像の流れを示すフローチャート、 図 6は画 像表示部に表示された画像により層の厚みを計測する方法の一例を示す図、図 7 は超音波パルスの屈折状態を示す説明図、 図 8は本発明による屈折補正用の遅 延時間計算の手順の第 1の例を説明するフローチヤ一ト、 図 9は本発明による 屈折補正用の遅延時間計算の手順の第 2の例を説明するフローチャート、 図 10 はフェーズドアレイ型探触子における焦点位置と送波口径位置の関係を説明す る図、 図 11は超音波パルスの屈折状態の説明図、 図 12は離散ニュートン法の 説明図、図 13は本発明による屈折補正用の遅延時間計算の手順の第 3の例を説 明するフローチヤ一ト、図 14は本発明による屈折補正用の遅延時間計算の手順 の第 4の例を説明するフローチャート、図 15はコンベックス型探触子における 超音波パルスの屈折状態の説明図、図 16は本発明による超音波撮像装置の他の 実施形態の概略構成を示すプロック図、図 17は本発明による超音波撮像装置の さらなる他の実施形態の概略構成を示すプロック図、図 18は各振動子から焦点 まで到達するのに要する時間を表すグラフ、図 19は屈折補正機能のためのスィ ツチを備えた装置概観図、図 20は屈折補正のための音速を求めるための装置構 成を示すプロック図、 図 21は音速測定の画面表示例を示す図である。 発明を実施するための最良の形態 FIG. 1 is a block diagram showing a schematic configuration example of an ultrasonic imaging apparatus according to an embodiment of the present invention, FIG. 2 is a block diagram showing an embodiment of an ultrasonic beamformer without the ultrasonic imaging apparatus shown in FIG. 1, FIG. 3 is a diagram showing the relationship between the transducer array and the ultrasonic image, FIG. 4 is a diagram showing the relationship between the transducer array and the delay time during the transmission and reception of the ultrasound, and FIG. FIG. 6 is a flowchart showing a flow of tomographic image imaging to which an example of refraction correction is applied. FIG. 6 is a diagram showing an example of a method for measuring a layer thickness based on an image displayed on an image display unit. FIG. 7 is a diagram showing refraction of an ultrasonic pulse. FIG. 8 is a flowchart illustrating a first example of a procedure for calculating a delay time for refraction correction according to the present invention. FIG. 9 is a flowchart illustrating a procedure for calculating a delay time for refraction correction according to the present invention. FIG. 10 is a flowchart for explaining a second example, FIG. 10 is a diagram for explaining a relationship between a focal position and a transmitting aperture position in a phased array probe, FIG. 11 is an explanatory diagram of a refraction state of an ultrasonic pulse, and FIG. Illustration of the discrete Newton method, FIG. 13 is a flowchart illustrating a third example of the procedure of delay time calculation for refraction correction according to the present invention, and FIG. 14 is a procedure of delay time calculation for refraction correction according to the present invention. Flowchart illustrating a fourth example of FIG. 15 is an explanatory diagram of a refraction state of an ultrasonic pulse in a convex type probe, FIG. 16 is a block diagram showing a schematic configuration of another embodiment of the ultrasonic imaging apparatus according to the present invention, and FIG. FIG. 18 is a block diagram showing a schematic configuration of still another embodiment of the ultrasonic imaging apparatus, FIG. 18 is a graph showing a time required to reach a focal point from each transducer, and FIG. 19 is provided with a switch for a refraction correction function. FIG. 20 is a block diagram showing a device configuration for obtaining a sound speed for refraction correction, and FIG. 21 is a diagram showing a screen display example of sound speed measurement. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して本発明の実施の形態を説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 1は、 本発明による超音波撮像装置の一例を示す概略構成図である。 超音 波撮像装置 100は本体 10と超音波探触子 20とカゝら成る。 超音波撮像装置の本 体 10は、 制御部 11、 メモリ 12、 画像表示部 13及ぴ超音波ビームフォーマ 14 を備える。制御部 11には、キーボードゃボインティングデバイス等の入力部 15 が接続されている。 超音波探触子 20は、 超音波撮像装置の本体 10に着脱自在 になっており、被検体 30の診断対象に応じて適切なものが選択され、装着され る。 超音波探触子 20は、 振動子ァレイ 21とメモリ 22とを備える。 本体 10の メモリ 12には、 探触子の ID番号に対応した探触子固有のデータの表、 皮下脂 肪層中の音速、 生体組織中の音速等のデータが格納されている。 ここでいう探 触子固有のデータとは例えばレンズ層の厚さ、 レンズ層中の音速、 振動子ピッ チ、 コンベックス型探触子の場合はその半径、 オブリーク型探触子の場合には オブリーク角度などのパラメータ等のことである。 FIG. 1 is a schematic configuration diagram illustrating an example of an ultrasonic imaging apparatus according to the present invention. The ultrasonic imaging apparatus 100 includes a main body 10, an ultrasonic probe 20, and a cap. The main body 10 of the ultrasonic imaging apparatus includes a control unit 11, a memory 12, an image display unit 13, and an ultrasonic beam former 14. The control unit 11 is connected to an input unit 15 such as a keyboard and a pointing device. The ultrasonic probe 20 is detachable from the main body 10 of the ultrasonic imaging apparatus, and an appropriate probe is selected and attached according to a diagnosis target of the subject 30. The ultrasonic probe 20 includes a transducer array 21 and a memory 22. The memory 12 of the main body 10 stores a table of data unique to the probe corresponding to the ID number of the probe, and data such as a sound velocity in a subcutaneous fat layer and a sound velocity in a living tissue. The transducer-specific data referred to here includes, for example, the thickness of the lens layer, the sound velocity in the lens layer, and the transducer pitch. In the case of a hive or convex type probe, it refers to the radius of the probe, and in the case of an oblique type probe, it refers to parameters such as the oblique angle.
超音波ビームフォーマ 14は、 制御部 11の制御の下に、超音波探触子 20内の 振動子アレイ 21の動作を制御する。 この超音波ビームフォーマを用いて、超音 波ビームを被検体内で走査することで超音波画像データが得られる。 制御部 11 は、 得られた超音波画像データに基づいて、 画像表示部 13に被検体 30の超音 波断層像を表示する。  The ultrasonic beam former 14 controls the operation of the transducer array 21 in the ultrasonic probe 20 under the control of the control unit 11. Ultrasonic image data is obtained by scanning an ultrasonic beam in a subject using this ultrasonic beamformer. The control unit 11 displays an ultrasonic tomographic image of the subject 30 on the image display unit 13 based on the obtained ultrasonic image data.
図 2は、 超音波ビームフォーマの一例を示すブロック図である。 超音波ビー ムフォーマは、 演算'制御回路 41、 パルサー 42、 プリアンプ及び AD変換器 43、 遅延回路 44、 加算回路 45を備える。 超音波ビームフォーマ 14では、 演算 ·制 御回路 41 によって遅延時間が演算され、 制御されている。 演算 ·制御回路 41 はコンピュータとソフトウェアとで実現しても良い。 その場合、 遅延時間演算 のためのプログラムを ROM等の記録媒体に記録しておき、 それをコンピュータ で読み込む構成によって演算 ·制御回路 41を実現する。  FIG. 2 is a block diagram illustrating an example of an ultrasonic beamformer. The ultrasonic beamformer includes an operation control circuit 41, a pulser 42, a preamplifier and an AD converter 43, a delay circuit 44, and an addition circuit 45. In the ultrasonic beam former 14, a delay time is calculated and controlled by a calculation and control circuit 41. The arithmetic and control circuit 41 may be realized by a computer and software. In this case, a program for delay time calculation is recorded on a recording medium such as a ROM, and the calculation and control circuit 41 is realized by a configuration in which the program is read by a computer.
送波、 受波それぞれのビームフォーミングの仕組みは以下の通りである。 ま ず、 演算 ·制御回路 41から、 超音波探触子 20が備える振動子アレイ 21の各振 動子 25。, 25,, 252> ·· ·, 25nに接続されたパルサー群 42に、 各振動子の遅延時 間分だけずれたタイミングでパルス信号が送られる。 このパルス信号を受け取 つた各パルサー 42 は、 直ちにパルス信号を自分に接続されている振動子 25。, 25ぃ 252, ···, 25。に送る。 振動子 25。, 251; 252, ···, 25nはその圧電性により電 圧に応じた超音波を発生させ、 被検体 30内に超音波を送波する。 被検体 30内 で反射された超音波は再び超音波探触子 20の振動子アレイ 21に戻り、 個々の 振動子 25。, 25„ 252) ·· ·, 25nにおいて圧電性により電気信号に変換され、 プリ アンプ及び AZD変換器 43で増幅されデジタル信号に変換される。 このデジタ ル信号は、 演算 ·制御回路 41からの信号で調整された遅延回路 44で時間をず らされて加算回路 45に入り加算されることで整相加算が行われる。 The beamforming mechanism for transmitting and receiving is as follows. First, each of the transducers 25 of the transducer array 21 included in the ultrasonic probe 20 from the arithmetic and control circuit 41. , 25 ,, 25 2> ..., 25 n , a pulse signal is sent at a timing shifted by the delay time of each oscillator. Each pulser 42 that receives the pulse signal immediately sends the pulse signal to the transducer 25 connected to itself. , 25 ぃ 25 2 ,. Send to Transducer 25. , 25 1 ; 25 2 ,..., 25 n generate ultrasonic waves corresponding to the voltage due to their piezoelectricity, and transmit the ultrasonic waves into the subject 30. The ultrasonic waves reflected in the subject 30 return to the transducer array 21 of the ultrasonic probe 20 again, and the individual transducers 25. , 25 "25 2) ···, is converted into an electric signal by a piezoelectric at 25 n, are amplified by preamplifier and AZD converter 43 is converted into a digital signal. The digital signal, the arithmetic and control circuit 41 The delay time is adjusted by the delay circuit 44 adjusted by the signal from the controller and the signal is added to the adder circuit 45 to be added, whereby the phasing addition is performed.
次に、 超音波探触子 20に備えられている振動子アレイ 21による超音波ビー ムの走査方式について説明する。 超音波ビームの走査に当たっては、 図 3に示 した超音波診断画像の例から分かるように、 深さ方向と、 横方向との両方に超 音波ビームの焦点を移動する必要がある。 ここで、図 3において、 Iが超音波画 像とすると、 超音波画像 Iは点 Fnl, Fn2, Fn3, ···, (ここに、 nは 1から Nま での整数) 力 ら成る N本の受信ビームデータにより構成されている。 この点 Fnl, Fn2, Fn3, …, のデータの繫がりが 1本の超音波ビームにより計測される。 図 4は、 焦点 F„に向けて超音波パルスを送波し、 焦点 F„からの反射信号を 検出する超音波探触子を模式的に示す図である。図 4は一定時間間隔 Ts毎の波 面の移動についての様子を表している。 図 4 (a) に示すように、 超音波探触子 の焦点を F„に合わせるには、超音波探触子の口径内振動子 25。〜25。から送波さ れた超音波パルスが焦点 F„に集まるように、各振動子の動作にそれぞれ遅延時 間を与えて超音波を送波する。 図 4 (a) の場合、 口径の両端に位置する振動子 25。, 25πに与える遅延時間は 0であり、 j番目の振動子 25」に与える遅延時間 Τ」 は、 図示のように振動子 25。, 25nの位置にある仮想的な超音波の波面 WAが振動 子 25」の振動面に達するまでの時間である。このように各振動子の動作に遅延時 間を与えて超音波を送波すると波面 WAは図 4 (a) に示すように焦点 F„に向か つて収束していく。 この焦点 F„での反射波の波面 WBは、 図 4 (b) に示すよう に伝播して、 両端の振動子 25。, 25nへ到達する時刻よりも遅延時間 Τ」の分だけ ずれて振動子 25」の振動子面に到達する。従って、超音波探触子の口径内振動子 250〜25nの各々において遅延時間 の分をずらして整相した信号を加算するこ とで、 焦点 F„からの反射信号を拾うことができる。 Next, a method of scanning the ultrasonic beam by the transducer array 21 provided in the ultrasonic probe 20 will be described. When scanning the ultrasound beam, as can be seen from the example of the ultrasound diagnostic image shown in Fig. 3, the ultrasound beam is scanned both in the depth direction and in the lateral direction. It is necessary to move the focal point of the sound beam. Here, in FIG. 3, if I is an ultrasonic image, the ultrasonic image I is a point F nl , F n2 , F n3 , (where n is an integer from 1 to N) It consists of N received beam data. This point F nl , F n2 , F n3 ,..., Is measured by a single ultrasonic beam. FIG. 4 is a diagram schematically showing an ultrasonic probe that transmits an ultrasonic pulse toward the focal point F „and detects a reflected signal from the focal point F„. Figure 4 shows how the wavefront moves at regular time intervals Ts. As shown in Fig. 4 (a), in order to focus the ultrasonic probe to F „, the ultrasonic pulse transmitted from the transducer 25 within the bore of the ultrasonic probe is used. An ultrasonic wave is transmitted with a delay time for each vibrator so that it converges at the focal point F „. In the case of Fig. 4 (a), transducers 25 located at both ends of the aperture. , 25π is 0, and the delay time Τ ”given to the j-th oscillator 25” is the oscillator 25 as shown. Is the time until a virtual ultrasound wavefront WA at position 25 n reaches the oscillation surface of the vibrator 25 ". When an ultrasonic wave is transmitted with a delay time given to the operation of each transducer in this manner, the wavefront WA converges toward the focal point F „as shown in Fig. 4 (a). The wavefront WB of the reflected wave propagates as shown in Fig. 4 (b), and the oscillators 25 at both ends. , 25n, and arrives at the transducer surface of the transducer 25 ”with a delay time 時間”. Thus, in the child adds the phased signals by shifting the minute delay time in each of the ultrasonic probe diameter in the vibrator 25 0 to 25 n, it is possible to pick up the reflected signal from the focal point F " .
この送受信動作を点 F (nは 1から Nまでの整数) に対して行うことで画像 が取得される。 実際の装置では、 この送受信動作はダイナミックフォーカス法 として知られている方法、 すなわち、 送波は被検体内の関心領域 (R0I: Region of Interest) 内に位置する特定深度に焦点を設定して超音波を送信し、 受信時 は送波された超音波パルスが被検体内を進行するのに伴つて浅レ、領域から深レ、 領域へと受波の焦点位置を連続的に変えて 1本の受信ビーム信号を得るという 方法を用いる。そして、 1本のビームの計測が完了したら、 ビーム位置を順次隣 接方向 (方位方向) へ移し、 同様な送受信動作を繰り返し、 N本の受信ビーム信 号を得て画像を形成する。  An image is acquired by performing this transmission / reception operation on point F (n is an integer from 1 to N). In an actual device, this transmission / reception operation is a method known as a dynamic focus method, that is, transmission is performed by focusing on a specific depth located in a region of interest (R0I: Region of Interest) within a subject. Transmits a sound wave, and changes the focal position of the received wave from shallow to deep, from region to region as the transmitted ultrasonic pulse travels through the subject during reception. Is used to obtain the received beam signal of When the measurement of one beam is completed, the beam position is sequentially shifted to the adjacent direction (azimuth direction), and the same transmission / reception operation is repeated to obtain N reception beam signals to form an image.
ビームを方位方向へ移動する方法には、 送波口径が固定のものと、 可変なも のとの 2通りが存在する。 前者は、 セクタ型探触子に用いられる走査方式であ り、 この方式では毎回の送受信に探触子の全振動子を用い、 ビーム方向を放射 状に変えていく。 この場合、 送波口径に対して、 ビーム方向が、 言い換えれば 送受信の焦点が口径の正面に来る場合はわずかである。 このことは後の遅延時 間の計算において大きな意味をもつ。 後者は、 リニア型探触子ゃコンベックス 型探触子に用いられる方式である。 この方式は前者と異なり、 1回の送波に探触 子が備える全振動子を用いず、 例えば、 全振動子数が 192チャンネルの探触子 で、 1回の送波に 64チャンネルの口径を用いる。 この場合、 ある位置のビーム を得るときにはその正面に口径を位置させて送受信し、 ビーム位置の移動は口 径を動かすことでなされ、 前者の場合と逆に常に口径の正面に焦点がくるよう な送波の仕方をする。 There are two ways to move the beam in the azimuth direction: one with a fixed aperture and the other with a variable aperture. There are two ways. The former is a scanning method used for sector-type probes. In this method, all transducers of the probe are used for transmission and reception every time, and the beam direction is changed radially. In this case, when the beam direction is in relation to the transmission aperture, in other words, the focal point of transmission and reception is slightly in front of the aperture. This has great significance in the calculation of the delay time later. The latter is a method used for a linear probe and a convex probe. This method differs from the former in that it does not use all transducers provided in the probe for one transmission.For example, a probe with a total number of transducers of 192 channels and a transmission of 64 channels in diameter Is used. In this case, when obtaining a beam at a certain position, transmission and reception are performed with the aperture positioned in front of the beam, and movement of the beam position is performed by moving the aperture, so that the focus is always in front of the aperture, contrary to the former case. How to transmit waves.
次に、 図 5のフローチャートにより本発明の超音波撮像装置を用いた断層像 撮像の流れの一例を説明する。 超音波撮像装置において超音波探触子は着脱自 在で交換可能であるので、 撮像に先立って、 ステップ 11において、 超音波撮像 装置の本体 10に装着されている超音波探触子 20の認識を行う。 この認識は、 超音波探触子 20のメモリ 22に格納されている探触子 ID番号等のパラメータを 読み取ることにより行われる。  Next, an example of the flow of tomographic image imaging using the ultrasonic imaging apparatus of the present invention will be described with reference to the flowchart of FIG. In the ultrasonic imaging apparatus, since the ultrasonic probe can be replaced by attaching and detaching itself, prior to imaging, in step 11, recognition of the ultrasonic probe 20 attached to the main body 10 of the ultrasonic imaging apparatus is performed. I do. This recognition is performed by reading a parameter such as a probe ID number stored in the memory 22 of the ultrasonic probe 20.
次に、 ステップ 12において、 後述する屈折率補正をかけない状態で、 すなわ ち装置へ初期設定された生体の平均音速に基いて求めた遅延制御データによつ て被検体の断層像を撮像する。 図 6は、 このとき画像表示部 1 3に表示される 診断画面の模式図であり、 補正がかかっていないため幾分ぼけた対象の像が表 示される。 なお、 図 6に示した画像はコンベックス型探触子で撮像した画像で、 探触子に接する側に皮下脂肪層が写っている。  Next, in step 12, a tomographic image of the subject is captured by the delay control data obtained based on the average sound velocity of the living body initially set in the apparatus without performing the refractive index correction described later. I do. FIG. 6 is a schematic diagram of a diagnostic screen displayed on the image display unit 13 at this time, and an image of a somewhat blurred target is displayed because no correction is applied. The image shown in Fig. 6 is an image taken by a convex type probe, and a subcutaneous fat layer is shown on the side in contact with the probe.
ステップ 13において、 診断者はこの脂肪層の厚さを測定し、 入力する。 具体 的には、 従来より超音波撮像装置に備えられているキヤリパーを使ってそれを 計測する。 図 6中に、 Aで示した脂肪層が始まる所と、 Bで示した脂肪層が終わ る所とのそれぞれにキヤリバのカーソルを合わせることで、 キヤリパーの計測 機能により画面上に A—B間の距離が求まる。 (図の例の場合、 13墮) この値を 脂肪層の厚さとして使うことが出来る。 診断者によつて脂肪層の厚さが入力さ れた後は、 診断装置内で全ての処理が実行される。 In step 13, the diagnostician measures and inputs the thickness of this fat layer. Specifically, the measurement is performed using a caliper conventionally provided in an ultrasonic imaging apparatus. In Fig. 6, the cursor of the caliper is positioned at the point where the fat layer indicated by A starts and the point where the fat layer indicated by B ends. Is determined. (In the example shown, 13 corrupt) This value can be used as the thickness of the fat layer. Fatty layer thickness entered by the diagnostician After that, all processes are executed in the diagnostic device.
以下、 撮像モードに入り、 診断者はステップ 14において入力部 15から超音 波撮像装置の制御部 11を介してビームフォーマ 14に送波の焦点深度を指示す る。 ビームフォーマ 14は、 ステップ 15において演算'制御回路 41により後述 する屈折率補正を行った遅延時間を計算する。 ここで計算される遅延時間は、 送波の焦点深度に対応した送波用の各振動子へ与えられる遅延時間と、 1本の超 音波受信ビームを形成するために各振動子へ与えられる遅延時間、 すなわち前 述のように受波の焦点位置を連続的に変えるための遅延時間とである。  Hereinafter, the imaging mode is entered, and the diagnostician instructs the beamformer 14 from the input unit 15 via the control unit 11 of the ultrasonic imaging apparatus to the beamformer 14 in step 14. The beamformer 14 calculates the delay time after the refractive index correction described later has been performed by the arithmetic and control circuit 41 in step 15. The delay time calculated here is the delay time given to each transducer for transmission corresponding to the focal depth of the transmission, and the delay given to each transducer to form one ultrasonic reception beam. This is the time, that is, the delay time for continuously changing the focal position of the received wave as described above.
続いて、 ステップ 16において、 求められた送波用遅延時間を用いて超音波探 触子の振動子ァレイが励起されると、 1番目の超音波ビームラィン上に指定され た焦点に収束するように超音波ビームが送波される。 次に、 ステップ 17におい て、超音波探触子の振動子ァレイによる受波信号をステップ 15で計算した受波 用遅延時間を用いて整相し、 加算することで 1番目の受信ビーム信号が得られ る。  Subsequently, in step 16, when the transducer array of the ultrasonic probe is excited using the determined transmission delay time, the ultrasonic array is converged to the focal point specified on the first ultrasonic beam line. An ultrasonic beam is transmitted. Next, in step 17, the received signal from the transducer array of the ultrasonic probe is phased using the receiving delay time calculated in step 15, and added to obtain the first received beam signal. can get.
ステップ 18では、撮像画面内の全ての点からの信号取得が完了したかどうか を判定する。 すなわち、 超音波画像を N本の超音波ビームで形成する場合、 N 番目のアドレスの超音波ビームが得られたか否かを判定する。 そして、 完了し ていなければステップ 14に戻り、 ビーム位置を変えて送受信を行う。 これを繰 り返し、 深さ方向の走査と横方向の走査に関して全撮像範囲を走査し終えたら —枚の診断画像が撮り終わる。 診断画像を撮り終えたら、 ステップ 19に進み、 それを画像表示部 13に表示して終了する。 なお、 画像表示は、 一枚の診断画像 全ての点についてデータを取り終えてから一括して表示する代わりに、 ステツ プ 17で一つの受信ビームについてのデータを取得する毎に、それを画像表示部 13に順次表示するようにしてもよい。 これは超音波撮像装置が備えているディ ジタル 'スキャン ' コンバータの機能を活用することで可能である。  In step 18, it is determined whether signal acquisition from all points in the imaging screen has been completed. That is, when an ultrasonic image is formed by N ultrasonic beams, it is determined whether an ultrasonic beam of the Nth address has been obtained. If not completed, the flow returns to step 14 to change the beam position and perform transmission / reception. This is repeated, and when the scanning of the entire imaging range has been completed for the scanning in the depth direction and the scanning in the horizontal direction, the diagnostic images have been captured. After taking the diagnostic image, proceed to step 19, display it on the image display section 13, and end. In the image display, instead of displaying all the data for all points of a single diagnostic image after completing the data collection, each time data for one received beam is obtained in step 17, it is displayed as an image. You may make it display in the part 13 sequentially. This is possible by utilizing the function of the digital 'scan' converter provided in the ultrasonic imaging device.
次に、 図 5のフローチャートのステップ 15における 「屈折率補正を行った遅 延時間を計算」 の処理内容について詳細に説明する。 ここでは一例として、 リ ニァゃセクタ型探触子のように探触子の送波面が、 アレイ方向に曲率をもたな い場合について説明する。 コンベックス型など他のタイプの探触子についても、 式の形が変わるのみで同じ考え方で取り扱うことができる。 Next, the processing content of “calculate the delay time after performing the refractive index correction” in step 15 of the flowchart in FIG. 5 will be described in detail. Here, as an example, a case where the transmitting surface of the probe has no curvature in the array direction, such as a linear sector type probe, will be described. For other types of transducers such as convex type, It can be handled in the same way, only the form of the expression changes.
図 7を参照して、 口径内のある振動子 25」に電気パルス信号を送った後、振動 子 25」から発せられた超音波が焦点位置に到達するまでを考える。超音波探触子 は、 振動子ピッチ pで一次元的に配列している振動子列と、 振動子列の前面に 配置された厚さ のレンズ層を備えるものとする。 レンズ層は、 振動子列から 発生された超音波を振動子列に直交する方向 (図 7の紙面に直交する方向) に 収束させるためのものである。 また、 生体の脂肪層よりも内部に存在する生体 組織内での音速は平均的に均一であるとし、 脂肪層は超音波探触子の送波口径 内で一定の厚みもを持っているものと考える。 こうすると、 振動子から送波さ れた超音波は、 レンズ層、 脂肪層、 生体組織の 3層を伝播して焦点へ到達する こととなり、 屈折は 3層問題となる。  Referring to FIG. 7, consider a case where an electric pulse signal is sent to a vibrator 25 "having an aperture and then an ultrasonic wave emitted from the vibrator 25" reaches a focal position. The ultrasonic probe is provided with a transducer row arranged one-dimensionally at a transducer pitch p, and a lens layer having a thickness arranged in front of the transducer row. The lens layer is for converging the ultrasonic waves generated from the transducer row in a direction perpendicular to the transducer row (a direction perpendicular to the plane of FIG. 7). It is assumed that the sound velocity in the living tissue existing inside the fat layer of the living body is uniform on average, and that the fat layer has a certain thickness within the transmission aperture of the ultrasonic probe. Think. In this case, the ultrasonic wave transmitted from the transducer propagates through the three layers of the lens layer, the fat layer, and the living tissue to reach the focal point, and the refraction becomes a three-layer problem.
いま、振動子列の中心から距離 Xの位置にある j番目の振動子 25」から出た超 音波が、 振動子列の中心前方、 深さ Fに位置する焦点に到達するまでの経路を 考える。電気パルス信号は、整合層を前面に有した圧電振動子 25」で超音波に変 換される。 振動子 25」から発生された超音波は、 厚さ のレンズ層を振動子列 の配列方向に距離 Xlだけずれて進み、皮下脂肪層に入射角 で入し、 レンズ層 と脂肪層の境界で屈折 (屈折角 0 2) した超音波は、 厚さもの皮下の脂肪層を振 動子列の配列方向に距離 x2だけずれて進み、入射角 θ 2で脂肪層の下の生体組織 に入射する。 脂肪層と生体組織の界面で屈折 (屈折角 0 3) した超音波は、 生体 組織内を振動子列の配列方向に距離 χ3、 深さ方向に d3の対角線方向へ進み、 生 体組織内の焦点に到達する。 Now consider the path from the j-th transducer 25 '' located at a distance X from the center of the transducer row to the focal point located at depth F in front of the transducer row center. . The electric pulse signal is converted into ultrasonic waves by a piezoelectric vibrator 25 "having a matching layer on the front surface. The ultrasonic waves generated by the vibrator 25 '' travel through the lens layer of thickness by a distance Xl in the array direction of the vibrator row, enter the subcutaneous fat layer at an incident angle, and at the boundary between the lens layer and the fat layer. The refracted (refraction angle of 0 2 ) ultrasonic wave travels through the thick subcutaneous fat layer by a distance x 2 in the direction of the array of transducer rows, and enters the living tissue below the fat layer at an incident angle θ 2 I do. The ultrasonic wave refracted at the interface between the fat layer and the living tissue (refraction angle 0 3 ) travels in the living tissue in a diagonal direction of 距離3 in the array direction of the vibrator row and d 3 in the depth direction. Reach the focus within.
各層間の境界面での超音波の屈折は、 スネルの法則に従う。 したがって、 レ ンズ層中の音速を Cl、 脂肪層中の音速を c2、 生体組織中の音速を c3とすると、 上記屈折角 0ぃ θ ,, との間に式 1が成り立つ。 The refraction of ultrasonic waves at the interface between each layer follows Snell's law. Therefore, assuming that the sound speed in the lens layer is Cl , the sound speed in the fat layer is c 2 , and the sound speed in the living tissue is c 3 , Equation 1 is established between the refraction angle 0 ぃ θ, and the above.
C, C,
(1)  (1)
sin Θ i sin θ 2 sin θ 3 こに、 音速 C,はレンズの材質によって決まり、 また実測可能であるので既 知のものである。 また、 音速 c2, c3も以下の説明において、 経験的に近似値と して既知であるとの条件の下で以下の説明を進め、 既知ではなくそれを計測に よって求める方法については他の実施形態として後に説明する。 なお、 音速 Cl は超音波探触子 20のメモリ 22内に、 また、 音速 c2, c3は超音波撮像装置本体 10のメモリ 12内に保持されているものとする。 sin Θ i sin θ 2 sin θ 3 Here, the sound speed C, is determined by the material of the lens, and can be measured. It is known. In the following description, the sound speeds c 2 and c 3 are also empirically assumed to be known as approximate values, and the following description is advanced. An embodiment will be described later. Incidentally, speed of sound Cl in the memory 22 of the ultrasonic probe 20, also, the sound velocity c 2, c 3 are assumed to be held in memory 12 of the ultrasonic imaging apparatus main body 10.
本発明では、 この問題の数値的な解法として 2つの方法を提案する。まず第 1 の方法について以下に説明する。 式 1から sinを消去すると次の式 2のように なる。  In the present invention, two methods are proposed as numerical solutions to this problem. First, the first method will be described below. Erasing sin from Equation 1 gives Equation 2 below.
^" x,2十 = 2 + ά = ^ x3 2十も2 … (2) し力 し、 式 2は、 このままでは解析的に解くことはできない。 ここでは、 解 析的な解を求めるために式 2を 3つの連立方程式で解くことにする。 ここで変 数を落とすときに残す変数として、 レンズ層中での横方向の移動量 Xl、 脂肪層 中での横方向の移動量 x2、 生体中での横方向の移動量 x3のどれを残すかについ ての選択肢があるが、 誤差の大きさを考えた時に多くの条件下で一番有利とな るのは χ3を残す方法である。 これは、 音速がレンズ層、 脂肪層、 生体組織中と 段々速くなるため、 各層の中を通る音波の経路が段々横に寝てくること、 およ び多くの撮像条件下ではこのことと併せて、 厚さもが一番大きいことによる。 故に実際の系では生体組織中で、 音の経路は横方向移動量が一番大きくなる。 —番大きな量を計算で直接求めるのが相対的な誤差を一番小さくする方法であ るから、 通常の撮像条件下では x3を求めればよくなる。 し力 し、 条件によらず レンズ層が一番薄いが、 脂肪層の厚さと生体組織の厚さは撮像条件、 撮像対象 部位の深さによって異なることがある。 よつて脂肪層の厚さと焦点距離の関係 で、 x2を残すか、 x3を残すか条件判定してから一変数の多項式を解くことを考 えるアルゴリズムも有り得る。 しかし、 ここではその方法の説明は省略して x3 を求める方法についてのみ説明することにする。 ^ "X, 2 ten = 2 + ά = ^ x 3 2 dozens 2 ... (2) to force, Equation 2, can not be solved analytically in this state. In this case, seek an analytically solution Therefore, we solve Equation 2 with three simultaneous equations: The variables left behind when the variables are dropped are the lateral displacement Xl in the lens layer and the lateral displacement x in the fat layer x 2, there is a choice about the or leave any lateral movement amount x 3 in a living body, a most advantageous and Do Runowa chi 3 under a number of conditions when considering the magnitude of the error This is because the speed of sound gradually increases in the lens layer, fat layer, and living tissue, so that the path of the sound wave passing through each layer gradually lays down, and under many imaging conditions. Therefore, in addition to this, the thickness is the largest, so in the actual system, the sound path in the living tissue has the largest lateral movement. Kikunaru -.. Since turn seek directly computing a large amount of Ru method der to reduce most the relative error, in the normal imaging conditions become better by obtaining the x 3 and teeth force, regardless of the condition the lens layer thin top, thickness imaging conditions thickness and body tissue of the fat layer in relation to the thickness of the focal length of different is the depth of the imaging site. Yotsute fat layer, the x 2 There may be an algorithm that considers whether to leave or leave x 3 and then solve a polynomial of one variable, but here, the explanation of the method is omitted and only the method of obtaining x 3 will be described. I do.
Xい x2を連立方程式から消去して式 3を得る。 式 3では、 Xを求めるのである から、 以下、 これを単に xと略記するとともに、 r2= (c3 X c3) / (c2 X c2) と 置き換えている。 Eliminate X x 2 from the simultaneous equations to obtain Equation 3. In Equation 3, we find X Therefore, in the following, this is simply abbreviated as x, and replaced with r 2 = (c 3 X c 3 ) / (c 2 X c 2 ).
H(x) = ((r2- l)x2 + r2d3 2)) c3(X x)J x*十 d^— c^x (X . x)2十 = 0H (x) = ((r 2 -l) x 2 + r 2 d 3 2 )) c 3 (X x) J x * ten d ^ —c ^ x (X .x) 20 ten = 0
H(x) H(x)  H (x) H (x)
… (3) 実際の超音波撮像装置における超音波ビームフォーマの計算処理部では、 前 述のように MPUもしくは DSPを使っている。 このうち DSPを用いている場合に は、 計算は全て積和に換算される。 代表的な DSPにおいては、 平方根は積和 32 回に相当する。割り算は値に依存するので、計算前には計算回数がわからない。 よって式 3を平方根、 割り算のない形に変形することは DSPを用いる場合に重 要であり、 その操作をした結果が式 4である。  ... (3) The calculation unit of the ultrasonic beamformer in the actual ultrasonic imaging device uses the MPU or DSP as described above. When DSP is used, all calculations are converted to sum of products. In a typical DSP, the square root is equivalent to 32 sums of products. Since the division depends on the value, the number of calculations is not known before the calculation. Therefore, transforming Equation 3 into a form without square root and division is important when using a DSP, and Equation 4 is the result of the operation.
I(x) = ((c,2一 c3 2)x_一 c3 2d3 2) I (x) = ((c , 2 one c 3 2) x_ one c 3 2 d 3 2)
(I(x)H(x)(X - x)2 + H(x)x2d1 2c1 2 + I(x)x2d2 2) … (4) 一 4(X— x)2x2d2 2I(x)2H(x)= 0 ガロアの理論により、 因数分解によって次数を落とすことの出来ない多項式 は 5次以上の場合、解の公式は存在しないことが知られている。 このことから、 式 4をいきなり解くことは不可能である。 ただし、式 4は 12次方程式とはいえ、 有理多項式であり、 全範囲で微分可能であることから、 十分に解の近傍では直 線として近似することが可能である。 常に解の近傍にあるという条件さえ満た す Xがあればよい。 (I (x) H (x) (X-x) 2 + H (x) x 2 d 1 2 c 1 2 + I (x) x 2 d 2 2 )… (4) 1 4 (X—x) 2 x 2 d 2 2 I (x) 2 H (x) = 0 According to Galois theory, it is known that no solution formula exists for polynomials whose order cannot be reduced by factorization if the degree is 5 or higher. ing. This makes it impossible to solve Equation 4 immediately. However, although Equation 4 is a 12th-order equation, it is a rational polynomial and is differentiable in the entire range, so it can be approximated as a straight line sufficiently near the solution. It is only necessary that X satisfy the condition that it is always near the solution.
解の近傍での式 4の振る舞いを解析してみると、 式 3から式 4への変換にお いて平方根を除くために両辺自乗したわけであるが、 これは式 3の前項を gl、 後項を g2とすると、 gl (x)— g2 (x)の解を探していたのが g1 (x) X g1 (x)—g2 (x) X g2(x)= (g,(x)— g2(x)) x (g1(x)+g2(x)) の解を探していることになることか ら、 式 4の解には、 本来の gl(x)— g2(x)の解に加え、 8,(χ)+ (χ)の解も含まれ ている。 この両辺自乗と言う操作は 2回行われているので、 関係ない解が 2つ 余計に入っていることになるが、 2回目の自乗によって式 4に新たに含まれた解 は、十分に本来の解から離れているので、ここでは問題とならない。 gl(x)+g2(x) の解も持つことで式 4は解近傍で変曲点を持つので、 近似的な値を求める位置 はこの変曲点より真の解に近いことが必要である。 その条件に適するものとし て、 図中の表記を用いて x+pXd3ZF を近似解の出発点として用いる。 そうす ると振動子位置 Nでの Xである xNは次の式 5により求まる。 ここからは、 式 4 の左辺を f(x)と表記する。 d3 f(xNt十 pd3/F) And try to analyze the behavior of the formula 4 in the vicinity of the solution, but not to both sides square to remove the square root and have your conversion from Equation 3 to Equation 4, which gl the preceding formula 3, after When the section and g 2, gl (x) - g 2 (x) is g 1 of solution were looking for a (x) X g 1 (x ) -g 2 (x) X g 2 (x) = (g, (x) — g 2 (x)) x (g 1 (x) + g 2 (x)) , the original gl (x) - in addition to the solutions of g 2 (x), 8, also includes solutions of (χ) + (χ). This two-sided square operation is performed twice, which means that there are two extra solutions that are not relevant, but the solution newly included in Equation 4 by the second square is sufficiently original Since this is far from the solution, it does not matter here. Equation 4 has an inflection point near the solution because it also has a solution of gl (x) + g 2 (x), so the position where the approximate value is found needs to be closer to the true solution than this inflection point. It is. Using x + pXd 3 ZF as the starting point of the approximate solution, using the notation in the figure as appropriate for that condition. An X at the vibrator position N and we do x N is determined by the following equation 5. From now on, the left side of Equation 4 is expressed as f (x). d 3 f (x Nt ten pd 3 / F)
U P F f(xN, + pd,/F) 、5) ここからは、 この漸化式を用いてリアルタイムに振動子毎の遅延時間を計算 する方法についてフローチャートを交えて説明する。 最初に、 図 8のフローチ ャ一トを用いて、 リニア型探触子またはコンベックス型探触子のように、 焦点 と口径の中心振動子を結ぶ線分と送波面が直交する探触子の遅延時間を計算す る場合について説明する。 この条件では、 焦点が口径の正面にあるので、 各振 動子の遅延時間は口径内で左右対称である。 つまり、 片側半分だけ計算すれば 十分である。 UPF f (x N , + pd, / F), 5) A method of calculating the delay time of each transducer in real time using this recurrence formula will be described with reference to a flowchart. First, using the flow chart in Fig. 8, a probe such as a linear probe or a convex probe, whose transmission plane is orthogonal to the line segment connecting the focal point and the center transducer of the aperture, is used. The case of calculating the delay time will be described. Under this condition, since the focal point is in front of the aperture, the delay time of each transducer is symmetrical within the aperture. In other words, it is enough to calculate only one half.
探触子に関するパラメータは図 5のステップ 11で既に与えられており、焦点 深度の値は図 5のステップ 14において既に与えられている。 ここでは、 口径の 中心の振動子から始めて、 一つずつ外側に向かって順に遅延時間を計算する。 まず、 ステップ 21において、 計算対象を中心の振動子とする。 中心の振動子か ら焦点に向かう超音波は層の界面に垂直に入射し、 界面では屈折しないので X。 =0である。 また、 振動子番号 Nを 1 (中心の振動子に対する隣の振動子) とす る。 次に、 ステップ 22において、 x。=0であることから、振動子番号 N= lに対す る X!を漸ィヒ式式 5により計算する。 次に、 ステップ 23に進み、 ステップ 22で 求めた をもとに、振動子番号 N= lの振動子に対する遅延時間 τを次の一連の 式、 すなわち式 6により求める。 e 3=arctan( x Zd3) The parameters for the probe have already been given in step 11 of FIG. 5, and the value of the depth of focus has already been given in step 14 of FIG. Here, the delay time is calculated one by one toward the outside, starting from the transducer at the center of the aperture. First, in step 21, the object to be calculated is the central oscillator. Ultrasonic waves from the center transducer toward the focal point are perpendicularly incident on the layer interface and do not refract at the interface. = 0. Also, let the oscillator number N be 1 (the next oscillator with respect to the center oscillator). Then, in step 22, x. = 0, X! For oscillator number N = l! Is calculated by Equation 5 as follows. Next, proceeding to step 23, the delay time τ for the vibrator with the vibrator number N = l is calculated by the following series of formulas, that is, formula 6, based on the value obtained in step 22. e 3 = arctan (x Zd 3 )
Θ 2=arcsin(c2sin θ 3, C3) Θ 2 = arcsin (c 2 sin θ 3 , C 3 )
θ ^arcsinC sin θ 3メ C3) (6) x2=d2tan ^ 2 θ ^ arcsinC sin θ 3 main C 3) (6) x 2 = d 2 tan ^ 2
Α.― X― X2 Α .-- X-- X 2
て― x 十 φ2 + 2 2十 d c2 + x3 2十 d3_z c 3 次に、 ステップ 24に進み、 振動子番号を 1つ増やし、 その隣の振動子に移り、 ステップ 25からステップ 22に戻って、 再ぴ漸化式 (式 5) で x2を計算し、 そ の x2をもとに式 6を用いて振動子番号 2の振動子に対する遅延時間 τを計算す る。 この操作を口径内振動子全てについて行う。 ステップ 25の判定が 「YES」 であれば、 この焦点深度に関しては全振動子分の遅延時間を計算したことにな るので、 ステップ 26に進み、 計算結果を演算 ·制御回路から遅延回路へ出力す る。 次の計算すべき焦点深度が超音波ビームフォーマに与えられたら、 同様に してまた全口径内振動子について計算する。 これを全焦点深度について繰り返 すことで屈折によるずれを補正した撮像が行われる。 Te - x tens phi 2 + 2 2 tens dc 2 + x 3 2 tens d 3 _z c 3 then proceeds to step 24, the transducer number is incremented by one, moved to the vibrator the adjacent, step Step 25 Returning to 22, x 2 is calculated by the recurrence recurrence formula (Equation 5), and the delay time τ with respect to the oscillator of the oscillator number 2 is calculated based on the x 2 by using Formula 6. This operation is performed for all the transducers having a diameter. If the determination in step 25 is "YES", it means that the delay time for all transducers has been calculated for this depth of focus, so the process proceeds to step 26, where the calculation result is output from the control circuit to the delay circuit. You. If the next depth of focus to be calculated is given to the ultrasonic beamformer, the same procedure is repeated for the all-diameter transducer. By repeating this for all the depths of focus, imaging is performed in which a shift due to refraction has been corrected.
次に、 図 9のフローチャートを用いて、 オブリーク型探触子またはセクタ型 探触子、 フェイズドアレイ型探触子のように、 焦点と口径の中心振動子を結ぶ 線分と送波面が直交しないタイプの探触子に対して遅延時間を計算する方法、 もしくは焦点と口径の中心振動子を結ぶ線分と送波面のなす角が変化していく ようなタイプの探触子に対して遅延時間を計算する方法について説明する。 こ の時、 焦点位置と口径、 振動子列の関係は図 10に略示するように、 オブリーク 角度 0の大きさによって、 ( 1 ) 焦点 Fから振動子の並んだ面に降ろした垂線の足 Aが送波口径内に入 る場合 Next, referring to the flowchart in Fig. 9, the line connecting the focal point and the center transducer of the aperture, such as the oblique type probe, the sector type probe, and the phased array type probe, is not orthogonal to the transmission plane. How to calculate the delay time for a type of probe, or the delay time for a type of probe in which the angle between the line connecting the focal point and the center transducer of the aperture and the transmitting surface changes The method for calculating the following is described. At this time, the relationship between the focal position, the aperture, and the vibrator row depends on the magnitude of the oblique angle 0, as schematically shown in FIG. (1) When the perpendicular foot A dropped from the focal point F to the plane where the transducers are aligned enters the transmission aperture
( 2 ) 前記 Aが送波口径内に入らない場合  (2) When A does not fall within the transmission aperture
の二通りがある。 後者の場合は Aから口径の端の振動子までの間を素子ピッチ で刻み仮想的な振動子列を考える。 そしてこの考えに基づき、 遅延時間の計算 に入る前、 すなわち図 5でいうと、 ステップ 13の次の段階で式 5によって Aの 位置にある仮想的な振動子を漸化式の第一項として逐次 Xを計算して、 口径の 端にある振動子での Xを求めておく。 オブリーク角度などの探触子に関するパ ラメータは図 5のステップ 11で既に与えられており、焦点深度や焦点方向等の 値は図 5のステップ 14において既に与えられている。 There are two ways. In the latter case, consider a virtual vibrator row by cutting the distance from A to the vibrator at the end of the aperture at the element pitch. Based on this idea, before entering the calculation of the delay time, that is, referring to Fig. 5, in the next stage of step 13, the virtual oscillator at the position of A is calculated as the first term of the recurrence formula by Eq. Calculate X one by one to find X at the transducer at the end of the aperture. Parameters related to the probe, such as the oblique angle, have already been given in step 11 of FIG. 5, and values such as the depth of focus and the focus direction have already been given in step 14 of FIG.
図 9のステップ 31では、 撮像すべき範囲内での各焦点深度、方向に関して、 その焦点から送波面に降ろした垂線の足 (図 10中の点 A) が口径内にあるか否 かを計算する。 口径内に有るときは、 ステップ 39に進み、 その垂線の足から口 径の左右の端までの振動子数を計算し、 ステップ 40において、 その足に一番近 い位置にある振動子を N= l , x。=0とする。 続いて、 ステップ 33において漸化 式 (式 5) により Xを求め、 ステップ 34において式 6により Xから遅延時間 τ を求める処理を、 振動子番号を増加しながら口径の端の位置まで行う (S26, S27) 。 この場合、 対称性は使えないので、 ステップ 37、 ステップ 41、 ステツ プ 40のように、 Ν=0の振動子から両側に口径の端まで計算していく必要がある。 これは Fcos 0が振動子ピッチの整数倍となるとは限らないからである。  In step 31 of FIG. 9, for each depth and direction of focus within the area to be imaged, it is calculated whether the perpendicular foot (point A in FIG. 10) dropped from the focal point to the transmission plane is within the aperture. I do. If it is within the caliber, proceed to step 39, calculate the number of transducers from the perpendicular foot to the right and left ends of the caliber, and in step 40, determine the transducer closest to the foot to N = l, x. = 0. Subsequently, in step 33, X is obtained by the recurrence formula (Equation 5), and in step 34, the process of obtaining the delay time τ from X by Eq. 6 is performed up to the end of the aperture while increasing the oscillator number (S26). , S27). In this case, since symmetry cannot be used, it is necessary to calculate from the oscillator of の = 0 to the end of the aperture on both sides as in Step 37, Step 41, and Step 40. This is because Fcos 0 is not always an integral multiple of the oscillator pitch.
焦点から送波面に降ろした垂線の足が口径の中にない場合は、ステップ 31か らステップ 32に進み、 口径の端の振動子での Xを読み込む。 この点 Αを遅延時 間の計算の開始点とするので、 焦点距離 Fは Fcos 0、 d3は本来の Fを用いて、 d3=Fcos 0— 一もと置換する必要がある。 If the vertical foot dropped from the focal point to the transmitting surface is not within the aperture, proceed from step 31 to step 32 to read X from the transducer at the end of the aperture. Since this point Α the starting point for calculations during the time delay, the focal length F is F cos 0, d 3 by using the original F, d 3 = F cos 0- one original needs to be replaced.
次に、 口径の端の位置での Xを x。に入力し、 N= lとする。 その後、 ステップ Then x at the end of the caliber x. And N = l. Then step
33において漸ィ匕式 (式 5) により Xを求め、 ステップ 34において式 6により X から遅延時間 τを求める。次に、 ステップ 35で隣の振動子に移り、ステップ 36 で口径の端の振動子に達したと判定されるまでステップ 33からステップ 35の 処理を繰り返す。 これで、 この焦点深度、 焦点方向に関しては全振動子分の遅 延時間を計算したことになるので、 ステップ 38において計算結果を演算 ·制御 回路から遅延回路へ出力する。 次の計算すべき焦点深度、 焦点方向が超音波ビ ームフォーマに与えられたら、 同様にしてまた全口径内振動子について計算す る。 これを全焦点深度、 焦点方向について繰り返すことで屈折によるずれを補 正した撮像が行われる。 In step 33, X is obtained by the graduation formula (formula 5), and in step 34, the delay time τ is obtained from X by formula 6. Next, the process moves to the next vibrator in step 35, and the processes in steps 33 to 35 are repeated until it is determined in step 36 that the vibrator has reached the end of the aperture. With this, the depth of focus and the focus direction are delayed by all transducers. Since the delay time has been calculated, the calculation result is output from the operation / control circuit to the delay circuit in step 38. If the next depth of focus and the direction of focus to be calculated are given to the ultrasonic beamformer, the same calculation is performed again for all the transducers within the aperture. By repeating this for all the depths of focus and the focal directions, imaging is performed in which deviation due to refraction is corrected.
前述の式 5の漸化式を用いることで、遅延時間の近似値は十分な精度 (1/中 心周波数の 1 10精度) で求めることが可能となる。 この方法は従来の近似式 に比べると十分な精度を有し、 且つ精度を重視してィテレーシヨンで求める方 法に比べて、 アルゴリズム中にループを持たないので、計算速度はかなり速い。 このアルゴリズムと近年の演算処理装置の高速化と相俟って、 本発明のような 脂肪層による屈折まで含めたリアルタイム高速遅延時間計算アルゴリズムが実 現できたわけである。 さらに一般の漸ィ匕式の計算に比べると、 誤差が蓄積して いかない点で著しく有利である。 これは、 近似解を求めるための Xには毎回誤 差が含まれていても、 f (x)は近似を含まない関数であるために、 Xと f (x)、f' (X) の間には誤差が存在しないため、 式 5には xN_,での誤差が xNに反映されないた めである。 By using the recurrence formula of the above formula 5, the approximate value of the delay time can be obtained with sufficient accuracy (1/10 of the center frequency). This method has a sufficient accuracy compared with the conventional approximation formula, and has no loop in the algorithm as compared with the method of obtaining the accuracy by using the iteration, so that the calculation speed is considerably faster. Together with this algorithm and the recent increase in the speed of the arithmetic processing unit, a real-time high-speed delay time calculation algorithm including refraction by a fat layer as in the present invention has been realized. Furthermore, it is significantly advantageous in that errors do not accumulate as compared with the calculation of a general grading formula. This is because even if X for finding an approximate solution contains an error every time, f (x) is a function that does not include approximation, so that X and f (x), f '(X) This is because the error at x N _, is not reflected in x N in Equation 5 because there is no error between them.
この考え方は DSPに特化した解き方であるが、 もしもその制約が無い場合に はより計算は容易になる。 式 3は解近傍で直線とみなせるので、 微分係数から 傾きを求める必要がなく、 解を明らかに挟む二点として、 隣の振動子での x+p X d3/F, x+pを用い、 內分点として次式のように解が求まる。 したがって、漸 化式 (式 5) の代わりに漸化式 (式 7) を用いることで処理速度を向上すること ができる。 fix^ + p d./F) This idea is a DSP-specific solution, but if there is no constraint, the calculation becomes easier. Since Equation 3 can be regarded as a straight line near the solution, there is no need to calculate the slope from the derivative, and we use x + p X d 3 / F, x + p as the two points that clearly sandwich the solution. , と し て The solution is obtained as the following equation as a dividing point. Therefore, the processing speed can be improved by using the recurrence equation (Equation 7) instead of the recurrence equation (Equation 5). fix ^ + p d./F)
XnXn i P F 十 P( 1 F ) f(xN, + p d3/F) + f(xN, + p) XnXn i P F tens P (1 F) f (x N , + pd 3 / F) + f (x N , + p)
(7) 次に、図 11を用いて本発明による超音波ビームフォーマの他の実施形態を説 明する。 図 11では、 振動子位置 XNにある振動子 Nからレンズ層内に角度 0Nで 出た音が、 焦点 Fに到達すると考える。 この.角度 0Nを求めると、 各層での屈折 角が求まるので、 音の経路が決定され、 遅延時間を決定することができる。 こ の遅延時間を求めるために従来は、 まず適当な角度で音を出し、 焦点のどちら 側を音が通るか計算する。 もし音が焦点より遠くを通れば 0Nを大きくし、 焦点 の手前を通れば 0 Nを小さくする。音が焦点を通るまでこの作業を繰り返すこと で、 0Nを求めている。 し力 し、 この方法では収束させるまでにループをかなり の回^^り返さざるを得ず、 必要な速度に計算が間に合わない。 速い収束を達 成するには、ずれの大きさに応じて θ Nの変化のさせ方を大きくすることが必要 である。 . (7) Next, another embodiment of the ultrasonic beam former according to the present invention will be described with reference to FIG. I will tell. In FIG. 11, it is assumed that the sound emitted from the transducer N at the transducer position X N at an angle of 0 N into the lens layer reaches the focal point F. When this angle 0 N is obtained, the refraction angle in each layer is obtained, so that the sound path is determined and the delay time can be determined. Conventionally, to determine this delay time, sound is first emitted at an appropriate angle, and the side of the focal point through which the sound passes is calculated. If the sound is increased 0 N if impassable farther than the focal, to reduce the 0 N if impassable the near focus. By repeating this process until the sound passes through the focal point, 0 N is obtained. However, in this method, the loop has to be repeated a considerable number of times before converging, and the calculation cannot be performed in the required speed. In order to achieve fast convergence, it is necessary to increase the manner in which θ N is changed in accordance with the magnitude of the deviation. .
本実施形態による超音波ビームフォーマで用いるアルゴリズムは、 二ユート ン ·ラフソン法を改良し、 明示的な関数を持たない系にも適応出来るようにし たものである。 すなわち、 次のように考える。 まず適当な角度 0で超音波が出 たとすると、 ずれの大きさは ΔΧ(0)となる。 この ΔΧが 0になる 0が求めるベ き解であるから、 ΔΧの微分係数を求めるために Θ +d0の角度で放射されたと きのずれ ΔΧ(Θ +d0)を求める。 図 12に示すように、 横軸 0、 縦軸 ΔΧの空間 で、 この二点を通る直線が X軸を横切るときの Θは、 元の 0に比べより良い近 似解となる。 これを式で表すと式 8になる。 —- _U J β ん、 8 current) … f。ヽ new ' ΑΧ(θ^- ΑΧ(θ^+άθ) ずれ量としては、 ΔΧを使う以外に ΔΥを使う方法、 ΔΧと ΔΥの自乗和を使 う方法も考えることができる。 いずれも本発明で使うことはできるが、 この実 施形態では Δ Xを使う場合を説明する。  The algorithm used in the ultrasonic beamformer according to the present embodiment is an improvement of the two-Juton-Raphson method, which can be applied to a system having no explicit function. That is, think as follows. First, assuming that an ultrasonic wave is emitted at an appropriate angle 0, the magnitude of the shift is ΔΧ (0). Since this Δ に な る becomes 0, 0 is the solution to be found, and in order to find the derivative of Δ ず れ, the deviation ΔΧ (Θ + d0) when emitted at an angle of Θ + d0 is found. As shown in FIG. 12, when a straight line passing through these two points crosses the X-axis in a space of 0 on the horizontal axis and ΔΧ on the vertical axis, Θ is a better approximate solution than the original 0. This can be expressed by Equation 8 as follows. —- _U J β h, 8 current)… f.ヽ new 'ΑΧ (θ ^-ΑΧ (θ ^ + άθ) As the shift amount, besides using ΔΧ, a method using ΔΥ or a method using the sum of squares of ΔΧ and ΔΥ can be considered. However, in this embodiment, a case where ΔX is used will be described.
この操作を繰り返すことで、 0は真の解に近づいていく。 このとき最初に用 いる 0と真の解の差が小さいほど計算の繰り返しが少なくなるので、 計算時間 の点から有利となる。本発明では、 ここで 0の初期値として、 Ν番目の振動子の 遅延時間を求めるときには N—1番目の振動子で求まった 0N_iを用いる。 この 方法では、 実用的な計算精度では、 ループ 2回で収束することがわかった。 よ つてループの回数を 2回に決めて計算する。 ループの回数が従来の方法に比べ 格段に少ないので従来の方法に比べ格段に優れている。 N番目の振動子について Θが求まると、この 0を初期値にして N+ 1番目の振動子についての 0を求める。 この方法の場合も前記方法と同様焦点が振動子の正面にある場合は屈折がない ので Θ =0となり、 それを計算の出発点として用いることができる。 By repeating this operation, 0 approaches the true solution. At this time, the smaller the difference between the first used 0 and the true solution, the less the repetition of the calculation, which is advantageous in terms of calculation time. In the present invention, as the initial value of 0, when calculating the delay time of the Ν-th oscillator, 0 N — i obtained for the N−1-th oscillator is used. this In the method, it turned out that in practical calculation accuracy, it converged in two loops. Therefore, the number of loops is determined to be two. The number of loops is much smaller than the conventional method, so it is much better than the conventional method. When Θ is found for the Nth oscillator, this 0 is used as the initial value to find 0 for the N + 1st oscillator. In the case of this method as well, when the focal point is in front of the vibrator, there is no refraction, so that Θ = 0, which can be used as the starting point of the calculation.
図 13のフローチャートを用いて、 リ二ァ型探触子またはコンベックス型探触 子のように、 焦点と口径の中心振動子を結ぶ線分と送波面が直交する探触子の 遅延時間を計算する方法について説明する。 この条件では、 焦点が口径の正面 にあるので、 各振動子の遅延時間は口径内で左右対称である。 つまり、 片側半 分だけ計算すれば十分である。 探触子に関するパラメータは図 5のステップ 11 で既に与えられており、焦点深度の値は図 5のステップ 14において既に与えら れている。  Using the flowchart in Figure 13, calculate the delay time of a probe, such as a linear probe or a convex probe, whose transmission plane is orthogonal to the line connecting the focal point and the center transducer of the aperture. A method for performing the above will be described. Under this condition, since the focal point is in front of the aperture, the delay time of each transducer is symmetrical within the aperture. In other words, it is sufficient to calculate only one half. The parameters for the probe have already been given in step 11 of FIG. 5, and the value of the depth of focus has already been given in step 14 of FIG.
図 13のステップ 51において、 口径の中心にある振動子から出た超音波はレン ズ層と脂肪層の境界面、 及び脂肪層と生体組織の境界面に垂直に入射し、 屈折 することなく焦点に達するので、 振動子番号 0の振動子に対して 0 = 0とし、 N = 1とする。 次に、 ステップ 52に進み、番号 N= lの振動子から角度 0で超音波を 放射したときの経路と、 目標とする焦点位置とのずれ Δ Χ ( Θ )を求める。 ここで、 角度 0としては、 隣の振動子 (番号 0の振動子) に対する角度 Θを用いる。 また、 ステップ 53において、 番号 1の振動子から角度 0 + d 0で超音波を放射したとき の超音波の経路と目標とする焦点位置とのずれ Δ Χ ( 0 + d 0 )を求める。  In step 51 in Fig. 13, the ultrasonic waves emitted from the transducer at the center of the aperture are perpendicularly incident on the interface between the lens layer and the fat layer and the interface between the fat layer and living tissue, and are focused without being refracted. Therefore, 0 = 0 and N = 1 for the vibrator with vibrator number 0. Next, proceeding to step 52, the deviation Δ Χ (Θ) between the path when ultrasonic waves are emitted from the transducer of the number N = l at an angle of 0 and the target focal position is obtained. Here, as the angle 0, the angle に 対 す る with respect to the next vibrator (vibrator of number 0) is used. In step 53, a deviation Δ Δ (0 + d0) between the path of the ultrasonic wave and the target focal position when the ultrasonic wave is radiated from the transducer of number 1 at an angle of 0 + d0 is determined.
ここで、 コンベックス型の探触子の場合、 リニア型探触子とは異なり、 以下 のように計算される。 コンベックス型探触子で、 被検体を観測するときは、 探 触子を被検体へ押し付けて観測するので、 脂肪層も探触子に沿って曲がる。 脂 肪層をコンベックス探触子の構造と同心円であると仮定すると、 音の経路は図 15に示すようになる。 素子を出発して焦点近傍を通るときのずれ Δを求める方 法と、 焦点を出発して素子近傍を通るときのずれ Δを求める二通りの方法は原 理的には同じであるが、 全反射条件や、 音の経路が図 15の左半分側に行くこと はあり得ないことからこの系は対称ではなく、 前者の解き方は解の安定性が良 くないので、 後者の方法で解くことが望ましい。 この音の経路を各層毎に分け て解析的に解くと、 音が層に入る点及び角度から層を出て行く点の位置及び角 度を求めれば、 各層順に計算することで最後に到達する点が求まり、 ずれ Δも 求めることができる。例として脂肪層の外側に生体中での音の経路を求めると、 音の出発点の位置を F= (Xい y4) 出るときの位置を P3= (x3、 y3)、 音が出て行 く側の層界面の曲率を R、 音が入るときの角度を Θとする。 すると x4、 y4は式 9 の連立式から x4を消去した二次方程式の ±2通りある解のうち常に正となる側 の解を解くことで求まる。 Here, in the case of the convex type probe, unlike the linear type probe, it is calculated as follows. When observing an object with a convex probe, the probe is pressed against the object and observed, so the fat layer also bends along the probe. Assuming that the fat layer is concentric with the structure of the convex probe, the sound path is as shown in Figure 15. The two methods for calculating the deviation Δ when leaving the element and passing near the focal point and the method for finding the deviation Δ when leaving the focal point and passing near the element are basically the same. This system is not symmetrical because the reflection conditions and the sound path cannot go to the left half of Fig. 15, and the former method has good solution stability. Since it is not, it is desirable to solve by the latter method. If this sound path is analyzed for each layer and solved analytically, the position and angle of the point at which the sound enters the layer and exits the layer from the angle are calculated, and the end is reached by calculating the order of each layer The point is found, and the deviation Δ can also be found. For example, if the path of the sound in the living body is found outside the fat layer, the position of the sound's starting point is F = (X or y 4 ), and the position at which the sound exits is P 3 = (x 3 , y 3 ). Let R be the curvature of the layer interface on the outgoing side, and Θ be the angle at which sound enters. Then, x 4 and y 4 can be obtained by solving the always positive solution out of the ± 2 possible solutions of the quadratic equation that eliminates x 4 from the simultaneous equation of Equation 9.
X 十 二 R2 X twelve R 2
(9)  (9)
χ34 χ 34
tan ^  tan ^
このとき 0 4に関しては三角形 0FP3を考えることで求まる。 すなわち、 今求ま つた (x3、 y3)から 0 p3が求まるので、 0 4= 0 + 0 p3の式から求まる。 後は θ 4か らスネルの法則を用いて 0 3が求まり、 同様にして順に或る層を通過するときの 経路が求まる。 この例では三層問題を例に説明したが、 全く同じ方法で層数が より多いときにも適用可能である。 また脂肪層と脂肪層外の生体との界面が探 触子の同心円で表せなくとも、 f (x3) の形で表せれば、 式 9を変形した式 10を 用レ、、 θ 4は 0 +arctan (- f' (x3) )を代わりに用いることで求めることが可能とな る。 At this time, 0 4 can be obtained by considering the triangle 0FP 3 . That is, since 0 p3 is obtained from (x 3 , y 3 ) just obtained, it is obtained from the equation of 0 4 = 0 + 0 p3 . After 0 3 Motomari with law theta 4 or al Snell, determined the path as it passes through a certain layer sequentially in the same manner. In this example, the three-layer problem has been described as an example, but the same method can be used when there are more layers. Even if the interface between the fat layer and the living body outside the fat layer cannot be expressed by the concentric circle of the probe, if it can be expressed in the form of f (x 3 ), use Equation 10, which is a modification of Equation 9, and θ 4 0 It can be obtained by using + arctan (-f '(x 3 )) instead.
二 f(x3 F (x 3
χ,-χ. … (10) χ, -χ.… ( 10)
二 tan  Two tan
Y4 -Y, 次にステップ 54において、 式 8より外挿で新しい 0を求める。 続いて、 ステツ プ 55からステップ 52に戻り、ステップ 54で求めた新しい 0を用いてずれ ΔΧ ( 0 ) を求める。 また、 ステップ 53において、 新しい角度 Θ + d 0で超音波を放射した ときの超音波の経路と目標とする焦点位置とのずれ Δ Χ ( Θ + d 0 )を求める。 次 に、 ステップ 54において、 式 8より外挿で新しい 0を求める。 Y 4 -Y, Next, in step 54, a new 0 is obtained by extrapolation from equation 8. Subsequently, the process returns from step 55 to step 52, and uses the new 0 obtained in step 54 to shift ΔΧ (0). Ask for. In step 53, a deviation ΔΧ (Θ + d0) between the path of the ultrasonic wave when the ultrasonic wave is emitted at the new angle Θ + d0 and the target focal position is obtained. Next, in step 54, a new 0 is obtained by extrapolation from equation (8).
次に、 ステップ 56に進み、 求めた Θから次の式 11によって遅延時間 τを計算 する。 次に、 振動子番号を 1つ増加し、 ステップ 42からの処理を繰り返す。 ステ ップ 58において、 使用口径内全振動子についての計算が終了したと判定されれ ば、 ステップ 59に進んで計算結果を出力する。  Next, proceeding to step 56, the delay time τ is calculated from the obtained Θ by the following equation 11. Next, the oscillator number is increased by one, and the processing from step 42 is repeated. If it is determined in step 58 that the calculation has been completed for all the transducers within the working diameter, the process proceeds to step 59 and outputs the calculation result.
C2 C 2
Θ 2=arcsin( ^ - sin θ )
Figure imgf000024_0001
Θ 2 = arcsin (^-sin θ)
Figure imgf000024_0001
ά d,  ά d,
て Λハ 十 — ——2 ハ 十 3 Te Λ Ha ten - - 2 C + 3
c^cos Θ C2COS θ c3cos θ 3 図 13に示したフロ一チャートは、図 8に示したフローチャートにおける漸化 式の計算処理を、 焦点位置からのずれの計算処理と、 外挿による新しい 0の計 算処理と、 この部分のループ処理をするためのループ回数の判断処理とで置き 換えたものに相当する。 . この第 2の方法に関しても、 焦点が送波口径の正面にない場合について、 撮 像前に予め送波口径に端の振動子での 0を求め、 それを記憶しておく。 送波口 径の端の振動子での 0は、 異なる皮下脂肪層の厚さに対して複数求めておく。 撮像中にこの条件になったとき、 この 0を読み込み、 漸化式の第 1項として漸 化式を解くのに用いる。 この計算の流れを図 14のフローチャートに示す。 この 詳細は、 第 1の方法で図 8の計算処理と図 9の計算処理の関係と、 図 13の計算 処理と図 14の計算処理の関係が全く同じであることから容易に説明される。 この口径の端の振動子でのパラメータを予め計算する方法は、 現在の中級超 音波撮像装置に搭載の DSPもしくは MPUに余裕がないための方策であって、 高 速の演算処理部を搭載できる高級機では、 リアルタイムで計算するときも焦点 から口径面に降ろした垂線の足の位置にある仮想的口径の中心から無駄になる 計算も含めて全て撮像とリアルタイムに計算することも可能である。 その場合 は、 撮像前の計算が不要になる。 もちろん、 この場合、 仮想的な振動子に関し ても実際の振動子と同じ振動子間隔で並べて計算する必要はないので、 仮想的 な部分のみ振動子間隔を粗くすることは計算を速くする上で有効である。 この 撮像前の計算は脂肪層の厚さが変わると毎回計算する必要が生じるのでその度 に撮像が止まってしまう。 その問題を解決するには以下のような 2つの方法が ある。 c ^ cos Θ C 2 COS θ c 3 cos θ 3 The flowchart shown in Fig. 13 is based on the calculation of the recurrence formula in the flowchart shown in Fig. 8 and the calculation of the deviation from the focal position and the extrapolation. This is equivalent to what is replaced by the calculation processing of a new 0 by the above and the judgment processing of the number of loops for performing the loop processing of this part. Also in the case of the second method, when the focal point is not in front of the transmission aperture, the transmission aperture is determined in advance to 0 at the end vibrator before imaging, and that value is stored. A plurality of zeros at the transducer at the end of the transmission aperture are obtained for different subcutaneous fat layer thicknesses. When this condition is reached during imaging, this 0 is read and used to solve the recurrence equation as the first term of the recurrence equation. The flow of this calculation is shown in the flowchart of FIG. The details are easily explained by the fact that the relationship between the calculation process in FIG. 8 and the calculation process in FIG. 9 and the relationship between the calculation process in FIG. 13 and the calculation process in FIG. 14 are exactly the same in the first method. This method of pre-calculating the parameters for the transducer at the end of the aperture is a measure to prevent the DSP or MPU mounted on the current intermediate-level ultrasonic imaging device from having a margin, and a high-speed arithmetic processing unit can be mounted. Focus on high-end machines when calculating in real time It is also possible to perform all calculations in real time with imaging, including calculations that are wasted from the center of the virtual aperture at the position of the foot of the perpendicular that has fallen to the aperture plane. In that case, the calculation before imaging becomes unnecessary. Of course, in this case, it is not necessary to calculate the same vibrator spacing as the actual vibrator even for the virtual vibrator. It is valid. The calculation before the imaging needs to be performed every time when the thickness of the fat layer changes, so the imaging stops every time. There are two ways to solve the problem, as follows.
その第 1の方法は、考えられる範囲で脂肪層厚さ毎の計算を全て事前に行レ、、 この撮像前の計算結果をすベてデータとして超音波探触子 20のメモリ 22に記 憶させておく方法である。 そして、 超音波探触子 20を超音波撮像装置本体 10 に接続したときに、その内容を超音波撮像装置本体 10のメモリ 12に転送する。 撮像中にはこのパラメータと、制御部 11により与えられた焦点深度に対し、超 音波ビームフォーマ 14で遅延時間を計算し、 その遅延時間を振動子アレイ 21 に与え、被検体 30に対し送波する。受波もこの遅延時間分で整相し、制御部 11 で診断画像を計算し、 画像表示部 13に出力する。  In the first method, all calculations for each fat layer thickness are performed in advance within a conceivable range, and all calculation results before imaging are stored in the memory 22 of the ultrasonic probe 20 as data. It is a way to keep it. Then, when the ultrasonic probe 20 is connected to the ultrasonic imaging apparatus main body 10, the contents are transferred to the memory 12 of the ultrasonic imaging apparatus main body 10. During imaging, a delay time is calculated by the ultrasonic beamformer 14 with respect to this parameter and the depth of focus given by the control unit 11, and the delay time is given to the transducer array 21, and transmitted to the subject 30. I do. The reception is also phased by this delay time, and the control unit 11 calculates a diagnostic image and outputs it to the image display unit 13.
一方、 第 2の方法は、予め計算したデータを CD-ROM等のメディアに入れてお き、 超音波探触子に付属させておく。 そして、 前もって、 あるいは探触子を使 用する際にその CD-ROM等からデータを超音波撮像装置本体 10のメモリ 12にィ ンストールする方法である。 インストール以後の操作は前記第 1の方法と全く 同様である。  On the other hand, in the second method, data calculated in advance is stored in a medium such as a CD-ROM and attached to the ultrasonic probe. The method is to install data from the CD-ROM or the like into the memory 12 of the ultrasonic imaging apparatus body 10 before or when using the probe. The operation after installation is exactly the same as the first method.
図 16は、本発明による超音波撮像装置の他の例を示す概略構成図である。 図 16において、 図 1と同じ機能部分には図 1と同じ符号を付し、 重複する説明を 省略する。 今までの説明では、皮下脂肪層の厚さの入力は診断者が行っていた。 すなわち、 図 6に示すように、 診断装置の診断画面上で診断者が脂肪層の始ま りの部分と終わりの部分を指示することで、 画面上にその距離が表示される。 この値を診断者が入力していた。  FIG. 16 is a schematic configuration diagram showing another example of the ultrasonic imaging apparatus according to the present invention. In FIG. 16, the same functional portions as in FIG. 1 are denoted by the same reference numerals as in FIG. 1, and redundant description will be omitted. In the description so far, the input of the thickness of the subcutaneous fat layer has been performed by the diagnostician. That is, as shown in FIG. 6, when the diagnostician specifies a start portion and an end portion of the fat layer on the diagnostic screen of the diagnostic apparatus, the distance is displayed on the screen. This value was entered by the diagnostician.
図 16に示した超音波撮像装置は、制御部 11中に脂肪層厚計算部 16を備え、 皮下脂肪層に関する画面出力を直接、超音波ビームフォーマ 14に入力できるよ うにしたものである。 脂肪層厚計算モードにおいて、 診断者が図 6に示すよう に、 ポインティングデバイス等で皮下脂肪層が始まる箇所 Aと終わる箇所 Bを 指定すると、脂肪層厚計算部 16はその間の距離を計算し、 計算結果をビームフ ォーマ 14に送信する。 The ultrasonic imaging apparatus shown in FIG. 16 includes a fat layer thickness calculation unit 16 in the control unit 11 so that screen output related to the subcutaneous fat layer can be directly input to the ultrasonic beamformer 14. It is something that has been done. In the fat layer thickness calculation mode, as shown in FIG. 6, when the diagnostician designates a portion A where the subcutaneous fat layer starts and a portion B where the subcutaneous fat layer starts by using a pointing device or the like, the fat layer thickness calculating section 16 calculates a distance between them. The calculation result is sent to beamformer 14.
次に、 本発明の超音波ビームフォーマ搭載のアルゴリズムを生かして、 撮像 中にァダプティブに画質を改良する方法について説明する。 これまで説明して きた計算アルゴリズムには、 脂肪層は均質、 厚さ一定であり、 個人や対象部位 によつて脂肪層中での音速が異なることはないという前提があった。 この前提 は、 遅延時間計算に一定の誤差があるときは、 その誤差に埋もれて影響が解ら なかった。 しかし、 本発明によって高精度な撮像が可能となると、 この前提を 取り除くことで画質が改善されるのがはっきりする。前記前提を取り除くには、 撮像しながら微妙に脂肪層の音速を変えることができるようにしておけばよレ、。 図 17は、本発明による超音波撮像装置の他の例を示す概略構成図である。 図 17において、 図 1と同じ機能部分には図 1と同じ符号を付し、 重複する説明を 省略する。 この超音波撮像装置は、 脂肪層に関するパラメータを微調整するこ とを可能にし、 均質、 厚さ一定でない脂肪層に対応できるようにしたものであ る。 具体的には、 図 1 に示す構成の超音波撮像装置へ入力装置及びパラメータ 計算部 17を備え、超音波ビームフォーマが保持する脂肪層の音速を可変できる ようにした。 この装置では、入力装置及びパラメータ計算部 17において入力値 に対し対応するパラメータを計算し、その値を超音波ビームフォーマ 14に入力 する。  Next, a method for adaptively improving the image quality during imaging by utilizing the algorithm equipped with the ultrasonic beamformer of the present invention will be described. The calculation algorithm described so far assumed that the fat layer was homogeneous and constant in thickness, and that the sound velocity in the fat layer did not differ depending on the individual or the target site. This assumption was buried in a certain error in the delay time calculation, and the effect was not understood. However, if high-precision imaging is enabled by the present invention, it is clear that removing this premise improves image quality. In order to remove the premise, it is necessary to be able to change the sound speed of the fat layer slightly while taking an image. FIG. 17 is a schematic configuration diagram showing another example of the ultrasonic imaging apparatus according to the present invention. In FIG. 17, the same functional portions as in FIG. 1 are denoted by the same reference numerals as in FIG. 1, and duplicate description will be omitted. This ultrasonic imaging apparatus makes it possible to fine-tune the parameters relating to the fat layer, and to cope with a fat layer having a uniform thickness and non-constant thickness. Specifically, the ultrasonic imaging apparatus having the configuration shown in FIG. 1 was provided with an input device and a parameter calculation unit 17 so that the sound speed of the fat layer held by the ultrasonic beamformer could be varied. In this apparatus, a parameter corresponding to an input value is calculated in an input device and a parameter calculation unit 17, and the value is input to the ultrasonic beam former 14.
このパラメータを変えることの効果は次のように説明される。 まず屈折がな い場合を考えると式 12のようにして、各振動子から焦点まで到達するのに要す る時間が計算される。 これをグラフに表すと図 18のようになる。 各振動子から焦点に  The effect of changing this parameter is explained as follows. First, considering the case where there is no refraction, the time required to reach the focal point from each transducer is calculated as in Equation 12. This is shown in the graph in Fig. 18. Focus from each transducer
到達するのに要する時間
Figure imgf000026_0001
Time to reach
Figure imgf000026_0001
ニ … (12) このとき、 式 12中のパラメータすなわち音速、 ピッチ p、 Fのいずれか、 も しくは複数を変化させると、図 18に図示するようにグラフの曲率が変化する。 このことは、今回の問題のようにレンズ層、脂肪層、脂肪層以外の生体組織と 3 層からなる屈折を考慮すべき問題でも事情が複雑になるだけで原理的には同じ である。 遅延時間は各振動子から焦点まで到達するのに要する時間で決定され るので、 「縦軸:各振動子から焦点まで到達するのに要する時間」 対 「横軸: 各振動子の位置」 の関係の曲線で遅延時間は表現される。 よって、 先に述べた ように脂肪層の音速が場所によつて一定でないようなときは、 この曲線が歪む ので、それに力一ブフィッティングするように諸パラメータを変更することで、 焦点のぼけを改善することが可能となる。 カーブフィッティングは撮像画面が 最適になるように調整するのが最も好ましく、 パラメータは外部つまみなどに よって制御すると操作性が良い。 このとき脂肪層の音速に代えて脂肪層の厚さ、 もしくは振動子ピッチ、 これらの複数のパラメータを適切に連動させて変えて 調整することも有効である。 なお、 図 18において、 (a) は振動子ピッチ、 脂 肪層の音速に手を加えない場合、 (b) , (c) は振動子ピッチ, 脂肪層音速を 調整した場合を示す。 D… (12) At this time, if one or more of the parameters in Expression 12, that is, one or more of the sound velocity, the pitch p, and the F are changed, the curvature of the graph changes as shown in FIG. This is the same in principle, even in the case where the refraction of living tissue other than the lens layer, fat layer, and fat layer and the three layers must be considered, as in this case, the situation is complicated. Since the delay time is determined by the time required to reach the focal point from each transducer, the “vertical axis: the time required to reach the focal point from each transducer” versus the “horizontal axis: the position of each transducer” The delay time is represented by a relationship curve. Therefore, as described above, when the sound velocity of the fat layer is not constant depending on the location, this curve is distorted, and by changing various parameters so as to make a close fitting to the curve, the defocus can be reduced. It can be improved. It is most preferable to adjust the curve fitting so that the imaging screen is optimized, and the operability is good if the parameters are controlled by an external knob. At this time, it is also effective to adjust the thickness of the fat layer or the pitch of the vibrator instead of the sound velocity of the fat layer by appropriately interlocking and changing these parameters. In Fig. 18, (a) shows the case where the oscillator pitch and the sound velocity of the fat layer are not changed, and (b) and (c) show the case where the oscillator pitch and the fat layer sound velocity are adjusted.
ここからは, 被検体の表面に層構造が存在した場合の例についての実施例を 説明する。 まず、 診察中に被検体表面部の層構造の厚さ、 音速を求める具体例 について示す。  Hereinafter, an embodiment will be described for an example in which a layer structure exists on the surface of the subject. First, a specific example of obtaining the thickness and sound velocity of the layer structure on the surface of the subject during a medical examination will be described.
図 19に検者がそれらを選択可能とした実施例を示す。 図 19 (b) に示す厚さの テーブル、 及び音速のテーブルを予め用意し装置内へ組み込み、 検者が、 モニ タ 120に表示された画像 170を観察し、 深度スケール 160を参照して得た結果 力 ら層の厚さを読み取り、 スィッチ SW2 (140) 等で近い厚さを選択し、 音速も 同様でスィッチ SW1 (150) により選択可能とする。 この場合スィッチ SW1とス イッチ SW2 とは独立に操作が可能として、 それぞれの値として検者がふさわし いと考える値を選択できるようにする。 音速に関しては、 数値でも良いし、 脂 肪層、 筋肉層という選択でも良い。 例えば、 図 19の画面で脂肪層 170が、 画面 に記されている深度方向のスケール 160から概略 2cmと読めた場合、 コンソ一 ル 130に設けた層厚み設定スィツチ 140により 2cmを選択する。 すると、 画面 上に厚さ (Thickness) が 2cmと表示される。 次に, 音速設定スィッチ 150を所 定方向へ操作して、 音速を選択する。 それらの選択値を確認するために、 それ らの入力値を画面に表示すると良い。 その表示は, 1450m/s のように数値でも 良いが, 硬い筋肉質、 筋肉質、 標準、 脂肪、 高脂肪のような表現でも良い。 ま た,スィッチは回転式でもなんでも良い。 もちろんタツチパネルでも良い。 FIG. 19 shows an embodiment in which the examiner can select them. The table having the thickness shown in Fig. 19 (b) and the table of sound speed are prepared in advance and installed in the device. The examiner observes the image 170 displayed on the monitor 120, and obtains the image by referring to the depth scale 160. As a result, the thickness of the layer is read from the force, and a similar thickness is selected with switch SW2 (140) or the like, and the sound speed can be similarly selected with switch SW1 (150). In this case, switch SW1 and switch SW2 can be operated independently, so that the examiner can select values that are appropriate for each value. Regarding the sound speed, a numerical value may be used, or a selection may be made between a fat layer and a muscle layer. For example, if the fat layer 170 can be read as approximately 2 cm from the depth scale 160 shown on the screen of FIG. 19, 2 cm is selected by the layer thickness setting switch 140 provided on the console 130. Then, the screen Thickness is displayed at the top as 2cm. Next, the sound speed is set by operating the sound speed setting switch 150 in a predetermined direction. It is advisable to display those input values on the screen to confirm the selected values. The indication may be a numerical value such as 1450m / s, but may be an expression such as hard muscle, muscle, normal, fat, or high fat. Also, the switch can be a rotary type or anything. Of course, a touch panel may be used.
以上の説明は、 生体の層構造から生ずる超音波の屈折の影響を除去して、 超 音波画像の画質を向上する実施形態について説明したが、 超音波画像の画質を 更に向上するためには、 生体内での超音波の伝播速度を正確に把握して、 その データを超音波ビームフォーマでの上記屈折補正制御に反映させることが必要 である。  The above description has been given of the embodiment in which the influence of the refraction of the ultrasonic wave generated from the layer structure of the living body is removed and the image quality of the ultrasonic image is improved, but in order to further improve the image quality of the ultrasonic image, It is necessary to accurately grasp the propagation speed of ultrasonic waves in a living body and reflect the data in the above-mentioned refraction correction control by an ultrasonic beamformer.
このこと力 ら、 次に、 本発明の他の実施形態を図 20に示す。 これは層構造を 有する生体の音速を求め、 その音速により前述の実施形態の屈折補正処理を行 うものである。図 20は超音波撮像装置において音速を求める部分の実施例を示 すブロック図である。 図において、 200 は探触子で受信した複数の超音波信号 を遅延制御し、 受信ビーム信号を出力するデジタル制御可能なデジタル遅延部 で、 受信に供した振動子数に対応したチャンネル数の回路を有している。 210 はデジタル遅延部 200で遅延させた複数の信号を入力し、 演算により遅延制御 に供したデジタル遅延データの真の遅延データに対する誤差を推定する遅延デ ータ誤差推定部、 220はデジタル遅延部 200の各チャンネルの動作制御を行う デジタル遅延制御部である。  For this reason, FIG. 20 shows another embodiment of the present invention. In this method, the sound speed of a living body having a layer structure is obtained, and the refraction correction processing of the above-described embodiment is performed based on the sound speed. FIG. 20 is a block diagram showing an embodiment of a part for obtaining the sound speed in the ultrasonic imaging apparatus. In the figure, reference numeral 200 denotes a digitally controllable digital delay unit that delay-controls a plurality of ultrasonic signals received by the probe and outputs a reception beam signal, and has a circuit having a number of channels corresponding to the number of transducers used for reception. have. Reference numeral 210 denotes a delay data error estimator that inputs a plurality of signals delayed by the digital delay unit 200 and estimates an error of the digital delay data subjected to delay control with respect to true delay data by calculation, and 220 denotes a digital delay unit A digital delay control unit that controls the operation of each of the 200 channels.
以上の構成へ加え、 本実施例の超音波撮像装置装置は、 さらに、 予め複数の 媒質音速による遅延時間を蓄えておく音速対応遅延時間記録部 230 と、 遅延誤 差推定部 210で得た遅延誤差から新たな遅延時間を算出し、 それを音速対応遅 延時間記録部 230に記憶されている値と照合し、 その記憶値と最も近いデータ を出力する遅延時間比較部 240と、 音速対応遅延時間記録部 230に蓄えられた 遅延時間データがいかなる媒質音速によるものかを記録しておく音速データ記 録部 250と、 遅延時間比較部 240の出力と一致する遅延時間の記録場所から遅 延時間記録部を参照し媒質音速を選択する媒質音速選択部 260 とを備えている。 そして、媒質音速選択部 260の出力ラインは図 2に示す演算 ·制御回路 41へ接 続され、 またデジタル遅延制御部 220は演算 ·制御回路 41により制御されるよ うに接続されている。 In addition to the above configuration, the ultrasonic imaging apparatus of the present embodiment further includes a sound speed corresponding delay time recording unit 230 that stores delay times due to a plurality of medium sound speeds in advance, and a delay obtained by the delay error estimation unit 210. A new delay time is calculated from the error, and the calculated delay time is compared with a value stored in the sound speed corresponding delay time recording unit 230, and a delay time comparing unit 240 which outputs data closest to the stored value, and a sound speed corresponding delay The sound speed data recording unit 250 that records the medium sound speed based on the delay time data stored in the time recording unit 230, and the delay time from the delay time recording location that matches the output of the delay time comparison unit 240 A medium sound speed selection unit 260 for selecting the medium sound speed with reference to the recording unit; The output line of the medium sound speed selection unit 260 is connected to the arithmetic and control circuit 41 shown in FIG. The digital delay control unit 220 is connected so as to be controlled by the arithmetic and control circuit 41.
このように、 図 2に示す構成において、 遅延回路をデジタル制御可能なもの とし、 その出力へ遅延誤差推定部 210を設けるとともに、 演算 ·制御回路 41へ デジタル遅延制御部 220を付カ卩し、 さらに上記の如く音速対応遅延時間記録部 230と遅延時間比較部 240と音速データ記録部 250と媒質音速選択部 260とを 新たに設けることにより、 本実施例の超音波撮像装置は真の媒質音速にほぼ等 しい音速による屈折補正が可能となる。  As described above, in the configuration shown in FIG. 2, the delay circuit is digitally controllable, a delay error estimator 210 is provided at the output thereof, and a digital delay controller 220 is added to the arithmetic and control circuit 41. Further, as described above, by newly providing the sound speed corresponding delay time recording unit 230, the delay time comparing unit 240, the sound speed data recording unit 250, and the medium sound speed selecting unit 260, the ultrasonic imaging apparatus of the present embodiment can realize the true medium sound speed. Refraction correction with a sound speed almost equal to that of the above becomes possible.
次に、 上記の如く構成された部分の動作の説明を行う。 まず、 生体内の音速 を例えば生体の平均的な値の等音速と仮定して求めた遅延時間データを演算 · 制御回路 42よりデジタル遅延部 2へ出力して超音波を被検 内へ送信する。 こ のときの送波の焦点は適宜な深度に設定する。 そして、 送波と同じ音速に基づ く遅延時間データ Dを演算 ·制御回路 41よりデジタル遅延部 220を介してデジ タル遅延部 200へ供給してこの受信信号を遅延制御する。  Next, the operation of the portion configured as described above will be described. First, delay time data obtained by assuming the sound velocity in the living body to be, for example, the equal sound velocity of the average value of the living body is calculated and output from the control circuit 42 to the digital delay unit 2 and the ultrasonic wave is transmitted into the subject. . At this time, the focal point of the transmission is set to an appropriate depth. Then, the delay time data D based on the same sound speed as the transmission wave is supplied from the calculation / control circuit 41 to the digital delay unit 200 via the digital delay unit 220, and the received signal is delay-controlled.
そして、 デジタル遅延部 200の各チャンネルの遅延制御された信号であって 整相のために加算処理される前の信号が遅延誤差推定部 210へ入力され、 使用 した遅延時間データ Dに対する誤差 を演算により推定値として求め、 Dcl =D + A D,を出力する。 この演算手法としては前述の特開平 8— 317923号公報に開 示された相関処理法を用いることができる。 遅延誤差推定部 210から出力され た Dclは遅延時間比較部 240へ入力される。 すると、遅延時間比較部 240は音速 対応遅延時間記録部 230に記録されたデータと入力したデータ Dclとを比較し、 Dclに最も近い遅延時間データを選び出し、 それを媒質音速選択部 260へ出力す る。 データが入力すると、 媒質音速選択部 260は入力したデータの音速が幾ら であるかを選択する。 この選択は、 音速対応遅延時間記録部 230のデータと音 速記録部 250の音速データとの記憶ァドレスを対応させておくことで可能であ る。 したがって、 音速対応遅延時間記録部 230と音速記録部 250とを一つに纏 めることもできる。 、 Then, a signal which is a delay-controlled signal of each channel of the digital delay unit 200 and which is not subjected to addition processing for phasing is input to the delay error estimation unit 210, and calculates an error with respect to the delay time data D used. , And outputs D cl = D + AD. As the calculation method, the correlation processing method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 8-317923 can be used. D cl output from delay error estimation section 210 is input to delay time comparison section 240. Then, the delay time comparing unit 240 compares the data recorded in the sound speed corresponding delay time recording unit 230 with the input data D cl , selects the delay time data closest to D cl, and sends it to the medium sound speed selecting unit 260. Output. When the data is input, the medium sound speed selection unit 260 selects the sound speed of the input data. This selection can be made by associating the storage address of the data of the sound speed corresponding delay time recording unit 230 with the sound speed data of the sound speed recording unit 250. Therefore, the sound speed corresponding delay time recording unit 230 and the sound speed recording unit 250 can be integrated into one. ,
そして、媒質音速選択部 260で選択された音速データは演算 ·制御回路 41を 介してデジタル遅延制御部へフィードバックされる。 このフィードバック回路 は正確な音速を求めるために、 上記動作を繰り返すためのもので、 必要に応じ て、 演算 ·制御回路 41から上記動作の繰り返し実行指令を発する。 以上の動作 により生体内の音速を推定値としてではあるが測定することができる。 The sound speed data selected by the medium sound speed selection unit 260 is fed back to the digital delay control unit via the arithmetic and control circuit 41. This feedback circuit Is for repetition of the above operation in order to obtain an accurate sound speed. If necessary, the arithmetic and control circuit 41 issues a command to repeatedly execute the above operation. With the above operation, the sound velocity in the living body can be measured as an estimated value.
なお、 遅延時間比較部 240での比較動作を簡便にするために、 遅延誤差推定 部 210が出力するデータ Dclと音速対応遅延時間記録部 230に記録されたデ一タ とを 2次元分布データとし、 カーブフィッティング手法を用いることができる ようにすると扱う情報量を少なくできるため有用である。 さらに、 遅延時間分 布の階差を求め該階差遅延時間列に対して 1次直線を当て嵌めるようにすると 扱う情報量がさらに減少するので有用である。 Note that, in order to simplify the comparison operation in the delay time comparison unit 240, the data D cl output by the delay error estimation unit 210 and the data recorded in the sound speed corresponding delay time recording unit 230 are two-dimensional distribution data. It is useful to be able to use the curve fitting method because the amount of information to be handled can be reduced. Furthermore, it is useful to obtain the difference of the delay time distribution and to fit a first-order straight line to the difference delay time sequence because the amount of information to be handled is further reduced.
次に、図 20に示す構成で層構造を有す生体の各層の音速を求める方法を説明 する。図 21は超音波撮像装置のモニタに表示された被検体の超音波断層像であ る。 その画像中の 170は脂肪層、 190は脂肪層 170より深い組織領域である。 まず脂肪層 170の音速を求める。 このために、 脂肪層 170の内部の適宜な深さ 位置、 例えば脂肪層 170 と組織領域の境界に近い計測位置に焦点位置を前述の キヤリバのカーソルを用いて設定し、 その値を計測するとともに演算 ·制御回 路 41へ焦点位置を与える信号を供給する。 その後、探触子より超音波パルスを 送信し、 その反射信号を受信する。 脂肪層 170の音速を求めるためには脂肪層 からの反射信号のみを図 20に示す音速測定部へ取り込む必要がある。 このため に演算'制御回路 41にゲ一ティング機能を持たせる。 このゲーティング機能は 前記キヤリバ機能に連動するようにすると良い。 そして、 このゲ一ティング機 能によって脂肪層 170からの反射信号をデジタル遅延部 200へ取り込み、 前述 の図 20に示す構成の動作説明に従って音速を求める。求める音速はある 1点の ものでも良いが、 複数の点についての音速を求めて、 それらから平均音速を求 めることが望ましい。  Next, a method of obtaining the sound speed of each layer of the living body having the layer structure with the configuration shown in FIG. 20 will be described. FIG. 21 is an ultrasonic tomographic image of the subject displayed on the monitor of the ultrasonic imaging apparatus. In the image, 170 is a fat layer, and 190 is a tissue region deeper than the fat layer 170. First, the sound speed of the fat layer 170 is determined. For this purpose, the focal position is set using the above-mentioned cursor of the caliber at an appropriate depth position inside the fat layer 170, for example, a measurement position near the boundary between the fat layer 170 and the tissue region, and the value is measured. A signal for giving the focal position is supplied to the arithmetic / control circuit 41. After that, an ultrasonic pulse is transmitted from the probe and the reflected signal is received. In order to determine the sound speed of the fat layer 170, it is necessary to take only the reflected signal from the fat layer into the sound speed measuring unit shown in FIG. For this purpose, the arithmetic control circuit 41 is provided with a gating function. The gating function may be linked to the caliber function. Then, the reflected signal from the fat layer 170 is taken into the digital delay unit 200 by this gating function, and the sound speed is obtained in accordance with the operation description of the configuration shown in FIG. The desired sound velocity may be at a certain point, but it is desirable to determine the sound velocity at multiple points and then determine the average sound velocity from them.
次に、 脂肪層 170より深い組織領域の音速を求める。 このときには、 計測の ための焦点位置を図 2 1に示す 190の位置に設定する。この設定にも前述のキヤ リバ機能を用いる。 そして演算 ·制御回路 41へ焦点位置を与える信号を供給し、 その後、 探触子より超音波パルスを送信し、 その反射信号を受信する。 組織領 域の音速を求めるためには 領域からの反射信号のみを取り込めれば良いの であるが、 この場合の反射波は脂肪層 170を通過せざるを得ないために、 それ は不可能である。 そこで、 前記ゲ一ティング機能によって、 焦点位置からの反 射信号を取り込む。 そして、 この反射信号から音速を求める。 ここで求められ た音速は、 探触子面と計測点との間の平均音速を示すことと成る。 Next, the sound velocity in the tissue region deeper than the fat layer 170 is determined. At this time, the focal position for measurement is set to the position 190 shown in Fig. 21. The above-mentioned caliber function is also used for this setting. Then, a signal for giving a focal position is supplied to the arithmetic and control circuit 41, and thereafter, an ultrasonic pulse is transmitted from the probe and a reflected signal thereof is received. In order to find the sound velocity in the tissue area, it is necessary to capture only the reflected signal from the area However, this is not possible because the reflected wave in this case must pass through the fat layer 170. Therefore, a reflection signal from the focal position is captured by the above-mentioned gating function. Then, the speed of sound is obtained from the reflected signal. The sound speed obtained here indicates the average sound speed between the probe surface and the measurement point.
以上の二つの計測から組織領域の音速を求めることができる。 最初に測定し た脂肪層の平均音速を 、 次に求めた脂肪層と組織領域の双方を含む平均音速 を c aと符号を付ける。 そして、脂肪層の厚さ、つまり焦点位置 180の深度を lf、 後者の計測の焦点深度を laとすると、 組織領域における音速 c2は式 13により 求められる。 The sound velocity in the tissue region can be obtained from the above two measurements. The average speed of sound was measured first fat layer, then the obtained fat layer and the average speed of sound including both tissue region put c a and code. Then, assuming that the thickness of the fat layer, that is, the depth of the focal point position 180 is l f and the focal depth of the latter measurement is l a , the sound velocity c 2 in the tissue region can be obtained by Expression 13.
( 13) ( 13)
c, これにより求まった脂肪層の音速 と糸!^中の音速 c2とを前述の式 1以下へ適 用することで、 超音波のレンズ層、 脂肪層及び組織中の音速を加味した屈折補 正が可能となる。以上の計測値はモニタ画面へ数値等で表示されるようにする。 図 21における表示例は、 V: 1450/1540m/sは脂肪層の音速が 1450m/s, 組織内 の音速が 1540m/sを示し、 t: 2/8cmは脂肪層の厚みが 2cm, 組織内の焦点位置 深さが 8cmであることを示している。 c, thereby the speed of sound Motoma' fat layer and the acoustic velocity c 2 of the thread! ^ middle by applied to the following equation 1 above, the lens layer of the ultrasonic wave, in consideration of the speed of sound fat layer and tissues refraction Correction is possible. The above measured values are displayed as numerical values on the monitor screen. In the display example in Figure 21, V: 1450 / 1540m / s indicates that the sound velocity of the fat layer is 1450m / s and the sound velocity in the tissue is 1540m / s, and t: 2 / 8cm indicates that the thickness of the fat layer is 2cm and the tissue It indicates that the focal position of is 8cm deep.
次に、 他の実施例を述べる。 この実施例は、 上記音速計測に用いたキヤリバ の距離計測機能の補正を考慮するものである。 すなわち、 超音波撮像装置に組 み込まれたキヤリパの距離計測機能は、 装置に初期設定された音速に基いた演 算により成されるようになつている。 したがって、 式 13に用いた lf, 1βのキヤ リパによる距離測定値は実際の音速によるものに補正して使用することが望ま しレ、。 本実施例はこれに対応するものである。 本実施例では、 まず、 超音波撮 像装置を駆動して、 関心領域 (R0I) を含む断面の超音波断層像を取得し、 その 断層像をモニタへ表示する。 この状態で、 図 19に示す超音波撮像装置の操作盤 上に配置された屈折補正実行用スィツチ 310をオンにする。 この屈折補正実行 スィッチ 310は、 オンすると屈折補正が実行され、 オフ状態にしておけば屈折 補正を行わない通常の撮像を可能とするものである。 このスィツチ操作を行う とモニタ 120の画面に 2点の力一ソルから成るキヤリパ 300が表示される。 そ して、 トラックボール叉はジョイスティック等の入力操作器を操作してキヤリ パ 300の一つのカーソルをを被検体の体表面へ、 もう一方のカーソルを脂肪層 の末端に移動し、 入力情報固定キー (Enter key) 320を操作して計測される脂 肪層を特定する。、 次に, キヤリパ 300における二つのカーソルのうち、 前記脂 肪層の末端に位置させた力一ソルをそれより深い地点で関心領域内に移動し, 前記キー 320 を操作して組織中における音速計測のための測定点を特定する。 以上の 2ステップの操作で入力した計測点のデータを制御部 11に読み込ませ、 前述した前述の音速計測手法の計算が実行される。 Next, another embodiment will be described. This embodiment considers the correction of the distance measurement function of the carrier used for the sound velocity measurement. That is, the distance measurement function of the caliper incorporated in the ultrasonic imaging apparatus is performed by an operation based on the speed of sound initially set in the apparatus. Therefore, it is desirable that the distance measured by the caliper of l f , 1 β used in Equation 13 be used after being corrected to the value based on the actual sound speed. The present embodiment corresponds to this. In this embodiment, first, the ultrasonic imaging apparatus is driven to acquire an ultrasonic tomographic image of a section including the region of interest (R0I), and the tomographic image is displayed on a monitor. In this state, the refraction correction execution switch 310 arranged on the operation panel of the ultrasonic imaging apparatus shown in FIG. 19 is turned on. This refraction correction execution switch 310 performs refraction correction when turned on, and refraction when turned off. This enables normal imaging without correction. When this switch operation is performed, a caliper 300 consisting of two points of force is displayed on the screen of the monitor 120. Then, by operating an input operating device such as a trackball or a joystick, one cursor of the caliper 300 is moved to the body surface of the subject, and the other cursor is moved to the end of the fat layer to fix the input information. Operating the key (Enter key) 320 specifies the fat layer to be measured. Next, of the two cursors in the caliper 300, the force sol positioned at the end of the fat layer is moved into the region of interest at a point deeper than that, and the sound velocity in the tissue is operated by operating the key 320. Identify measurement points for measurement. The data of the measurement points input by the above two-step operation are read into the control unit 11, and the calculation of the above-described sound velocity measurement method is executed.
装置設定音速が v。, その音速 V。でのキヤリバ深度 x。, 計測された脂肪層の平 均音速 cfnとすると、 脂肪層の真の厚み lftは式 14から求まる。 The device setting sound speed is v. , Its sound velocity V. Caliber Depth at x. , Assuming the measured average sound velocity of the fat layer c fn , the true thickness l ft of the fat layer can be obtained from Eq.
1ft― ¾ " Cfm, V。 (14) 1ft― ¾ "Cfm, V. (14)
これらの値 CfB、 iftから組織中の真の平均音速 ca、 組織中の真の音波伝播距 離 l。tを求め式 13に適用することより屈折補正のための遅延時間データを演算 することができ、 そのフォーカスデータで超音波の送受信を行うと、 良好な画 像が得られる。 These values CfB , i ft from the true average sound velocity c in the tissue. a , the true sound propagation distance in the tissue l. By calculating t and applying it to Equation 13, delay time data for refraction correction can be calculated, and a good image can be obtained by transmitting and receiving ultrasonic waves using the focus data.
層構造を有する生体の音速と距離を求める方法としては上記の他に種々な方 法を挙げることができる。 一例として、 超音波ビームのある特定のビーム、 例 えば中心のビーム着目し、 そのビーム中の受信信号の強度が体表面近傍におい て非常に大きいところを検出し, それを時間として求め、 前述の計算を自動的 に行うようにしても良い。 この計測方法は, 層構造の境界では反射信号が大き いことから、 検出のための閾値を決めておけば可能である。  Various methods other than those described above can be used to determine the sound speed and distance of a living body having a layered structure. As an example, focusing on a specific beam of the ultrasonic beam, for example, the center beam, detecting a place where the intensity of the received signal in the beam is very large near the body surface, obtaining the time as the time, The calculation may be performed automatically. This measurement method is possible if the threshold value for detection is determined because the reflected signal is large at the boundary of the layer structure.
以上述べた屈折補正法を装置へ自動シーケンスとしてプログラミングして組 み込み、 撮像中に数フレーム毎に繰り返して実行し、 設定値を更新するように しておけば, 複数の検査部位がある場合のように探触子を移動させて検査して いても屈折補正が自動的に行われるので、 画像は常に良好となる。 If the refraction correction method described above is programmed and incorporated into the device as an automatic sequence, and repeatedly executed every few frames during imaging to update the set values, if there are multiple inspection sites Move the probe as shown The refraction correction is performed automatically, so the image is always good.
屈折補正を可能とした装置では、 表示画像に通常画像と屈折補正画像とを識 別するマ一キングを施す態様や、 複数画像の同時表示法を用い、 画面の左に通 常の画像、 右に屈折補正画像を表示する態様を採ることができる。 着目点の画 像が良好になっても, 複雑な生体構成の場合, 他の領域で画像が乱れる可能性 がある。 したがって, 同時表示することにより実時間で屈折補正有り無しの画 像を見比べることができるため、 ユーザにとって有効となる。 また, 診断部位 を R0I として指定し, その部位にのみ屈折補正を施した画像を取得し、 それを 通常の画像の中に嵌め込み合成して表示することも有用である。  In a device that enables refraction correction, a normal image is displayed on the left of the screen, and a right image is displayed on the left side of the screen using a method in which a displayed image is marked to distinguish between a normal image and a refraction corrected image. In which a refraction-corrected image is displayed. Even if the image at the point of interest is good, the image may be distorted in other regions in the case of a complex biological structure. Therefore, simultaneous display makes it possible to compare images with and without refraction correction in real time, which is effective for the user. It is also useful to specify the diagnosis site as R0I, acquire an image with refractive correction applied only to that site, fit it into a normal image, and display it.
本発明は、 上記の特定の実施形態に限定されるものでなく、 その技術思想の 範囲を逸脱しない範囲で様々な変形が可能である。  The present invention is not limited to the above specific embodiment, and various modifications can be made without departing from the scope of the technical idea.
以上述べたように、 本発明によれば、 レンズ層と脂肪層 (あるいは筋肉層な ど) による屈折の影響を低減することができるので、 超音波画像の画質向上が 図れる。 さらに、 本発明によれば、 層構造を有する被検体の各層の音速を計測 して、 その値を加味して超音波の各層における屈折の影響を低減することがで きるので、 画質をさらに向上することができる。  As described above, according to the present invention, the effect of refraction due to the lens layer and the fat layer (or the muscle layer, etc.) can be reduced, so that the image quality of an ultrasonic image can be improved. Further, according to the present invention, the sound velocity of each layer of the subject having a layered structure can be measured, and the influence of the refraction of the ultrasonic wave in each layer can be reduced by taking the value into account, thereby further improving the image quality. can do.

Claims

請 求 の 範 囲 The scope of the claims
1. 配列振動子を備えた超音波探触子と、超音波を被検体に対し送信または 及 び受信の際に送波フォーカシングまたは受波フォーカシングを行うために各振 動子に対する遅延時間を制御する遅延制御手段と、 前記配列振動子と設定され た焦点位置との間の超音波伝播媒体による超音波の屈折効果を織り込んで前記 送波または受波のフォーカシングを行う遅延時間を生成し前記遅延制御手段へ 供給する屈折補正遅延データ生成手段と、 超音波画像を表示する表示ュニット を備えたことを特徴とする超音波撮像装置。 1. Ultrasonic probe with arrayed transducers and delay time control for each transducer to transmit or receive ultrasound when transmitting or receiving ultrasonic waves to / from the subject A delay control unit that performs the focusing of the transmitting or receiving wave by incorporating a refraction effect of the ultrasonic wave by the ultrasonic wave propagating medium between the arrayed transducers and the set focal position. An ultrasonic imaging apparatus comprising: a refraction correction delay data generating unit to be supplied to a control unit; and a display unit for displaying an ultrasonic image.
2.前記遅延制御手段には予め生体の平均音速によって求められた遅延時間デー タが記憶され、 その記憶された遅延時間データを用いて屈折補正データを求め るための超音波送受信が先行して行われることを特徴とした請求項 1に記載の 超音波撮像装置。 2. The delay control means previously stores delay time data obtained based on the average sound velocity of the living body, and is preceded by ultrasonic transmission / reception for obtaining refraction correction data using the stored delay time data. The ultrasonic imaging apparatus according to claim 1, wherein the ultrasonic imaging is performed.
3. 前記屈折補正遅延データ生成手段は、 レンズ層厚、 レンズ層の音速、 振動子 の配列ピッチを含む前記超音波探触子に関するパラメータを用い、 前記振動子 と指定された焦点との間の超音波伝播経路における超音波屈折効果を考慮して 各振動子に与える遅延時間を演算により求めることを特徴とする請求項 1に記 載の超音波撮像装置。 3. The refraction correction delay data generating means uses parameters related to the ultrasonic probe including a lens layer thickness, a sound velocity of the lens layer, and an arrangement pitch of the transducer, and calculates a distance between the transducer and a designated focal point. 2. The ultrasonic imaging apparatus according to claim 1, wherein a delay time given to each transducer is obtained by calculation in consideration of an ultrasonic refraction effect in an ultrasonic propagation path.
4. 前記屈折補正遅延データ生成手段は、 レンズ層厚、 レンズ層の音速、 振動子 間ピッチを含む前記超音波探触子に関するパラメータ、 並びに被検体の脂肪層 厚と脂肪層の音速、 生体組織の音速のデータを用い、 前記振動子と指定された 焦点との間の超音波伝播経路における超音波屈折効果を考慮して各振動子に与 える遅延時間を演算により求めることを特徴とする請求項 2叉は 3に記載の超 音波撮像装置。 4. The refraction correction delay data generating means includes: a parameter relating to the ultrasonic probe including a lens layer thickness, a lens layer sound speed, and a transducer pitch; a fat layer thickness and a sound speed of a fat layer of a subject; Calculating the delay time given to each transducer by taking into account the ultrasonic refraction effect in the ultrasonic propagation path between the transducer and a designated focal point, using the sound velocity data of 4. The ultrasonic imaging apparatus according to item 2 or 3.
5. 前記屈折補正遅延データ生成制御手段は、計算の対象となる振動子の隣の振 動子から前記焦点に至る音の経路に関するパラメータから漸ィヒ式的に解かれた パラメータを用いて遅延時間を演算により求めることを特徴とする請求項 1に 記載の超音波撮像装置。 5. The refraction correction delay data generation control means delays using a parameter gradually solved from a parameter relating to a sound path from the transducer next to the transducer to be calculated to the focal point. The ultrasonic imaging apparatus according to claim 1, wherein the time is obtained by calculation.
6.超音波画像が表示された前記表示ュニットの画面から屈折補正用の被検体の 層構造に関するデータを検出する手段と、 この層構造データ検出手段の出力を 用いて被検体の層構造による超音波の屈折の影響を考慮に入れた遅延制御デー タを生成する手段とを備えたことを特徴とする請求項 1 に記載の超音波撮像装 6. Means for detecting data related to the layer structure of the subject for refraction correction from the screen of the display unit on which the ultrasonic image is displayed, and using the output of the layer structure data detecting means to determine the layer structure of the subject based on the output. 2. An ultrasonic imaging apparatus according to claim 1, further comprising means for generating delay control data taking into account the effect of sound wave refraction.
7.前記層構造データ検出手段は画面上において移動可能な 2点のカーソルを表 示し、 それらの画面上での力一ソル間距離を計測するキヤリバを含むことを特 徴とする請求項 6に記載の超音波撮像装置。 7. The method according to claim 6, wherein the layer structure data detecting means displays two movable cursors on the screen, and includes a caliber for measuring a distance between the force and the sol on the screen. An ultrasonic imaging apparatus according to claim 1.
8. 配列振動子を備えた超音波探触子と、超音波を被検体に対し送信またはノ及 び受信の際に送波フォーカシングまたは受波フォーカシングを行うために各振 動子に対する遅延時間を制御する遅延制御手段と、 前記被検体における層を成 す構造の厚さを測定する手段と, 前記層構造の部分の音速を測定する手段と、 前記層厚測定手段によつて測定された層厚と前記音速測定手段によつて測定さ れた層構造中の音速とを用いて、 前記振動子と指定された焦点との間の超音波 伝播経路における超音波屈折効果を考慮して各振動子に与える遅延時間を求め 前記遅延制御手段へ供給する屈折補正遅延制御手段と、 超音波画像を表示する 表示ュニットを備えたことを特徴とする超音波撮像装置。 8. An ultrasonic probe with an arrayed transducer and a delay time for each transducer to perform transmit focusing or receive focus when transmitting or receiving ultrasonic waves to and from the subject. Delay control means for controlling; means for measuring the thickness of a layered structure in the subject; means for measuring the speed of sound of a portion of the layer structure; and a layer measured by the layer thickness measuring means. Using the thickness and the sound velocity in the layer structure measured by the sound velocity measuring means, each vibration is considered in consideration of the ultrasonic refraction effect in the ultrasonic wave propagation path between the vibrator and the designated focal point. An ultrasonic imaging apparatus, comprising: a refraction correction delay control unit that determines a delay time to be given to a child and supplies the delay correction unit to the delay control unit; and a display unit that displays an ultrasonic image.
9. 前記音速測定手段は、複数の振動子が受信したエコー信号を整相処理する遅 延回路の出力を用いて各受信チャンネルの遅延時間誤差を演算により求め、 こ の遅延誤差から被検体内の音速を求める音速計測手段を含むことを特徴とする 請求項 8に記載の超音波撮像装置。 9. The sound velocity measuring means calculates the delay time error of each reception channel using the output of a delay circuit that performs phasing processing of the echo signals received by the plurality of transducers, and calculates the delay time error in the subject based on the delay error. Sound velocity measuring means for determining the sound velocity of the object An ultrasonic imaging apparatus according to claim 8.
10. 前記音速計測手段は, 音速計測領域を被検体の脂肪層と、 この脂肪層の内 部の組織部とに特定して、 各々について音速を計測する手段を含むことを特徴 とする請求項 9に記載の超音波撮像装置。 10. The sound velocity measurement means includes means for specifying a sound velocity measurement region to a fat layer of a subject and a tissue portion inside the fat layer, and measuring a sound velocity for each of the fat layers. 10. The ultrasonic imaging apparatus according to 9.
11. レンズ層厚、 レンズ層の音速、 振動子配列ピッチを含む超音波探触子に関 するパラメータを用い、 超音波が前記振動子を出てから指定された焦点に到達 するまでに屈折する効果を考慮して各振動子に与える遅延時間を計算する方法 をコンピュータに実行させるためのプログラムを内蔵したことを特徴とする超 音波撮像装置。 11. Using the parameters related to the ultrasonic probe including the lens layer thickness, the sound velocity of the lens layer, and the transducer array pitch, the ultrasonic wave is refracted from the transducer before reaching the designated focal point. An ultrasonic imaging apparatus comprising a program for causing a computer to execute a method of calculating a delay time given to each transducer in consideration of an effect.
12. レンズ層厚、 レンズ層の音速、 振動子間ピッチを含む超音波探触子に関す るパラメータ、 並びに被検体の脂肪層厚と脂肪層の音速と脂肪層を除いた生体 組織の音速のデータとを用い、 超音波が前記振動子を出てから指定された焦点 に到達するまでに屈折する効果を考慮して各振動子に与える遅延時間を計算す る方法をコンピュータに実行させるためのプログラムを内蔵したことを特徴と する超音波撮像装置。 12. Parameters of the ultrasound probe, including the lens layer thickness, the lens layer sound speed, the pitch between transducers, and the fat layer thickness of the subject, the sound speed of the fat layer, and the sound speed of living tissue excluding the fat layer. And using the data to calculate the delay time to be given to each transducer in consideration of the effect of refraction from the time the ultrasonic wave leaves the transducer to the point at which a designated focal point is reached. An ultrasonic imaging apparatus characterized by incorporating a program.
PCT/JP2000/007114 1999-10-15 2000-10-13 Ultrasonic imaging device WO2001026555A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001529349A JP4711583B2 (en) 1999-10-15 2000-10-13 Ultrasonic imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/294498 1999-10-15
JP29449899 1999-10-15

Publications (1)

Publication Number Publication Date
WO2001026555A1 true WO2001026555A1 (en) 2001-04-19

Family

ID=17808556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/007114 WO2001026555A1 (en) 1999-10-15 2000-10-13 Ultrasonic imaging device

Country Status (2)

Country Link
JP (1) JP4711583B2 (en)
WO (1) WO2001026555A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061086A (en) * 2007-09-06 2009-03-26 Fujifilm Corp Ultrasonic diagnostic system, image processing method, and program
JP2010167258A (en) * 2008-12-25 2010-08-05 Canon Inc Biological information acquisition apparatus
JP2010167257A (en) * 2008-12-25 2010-08-05 Canon Inc Biological information acquisition apparatus
CN101900808A (en) * 2010-06-30 2010-12-01 深圳市蓝韵实业有限公司 Delay parameter computation method for multi-channel scanning and device thereof
EP2347704A1 (en) * 2010-01-22 2011-07-27 Canon Kabushiki Kaisha Acoustic wave measuring system and method of generating image data thereof
WO2011105593A1 (en) 2010-02-23 2011-09-01 Canon Kabushiki Kaisha Ultrasonic imaging apparatus and method of controlling delay
WO2011122044A1 (en) * 2010-03-31 2011-10-06 富士フイルム株式会社 Environmental sound velocity acquisition method and device
CN103913747A (en) * 2012-12-31 2014-07-09 深圳市蓝韵实业有限公司 Multichannel-scanning-time-delay calculating method and device
CN107205729A (en) * 2015-02-18 2017-09-26 株式会社日立制作所 The processing method of ultrasonic imaging apparatus and ultrasonic signal
JP2019033822A (en) * 2017-08-10 2019-03-07 コニカミノルタ株式会社 Ultrasound signal processor, ultrasound diagnostic apparatus, and ultrasound signal processing method
JP2021536276A (en) * 2018-09-05 2021-12-27 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Identification of the fat layer by ultrasound images

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11779312B2 (en) * 2019-06-28 2023-10-10 Siemens Medical Solutions Usa, Inc. Ultrasound medical imaging with optimized speed of sound based on fat fraction
US11864949B2 (en) * 2020-07-30 2024-01-09 Fujifilm Sonosite, Inc. Beamforming in ultrasound imaging systems to correct for refraction of ultrasound by transducer elements

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4835689A (en) * 1987-09-21 1989-05-30 General Electric Company Adaptive coherent energy beam formation using phase conjugation
JPH0595946A (en) * 1991-10-09 1993-04-20 Yokogawa Medical Syst Ltd Ultrasonic sound speed measuring method and ultrasonic diagnostic apparatus with sound speed measuring means
JPH08308832A (en) * 1995-05-17 1996-11-26 Toshiba Corp Ultrasonic diagnostic device
JPH09187456A (en) * 1996-01-10 1997-07-22 Fujitsu Ltd Ultrasonic diagnostic apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4989143A (en) * 1987-12-11 1991-01-29 General Electric Company Adaptive coherent energy beam formation using iterative phase conjugation
JP2619446B2 (en) * 1987-12-21 1997-06-11 株式会社日立製作所 Ultrasound diagnostic equipment
JPH01244737A (en) * 1988-03-26 1989-09-29 Toshiba Corp Annular array ultrasonic diagnostic device
JP3474278B2 (en) * 1994-03-16 2003-12-08 フクダ電子株式会社 Ultrasound diagnostic equipment
JPH11104130A (en) * 1997-10-07 1999-04-20 Hitachi Medical Corp Ultrasonic diagnostic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4835689A (en) * 1987-09-21 1989-05-30 General Electric Company Adaptive coherent energy beam formation using phase conjugation
JPH0595946A (en) * 1991-10-09 1993-04-20 Yokogawa Medical Syst Ltd Ultrasonic sound speed measuring method and ultrasonic diagnostic apparatus with sound speed measuring means
JPH08308832A (en) * 1995-05-17 1996-11-26 Toshiba Corp Ultrasonic diagnostic device
JPH09187456A (en) * 1996-01-10 1997-07-22 Fujitsu Ltd Ultrasonic diagnostic apparatus

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061086A (en) * 2007-09-06 2009-03-26 Fujifilm Corp Ultrasonic diagnostic system, image processing method, and program
JP2010167258A (en) * 2008-12-25 2010-08-05 Canon Inc Biological information acquisition apparatus
JP2010167257A (en) * 2008-12-25 2010-08-05 Canon Inc Biological information acquisition apparatus
US8876717B2 (en) 2008-12-25 2014-11-04 Canon Kabushiki Kaisha Biological information acquisition apparatus
EP2381837A1 (en) * 2008-12-25 2011-11-02 Canon Kabushiki Kaisha Biological information acquisition apparatus and biological information acquisition method
EP2381836A1 (en) * 2008-12-25 2011-11-02 Canon Kabushiki Kaisha Biological information acquisition apparatus
EP2347704A1 (en) * 2010-01-22 2011-07-27 Canon Kabushiki Kaisha Acoustic wave measuring system and method of generating image data thereof
US8611179B2 (en) 2010-01-22 2013-12-17 Canon Kabushiki Kaisha Acoustic wave measuring system and method of generating image data thereof
US9165552B2 (en) 2010-02-23 2015-10-20 Canon Kabushiki Kaisha Ultrasonic imaging apparatus and method of controlling delay
WO2011105593A1 (en) 2010-02-23 2011-09-01 Canon Kabushiki Kaisha Ultrasonic imaging apparatus and method of controlling delay
JP2011172611A (en) * 2010-02-23 2011-09-08 Canon Inc Ultrasonic imaging device and delay control method
US20120281902A1 (en) * 2010-02-23 2012-11-08 Canon Kabushiki Kaisha Ultrasonic imaging apparatus and method of controlling delay
CN102811667A (en) * 2010-03-31 2012-12-05 富士胶片株式会社 Environmental sound velocity acquisition method and device
JP2011212066A (en) * 2010-03-31 2011-10-27 Fujifilm Corp Environmental sound velocity acquisition method and device
WO2011122044A1 (en) * 2010-03-31 2011-10-06 富士フイルム株式会社 Environmental sound velocity acquisition method and device
US9291601B2 (en) 2010-03-31 2016-03-22 Fujifilm Corporation Ambient sound velocity obtaining method and apparatus
CN101900808A (en) * 2010-06-30 2010-12-01 深圳市蓝韵实业有限公司 Delay parameter computation method for multi-channel scanning and device thereof
CN103913747A (en) * 2012-12-31 2014-07-09 深圳市蓝韵实业有限公司 Multichannel-scanning-time-delay calculating method and device
CN107205729A (en) * 2015-02-18 2017-09-26 株式会社日立制作所 The processing method of ultrasonic imaging apparatus and ultrasonic signal
EP3260047A4 (en) * 2015-02-18 2018-09-26 Hitachi, Ltd. Ultrasound image capturing device and method of processing ultrasound signal
CN107205729B (en) * 2015-02-18 2019-12-31 株式会社日立制作所 Ultrasonic imaging apparatus and method for processing ultrasonic signal
US11076827B2 (en) 2015-02-18 2021-08-03 Hitachi, Ltd. Ultrasound image capturing device and method of processing ultrasound signal
JP2019033822A (en) * 2017-08-10 2019-03-07 コニカミノルタ株式会社 Ultrasound signal processor, ultrasound diagnostic apparatus, and ultrasound signal processing method
JP2021536276A (en) * 2018-09-05 2021-12-27 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Identification of the fat layer by ultrasound images
JP7358457B2 (en) 2018-09-05 2023-10-10 コーニンクレッカ フィリップス エヌ ヴェ Identification of fat layer using ultrasound images

Also Published As

Publication number Publication date
JP4711583B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
US6705994B2 (en) Tissue inhomogeneity correction in ultrasound imaging
CN100515346C (en) Ultrasonic wave diagnostic device, ultrasonic wave diagnostic method and image processing program
EP2816958B1 (en) Determining material stiffness using multiple aperture ultrasound
JP5435751B2 (en) Ultrasonic diagnostic apparatus, ultrasonic transmission / reception method, and ultrasonic transmission / reception program
CN105407809A (en) Diagnostic ultrasound apparatus and elasticity evaluation method
EP4018936B1 (en) Ultrasonic diagnostic apparatus and control method for ultrasonic diagnostic apparatus
WO2001026555A1 (en) Ultrasonic imaging device
JP2012217611A (en) Ultrasonic diagnostic apparatus and method for generating ultrasonic image
US20120310093A1 (en) Ultrasound image producing method and ultrasound image diagnostic apparatus
JP6871478B2 (en) Control method of ultrasonic diagnostic equipment and ultrasonic diagnostic equipment
JP5692079B2 (en) Displacement estimation method and displacement estimation apparatus
US20120004551A1 (en) Ultrasonic diagnosis apparatus and ultrasonic diagnosis method
JP2023155494A (en) Ultrasonic diagnostic device
JP5588924B2 (en) Ultrasonic diagnostic equipment
JP2008073423A (en) Ultrasonic diagnostic apparatus, diagnostic parameter measuring device, and diagnostic parameter measuring method
JP6746895B2 (en) Ultrasonic diagnostic device and ultrasonic signal processing method
WO2020110500A1 (en) Ultrasonic diagnostic device and method for controlling ultrasonic diagnostic device
JP6081744B2 (en) Ultrasonic diagnostic equipment
JP7434529B2 (en) Ultrasonic diagnostic device, control method for ultrasonic diagnostic device, and processor for ultrasonic diagnostic device
JPH069562B2 (en) Ultrasonic diagnostic equipment
JP6876869B2 (en) Control method of ultrasonic diagnostic equipment and ultrasonic diagnostic equipment
JP5346987B2 (en) Ultrasonic diagnostic equipment
JP4908915B2 (en) Ultrasonic diagnostic equipment
US20180168542A1 (en) Ultrasound diagnosis apparatus and method of controlling the same
CN104684486A (en) Ultrasonic diagnosis device, method for generating ultrasonic image, and program

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase