JP5971989B2 - フロート体の製造方法 - Google Patents

フロート体の製造方法 Download PDF

Info

Publication number
JP5971989B2
JP5971989B2 JP2012050386A JP2012050386A JP5971989B2 JP 5971989 B2 JP5971989 B2 JP 5971989B2 JP 2012050386 A JP2012050386 A JP 2012050386A JP 2012050386 A JP2012050386 A JP 2012050386A JP 5971989 B2 JP5971989 B2 JP 5971989B2
Authority
JP
Japan
Prior art keywords
float
partial
mixture
specific gravity
pointer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012050386A
Other languages
English (en)
Other versions
JP2013185906A (ja
Inventor
福原 聡明
聡明 福原
慎平 加藤
慎平 加藤
和弘 豊田
和弘 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2012050386A priority Critical patent/JP5971989B2/ja
Publication of JP2013185906A publication Critical patent/JP2013185906A/ja
Application granted granted Critical
Publication of JP5971989B2 publication Critical patent/JP5971989B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Level Indicators Using A Float (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

本発明は、例えば、液体タンクに収容された液体の液面レベルを検出する液面レベルセンサなどで用いられるフロート体の製造方法に関するものである。
フロート式液面レベルセンサにおいては、液体の液面に浮かべられたフロートの上下動を検知して液面レベルの検出を行う。このようなフロート式液面レベルセンサは、例えば、石油液化ガス(LPG)などの高圧液化ガスなどでの液面レベルの検出に使用されることがあり、フロートには耐圧性や液体の低浸透性が要求され、さらに、このような液化ガスは比重が小さいので、浮力を得るためにフロートには小さい比重が要求される。
例えば、中空状の金属体でフロートを構成した場合には、耐圧を確保するために金属の厚みが増し重量が増えて十分な浮力が得られず、また、耐圧性の点から形状が球形に制約されるという問題があった。また、金属よりも小さい比重の樹脂材料でフロートを構成した場合においても、中空体、発泡体問わず、高圧液体中では液体が樹脂材料に浸透してフロート内の空間に液体が浸入してしまい、十分な浮力が得られなくなるという問題があった。そして、このような問題を解決する技術が特許文献1に開示されている。
特許文献1に記載されたフロートは、ガラスマイクロバルーンなどの微小中空体を含有した熱可塑性樹脂で構成されている。このようなフロートによれば、中空体や発泡体などのように内部に空間を設けることなく比重を小さくして、浮力を確保することができた。
しかしながら、特許文献1のフロートは、押出機によって加熱溶融した樹脂とガラスマイクロバルーンとを混練押出してこれら樹脂とガラスマイクロバルーンとが混合されたペレットを作成したのち、このペレットを用いて射出成型機によって成型されるものであるところ、比重を小さくするためにガラスマイクロバルーンの割合を多くすると、これらガラスマイクロバルーンの間に溶融した樹脂が行きわたらず、そのため、混練押出時や射出成型時にガラスマイクロバルーン同士が擦れて割れてしまい、小さい比重のフロートを得ることが困難であるという問題があった。特に、耐薬品性や剛性の高い高分子量の樹脂を用いた場合、このような樹脂は溶融時の粘度が高いので、ガラスマイクロバルーンの間に溶融した樹脂がより行きわたらず、そのため、上記問題がより顕著であった。
そこで、このような問題を回避するために、熱可塑性の樹脂粉体とガラスマイクロバルーンとをそれぞれ固体状態のまま予め混合した混合物を金型に入れて、樹脂粉体の溶融温度以上に加熱しながら圧力を加えて圧縮する圧縮成形によってフロートを製造していた。このようにして製造されたフロートは、樹脂に混合したガラス粒体の破損が抑えられて、比重を小さくすることができた。
特開平1−212319号公報
しかしながら、上述した圧縮成形においては、上記混合物が入れられた金型を加熱することによって上記混合物を周囲から加熱するところ、上記混合物にはガラスマイクロバルーンが含まれているので、熱の伝わりが悪く、そのため、所望の浮力を得るためにある程度の大きさのフロートを製造する場合には、上記混合物を内側まで十分に溶融させるために長時間の加熱が必要であり、フロートの製造に長時間を要してしまうという問題があった。
本発明は、かかる問題を解決することを目的としている。即ち、本発明は、中空状のガラス粒体を含む熱可塑性樹脂からなる製造時間の短いフロート体、このフロート体を有する液面レベルセンサ、及び、フロート体の製造方法を提供することを目的としている。
上記目的を達成するために、請求項に記載された発明は、中空状のガラス粒体を含む熱可塑性樹脂からなるフロート体の製造方法であって、熱可塑性の樹脂粉体と中空状のガラス粒体とをそれぞれ固体状態のまま予め混合した混合物を金型に入れて、前記樹脂粉体の溶融温度以上に加熱しながら圧力を加えて圧縮して部分フロートを成形する部分フロート成形工程と、前記部分フロート成形工程で成形された複数の前記部分フロートを互いに並列に配置する配置工程と、を含むことを特徴とするフロート体の製造方法である。
請求項に記載された発明によれば、中空状のガラス粒体を含む熱可塑性樹脂からなるフロート体の製造方法であって、熱可塑性の樹脂粉体と中空状のガラス粒体とをそれぞれ固体状態のまま予め混合した混合物を金型に入れて、樹脂粉体の溶融温度以上に加熱しながら圧力を加えて圧縮して部分フロートを成形する部分フロート成形工程と、前記部分フロート成形工程で成形された複数の前記部分フロートを互いに並列に配置する配置工程と、を含むので、所望の浮力を有する大きさの1個のフロートに対して各部分フロートの形状を小さくして上記混合物の加熱時間を短くすることができるとともに、複数の部分フロートの浮力を合わせて所望の浮力を得ることができ、そのため、中空状のガラス粒体を含む熱可塑性樹脂からなるフロート体を短時間で製造できる。
(a)本発明の一実施形態のフロート体を示す斜視図であり、(b)は、(a)のフロート体の側面図(一部断面図を含む)である。 (a)、(b)は、図1のフロート体が備える部分フロートの製造方法の混合工程を説明する図である。 (a)〜(f)は、図1のフロート体が備える部分フロートの製造方法の圧縮成型工程を説明する図である。 本発明の一実施形態の液面レベルセンサを示す正面図(一部断面図を含む)である。 図4の液面レベルセンサの上面図である。 図4の液面レベルセンサの一部側面図である。
(実施形態1)
以下、本発明の一実施形態のフロート体を、図1〜図3を参照して説明する。このフロート体は、例えば、液体タンクに収容された液化石油ガスなどの液体に浮かべられることにより、当該液体の液面レベル(即ち、液面高さであり、液位ともいう)を検出する液面レベルセンサに用いられる。
フロート体90は、図1(a)、(b)に示すように、複数の部分フロート91を備えており、円筒形状に構成されている。本実施形態において、フロート体90は、3つの部分フロート91を備えている。
部分フロート91は、中空状のガラス粒体としてのガラスビーズGを含む熱可塑性樹脂を用いて円筒形状に形成されている。部分フロート91は、軸に沿って貫通孔92が設けられている。各部分フロート91は、同一形状に形成されている。また、部分フロート91に用いられる熱可塑性樹脂は、例えば、当該部分フロート91が浮かべられる液体などに対する耐薬品性、耐腐食性などを考慮して決定される。本実施形態においては、熱可塑性樹脂として、高密度ポリエチレン樹脂を用いている。
各部分フロート91は、それぞれの貫通孔92に後述するフロートアーム72の一端部72aが挿通されて、互いに接するように同軸に並べて配置される。本実施形態において、フロート体90を構成する各部分フロート91は、互いに接するように並列に配置されているものの互いに結合はされていないものであるが、例えば、接着剤などの結合手段を用いて各部分フロート91を一体に結合してフロート体90を構成しても良い。
次に、本発明のフロート体の製造方法の一実施例について、図2、図3を参照して説明する。
従来、このようなフロートは、溶融状態の樹脂にガラス粒体としてのガラスマイクロバルーンを混合したペレットを用いて射出成型により製造していたが、ガラスマイクロバルーンの混合の割合が高くなると成形時などにおいてガラスマイクロバルーンが割れてしまうので、ある値より比重を小さくすることができず、そのため、例えば、液化石油ガス、ジメチルエーテル(DME)、ブタンガス、又は、アンモニアなど、比重の小さい液体に浮かべられるフロートの製造には不適当であった。
そして、本実施形態のフロート体90は、熱可塑性の樹脂粉体と中空状のガラス粒体とをそれぞれ固体状態のまま予め混合した混合物を金型に入れて、樹脂粉体の溶融温度以上に加熱しながら圧力を加えて圧縮する圧縮成形による製造方法を用いて製造した部分フロートを、互いに並列に配置して構成されている。そのため、製造時のガラス粒体の破損を防ぐことができ、この部分フロート91でフロート体90を構成することにより、比重の小さい液体に浮かべることができる比重の小さいフロート体90を製造することができる。
以下に説明するフロート体の製造方法では、原材料として、熱可塑性の樹脂粉体と、中空状のガラス粒体と、を用いて円筒形状の部分フロート91を成形したのち、複数の部分フロート91を組み合わせて円筒形状のフロート体90(図1)を製造する。勿論、このような形状は、一例であって、例えば、角筒形状や楕円球形状など、本発明の目的に反しない限り、フロート体90の形状は任意である。また、フロート体90が備える部分フロート91の個数についても、複数個であれば、本発明の目的に反しない限り、任意である。また、部分フロート91は、互いに異なる形状であっても良いが、同一形状であることが、コスト削減の観点から望ましい。
熱可塑性の樹脂粉体としては、例えば、平均粒径が100μm程度、比重が0.95、溶融温度が128℃のパウダー状のポリエチレン(PE)を用いる。本実施形態では、高密度ポリエチレン樹脂粒子P(サンファインLH−411、旭化成ケミカルズ社製)を用いている。勿論、樹脂の種類について、ポリエチレン以外にも、例えば、ポリプロピレン(PP)、又は、ポリアミド(PA)などのパウダー状の樹脂材料を用いてもよく、また、平均粒径についても、後述するガラス粒体より極端に大きくなく、このガラス粒体と均一に混ざる程度の大きさであればよい。一般的に、樹脂における分子量と溶融粘度には相関があり、同種の樹脂であっても分子量が大きくなるほど溶融粘度が高くなる傾向にあるが、粉体の状態でガラス粒体と混合するので、溶融粘度が混合物の混合程度に影響することがなく、均一に混合することができる。また、樹脂における分子量が大きいと耐薬品性や剛性が高くなるので、耐薬品性に優れた、比重の小さい高耐圧の部分フロート91(即ち、フロート体90)の製造に有利である。
ガラス粒体としては、例えば、平均粒径が35μm程度で比重が0.34程度の中空球状に形成されたものを用いる。本実施形態では、フィラー用のガラスビーズG(Sphericel 34P30、ポッターズ・バロティーニ社製)を用いている。ガラスビーズGは、その粒径が大きいほど、比重が小さくなるとともに耐圧が低くなる。ガラスビーズGの比重を小さくすることで、それを用いて成型される部分フロート91の比重を小さくすることができるが、ガラスビーズGが製造時に割れやすくなるので、所望の比重の部分フロート91を得ることが難しくなり、また、ガラスビーズGの耐圧により部分フロート91自体の耐圧も決まるので、比重を小さくしすぎると必要な耐圧を得られなくなる。そのため、部分フロート91の成形時に加えられる圧力や部分フロート91を浮かべる液体の性質(比重、圧力など)に応じて、比重と耐圧とのバランスをとるようにしてガラスビーズGの平均粒径等を決定する。
フロート体90の製造において、まず、所定量の高密度ポリエチレン樹脂粒子PとガラスビーズGとを計量したのち、図2(a)、(b)に示すように、混合機Mに投入して混合し、これら原材料が均一に混ぜ合わされた混合物Rを生成する(混合工程)。
この混合工程では、生成された混合物R中に含まれるガラスビーズの割合(以下、充填率ともいう)が、製造するフロート体90の用途(即ち、フロート体90を浮かべる対象の液体など)に合わせて、41〜73体積%の範囲に含まれるように高密度ポリエチレン樹脂粒子PとガラスビーズGとを混合する。ここでいう「体積%」は、粉体や粒体間の空間を含まない、高密度ポリエチレン樹脂粒子P及びガラスビーズGそのものが占める体積についての値であり、これらの体積(体積%)は、各原材料の比重と重量から換算して求めている。例えば、高密度ポリエチレン樹脂粒子P(比重0.95)を26g、ガラスビーズG(比重0.35)を17g、としたとき、高密度ポリエチレン樹脂粒子Pの体積は27.4cm3(=26/0.95)、ガラスビーズGは50.0cm3(=17/0.34)となり、これらを混合すると、ガラスビーズGの充填率は65体積%(=50.0/(27.4+50.0))となる。
次に、上記混合工程で生成した混合物Rを、図3(a)〜(f)に示すように、金型に充填して高密度ポリエチレン樹脂粒子Pの溶融温度以上に加熱しながら圧縮する(圧縮成型工程)。
この圧縮成型工程で用いる金型Kには、上端が開口された有底円筒状のキャビティCが複数設けられており(図3(a)〜(f)では、1つのキャビティのみ図示している)、このキャビティC内には、例えば、シリコン離型剤やフッ素系離型剤などを塗布する離型処理が予め施されている。このキャビティC内に上記混合物Rを充填するとともにキャビティCから10%程度あふれるまで上記混合物Rを充填する。具体的には、混合物の充填は、複数回に分けて少量ずつ上方からキャビティC内に注ぎ(図3(a)、(c))、混合物を注ぐ度にキャビティC内に充填された混合物を上方から1MPa程度の圧力で圧縮して混合物R内に生じた空隙を小さくしながら(図3(b)、(d))、キャビティCの上部からあふれるまで行う(図3(e))。そして、混合物RがキャビティC内に充填されると、混合物Rを全方向から加熱するように金型K内に配置されたヒータHによって金型Kを180℃まで加熱して混合物R(即ち、樹脂粉体)を溶融させるとともに、1MPa/分の速度で5MPaになるまで少しずつ圧力を高め、圧力5MPaを加えた状態で10分間混合物Rを圧縮する(図3(f))。このとき、金型Kの隙間から混合物R(即ち、溶融した樹脂)が流れ出ていくため、混合物Rに加わる圧力が5MPaを維持するように、圧力を調整しながら行う。
そして、混合物Rを固めて成形物とするための冷却を行う。即ち、金型Kを保持したままヒータHをオフして、金型温度(即ち、混合物Rの温度)が100℃になるまで自然冷却を行ったのち、さらに、金型Kを保持したまま、金型K内に設けられた図示しない管路に冷却水を循環させて金型温度が40℃になるまで冷却を行う(冷却工程)。上述した混合工程及び圧縮成型工程を含む工程が、請求項中の部分フロート成形工程に相当する。
そして、金型Kから成形物を取り出して、部分フロート91が得られる。そして、このようにして得られた複数の部分フロート91を、互いに接するように同軸に並べて配置して(配置工程)、フロート体90が完成する。
高密度ポリエチレン樹脂粒子PへのガラスビーズGの充填率(即ち、混合の割合)と、成形物である部分フロート91の比重との関係の一例を以下に示す。
例えば、平均粒径が100μm(粒径範囲80〜150μm)、比重が0.95、溶融温度が128℃の高密度ポリエチレン樹脂粒子Pと、平均粒径が35μm(粒径範囲10〜50μm)、比重が0.34、耐圧が20MPaのガラスビーズGと、を用いて、これら原材料を固体状態のままで混合する。
そして、(A)ガラスビーズGの充填率が41〜73体積%となる混合物Rを生成し、この混合物Rを金型Kに充填して5MPaの圧力で圧縮成型することで、(1)ジメチルエーテル(液比重0.67)、(2)アンモニア(液比重0.64)、(3)液化ブタンガス(液比重0.58)、のそれぞれに適した比重の部分フロート91(即ち、フロート体90)を製造することができる。
または、(B)ガラスビーズGの充填率が51〜71体積%となる混合物Rを生成し、この混合物Rを金型に充填して5MPaの圧力で圧縮成型することで、上記(2)、(3)のそれぞれに適した比重のフロート体90を製造することができる。
または、(C)ガラスビーズGの充填率が64〜66体積%となる混合物を生成し、この混合物を金型に充填して5MPaの圧力で圧縮成型することで、上記(3)に適した比重のフロート体90を製造することができる。特に、ガラスビーズGの充填率を65%にすることで、特許文献1に示される従来の製造方法では製造することができなかった0.55〜0.57の比重のフロートを製造することができる。
以上より、本実施形態によれば、フロート体90が、互いに並列して配置された複数の部分フロート91で構成されているので、所望の浮力を有する大きさの1個のフロートに対して各部分フロート91の形状を小さくすることができるとともに、各部分フロート91の浮力を合わせて所望の浮力を得ることができ、そのため、熱可塑性の樹脂粉体(高密度ポリエチレン樹脂粒子P)と中空状のガラス粒体(ガラスビーズG)とをそれぞれ固体状態のまま予め混合した混合物Rを金型Kに入れて、樹脂粉体の溶融温度以上に加熱しながら圧力を加えて圧縮する圧縮成形による製造方法を用いて製造した場合でも、上記混合物の加熱時間を短くすることができ、そのため、中空状のガラス粒体を含む熱可塑性樹脂からなるフロート体90を短時間で製造できる。
また、複数の部分フロート91のそれぞれが、同一形状に形成されているので、1つの金型Kで複数の部分フロート91を成形する場合において、金型Kに設けるキャビティCの形状が同一形状になるため金型Kの製造が容易になり、そのため、製造コストをさらに低減できる。また、1つの金型Kで複数の部分フロート91を同時に成形することで、フロート体90をより短時間で製造できる。
また、上述したフロート体90の製造方法が、熱可塑性の樹脂粉体と中空状のガラス粒体とをそれぞれ固体状態のまま予め混合した混合物を金型に入れて、樹脂粉体の溶融温度以上に加熱しながら圧力を加えて圧縮して部分フロート91を成形する工程と、前記工程で成形された複数の前記部分フロートを互いに並列に配置する工程と、を含むので、所望の浮力を有する大きさの1個のフロートに対して各部分フロート91の形状を小さくして上記混合物の加熱時間を短くすることができるとともに、複数の部分フロート91の浮力を合わせて所望の浮力を得ることができ、そのため、中空状のガラス粒体を含む熱可塑性樹脂からなるフロート体90を短時間で製造できる。
(実施形態2)
次に、本発明の一実施形態の液面レベルセンサを、図4〜図6を参照して説明する。本実施形態の液面レベルセンサは、例えば、液化石油ガスなどの液面レベルを検出などに用いられる。
液面レベルセンサ1は、図4〜図6に示すように、ケース10と、指針機構部30と、駆動機構部50と、フロート部70と、を有している。
ケース10は、例えば、ステンレスなどの耐腐食性を有する金属からなり、上ケース部11と、下ケース部21と、がネジ12によって互いに固定されて構成されている。
上ケース部11は、略有底円筒形状の上部分11aと、この上部分11aの底面に同軸に重ねられた当該上部分11aより小径の略円筒形状の下部分11bと、が互いに一体に設けられている。
上ケース部11には、上記上部分11aの内側空間として上方に向けて開口された略円柱形状の空間である第1収容室14と、即ち、上記下部分11bの内側空間として下方に向けて開口された略円柱形状の空間である第2収容室15と、が設けられている。第1収容室14には、後述する指針機構部30が収容されている。第2収容室15には、後述する駆動マグネット52が収容されている。
下ケース部21は、長尺でかつ上記下部分11bより小径の円筒形状に形成されている。下ケース部21の一端部21aの内側及び他端部21bの内側には、後述する駆動機構部50のシャフト51を回動可能に軸支する軸受部22、23が設けられている。また、下ケース部21の一端部21aには、外周面全周にわたってフランジ24が設けられている。フランジ24の外径は、上ケース部11の一端部11cの外径(即ち、上ケース部11の下部分11bの外径)と同一に形成されている。
フランジ24は、上ケース部11の一端部11cに重ねられて、ネジ12によって当該一端部11cに固定される。これにより、第2収容室15の開口が下ケース部21によって塞がれる。
指針機構部30は、ベース31と、指針ユニット35と、カバー49と、を備えている。
ベース31は、例えば、合成樹脂などを用いて、第1収容室14の径と同一の外径の円板形状に形成されている。ベース31の上面31aの周縁部には、後述の指針ユニット35によって指示される目盛線や数字などの指標31cが形成されている。また、ベース31の上面31aの中央部分には、上方に向けて開口された略円柱形状の空間である指針ユニット収容室32が形成されている。この指針ユニット収容室32の底面32aには、円柱状の凸部33が形成されている。ベース31の下面31bは、第1収容室14の底面と同一形状に形成されており、ベース31が第1収容室14に収容されると、ベース31の下面31bが、第1収容室14の底面と密に重なる。ベース31、指針ユニット収容室32及び凸部33は、互いに同軸になるように配置されている。ベース31は、第1収容室14に固定して収容されている。
指針ユニット35は、指針部36と、従動マグネット41と、を備えている。
指針部36は、例えば、合成樹脂などを用いて互いに一体に形成された指針部本体37と、指針40と、を備えている。指針部本体37は、指針ユニット収容室32の径より若干小さい外径の略有底円筒形状に形成されている。指針部本体37の底壁37aの中央部分には、指針ユニット収容室32の凸部33が回動自在に嵌め合わされる凹部38が設けられている。また、底壁37aの中心には、後述する止めピン47が挿通される底壁貫通孔39が設けられている。指針40は、指針部本体37の周壁37bの開口側端部に、指針部本体37の半径方向外側に向けて棒状に延設されている。
従動マグネット41は、指針部本体37の内径と同一の外径の略円柱形状に形成されており、指針部本体37の内側に固定して収容される。従動マグネット41の中心には、軸方向にマグネット貫通孔42が設けられている。このマグネット貫通孔42は、従動マグネット41が指針部本体37に収容されると、指針部本体37の底壁貫通孔39と重なり互いに連通される。従動マグネット41は、後述する駆動マグネット52と磁気的に結合(磁気カップリング)されている。
指針ユニット35は、その凹部38の内側に凸部33が位置づけられるようにして指針ユニット収容室32内に収容される。そして、止めピン47をマグネット貫通孔42及び底壁貫通孔39に挿通して当該止めピン47の先端をベース31の凸部33に固定すると、指針ユニット35は、ベース31に回動自在に取り付けられる。また、指針ユニット35の指針40は、ベース31の上面31a上に配置され、回動位置(即ち、計測量)に応じた指標31cを指示する。指針ユニット35は、従動マグネット41と磁気的に結合された駆動マグネット52の回動に伴って回動される。
カバー49は、例えば、透明な合成樹脂を用いて、第1収容室14の径と同一の外径の円板状の上壁部49aと、上壁部49aの周縁全周にわたって下方に向けて立設された周壁部49bと、上壁部49aの中央部分に設けられた遮蔽部49cと、を備えている。カバー49は、周壁部49bの先端(即ち、上壁部49aと反対側の端)がベース31を向くようにして第1収容室14に固定して収容されている。カバー49には、上方から見たときにベース31の上面31aに形成された指標31c及び指針ユニット35の指針40が視認され、指針部本体37及び従動マグネット41が視認されないように、遮光塗料で形成された遮蔽部49cが上壁部49aの中央部分に設けられている。
駆動機構部50は、シャフト51と、駆動マグネット52と、第1歯車53と、第2歯車54と、を備えている。
シャフト51は、例えば、ステンレスなどの耐腐食性を有する金属を用いて、長尺の円柱形状に形成されている。シャフト51は、下ケース部21の軸受部22、23によって、下ケース部21の内側に当該下ケース部21と同軸として回動自在に軸支されている。シャフト51の一端部51aは、下ケース部21の一端部21aから突出して第2収容室15内に位置づけられており、他端部51bは、下ケース部21の他端部21bから突出して下ケース部21外部に位置づけられている。
駆動マグネット52は、円板形状(即ち、平たい円柱形状)に形成されており、シャフト51の一端部51aに固定して取り付けられている。駆動マグネット52の中心は、シャフト51の回動軸上に配置されている。
第1歯車53は、シャフト51の他端部51bに固定して取り付けられている。第1歯車53の回動軸は、シャフト51の回動軸上に配置されている。第2歯車54は、その回動軸が第1歯車53の回動軸(即ち、シャフト51の回動軸)と直交するようにして、下ケース部21の他端部21bに延設された歯車軸受部25に回動自在に軸支されている。
フロート部70は、フロートアーム72及び上述したフロート体90を備えたフロートアーム組立体71と、バランサ73と、を備えている。
フロートアーム72は、例えば、ステンレスなどの耐腐食性を有する金属からなり、略L字形の円柱棒状に形成されている。フロートアーム72の一端部72aは、L字形の短辺側の部分に対応しており、フロート体90が取り付けられている。フロートアーム72の他端部72bは、L字形の長辺側の先端付近の部分に対応しており、後述するバランサ73が固定して取り付けられる。
フロート体90は、長さがフロートアーム72のL字形の短辺の長さより若干短く形成されている。フロート体90は、その貫通孔92にフロートアーム72の一端部72aが挿通され、そして、当該一端部72aの先端にプッシュナット93が固定して取り付けられることにより、フロート体90は、プッシュナット93及びフロートアーム72のL字型の折り曲げ部分72cとの間に狭持された状態で取り付けられる。勿論、これに限らず、フロート体90は、例えば、接着剤などの固定部材により一端部72aに固定して取り付けられていてもよい。
バランサ73は、例えば、ステンレスなどの耐腐食性を有する金属からなり、略円柱形状に形成されているともに、その軸に沿ってフロートアーム72の他端部72bが挿通されるバランサ貫通孔74が設けられている。バランサ73は、その両端をろう77によってフロートアーム72の他端部72bにろう付けして固定されている。
上述した液面レベルセンサ1は、液体が収容される液体タンクに取り付けられる。そして、液面レベルセンサ1のフロート体90が、液体タンク内の液体の液面に浮かべられて、液面の上昇及び下降に伴ってフロート体90が上下移動されると、この上下移動が第2歯車54、第1歯車53及びシャフト51に順次伝達されて、フロート体90の移動量、即ち、液体タンク内の液量に応じて駆動マグネット52が回動される。そして、駆動マグネット52の回動によって従動マグネット41が回動されて、これに伴って、指針部36も回動されて、指針部36に設けられた指針40が、液体タンク内の液体の量に応じた指標31cを指示する。
以上より、本実施形態によれば、上述したフロート体90を有しているので、中空状のガラス粒体を含む熱可塑性樹脂からなるフロート体90を短時間で製造でき、そのため、液面レベルセンサ1についても短時間で製造でき、製造コストを低減できる。
上述した実施形態では、液化石油ガスの液面レベルの検出に用いられるフロート体及びこのフロート体を有する液面レベルセンサについて説明するものであったが、これに限定されるものではなく、液化石油ガス以外にも、亜硫酸やアンモニアなどの腐食性の高い薬液や、プロパンガス、ブタンガスなどの高圧の液化ガスなどに用いてもよく、液面レベル検出対象の液体の種類は任意である。この場合、検出対象の液体に対して耐腐食性を有する材料を用いてフロートアーム組立体を構成する。また、本発明の液面レベルセンサは、例えば、車両などの移動体に搭載されて、燃料タンク内の燃料残量の計測に用いてもよく、本発明の目的に反しない限り、用途は任意である。
なお、前述した実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。
1 液面レベルセンサ
71 フロートアーム組立体
72 フロートアーム
72a 一端部
90 フロート体
91 部分フロート
92 貫通孔
P 高密度ポリエチレン樹脂粒子(熱可塑性の樹脂粉体)
G ガラスビーズ(中空状のガラス粒体)
K 金型
C キャビティ
H ヒータ
R 混合物

Claims (1)

  1. 中空状のガラス粒体を含む熱可塑性樹脂からなるフロート体の製造方法であって、
    熱可塑性の樹脂粉体と中空状のガラス粒体とをそれぞれ固体状態のまま予め混合した混合物を金型に入れて、前記樹脂粉体の溶融温度以上に加熱しながら圧力を加えて圧縮して部分フロートを成形する部分フロート成形工程と、
    前記部分フロート成形工程で成形された複数の前記部分フロートを互いに並列に配置する配置工程と、を含む
    ことを特徴とするフロート体の製造方法。
JP2012050386A 2012-03-07 2012-03-07 フロート体の製造方法 Expired - Fee Related JP5971989B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012050386A JP5971989B2 (ja) 2012-03-07 2012-03-07 フロート体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012050386A JP5971989B2 (ja) 2012-03-07 2012-03-07 フロート体の製造方法

Publications (2)

Publication Number Publication Date
JP2013185906A JP2013185906A (ja) 2013-09-19
JP5971989B2 true JP5971989B2 (ja) 2016-08-17

Family

ID=49387463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012050386A Expired - Fee Related JP5971989B2 (ja) 2012-03-07 2012-03-07 フロート体の製造方法

Country Status (1)

Country Link
JP (1) JP5971989B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106289834B (zh) * 2016-07-29 2017-07-11 中国核动力研究设计院 一种构建蒸汽发生器二次侧初始工况的实验系统
EP3885713B1 (en) * 2020-03-24 2024-03-13 Honeywell International Inc. Rotary piston water meter

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013224859A (ja) * 2012-04-20 2013-10-31 Denso Corp 液面検出装置
KR101578061B1 (ko) * 2015-04-03 2015-12-16 김창구 히터 내장형 부자식 수위측정장치
KR101857880B1 (ko) * 2016-11-21 2018-05-15 한국생산기술연구원 유리질 미소 중공체가 함유된 경량 구조체
CN110696276A (zh) * 2019-11-20 2020-01-17 张子振 一种浮子的生产工艺以及浮子
KR102467750B1 (ko) * 2021-03-11 2022-11-16 (주)에스엠아이앤씨 레벨 센서용 플로트의 제조방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713395Y2 (ja) * 1977-05-24 1982-03-17
JPS5725273U (ja) * 1980-07-21 1982-02-09
US4862745A (en) * 1988-07-07 1989-09-05 Microdot Inc. Fuel tank float
DE10326982B3 (de) * 2003-06-12 2005-02-03 Siemens Ag Schwimmer für einen Füllstandsgeber
DE10345885A1 (de) * 2003-09-30 2005-05-04 Siemens Ag Schwimmer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106289834B (zh) * 2016-07-29 2017-07-11 中国核动力研究设计院 一种构建蒸汽发生器二次侧初始工况的实验系统
EP3885713B1 (en) * 2020-03-24 2024-03-13 Honeywell International Inc. Rotary piston water meter

Also Published As

Publication number Publication date
JP2013185906A (ja) 2013-09-19

Similar Documents

Publication Publication Date Title
JP5971989B2 (ja) フロート体の製造方法
Zhu et al. Discrete particle simulation of particulate systems: a review of major applications and findings
JP5972580B2 (ja) 回転錘
US8662343B1 (en) Pressure vessel and method of use
CN111089766B (zh) 基于可溶性空腔盐块的任意封闭溶腔制作设备与方法
US5760293A (en) Method and apparatus for measuring envelope and bulk densities
US20170362404A1 (en) Syntactic foam, process of its preparation and buoyancy material including the same
JP5619435B2 (ja) 蓄熱部材及びその製造方法
CN103209788A (zh) 复合材料及其制造方法和设备
He et al. Preparation and properties of styrene ethylene butylene styrene/polypropylene thermoplastic elastomer powder for selective laser sintering 3D printing
US20130223477A1 (en) Container for thermal analysis of cast iron
CN109071958A (zh) 树脂组合物
Wessling et al. Models for understanding processing properties of intrinsically conductive polymers
CN102426810A (zh) 小孔周期性泄流分层振荡的方法与装置
US10150250B2 (en) Moulded plastic articles with contact between two dissimilar plastics
JP5888547B2 (ja) フロートの製造方法
CN107206705A (zh) 多孔模塑件、凝胶模塑件和过滤器
JP2011020445A (ja) 樹脂成形体及びその製造方法、並びにリレー
JP5717368B2 (ja) シンタクチックフォームの製造方法
CN111873301A (zh) 注塑成型设备及注塑成型的方法、机器可读存储介质
CN202876842U (zh) 一种添加粘结剂用的胶头滴管
JPH01212319A (ja) 熱可塑性樹脂製フロート
CN103712763B (zh) Lng铁路运输罐箱冲击试验的模拟介质充填方法及装置
Shen et al. The fabrication and characterization of polymeric microcellular foams with designed gradient density
JP2014052283A (ja) フロートの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160712

R150 Certificate of patent or registration of utility model

Ref document number: 5971989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees