JP5966539B2 - 波長変換用無機成形体及びその製造方法、並びに発光装置 - Google Patents

波長変換用無機成形体及びその製造方法、並びに発光装置 Download PDF

Info

Publication number
JP5966539B2
JP5966539B2 JP2012089068A JP2012089068A JP5966539B2 JP 5966539 B2 JP5966539 B2 JP 5966539B2 JP 2012089068 A JP2012089068 A JP 2012089068A JP 2012089068 A JP2012089068 A JP 2012089068A JP 5966539 B2 JP5966539 B2 JP 5966539B2
Authority
JP
Japan
Prior art keywords
inorganic
light
layer
wavelength conversion
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012089068A
Other languages
English (en)
Other versions
JP2013216800A5 (ja
JP2013216800A (ja
Inventor
玉置 寛人
寛人 玉置
若木 貴功
貴功 若木
林 忠雄
忠雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2012089068A priority Critical patent/JP5966539B2/ja
Priority to CN201310100170.2A priority patent/CN103367611B/zh
Priority to EP13161479.4A priority patent/EP2645433B1/en
Priority to KR1020130032959A priority patent/KR101549736B1/ko
Priority to US13/852,332 priority patent/US8994259B2/en
Publication of JP2013216800A publication Critical patent/JP2013216800A/ja
Priority to US14/590,520 priority patent/US9835310B2/en
Publication of JP2013216800A5 publication Critical patent/JP2013216800A5/ja
Application granted granted Critical
Publication of JP5966539B2 publication Critical patent/JP5966539B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Led Device Packages (AREA)
  • Optical Filters (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Description

本発明は、粒状の無機蛍光体を含有する無機材料からなる波長変換用無機成形体及びその製造方法、並びに波長変換用無機成形体を用いた発光装置に関する。
発光ダイオードや半導体レーザなどの半導体発光素子において、半導体発光素子が発光する光色の一部又は全部を、蛍光体を含有する色変換用成形体を用いて色変換し、発光色を変換して出力する発光装置がある。また、このような発光装置は、ヘッドライトやプロジェクタなどの高出力を要求される用途にも用いられるようになっている。
従来、このような発光装置に用いられる色変換用成形体として、比較的耐熱性・耐光性の良好なシリコーン樹脂に蛍光体を分散して成形した色変換用成形体が使用されている。しかし、近年の、LED(発光ダイオード)やLD(レーザダイオード)などの半導体発光素子を用いた光源の更なる高出力化・高負荷化に対応した過酷な用途では、色変換用成形体に用いた樹脂が劣化する場合が考えられる。
そこで、樹脂や有機物を含まず、無機蛍光体のみ、又は無機蛍光体と透明な無機材料とを焼結させ板状に成形した色変換用のセラミックス成形体を、高出力・高負荷となる用途の色変換用成形体として使用するLEDやLDが実用化されている。
また、無機材料のみからなる色変換用のセラミックス成形体の製造方法は、様々な方法が提案されている。
例えば、特許文献1には、耐久性のよい発光変換体として、無機酸化物の希土類ガーネット系化合物、特にYAG(イットリウム・アルミニウム・ガーネット)系蛍光体が例に記載されている。製造方法は詳細には記載されていないが、セラミックスベース材料から多結晶セラミックス体を作製し、その後、発光中心となる付活剤をドーピングする方法で発光変換体を作製するとしている。その後、この発光変換体である多結晶セラミックス体を半導体発光素子と組み合わせ使用する方法が記載されている。
特許文献2には、発光色変換部材として無機蛍光体入りガラスの構成と製造方法が記載されている。ここでも、酸化物系蛍光体のYAG系蛍光体が例として挙げられている。
特許文献3には、高温高圧で無機蛍光体を焼結させ色変換体としての発光セラミックスを得る方法が記載されている。
また、特許文献4には、蛍光体粉末とガラス粉末でシートを生成し、これを高温の炉内に導入して無機色変換ガラスシートを製造する方法が開示されている。ここには、種々の化合物の蛍光体を無機色変換ガラスシートにする方法として、融点が400℃以下の低融点ガラスを利用する方法が記載されている。
更に、特許文献5には、光変換用セラミックス複合体の製造方法として、YAG系蛍光体をアルミナなどの融液から析出・成長させる方法が記載されている。
特開2004−146835号公報 特開2003−258308号公報 特開2006−5367号公報 特開2006−37097号公報 特開2006−169422号公報
しかしながら、特許文献1から特許文献5に記載されたセラミックス成形体は、何れも、無機材料を焼結又は溶融させて作製するものである。焼結や溶融で作製するセラミックス成形体は、バルク(塊)状のセラミックスからスライス、研磨などの加工をすることで所望の形状に成形することが一般的である。このため、例えば、板状に成形する場合に、厚さを薄くすることには限界があった。
更に、蛍光体と蛍光体以外の無機材料とを焼結してセラミックス体を成形する場合は、作製されたセラミックス成形体における蛍光体の含有率が低いため、十分な色変換を行うためには、相当の厚さが必要であった。
また、従来のセラミックス成形体は、バルク状のセラミックスから切出して所望の形状に成形する必要があるため、加工できる成形体の形状には制約があった。
また、無機の赤色蛍光体として、例えば、CaSiAlN:Euを基本組成とするCASNや、更にSrを多く含有するSCASNなどの窒化物蛍光体が知られているが、粒状物として得られ、バルク状のものはできていない。また、窒化物蛍光体は、熱に弱いものが多く、焼結時の熱により蛍光体が失活するため、焼結によりこれらの蛍光体を含有する成形体を作製することができなかった。
本発明はかかる問題に鑑み、厚さ、形状及び用いる無機蛍光体の制約が少ない透過型の波長変換用無機成形体及びその製造方法、並びに、この波長変換用無機成形体を用いた発光装置を提供することを課題とする。
本発明は前記した課題を解決するために創案されたものであり、第1の発明に係る波長変換用無機成形体は、透光性の基体と、無機材料からなる波長変換部材の粒子を含有する無機粒子層と、を有し、前記無機粒子層は、凝集体と、被覆層と、空隙と、を有し、前記波長変換部材の粒子は、当該粒子同士及び前記基体と無機結着材により結着して構成した。
かかる構成によれば、無機粒子層に入射した第1の波長の光は、波長変換部材により吸収され、第1の波長とは異なる第2の波長の光に波長変換されて発光する。このとき、無機粒子層への入射光は、無機粒子層内に存在する空隙によって散乱され、無機粒子層内の波長変換部材に効率的に照射される。これによって、入射光は波長変換部材の粒子に効率的に吸収され、第2の波長の光に波長変換される。
ここで、波長変換用無機成形体に、無機粒子層側から光が入射された場合は、入射光は無機粒子層で波長変換され、基体を透過して基体側から出射される。また、波長変換用無機成形体に、基体側から光が入射された場合は、入射光は基体を透過し無機粒子層で波長変換され、無機粒子層側から出射される。すなわち、本発明に係る波長変換用無機成形体は、透過型の波長変換用無機成形体である。
なお、波長変換部材は、第1の波長の光を吸収し、第1の波長とは異なる第2の波長の光を発光するものであり、例えば、窒化物蛍光体やフッ化物蛍光体などの無機蛍光体である。また、無機粒子層において、波長変換部材の粒子は、当該粒子同士又は基体と接触することで連続的に繋がった凝集体となる。そして、基体の表面及び波長変換部材の粒子の表面は、無機材料からなる被覆層によって連続的に被覆される。すなわち、波長変換を行う層である無機粒子層の厚さや形状は、波長変換部材の粒子の凝集体の厚さや形状によって定められる。また、無機粒子層の内部には、被覆層で被覆された粒子、又は、被覆層で被覆された粒子及び被覆層で被覆された基体によって取り囲まれた空隙が形成される。
また、波長変換用無機成形体の無機粒子層は、無機結着材により波長変換部材の粒子の凝集体が散逸することなく形成される。
第2の発明に係る波長変換用無機成形体は、透光性の基体と、前記基体上に設けられた、第1の波長の光を吸収し、前記第1の波長とは異なる第2の波長の光を発光する無機材料からなる波長変換部材の粒子を含有する無機粒子層と、を有し、前記無機粒子層は、前記粒子が、当該粒子同士又は前記基体と接触することで連続的に繋がった凝集体と、前記基体の表面及び前記粒子の表面を連続的に被覆する無機材料からなる被覆層と、前記被覆層で被覆された前記粒子、又は、前記被覆層で被覆された前記粒子及び前記被覆層で被覆された前記基体によって取り囲まれた空隙と、を有し、前記基体と前記無機粒子層との間に、透光性を有する無機材料からなる透光性層を設けて構成した。
かかる構成によれば、波長変換用無機成形体は、入射光又は/及び波長変換された光が透光性層と基体とを透過する透過型の波長変換用無機成形体として用いることができる。また、波長変換用無機成形体は、波長変換部材の粒子が透光性層と被覆層とによって、連続的に被覆される。
第3の発明に係る波長変換用無機成形体は、前記透光性層と前記被覆層とが同じ材料で形成されていることが好ましい。
かかる構成によれば、波長変換用無機成形体は、波長変換部材の粒子を、同じ材料からなる透光性層と被覆層とによって、連続的に被覆する。
第4の発明に係る波長変換用無機成形体は、前記波長変換部材の粒子が、当該粒子同士及び前記基体と無機結着材により結着していることが好ましい。
かかる構成によれば、波長変換用無機成形体の無機粒子層は、無機結着材により波長変換部材の粒子の凝集体が散逸することなく形成される。
第5の発明に係る波長変換用無機成形体は、前記無機結着材が、アルカリ土類金属の水酸化物又は炭酸塩であることが好ましい。
第6の発明に係る波長変換用無機成形体は、前記波長変換部材が、フッ化物蛍光体を、少なくとも含有することができる。
かかる構成によれば、波長変換用無機成形体は、水分により劣化しやすいフッ化物蛍光体を用いて、波長変換を行うことができる。
の発明に係る波長変換用無機成形体は、前記無機粒子層における前記空隙は、空隙率が1〜50%であることが好ましい。
かかる構成によれば、波長変換用無機成形体は、この範囲の空隙率の空隙によって、高い含有率で波長変換部材を含有すると共に、入射光を良好に散乱して無機粒子層内の波長変換部材を照射し、効率的に入射光を波長変換する。また、この範囲の空隙率の空隙によって、波長変換無機成形体は、基体の線膨張率と無機粒子層の線膨張率との間に差がある場合でも、発熱時の熱膨張による歪を吸収してクラックの発生を防止する。
の発明に係る波長変換用無機成形体は、前記波長変換部材の粒子の平均粒径が、0.1〜100μmであり、前記被覆層の平均厚さが10nm〜50μmとすることができる。
この範囲の平均粒径の波長変換部材を用いることで、厚さの薄い波長変換用無機成形体とすることができる。また、被覆層の平均厚さをこの範囲とすることで、波長変換部材の粒子を良好に被覆することができる。
の発明に係る波長変換用無機成形体は、前記無機粒子層の表面が、前記波長変換部材の粒子の粒径に起因する凹凸形状が形成されていることが好ましい。
かかる構成によれば、波長変換用無機成形体は、無機粒子層内を伝搬する光の界面での全反射を低減し、凹凸形状が形成された表面から効率的に外部に取り出すことができる。
10の発明に係る波長変換用無機成形体は、前記被覆層が、Al、SiO、ZrO、HfO、TiO、ZnO、Ta、Nb、In、SnO、TiN、及びAlNから構成される群から選択される少なくとも一種の化合物を含有することが好ましい。
かかる構成によれば、波長変換用無機成形体は、好適な材料からなる被覆層で、波長変換部材の粒子を良好に被覆する。
11の発明に係る波長変換用無機成形体は、前記波長変換部材が、硫化物系蛍光体、ハロゲンケイ酸塩系蛍光体、窒化物蛍光体、及び酸窒化物蛍光体から構成される群から選択される少なくとも一種の化合物を含有することができる。
かかる構成によれば、波長変換用無機成形体は、熱により失活しやすいこれらの無機蛍光体を用いて、波長変換を行うことができる。
12の発明に係る波長変換用無機成形体は、前記基体が、無機材料からなることが好ましい。
かかる構成によれば、波長変換用無機成形体は、基体を無機材料で構成するため、使用時に基体が高輝度の光に照射され、また高温に晒されても、樹脂などの有機物と異なり、基体の変色などの劣化が防止される。
13の発明に係る波長変換用無機成形体は、前記基体の熱伝導度が5W/m・K以上であることが好ましい。
かかる構成によれば、波長変換用無機成形体は、無機粒子層で波長変換の際に生じる熱を、熱伝導度の高い基体を介して放熱する。
第14の発明に係る波長変換用無機成形体は、前記基体が、導電性を有する材料からなるようにすることが好ましい。
かかる構成によれば、波長変換用無機成形体は、基体に導電体層を設けることなく、基体を一方の電極とした電気沈着法又は静電塗装法を用いて、基体上に直接に無機粒子層が形成される。
第15の発明に係る発光装置は、光源と、波長変換用無機成形体とを備えて構成される。
かかる構成によれば、発光装置は、波長変換用無機成形体によって光源が発光する第1の波長の光を吸収して、第1の波長とは異なる第2の波長の光を発光する。そして、発光装置は、この第2の波長の光を含む、波長変換用無機成形体の透過光を出力光として出力する。これによって、発光装置は、光源の光の波長波長変換した出力光を出力する。
第16の発明に係る発光装置は、前記光源が発光する前記第1の波長の光の一部と、前記波長変換用無機成形体が発光する前記第2の波長の光とを混色させた光を出力するように構成することができる。
かかる構成によれば、発光装置は、光源が発光する第1の波長の光と、波長変換部材が発光する第2の波長の光とを混色させた色の光を出力する。例えば、第1の波長を青色、第2の波長を黄色として、これらを混色して白色光とすることができる。
第17の発明に係る波長変換用無機成形体の製造方法は、無機粒子層形成工程と、被覆層形成工程と、を含み、この順で行われる。また、前記被覆層形成工程において、前記被覆層を原子層堆積法により形成する。
かかる手順によれば、まず、無機粒子層形成工程において、基体上に、第1の波長の光を吸収し、第1の波長とは異なる第2の波長の光を発光する無機材料からなる波長変換部材の粒子を含有する凝集体を形成する。すなわち、波長変換を行う層である無機粒子層の厚さや形状は、波長変換部材の粒子の凝集体の厚さや形状によって定められる。
次に、被覆層形成工程において、基体の表面及び波長変換部材の粒子の表面を連続的に被覆する無機材料からなる被覆層を形成する。すなわち、前記した凝集体が、この形状を維持したまま、被覆層によって基体とともに一体化された成形体となる。また、被覆層形成工程において、原子層堆積法によって、緻密で均一な厚さの被覆層が形成され、波長変換部材の粒子を良好に被覆すると共に、粒子間の隙間が潰れることなく空隙として良好に形成される。
また、前記波長変換部材の平均粒径が、0.1〜100μmであり、前記被覆層の平均厚さが10nm〜50μmとすることができる。
かかる手順によれば、この範囲の平均粒径の波長変換部材を用いることで、厚さの薄い波長変換用無機成形体が形成される。また、被覆層の平均厚さをこの範囲とすることで、波長変換部材の粒子が良好に被覆される。
第18の発明に係る波長変換用無機成形体の製造方法は、無機粒子層形成工程と、被覆層形成工程と、を含み、この順で行われる。また、前記被覆層形成工程において、前記被覆層を原子層堆積法により形成する。
かかる手順によれば、まず、無機粒子層形成工程において、基体上に、第1の波長の光を吸収し、第1の波長とは異なる第2の波長の光を発光する無機材料からなる波長変換部材の粒子を含有する凝集体を形成する。すなわち、波長変換を行う層である無機粒子層の厚さや形状は、波長変換部材の粒子の凝集体の厚さや形状によって定められる。
次に、被覆層形成工程において、基体の表面及び波長変換部材の粒子の表面を連続的に被覆する無機材料からなる被覆層を形成する。すなわち、前記した凝集体が、この形状を維持したまま、被覆層によって基体とともに一体化された成形体となる。また、被覆層形成工程において、原子層堆積法によって、緻密で均一な厚さの被覆層が形成され、波長変換部材の粒子を良好に被覆すると共に、粒子間の隙間が潰れることなく空隙として良好に形成される。
また、前記被覆層は、Al、SiO、ZrO、HfO、TiO、ZnO、Ta、Nb、In、SnO、TiN、及びAlNから構成される群から選択される少なくとも一種の化合物を含有することが好ましい。
かかる手順によれば、被覆層形成工程において、好適な材料からなる被覆層で、波長変換部材の粒子が良好に被覆される。
第19の発明に係る波長変換用無機成形体の製造方法は、前記無機粒子層形成工程において、前記凝集体を、電気沈着法、静電塗装法、パルススプレー法もしくは遠心沈降法、又はこれらの方法の組み合わせにより前記基体上に形成することが好ましい。
かかる手順によれば、無機粒子層形成工程において、波長変換部材の粒子を含有する凝集体が、高温になることなく形成される。
第20の発明に係る波長変換用無機成形体の製造方法は、前記無機粒子層形成工程において、前記凝集体を形成する際に、無機結着材として、少なくともアルカリ土類金属元素を成分として含む化合物を用いることが好ましい。
かかる手順によれば、無機粒子層形成工程において形成される凝集体は、無機結着材によって結着される。これによって、後工程である被覆層形成工程において被覆層が形成され、凝集体が強固に固着されるまでの間に、凝集体を構成する粒子の散逸が防止される。
第1の発明によれば、波長変換を行う層である無機粒子層の厚さや形状は、波長変換部材の粒子の凝集体を被覆層で被覆して、内部に空隙を設けた状態で厚さや形状を定められるため、厚さや形状を自由に定めることができる。また、このように構成することで、無機粒子層は、波長変換部材の含有率を高くすることができると共に、内部に設けられた空隙の光散乱効果により、高い波長変換効率を得ることができるため、一定の波長変換率を得るための無機粒子層の厚さを薄くすることができる。また、無機粒子層は、樹脂などの有機材料を用いることなく、無機材料で構成されるため、高輝度の光の照射や高温に晒される場合でも、経時劣化の少ない波長変換用無機成形体とすることができる。また、無機結着材により波長変換部材の粒子の凝集体が散逸することなく成形体が形成されるため、無機粒子層の形状が安定する。
第2の発明によれば、波長変換用無機成形体は、波長変換部材の粒子が無機材料からなる透光性層と無機材料からなる被覆層とによって、連続的に被覆されるため、波長変換部材を、より良好に水分などの雰囲気から保護することができる。
第3の発明によれば、波長変換用無機成形体は、波長変換部材の粒子が、同じ材料からなる透光性層と被覆層とによって、連続的に被覆されるため、波長変換部材を、更に良好に水分などの雰囲気から保護することができる。
第4の発明又は第5の発明によれば、無機結着材により波長変換部材の粒子の凝集体が散逸することなく成形体が形成されるため、無機粒子層の形状が安定する。
第6の発明又は第11の発明によれば、波長変換部材として、熱や雰囲気により失活しやすい蛍光体を用いることができるため、様々な色、例えば、赤色に波長変換する波長変換用無機成形体を構成することができる。
の発明によれば、適度な空隙率の空隙を設けることで、良好な波長変換効率が得られるため、無機粒子層の厚さを薄くすることができる。また、クラックの発生を防止することができるため、製造時の歩留まりと、使用時の信頼性とを向上することができる。
の発明によれば、適度な平均粒径の波長変換部材と、適度な厚さの被覆層で構成することにより、無機粒子層の厚さを薄くすることができる。
の発明によれば、無機粒子層の表面の凹凸形状により、外部への光取り出し効率を向上することができる。
10の発明によれば、好適な材料を用いた被覆層により波長変換部材が雰囲気から保護されるため、信頼性が向上する
12の発明によれば、無機材料からなる基体は、高輝度の光や高温に晒されても劣化しにくいため、波長変換用無機成形体の信頼性を向上することができる。
13の発明によれば、高熱伝導率の基体を介して無機粒子層で生じる熱を効率的に放熱することができるため、波長変換用無機成形体の信頼性を向上することができる。
14の発明によれば、波長変換用無機成形体は、基体上に直接に無機粒子層を設けることができるため、基体以外の余分な層により光が吸収されることがない。
第15の発明によれば、発光装置は、無機材料からなる波長変換用無機成形体を用いて波長変換を行うため、信頼性の高い高輝度の発光装置とすることができる。
第16の発明によれば、発光装置は、入射光と波長変換用無機成形体が発光した光とを混色して出力するため、発光装置として出力する出力光の色の選択肢を増やすことができる。
第17の発明又は第18の発明によれば、波長変換を行う層である無機粒子層の厚さや形状は、波長変換部材の粒子の凝集体の厚さや形状として定められるため、厚さや形状を自由に定めることができる。また、波長変換部材の粒子の凝集体を被覆層で被覆することで成形体とするため、無機粒子層における波長変換部材の含有率を高くすることができると共に、内部に設けられた空隙の光散乱効果により、高い波長変換効率を得ることができる。このため、一定の波長変換率を得るための無機粒子層の厚さを薄くすることができる。また、無機粒子層は、樹脂などの有機材料を用いることなく、無機材料で形成されるため、高輝度の光の照射や高温に晒される場合でも、経時劣化の少ない透過型の波長変換用無機成形体を製造することができる。また、原子層堆積法による緻密で均一な被覆層によって波長変換部材が被覆されるため、水分などの雰囲気により劣化しやすい蛍光体を用いて、信頼性の高い波長変換用成形体を製造することができる。また、原子層堆積法により、比較的低温で被覆層が形成されるため、熱により劣化しやすい蛍光体を用いて波長変換用無機成形体を製造することができる。更に、無機粒子層の粒子間の隙間に良好に空隙が形成されるため、波長変換効率の高い波長変換用無機成形体を製造することができる。
また、第17の発明によれば、適度な平均粒径の波長変換部材を用い、適度な厚さの被覆層を形成することにより、無機粒子層の厚さを薄くすることができる。
第18の発明によれば、好適な材料を用いた被覆層により波長変換部材が雰囲気から保護されるため、信頼性の高い波長変換用無機成形体を製造することができる。
第19の発明によれば、波長変換部材の粒子を含有する凝集体を、高温にすることなく形成することができるため、熱により劣化しやすい蛍光体を用いて波長変換用無機成形体を製造することができる。
第20の発明によれば、無機結着材によって凝集体を結着させるため、製造途中で凝集体から粒子が散逸することなく、無機粒子層の形状が安定した波長変換用無機成形体を製造することができる。
第1実施形態に係る無機成形体の構成を示すものであり、(a)は模式的断面図、(b)は(a)の部分拡大図である。 第1実施形態に係る無機成形体の製造方法の流れを示すフローチャートである。 第1実施形態に係る無機成形体の製造工程を説明するための模式的断面図であり、(a)は導電体層を形成した様子、(b)は蛍光体を積層した様子、(c)は導電体層を透明化した様子、(d)は被覆層を形成した様子、をそれぞれ示す。 第1実施形態に係る無機成形体の製造方法において、被覆層形成工程の詳細な処理の流れを示すフローチャートである。 第1実施形態の変形例に係る無機成形体の構成を示す模式的断面図であり、(a)はドーム型、(b)はチューブ型、(c)はレンズ型、に構成した例をそれぞれ示す。 第2実施形態に係る無機成形体の構成を示す模式的断面図である。 第2実施形態に係る無機成形体の製造方法の流れを示すフローチャートである。 第2実施形態に係る無機成形体の製造工程を説明するための模式的断面図であり、(a)はマスキングした様子、(b)は蛍光体を積層した様子、(c)は被覆層を形成した様子、(d)はマスキングを除去した様子、をそれぞれ示す。 (a)は第3実施形態に係る発光装置の構成を示す模式図であり、(b)は蛍光体層を内側に配置した例であり、(c)は蛍光体層を外側に配置した例である。 第4実施形態に係る発光装置の構成を示す模式図である。 本発明の実施例に係る無機成形体の蛍光体層の断面を電子顕微鏡で撮影した写真画像である。 図11の領域Aにおいて、被覆層を塗りつぶした画像である。 図11の領域Aにおいて、被覆層及び蛍光体を塗りつぶした画像である。
以下、本発明における色変換用無機成形体(以下、「無機成形体」と略す)、この無機成形体の製造方法、この無機成形体を用いた発光装置について説明する。
<第1実施形態>
[無機成形体の構成]
本発明の第1実施形態に係る無機成形体の構造を、図1を参照して説明する。
図1(a)に示すように、第1実施形態に係る無機成形体1は、透光性の基板2の上面に透光性層5を有し、透光性層5を介して基板2の上面に蛍光体層(無機粒子層)3が設けられている。また、蛍光体層3は、粒状の無機蛍光体(波長変換部材)31と、無機蛍光体31を被覆する被覆層32とから形成されている。更に詳細には、図1(b)に示すように、蛍光体層3の内部には、空隙33が形成されている。
本実施形態に係る無機成形体1は、基板2及び透光性層5が透光性の材料を用いて構成されており、基板2及び透光性層5は、上方又は下方から照射された光を透過する。従って、本実施形態に係る無機成形体1は、上方又は基板2及び透光性層5を介して下方から入射した光の一部又は全部を蛍光体層3の無機蛍光体31によって吸収し、入射光とは異なる色の光に変換して、入射光が入射した面と反対側の面から出射する、透過型の色変換部材として用いられるものである。
以下、無機成形体1の各部の構成について詳細に説明する。
なお、本明細書において「透光性を有する」とは、無機成形体1に入射する光(第1の色の光)及び無機成形体1によって色変換された光(第2の色の光)に対して透光性を有することをいう。
(基板(基体))
基板2は、透光性を有し、蛍光体層3を支持するための機能、光を制御する機能、熱を効率よく放熱させる機能などを持つ部材である。基板2として、種々の材料を目的に応じて選択することができる。
基板2としては、例えばガラス、Al、SiOなどの酸化物や複合酸化物、AlN、GaNなどの窒化物や酸窒化物、SiCなどの炭化物や炭窒化物、ハロゲン化物、透光性カーボンなど透明の無機材料を用いることができる。また、基板2は、入射光及び蛍光体層3が発光する光に対する光透過性が、少なくとも50%以上、好ましくは70%以上、より好ましくは90%以上の材料が選ばれる。透光性を有する材料は一般的に絶縁性であるが、表面に透光性の導電材料を用いた膜を設けて導電性を持たせたり、基板2全体に透光性を有する導電材料を用たりすることで、後記する蛍光体層3の形成工程において、電気沈着法などを利用することができる。
また、透光性の基板2には光制御性を持たせることもでき、特定の光の透過性、光拡散性、光吸収性、光遮蔽性、光変換機能などを付加することができる。例えば、LD(レーザーダイオード)の上面に無機成形体1を、蛍光体層3が設けられた側をLDからの光の入射面として配置した発光装置において、LDから出射される第1の色の光の漏れの危険性を無くすための構成例について説明する。LDから出射された第1の色の光が蛍光体層3に入射されると、蛍光体層3で色変換された第2の色の光と、蛍光体層3で色変換されなかった第1の色の光とが、共に基板2に入射される。このとき、第2の色の光は基板2を透過させ、第1の色の光は基板2で遮蔽又は吸収させるように、光の透過性に波長選択性を有する機能を持たせるように材料を選択することができる。このように構成することで、LDが出射する第1の色の光が、反対面(基板2側)から直接に出射されないようにすることができる。このような構成として、例えば、基板2の材料としてパイレックスガラス(パイレックスは登録商標)を用いたり、基板2の表面に誘電体反射膜を設けたりすることができる。
また、透光性を有する基板2の内部又は表面に、光拡散性を持たせることもできる。このような構成にすることで、更に色変換の均一性を向上することができる。
また、基板2は、蛍光体セラミックス、発光ガラス、ナノ材料を含有するガラスなどの光変換機能を有する材料を用いることもできる。例えば、基板2をYAG系蛍光体を用いて構成し、この基板2上に赤色蛍光体を用いた蛍光体層3を設けるように構成することができる。このように構成することで、無機成形体1の色変換効率を向上することができる。
更に、蛍光体層3で色変換された光のストークスロスによる発熱を、基板2を介して効率よく放熱できるように、基板2は、熱伝導度が高い材料を用いることが好ましい。具体的には、基板2に用いる材料の熱伝導度が5W/m・K以上であることが好ましく、100W/m・K以上であることがより好ましい。このような熱伝導度が高い透光性の材料として、例えば、AlNを挙げることができる。
更にまた、基板2の形状は板状に限定されず、構造部材として蛍光体層3を保持すると共に発光装置の組み付け機能や集光機能を持たせるための立体構造をとることもできる。例えば、ガラス製の基板2に加工を施してレンズ機能を持たせた上で、蛍光体層3を直接レンズ形状の基板2に形成し、レンズと色変換部材である蛍光体層3とが一体となった構造の色変換用無機成形体1とすることもできる。このような構成にすることで、光制御がしやすくなる。
(蛍光体層(無機粒子層))
蛍光体層3は、無機蛍光体31の粒子の凝集体を、無機材料からなる被覆層32で被覆した無機粒子層である。本実施形態では、蛍光体層3は、基板2の上面を被覆するように設けられている。蛍光体層3は、上方又は下方から入射する光の一部又は全部を吸収し、入射した光とは異なる色の光を発光する色変換機能を有する層である。
図1(b)に示したように、蛍光体層3は、粒状の無機蛍光体31の粒子が、無機材料からなる被覆層32によって被覆されていると共に、この被覆層32によって無機蛍光体31の粒子及び基板2、並びに粒子同士が固着され、粒状の無機蛍光体31が一体化した成形体を構成している。また、蛍光体層3の表面は、無機蛍光体31の粒径に起因した凹凸が形成されている。更に、蛍光体層3の内部において、無機蛍光体31の粒子間に空隙33が形成されている。
蛍光体層3に入射した光は、この空隙33によって散乱され、蛍光体層3に含有される無機蛍光体31に効率的に吸収されるため、空隙33を有さない場合に比べて高い色変換効率を得ることができる。このため、同じ色変換率を得るためには、空隙33を有さない場合よりも蛍光体層3の厚さを薄くすることができる。
また、蛍光体層3の表面に、無機蛍光体31の粒径に起因する凹凸を有するため、特に無機成形体1の下方から光を入射する場合は、界面での全反射を低減して蛍光体層3から効率的に光を取り出すことができる。このため、この無機成形体1を色変換用成形部材として用いて発光装置を構成すると、高い発光効率を得ることができる。
また、蛍光体層3は、透光性のアルカリ土類金属塩からなる無機結着材(不図示)が含まれていてもよい。無機結着材は、無機蛍光体31と基板2との間、及び/又は無機蛍光体31同士を結着するものである。この無機結着材は、無機蛍光体31を基板2上に積層する製造工程において添加されたものであり、無機材料からなる被覆層32によって、無機蛍光体31の粒子と基板2との間、及び無機蛍光体31の粒子同士を被覆する強固の結着する被覆層32が形成されるまで、無機蛍光体31の粒子が散逸しないように結着させる結着材である。
また、蛍光体層3は、無機フィラー、金属粉などの導電体粒子などが含まれるようにしてもよい。例えば、無機フィラーの添加によって、蛍光体層3に入射した光を散乱、拡散させたり、前記したストークスロスによる発熱を効率的に基板2に伝導することで、放熱性を向上させたりすることができる。また、無機フィラーの添加によって、蛍光体層3における無機蛍光体31の含有率を調整することができる。また、添加する無機フィラーの粒径や形状によって、空隙33の形状、空隙率、蛍光体層3の表面の凹凸形状を調整することができる。
また、導電体粒子の添加によって、前記したストークスロスによる発熱を効率的に基板2に伝導することで、放熱性を向上させることができる。
無機フィラーとしては、例えば、窒化アルミニウム、チタン酸バリウム、酸化チタン、酸化アルミニウム、酸化ケイ素、二酸化ケイ素、重質炭酸カルシウム、軽質炭酸カルシウム、銀、シリカ(ヒュームシリカ、沈降性シリカ等)、チタン酸カリウム、ケイ酸バリウム、ガラスファイバー、カーボン、ダイヤモンド等及びこれらの2種以上の組み合わせが挙げられる。
また、酸化タンタル、酸化ニオブ、希土類酸化物など、主に光吸収の少ない透光性材料や、特定の波長の光を反射又は吸収する無機化合物を用いることができる。
なお、無機フィラーは、後記する無機蛍光体31の粒径と同程度のものを用いることができる。
また、蛍光体層3は、無機蛍光体31の粒子の凝集体を被覆層32で連続的に被覆して一体化した層であるが、保護層や反射防止層などを更に積層するようにしてもよい。この場合、基板2の上面から、保護層や反射防止層などを含めた蛍光体層3の上面までの膜厚である蛍光体層3の総膜厚は、10〜300μm程度とすることが好ましい。
また、蛍光体層3は、無機蛍光体31の粒子の凝集体であるため、それらの粒径によって膜厚は影響されるが、実質的に色変換に寄与する蛍光体層3の厚さが、1〜150μm程度のものを用いることができ、5〜70μmとすることが好ましく、10〜50μmとすることがより好ましい。なお、「実質的に色変換に寄与する蛍光体層」とは、前記した保護層や反射層を除き、無機蛍光体31の粒子の凝集体を被覆層32で連続的に被覆して一体化した層を指す。
この蛍光体層3の厚さ(実質的に色変換に寄与する蛍光体層の厚さ及び総膜厚)は、走査型電子顕微鏡を用いて測定することができる。
また、従来の焼結セラミックスなどからなる蛍光体の成形体に比べ、蛍光体層3における無機蛍光体31の含有率を高くして、また空隙33の存在によって、同じ色変換率を得るための蛍光体層3の膜厚を薄くすることができる。このため、蛍光体層3に含有される無機蛍光体31で生じたストークスロスによる発熱を、放熱機能を持つ基板2へ迅速に伝導することができる。すなわち、放熱性の優れた無機成形体1とすることができる。
(無機蛍光体(波長変換部材))
無機蛍光体31は、蛍光体層3に入射した光を吸収し、入射光の色とは異なる色の光を発光する無機材料からなる蛍光体である。
無機蛍光体31として使用される蛍光体材料は、励起光である入射光を吸収して、異なる色(波長)の光に色変換(波長変換)するものであればよい。特に、無機蛍光体31が、紫外光ないし青色光を吸収して、青色光ないし赤色光を放出する材料であることが好ましい。
また、無機蛍光体31の粒子の平均粒径は、特に限定されないが、0.1〜100μm程度のものを用いることができ、取り扱いやすさの観点から、好ましくは1〜50μm、より好ましくは2〜30μmのものを用いることができる。
なお、平均粒径の値は、空気透過法又はF.S.S.S.No(Fisher−SubSieve−Sizers−No.)によるものとする(いわゆるDバー(Dの上にバー)で表される値)。
また、レーザ回折式粒度分布測定装置(例えば、島津製作所製のSALDシリーズなど)又は電気抵抗式粒度分布装置(例えば、コールター(BECKMAN COULTER)社製のコールターカウンターなど)で測定される中心粒径Dm(Median Diameter)と前記した平均粒径Dバーとの比である(Dm/Dバー)を、無機蛍光体31の粒子の分散性を示す指標とした場合に、この指標値が1に近いほど好ましい。すなわち、指標値が1に近いほど粒子の分散性が高く(粒子が凝集せず)、応力の少ない蛍光体層3を形成することができる。これによって、蛍光体層3におけるクラックの発生を抑制することができる。
また、無機蛍光体31は、1種類だけでなく、複数種類の無機蛍光体31の粒子を混合して用いてもよい。また、複数種類の無機蛍光体31の粒子層を順次積層するようにしてもよい。
無機蛍光体31として用いる具体例としては、以下のものを挙げることができる。
例えば、Eu、Ce等のランタノイド系元素で主に賦活される窒化物系蛍光体・酸窒化物系蛍光体・サイアロン系蛍光体、Eu等のランタノイド系、Mn等の遷移金属系の元素により主に賦活されるアルカリ土類ハロゲンアパタイト蛍光体、アルカリ土類金属ハロゲンホウ酸塩蛍光体、アルカリ土類金属アルミン酸塩蛍光体、アルカリ土類ケイ酸塩蛍光体、アルカリ土類硫化物蛍光体、アルカリ土類チオガレート蛍光体、チオケイ酸塩蛍光体、アルカリ土類窒化ケイ素蛍光体、ゲルマン酸塩蛍光体、アルカリ金属ハロゲンケイ酸塩蛍光体、アルカリ金属ゲルマン酸塩蛍光体、又は、Ce等のランタノイド系元素で主に賦活される希土類アルミン酸塩蛍光体、希土類ケイ酸塩蛍光体等から選ばれる少なくともいずれか1以上であることが好ましい。具体例として、下記の蛍光体を使用することができるが、これに限定されない。
Eu、Ce等のランタノイド系元素で主に賦活される窒化物系蛍光体は、MSi:Eu、MAlSiN:Eu(Mは、Sr、Ca、Ba、Mg、Znから選ばれる少なくとも1種以上である。)などがある。また、MSi:EuのほかMSi10:Eu、M1.8Si0.2:Eu、M0.9Si0.110:Eu(Mは、Sr、Ca、Ba、Mg、Znから選ばれる少なくとも1種以上である。)などもある。
Eu、Ce等のランタノイド系元素で主に賦活される酸窒化物系蛍光体は、MSi:Eu(Mは、Sr、Ca、Ba、Mg、Znから選ばれる少なくとも1種以上である。)などがある。
Eu、Ce等のランタノイド系元素で主に賦活されるサイアロン系蛍光体は、Mp/2Si12−p−qAlp+q16−p:Ce、M−Al−Si−O−N(Mは、Sr、Ca、Ba、Mg、Znから選ばれる少なくとも1種以上である。qは0〜2.5、pは1.5〜3である。)などがある。
Eu等のランタノイド系、Mn等の遷移金属系の元素により主に賦活されるアルカリ土類ハロゲンアパタイト蛍光体には、M(POX:R(Mは、Sr、Ca、Ba、Mg、Znから選ばれる少なくとも1種以上である。Xは、F、Cl、Br、Iから選ばれる少なくとも1種以上である。Rは、Eu、Mn、EuとMn、のいずれかである。)などがある。
アルカリ土類金属ハロゲンホウ酸塩蛍光体には、MX:R(Mは、Sr、Ca、Ba、Mg、Znから選ばれる少なくとも1種以上である。Xは、F、Cl、Br、Iから選ばれる少なくとも1種以上である。Rは、Eu、Mn、EuとMn、のいずれかである。)などがある。
アルカリ土類金属アルミン酸塩蛍光体には、SrAl:R、SrAl1425:R、CaAl:R、BaMgAl1627:R、BaMgAl1612:R、BaMgAl1017:R(Rは、Eu、Mn、EuとMn、のいずれかである。)などがある。
アルカリ土類金属ケイ酸塩蛍光体には、MSiO:Eu(Mは、Ca、Sr、Ba、Mg、Znから選ばれる少なくとも1種以上である。)などがある。
アルカリ土類硫化物蛍光体には、LaS:Eu、YS:Eu、GdS:Euなどがある。
アルカリ金属ハロゲンケイ酸塩蛍光体には、MSiX:Mn(Mは、Li、Na、Kから選ばれる1種以上であり、Xは、F、Cl、Br、Iから選ばれる1種以上であり、またSiの一部をGeで置換することができる)、LiSiF:Mn、K(SiGe)F:Mnの組成式で表される蛍光体がある。
Ce等のランタノイド系元素で主に賦活される希土類アルミン酸塩蛍光体には、YAl12:Ce、(Y0.8Gd0.2Al12:Ce、Y(Al0.8Ga0.212:Ce、(Y,Gd)(Al,Ga)12:Ceの組成式で表されるYAG系蛍光体などがある。また、Yの一部若しくは全部をTb、Lu等で置換したTbAl12:Ce、LuAl12:Ceなどもある。
その他の蛍光体には、MS:Eu、ZnGeO:Mn、0.5MgF・3.5MgO・GeO、MGa:Eu(Mは、Sr、Ca、Ba、Mg、Znから選ばれる少なくとも1種以上である。)などがある。これらの蛍光体は、所望に応じてEuに代えて、又は、Euに加えてTb、Cu、Ag、Au、Cr、Nd、Dy、Co、Ni、Tiから選択される1種以上を含有させることもできる。
また、前記した蛍光体以外の蛍光体であって、同様の性能、効果を有する蛍光体も使用することができる。
これらの蛍光体は発光素子からの励起光により、黄色、赤色、緑色、青色に発光スペクトルを有するものを使用することができるほか、これらの中間色である黄色、青緑色、橙色などに発光スペクトルを有するものも使用することができる。これらの蛍光体を種々組み合わせて使用することにより、種々の発光色を有する発光装置を製造することができる。
例えば、光源として青色に発光するGaN系又はInGaN系化合物半導体発光素子を用いて、YAl12:Ce若しくは(Y0.8Gd0.2Al12:Ceの蛍光体に照射し、色変換を行うようにし、発光素子からの光と、蛍光体からの光との混合色により白色に発光する発光装置を提供することができる。
例えば、緑色から黄色に発光するCaSi:Eu又はSrSi:Euと、青色に発光する(Sr,Ca)(POCl:Eu、赤色に発光するCaSi:Eu又はCaAlSiN:Euと、からなる3種の蛍光体を使用することによって、演色性に優れた白色に発光する発光装置を提供することができる。これは、光の三原色である赤・青・緑を使用しているため、蛍光体の配合比を変えることのみで、所望の白色光を実現することができる。
なお、無機蛍光体31の具体例として前記した蛍光体中には、例えば、非酸化物系の蛍光体である硫化物系蛍光体、ハロゲンケイ酸塩系蛍光体、窒化物蛍光体、酸窒化物蛍光体等のように、熱により母体が分解したり賦活剤が失活したりしやすいものがある。また、フッ化物蛍光体のように、水分により潮解するなど、雰囲気により劣化するものがある。
本発明では、無機成形体1を形成する際に、焼結やガラス封止による成形のような高温となることがないため、熱により劣化しやすい、例えば、非酸化物系の蛍光体であるCASNやSCASNのような窒化物蛍光体を用いることができる。
また、本発明では、無機蛍光体31は、好ましくは後記する原子層堆積法により形成される被覆層32によって緻密に被覆されるため、水分により潮解しやすい、例えば、LiSiF:Mnのようなフッ化物蛍光体を用いることができる。
(被覆層)
被覆層32は、粒状の無機蛍光体31の粒子を被覆すると共に、当該粒子及び基板2、並びに粒子同士を固着させる透光性の被膜である。すなわち、被覆層32は、無機蛍光体31の保護層としての機能と、バインダーとしての機能と、熱伝導経路としての機能とを有するものである。
被覆層32としては、Al、SiO、ZrO、HfO、TiO、ZnO、Ta、Nb、In、SnO、TiN、AlNなどから構成される群から選ばれる少なくとも1種の化合物を好適に用いることができる。また、被覆層32は、ALD(Atomic Layer Deposition;原子層堆積)法やMOCVD(Metal Organic Chemical Vapor Deposition;有機金属化学的気相成長)法、PECVD(Plasma-Enhanced Chemical Vapor Deposition;プラズマCVD)法、大気圧プラズマ成膜法などによって形成することができる。
特に、ALD法は、形成される被膜が緻密であり、段差(凹凸)を有する形状の被覆性が高く、均一な厚さの被膜を形成することができるため好ましい。また、ALD法により形成される被覆層32は、膜厚が薄くても、無機蛍光体31の粒子を良好に被覆するとともに、無機蛍光体31の粒子の凝集体を一体化することができ、蛍光体層3の膜厚を更に薄く形成することができる。このため、無機蛍光体31の粒子で生じたストークス発熱を、薄い被覆層32を介して放熱機能を持つ基板2へ迅速に伝導することができる。これによって、放熱性の優れた無機成形体1を形成することができる。なお、良好な放熱性を得るために、蛍光体層3の膜厚を前記した範囲とすることが好ましく、また、被覆層32の膜厚を後記する範囲とすることが好ましい。
また、ALD法により形成される被覆層32の原料には常温から300℃以下に蒸気圧を持つ有機金属材料、金属ハロゲン化物等が用いられる。特に、ALD法で形成したAlからなる被膜は、水分などの雰囲気に対するバリア性が高く、好ましい。Al膜を形成するための原料には、TMA(トリメチルアルミニウム)と水とが用いられる。
また、被覆層32の膜厚は、平均厚さで10nm〜50μmとすることができ、好ましくは50nm〜30μm、より好ましくは100nm〜10μmとすることができる。
なお、被覆層32の膜厚は、無機蛍光体31の粒子(無機フィラーなどを添加している場合は、無機蛍光体31及び無機フィラーなどの粒子)を均一に被覆している部分の厚さを指す。
なお、被覆層32は、前記した化合物による単一層として形成することも、異種材料による多層膜として形成することもできる。多層膜で形成する場合には、例えば、第1層(無機蛍光体31に接する層)としてALD法による緻密な層を形成し、次いで第2層として、PECVD法や大気圧プラズマ成膜法などの成膜速度の速い手法で成膜することもできる。
(空隙)
空隙33は、基板2上に積層された無機蛍光体31の粒子間の隙間として形成されるものである。すなわち、空隙33は、基板2と無機蛍光体31と被覆層32との何れかによって取り囲まれた空間である。なお、蛍光体層3に、無機フィラーや導電性粒子などの、無機蛍光体31以外の粒子が含まれる場合は、空隙33は、無機蛍光体31を含めたこれらの粒子間の隙間として形成される。
空隙33は、蛍光体層3に入射した光を散乱させ、入射光を効率的に無機蛍光体31に吸収させることができる。空隙率は、1〜50%程度とすることが好ましく、より好ましくは5〜30%である。空隙率の最適値は、無機蛍光体31の粒径と被覆層32の膜厚とに依存するが、空隙率を1%以上とすることで、効果的に入射光を散乱させることができ、50%以下とすることで、蛍光体層3を薄肉化した場合でも、色変換に十分な無機蛍光体31の含有量とすることができる。
また、前記した空隙率の範囲で空隙33を設けることにより、基板2と蛍光体層3との間の線膨張係数の差が大きい場合でも、製造工程や製造後の使用時における温度上昇によって成形体に掛かる歪を吸収し、クラックの発生を防止することができる。
なお、蛍光体層3における空隙率は、無機蛍光体31の平均粒径と、被覆層32の膜厚とを、それぞれ前記した範囲で調整することにより制御することができる。すなわち、無機蛍光体31の平均粒径に応じて、被覆層32の膜厚を定めることで、所望の空隙率となる空隙33を形成することができる。また、蛍光体層3に無機フィラーを添加する場合は、無機蛍光体31の粒子と無機フィラーの粒子とを合わせた平均粒径と、被覆層3の膜厚とによって空隙率を制御することができる。また、空隙率の制御には、更に粒子の形状及び粒子の分散性を考慮することが好ましい。
(空隙の充填物)
また、空隙33を充填物で埋めるようにしてもよい。充填物としては、空気層(N、O、CO等の混合気体)などの気体が好ましい。但し、これに限定されず、無機化合物(例えば、AlOOH、SiOx等)、無機原料(例えば、ポリシラザン等)、ガラスやナノ無機粒子等の固体が、充填物の一部もしくは全部を占めるようにしてもよい。このような固体の充填物の原料として、液体ガラス材料、ゾルゲル材料などの、無機化合物を含有する液体を挙げることができる。また、前記したような無機化合物を含有する液体の溶媒として、水、有機溶媒、更にはシリコーンやフッ素樹脂などの無機物を主体とする樹脂を用いることもできる。
なお、空隙33に設けられるこれらの固体の充填物は、被覆層32を構成する材料と同じ材料を含むようにしてもよい。この場合には、被覆層32と空隙33の充填物とで、互いに屈折率や透過率などの物性が異なるようにすることが好ましい。このために、例えば、被覆層32がALD法で形成されたAlとし、空隙33の充填物がゾルゲル法で形成されたAlとすることができる。このように形成方法が異なることにより、結晶性や密度が異なり、前記した物性を異なるようにすることができる。
このように空隙33を、被覆層32とは物性の異なる材料で充填することにより、蛍光体層3に入射した光の拡散や取り出しを制御することができる。
(透光性層)
透光性層5は、後記する蛍光体層形成工程S11(図2参照)において、基板2上に電気沈着法又は静電塗装法により、無機蛍光体31の粒子層34を形成するための電極として用いるために形成された導電体層6(図3(b)参照)を透明化したもの、もしくは透明導電体層である。従って、透光性層5は、前記した製造工程において導電性を有し、その後に透明化が可能な材料か、導電性を有する透光性の材料を用いることができる。
導電性を有し、後に透明化が可能な材料としては、Al、Si、Zn、Sn、Mg、Inから選択された少なくとも一種を含む金属材料を挙げることができる。例えば、Alは、90℃程度の熱水に晒すことで酸化でき、透光性のAlに変化させることができる。また、このようにAlは比較的低温で酸化させて、透明化することができるため好ましい。この場合は、Al膜が透光性層5として形成される。更にまた、被覆層32としてAl膜を形成する場合は、同じ材料であるため、被覆層32と透光性層5とが良好に密着する。このため、無機蛍光体31を水分などの雰囲気から良好に保護すると共に、蛍光体層3の基板2からの剥離が防止される。Al以外の材料についても、透光性層5と被覆層32とが同じ材料となるようにすることで、透光性層5と被覆層32との間の良好な密着性が得られるため好ましい。
また、導電体層6を透光性層5に変換する他の方法として、アンモニア水による処理を用いることができる。例えば、導電体層6の材料としてAl又はZnを用いた場合は、アンモニア水で処理することにより、それぞれ透光性のAl(OH)(水酸化アルミニウム)、Zn(OH)(水酸化亜鉛)に変換することができる。また、これらはゲル状の物質として生成するため、無機蛍光体31の粒子同士の結着材としての効果も期待できる。
また、導電性を有する透光性の材料としては、例えば、Zn(亜鉛)、In(インジウム)、Sn(スズ)、Ga(ガリウム)及びMg(マグネシウム)からなる群から選択された少なくとも1種の元素を含む導電性金属酸化物が挙げられる。具体的には、ZnO、AZO(AlドープZnO)、IZO(InドープZnO)、GZO(GaドープZnO)、In23、ITO(SnドープIn23)、IFO(FドープIn23)、SnO2、ATO(SbドープSnO2)、FTO(FドープSnO2)、CTO(CdドープSnO2)、MgOなどの導電性金属酸化物がある。
なお、導電性を有する透光性の材料を用いた場合は、後記する製造方法において、導電体層透明化工程S12(図2参照)を省略することができる。
[無機成形体の製造方法]
次に、本発明の第1実施形態に係る無機成形体の製造方法について、図2を参照して説明する。
図2に示すように、第1実施形態に係る無機成形体の製造方法は、導電体層形成工程S10と、蛍光体層形成工程S11と、導電体層透明化工程S12と、被覆層形成工程S13と、を含み、この順で行われる。
以下、図3を参照(適宜図1及び図2参照)して、各工程について詳細に説明する。
(導電体層形成工程)
まず、導電体層形成工程S10において、図3(a)に示すように、基板2において、蛍光体層3を形成する領域である上面に、導電体材料をからなる導電体層6を形成する。導電体層6としては、後工程である導電体層透明化工程S12で透明化できる材料として、例えば、Alを用いることができる。導電体層6は、例えば、スパッタリング法、蒸着法、メッキ法などにより形成することができる。なお、導電体層6を成膜する前に、蛍光体層3を設ける領域以外は、テープやフォトレジストなどを用いてマスキングを施すものとする。
また、導電体材料として、ITO、ZnOなどの前記した透光性を有する材料を用いて、導電体層6を、例えば、スパッタリング法や蒸着法などの物理的方法、あるいはスプレー法やCVD(Chemical Vapor Deposition;化学気相成長)法などの化学的方法などにより形成することができる。なお、導電体層6を、透光性材料を用いて形成した場合は、導電体層透明化工程S12を省略することができる。
(蛍光体層形成工程(無機粒子層形成工程))
次に、蛍光体層形成工程S11において、図3(b)に示すように、基板2の上面に無機蛍光体31の粒子の凝集体である粒子層34を形成する。本実施形態では、電気沈着(電着)法により無機蛍光体31の粒子層34を形成する場合について説明する。
なお、蛍光体層3に無機フィラーや導電性粒子などの無機粒子を添加する場合は、粒子層34は、無機蛍光体31の粒子と、これらの粒子との凝集体となる。
電気沈着法によれば、室温下で、粒状の無機蛍光体31を懸濁させた溶液を入れた電着槽に、一方の電極となる導電体層6を設けた基板2と、他方の電極となる対電極とを浸漬させ、電極間に電圧を印加する。なお、基板2側には、無機蛍光体31が帯電する極性と異なる極性の電圧を印加する。これによって、無機蛍光体31の粒子が電気泳動して導電体層6を介して基板2に付着する。無機蛍光体31の粒子層34の厚さは、電極間に通電する電流及び時間で定められるクーロン量を調整することで制御することができる。
この電気沈着法に用いる溶媒は、特に限定されないが、IPA(イソプロピルアルコール)などのアルコール系溶媒を好適に用いることができる。
また、無機蛍光体31の粒子及び基板2、並びに無機蛍光体31の粒子同士を結着させるための無機結着材を溶液中に添加することが好ましい。無機結着材は、電気沈着法によって積層した無機蛍光体31の粒子を、後工程である被覆層形成工程S13で被覆層32が形成されるまで、散逸させないようにするためのものである。無機結着材としては、例えば、Mgイオン、Caイオン、Srイオンなどのアルカリ土類金属イオンを用いることができる。添加したアルカリ土類金属イオンは、水酸化物や炭酸塩として析出して結着力を発揮する。これらの水酸化物や炭酸塩は、無色透明であるため、製造後の蛍光体層3中に残存しても色変換効率を低下することがない。また、無機物であるため、経時変化により色変換効率を低下させることもない。
また、無機蛍光体31の電気泳動を効率的に行わせるために、溶液中に金属塩などの帯電制御剤を添加することが好ましい。また、帯電制御剤は、溶液中に添加せず、無機蛍光体31の粒子にコーティングするようにしてもよい。
なお、本実施形態では、蛍光体層形成工程S11において、電気沈着法により無機蛍光体31の粒子層34を形成するようにしたが、これに限定されるものではない。例えば、導電体層6を設けた基板2を一方の電極として、静電塗装法を用いることもできる。また、蛍光体層3を上面に形成する場合は、遠心沈降法を用いることもできる。その他に、パルススプレー法を用いることもできる。また、前記した方法を組み合わせて用いることもできる。
なお、遠心沈降法又はパルススプレー法を用いて無機蛍光体31の粒子層34を形成する場合は、導電体層6の形成は不要である。この場合は、導電体層形成工程S10及び導電体層透明化工程S12は省略することができる。この場合は、図1に示した無機成形体1において、透光性層5を有さずに、非導電性の透光性を有する基板2上に蛍光体層3が直接に設けられた構成の無機成形体が形成される。
(導電体層透明化工程)
次に、導電体層透明化工程S12において、図3(c)に示すように、導電体層6を透明化して、透光性層5に変化させる。導電体層6をAl膜で形成した場合は、例えば、90℃程度の熱水に晒すことでAlを酸化し、透光性のAl膜に変化させることができる。
また、導電体層6をAl膜で生成した場合は、アンモニア水で処理して、Alを透光性のAl(OH)に変化させることもできる。
また、導電体層6を形成する金属を溶解させ、除去するようにしてもよい。導電体層6を除去する方法としては、酸による溶解反応を用いることができる。酸としては、例えば、HCl(塩酸)、HSO(硫酸)、HNO(硝酸)、その他の無機酸又は有機酸の水溶液を用いることができる。例えば、導電体層6の材料としてAlを用いた場合は、酸水溶液に浸漬させることで、Al3+となり酸水溶液に溶解して除去される。
更に、導電体層6の材料としてAl、Zn又はSnなどの両性金属を用いた場合は、導電体層6を除去する方法として、NaOH(水酸化ナトリウム)、KOH(水酸化カリウム)又はその他のアルカリ水溶液による溶解反応を用いることができる。例えば、導電体層6の材料としてAl、Zn又はSnを用いた場合は、水酸化ナトリウム水溶液と反応させることで、それぞれNa[Al(OH)]、Na[Zn(OH)]]、Na[Sn(OH)]などの錯イオンを生成してアルカリ水溶液に溶解して除去される。
なお、導電体層6を除去する場合は、図1に示した無機成形体1において、透光性層5を有さずに、非導電性の透光性を有する基板2上に蛍光体層3が直接に設けられた構成の無機成形体が形成される。
(被覆層形成工程)
次に、被覆層形成工程S13において、図3(d)に示すように、無機蛍光体31の粒子を被覆する被覆層32を形成する。無機蛍光体31の粒子は被覆層32によって被覆されると共に、無機蛍光体31の粒子及び透光性層5、並びに無機蛍光体31の粒子同士が固着して、一体化した無機成形体1が得られる。被覆層形成工程S13において、被覆層32は、ALD法やMOCVD法などによって形成することができる。
また、透光性層5と被覆層32とを同じ材料で形成した場合は、蛍光体層3と透光性層5との密着性がよく、透光性層5に接する無機蛍光体31の水分などの雰囲気に対する良好なバリア性が得られると共に、蛍光体層3が基板2から剥離しにくくすることができる。
また、被覆層形成工程S13を行った後で、更に、蛍光体層3の表面にSiO膜などの無機材料からなる層を、保護層や無反射コーティング層として形成するようにしてもよい。この層は、例えば、スパッタリング法、CVD法、ALD法、大気圧プラズマ法などによって形成することができる。
また、空隙33に、空気層以外の充填物として固体を設ける場合は、被覆層形成工程S13の後に続いて、以下に説明するようにして行うことができる。なお、被覆層形成工程S13を行った後の空隙33には、空気が充填されている。
固体の充填物は、溶媒中に固体を分散させた溶液(固体含有液体)を空隙33内に充填し、溶媒を揮発させた後に、低温加熱して固体化することで設けることができる。例えば、液体ガラス、ゾルゲル材料などの固体含有液体を、蛍光体層3上に滴下又は塗布等によって供給し、真空にする。これにより、空隙33内を充填している空気を空隙33から除去するとともに、入れ替わりに固体含有液体を空隙33内に充填することができる。その後、固体含有液体の溶媒が揮発する温度とすることで、空隙33内に固体の充填物を設けることができる。なお、溶媒を揮発させるために加熱する温度は、300℃程度以下の比較的低温であることが好ましい。
(ALD法による被覆層形成工程)
ここで、図4を参照して、ALD法を用いた場合の被覆層形成工程S13について詳細に説明する。図4に示すように、本実施形態における被覆層形成工程S13は、プリベーク工程S131と、試料設置工程S132と、成膜前保管工程S133と、第1原料供給工程S134と、第1排気工程S135と、第2原料供給工程S136と、第2排気工程S137と、を含み、第1原料供給工程S134から第2排気工程S137は、所定回数繰り返し行われる。
(プリベーク工程)
まず、プリベーク工程S131において、基板2の上面及び側面に無機蛍光体31の粒子層34が形成された試料を、オーブンを用いて加熱するベーキング処理を行う。
本実施形態では、HO(水)を第1原料、TMA(トリメチルアルミニウム)を第2原料とし、Al膜を被覆層32として形成する。このため、良好に成膜を行うために、成膜前の試料に含まれる水分などを蒸発させることで可能な限り除去することが好ましい。
ベーキング処理は、例えば、試料を120℃のオーブンで2時間程度加熱することで行うことができる。
(試料設置工程)
次に、試料設置工程S132において、被覆層32の成膜を行うために、試料を反応容器(不図示)に投入する。この反応容器は、第1原料供給ライン、第2原料供給ライン、窒素ガス供給ライン及び真空ライン(何れも不図示)などに接続されている。
(成膜前保管工程)
次に、成膜前保管工程S133において、試料を保管した反応容器内を、例えばロータリーポンプが接続された真空ラインを介して低圧状態にし、反応容器内の状態を安定化させる。また、このときに、反応容器内に窒素ガスを導入し、空気などの不要物を反応容器から排気する。
反応容器内の圧力は、例えば、0.1〜10torr(133〜13332Pa)程度、窒素ガスの流量は20sccm(33×10−3Pa・m/s)程度、安定化のためにこの状態を維持する時間は10分間程度とすることができる。
また、反応容器内の温度は、例えば、100℃程度とすることができるが、成膜温度は50〜500℃の範囲内で自由に設定することができる。以降の成膜中は、この温度を維持するのが一般的であるが、これに限定されず、途中で温度を変更するようにしてもよい。
なお、成膜中の温度は、適宜に設定することができるが、用いる無機蛍光体31の耐熱性を考慮して50〜500℃程度の範囲で設定することが好ましく、100〜200℃とすることが更に好ましい。ALD法による成膜は、焼結法による成形や、MOCVD法による成膜と比較しても低温で行うことができる。このため、特に耐熱性の低いCASN、SCASNなどの赤色に発光する無機蛍光体31を用いた無機成形体1を作製することができる。
(第1原料供給工程)
次に、第1原料供給工程S134において、第1原料であるHOを反応容器に導入する。HOは、常温の蒸気として導入する。HOを導入後、導入したHOが試料の全面に行き渡るまで所定の時間待機して、試料の全面で反応させる。なお、HOの導入は、第1原料供給工程S134の所要時間に対して、HOの蒸気を、例えば0.001〜1秒などの短時間に反応容器に導入する。
但し、原料の導入時間は試料の表面積、装置の体積、単位時間当たりの原料供給量に応じて決めることができる。原料であるHOを導入後は、試料の全面の反応に必要な十分な時間をかける。
(第1排気工程)
次に、第1排気工程S135において、反応容器に真空ラインを接続すると共に、窒素ガスを導入し、反応に寄与しなかった過剰のHO及び副生成物を反応容器から排気する。なお、本工程における副生成物とは、メタンガスである。
(第2原料供給工程)
次に、第2原料供給工程S136において、第2原料であるTMAを反応容器に導入する。TMAは、常温の蒸気として導入する。TMAを導入後、導入したTMAが試料の全面に行き渡るまで、所定の時間待機する。なお、TMAの導入は、前記したHOの導入と同様に行うことができる。
但し、原料の導入時間は試料の表面積、装置の体積、単位時間当たりの原料供給量に応じて決めることができる。原料であるTMAを導入後は、試料の全面の反応に必要な十分な時間をかける。
(第2排気工程)
次に、第2排気工程S137において、反応容器に真空ラインを接続すると共に、窒素ガスを導入し、反応に寄与しなかった過剰のTMA及び副生成物を反応容器から排気する。
本実施形態における成膜工程は、第1原料供給工程S134から第2排気工程S137を成膜の基本サイクルとして、所定の回数のサイクルを繰り返すものである。そのために、第2排気工程S137終了後に、このサイクルを所定回数行ったか判定し(ステップS138)、所定回数終了していない場合は(ステップS138でNo)、第1原料供給工程S134に戻り、前記したサイクルを繰り返す。一方、所定回数終了した場合は(ステップS138でYes)、被覆層形成工程を終了する。
ALD法によれば、成膜の基本サイクルを1回行うことで、被覆層32が原子層レベルを単位として積層される。このため、実行するサイクル数に応じて、被覆層32の厚さを自在に制御することができる。
また、被覆層32は、原子層レベルを単位として積層されるため、凹凸形状などの段差の被覆性が高く、また、ピンホールの極めて少ない緻密で、かつ均一な厚さの膜を形成することができる。
また、適度な厚さの被覆層32を形成することで、無機蛍光体31の粒子間の隙間を完全に埋めることなく、蛍光体層3に空隙33(図1(b)参照)として残すことができる。
また、ALD法によれば、無機蛍光体31の粒子を緻密かつ均一に被覆するため、水分により劣化しやすいフッ化物蛍光体などを用いることができる。
なお、フッ化物蛍光体のように、水分により劣化しやすい蛍光体を無機成形体1に加工する場合は、次のようにすることが好ましい。まず、予め種々のコーティング法により無機蛍光体31の粒子の表面を耐水コートしておく。次に、耐水コートを施した無機蛍光体31を用いて短時間の内に、基板2の表面に電気沈着法や静電塗装法などにより、粒子層34を形成する。そして、ALD法により、被覆層32を形成することで、基板2及び粒子層34を一体化してバルク体に成形加工する。これによって、製造工程における水分の影響を防止しつつ無機成形体1を作製することができる。また、製造後において、被覆層32により水分などの雰囲気から保護された、劣化しにくい無機成形体1とすることができる。
<第1実施形態の変形例>
次に、図5を参照して、第1実施形態の変形例に係る無機成形体の構成について説明する。
図1に示した第1実施形態に係る無機成形体1は、平板状の基板2上に透光性層5を介して蛍光体層3を設けたものである。本発明では、蛍光体層3は、粒状の無機蛍光体31を透光性層5を介して基板2に付着させ、被覆層32によって固着させて成形するため、基板2の形状に大きな制約がない。
例えば、図5(a)に示す無機成形体1Aは、ドーム状(半球状)の基板2の表面に透光性層5を介して蛍光体層3を設けたものである。また、図5(b)に示す無機成形体1Aは、チューブ状の基板2の表面に透光性層5を介して蛍光体層3を設けたものである。また、図5(c)に示す無機成形体1Aは、凸レンズ形の基板2の凸面上に透光性層5を介して蛍光体層3を設けたものである。基板2の形状は、これらの例に限定されるものではなく、更に複雑な形状の基板2を用いることもできる。なお、図5に示した例では、空隙33の記載は省略している。
その他、針金状や網状の基板(基体)に蛍光体層3を形成することもできる。
また、本変形例に係る無機成形体1A〜1Aは、基板2の形状が異なること以外は、第1実施形態に係る無機成形体1と同様にして製造することができるため、製造方法については説明を省略する。
また、本実施形態の他の変形例として、基板2として、蛍光体を含有するセラミックスを用いることもできる。例えば、焼結法により形成されたLAG(ルテチウム・アルミニウム・ガーネット)蛍光体セラミックス焼結板を基板2として、基板2上に、当該基板内に含有する蛍光体とは異なる蛍光体を含有する蛍光体層3を形成するようにしてもよい。これによって、樹脂などの接着剤を介することなく、複数種類の蛍光体層を有する一体化された色変換用成形部材を形成することができる。
更に、他の変形例として、基板2として、半導体発光素子が形成された基板を用いることもできる。例えば、LED素子の基板の、半導体層が設けられた面と反対側の面及び側面に、蛍光体層3を基板に接して形成することができる。これによって、接着剤を介することなく、蛍光体層を有する発光装置を形成することができる。
<第2実施形態>
次に、第2実施形態に係る無機成形体について説明する。
[無機成形体の構成]
まず、図6を参照して、第2実施形態に係る無機成形体の構成について説明する。図6に示すように、第2実施形態に係る無機成形体1Bは、導電性を有する透光性の基板2Bの上面に蛍光体層3が設けられている。
第2実施形態に係る無機成形体1Bは、図1に示した第1実施形態に係る無機成形体1とは、透光性の基板2に代えて、導電性を有する透光性の基板2Bを用いることと、基板2Bの上面に直接に蛍光体層3が設けられていることと、が異なる。第2実施形態に係る無機成形体1Bは、第1実施形態に係る無機成形体1と同様に、蛍光体層3に入射した光を色変換して、入射面とは反対側の面から出射する透過型の色変換用成形部材として用いられるものである。
(基板(基体))
基板2Bは、蛍光体層3を支持するための、透光性を有する板状の支持部材である。基板2Bとして、透光性に加えて、導電性を有する材料を用いる。このような材料としては、例えば、Zn(亜鉛)、In(インジウム)、Sn(スズ)、Ga(ガリウム)及びMg(マグネシウム)からなる群から選択された少なくとも1種の元素を含む導電性金属酸化物が挙げられる。具体的には、ZnO、AZO(AlドープZnO)、IZO(InドープZnO)、GZO(GaドープZnO)、In23、ITO(SnドープIn23)、IFO(FドープIn23)、SnO2、ATO(SbドープSnO2)、FTO(FドープSnO2)、CTO(CdドープSnO2)、MgOなどの導電性金属酸化物がある。
また、基板2Bの形状は、平板状に限定されず、図5に示したように、任意の形状の基板を用いることができる。
なお、蛍光体層3の内部構成は、図1(b)に示した第1実施形態に係る無機成形体1の蛍光体層3と同様である。また、図6において、空隙33の記載は省略している。
[無機成形体の製造方法]
次に、第2実施形態に係る無機成形体の製造方法について、図7を参照して説明する。
図7に示すように、第2実施形態に係る無機成形体の製造方法は、マスキング工程S20と、蛍光体層形成工程S21と、被覆層形成工程S22と、マスキング除去工程S23と、を含み、この順で行われる。
以下、図8を参照(適宜図6及び図7参照)して、各工程について詳細に説明する。
(マスキング工程)
まず、マスキング工程S20において、図8(a)に示すように、基板2Bにおいて、蛍光体層3を形成する場所以外を、マスキング部材20を貼付することで被覆する。本実施形態では、基板2Bの下面及び側面を被覆している。
マスキング部材20としては、例えば、ポリイミド、ポリテトラフルオロエチレン、ポリオレフィンなどの樹脂製の粘着テープや粘着シートを用いることができる。また、アクリル系樹脂、シリコーン系樹脂やエポキシ系樹脂などの樹脂材料を塗布してマスキングすることもできる。更にまた、樹脂系のマスキング部材20を、フォトレジストを用いてパターン形成するようにしてもよい。フォトリソグラフィ技術を用いたマスキングは、微細な形状に被覆する場合に有用である。これらのマスキング材料や工法は、使用する温度、雰囲気、目的に応じて選択することができる。
なお、本実施形態においては、蛍光体層3を、基板2Bの上面に設けるため、基板2Bの下面及び側面をマスキング部材20で被覆したが、マスキング部材20で被覆する領域を変えることで、任意の領域に蛍光体層3を設けるようにすることができる。
(蛍光体層形成工程)
次に、蛍光体層形成工程S21において、図8(b)に示すように、基板2Bの上面に無機蛍光体31の粒子を積層した粒子層34を形成する。蛍光体層形成工程S21は、第1実施形態における蛍光体層形成工程S11と同様にして行うことができるため、詳細な説明は省略する。
(被覆層形成工程)
次に、被覆層形成工程S22において、図8(c)に示すように、蛍光体層形成工程S21で形成した無機蛍光体31の粒子層34(図8(b)参照)を被覆し、粒子同士を固着させる被覆層32を形成する。被覆層形成工程S22は、第1実施形態における被覆層形成工程S13と同様にして行うことができるため、詳細な説明は省略する。
(マスキング除去工程)
最後に、マスキング除去工程S23において、図8(d)に示すように、マスキング部材20(図8(c)参照)を除去する。これによって、基板2Bの上面に蛍光体層3が形成された無機成形体1Bが得られる。
<第3実施形態>
次に、第3実施形態に係る発光装置について説明する。
第3実施形態に係る発光装置は、第1実施形態に係る無機成形体1を色変換用成形部材として用いた発光装置である。
[発光装置の構成]
まず、図9(a)を参照(適宜図1参照)して、発光装置10の構成について説明する。図9(a)に示すように、発光装置10は、光源11と、色変換用成形部材12と、サブマウント15と、を備えて構成されている。発光装置10は、透過型の色変換用成形部材12として、第1実施形態に係る無機成形体1を用いて構成したものである。
(光源)
光源11は、例えば、半導体発光素子であるLD(レーザダイオード)やLED(発光ダイオード)を用いることができる。半導体発光素子に用いる半導体材料や素子構造は特に限定されるものではないが、窒化ガリウム系などの窒化物半導体を用いた半導体発光素子は、紫外光から青色光にかけての波長領域で高輝度に発光する素子が得られるため、好適に用いることができる。
また、光源11は、LDやLEDなどの発光素子の他に、発光素子が発光した光を適宜に集光、拡散、あるいは反射する光学系を含んで構成してもよい。また、高圧水銀ランプやキセノンランプなどの、他の方式の光源を用いることもできる。
本実施形態における光源11は、サブマウント15の凹部15a内に設けられ、凹部15aの上方の開口部に設けられた色変換用成形部材12に光(L1)を入射する。
(色変換用成形部材(波長変換用無機成形体))
色変換用成形部材12は、サブマウント15の凹部15aの開口部を塞ぐように設けられ、下面から入射される光源11からの入射光L1を、入射光L1とは異なる色の光に色変換した透過光L2を上面から出射する透過型の色変換用成形部材である。本実施形態では、図1に示した第1実施形態に係る無機成形体1を用いるものである。
また、色変換用成形部材12である透過型の無機成形体1は、蛍光体層3を設けられた面を、図9(b)に示すように下側(サブマウント15の内側)に向けて配置してもよいし、図9(c)に示すように上側(サブマウント15の外側)に向けて配置してもよい。
従来の、樹脂を用いた蛍光体の成形体では、図9(b)に示した例のように、蛍光体層3をサブマウント15の内側に向けて配置した場合には、蛍光体層3が密閉状態で光照射されるため、樹脂が着色劣化する場合がある。また、図9(c)に示した例のように、蛍光体層3をサブマウント15の外側に向けて配置した場合には、樹脂が外気による酸化や湿度により劣化し、色変換効率が低下する恐れがある。
本発明による色変換用成形部材12(無機成形体1)は、すべて無機材料で構成されているため、樹脂材料を用いた場合のような劣化の恐れがないため、発光装置10における色変換用成形部材12の配置は、発光装置10や基板2の機能に応じて自由に選択することができる。従って、使用目的に応じて、色変換効率のよい発光装置10を構成することができる。
例えば、無機蛍光体31の粒子に起因する凹凸形状を有する蛍光体層3を有する面を、光の出射側である上側とする、図9(c)に示した構成では、色変換用成形部材12からの光取り出し効率が向上するため好ましい。また、光源11である発光素子が紫外線LDの場合、図9(b)に示した構成として、発光装置10の光出射面である基板2の上面に、紫外線を反射する誘電体層を設けることで、光源11が発光する色の光の、発光装置10からの漏れ低減し、目に安全な発光装置10とすることができる。
また、色変換用成形部材12は、光源11から離間して配置してもよいし、色変換用成形部材12が放熱性に優れるため、光源11と密着して配置してもよい。
(サブマウント)
サブマウント15は、LDやLEDなどの光源11を実装するための実装基板である。サブマウント15は、光源11を実装する凹部15aを有し、凹部15aの上方が開口している。また、凹部15aの開口部には、当該開口部を塞ぐように色変換用成形部材12が設けられている。
[発光装置の動作]
次に、引き続き図9(a)を参照(適宜図6参照)して、発光装置10の動作について説明する。
なお、本実施形態では、光源11として、青色光を発光する半導体発光素子を用いた場合について説明する。また、色変換用成形部材12として、青色光を黄色光に変換する無機蛍光体31を有する無機成形体1を用いるものとする。
光源11は、青色光を色変換用成形部材12(無機成形体1)の蛍光体層3が設けられた面に入射光L1として入射する。青色の入射光L1は、蛍光体層3の空隙33(図1(b)参照)によって散乱されつつ蛍光体層3内を伝搬し、上面から出射される透過光L2が発光装置10から出力光として出力される。
蛍光体層3に入射した青色光は、蛍光体層3を透過して出射されるまでの間に、一部が無機蛍光体31によって吸収される。無機蛍光体31は、吸収した青色光によって励起され、黄色光を放出(発光)する。すなわち、無機蛍光体31は、青色光を黄色光に色変換する。
無機蛍光体31から発光する黄色光、及び無機蛍光体31に吸収されずに蛍光体層3を透過した青色光は、入射光L1が入射した面と反対側の面から、透過光L2として出射される。このとき、透過光L2には、蛍光体層3で色変換された黄色光と、色変換されなかった青色光とが含まれ、透過光L2は、これらの光が混色した色となる。青色光と黄色光とが適宜な割合となるように蛍光体層3における無機蛍光体31の膜厚や、空隙33(図1(b)参照)の割合を調整することで、発光装置10の出力光を白色光とすることができる。
なお、本発明は、白色光に限定されるものではなく、入射光L1の全部を黄色光に色変換し、黄色光として出力するように構成することもできる。また、例えば緑色や赤色などに色変換する無機蛍光体31を用いるように構成してもよい。また、複数種類の無機蛍光体31を積層、あるいは混合して蛍光体層3を形成することで、様々な色に変換して出力するように構成することもできる。
なお、図9(a)に示した発光装置10において、色変換用成形部材12として、無機成形体1に代えて、図6に示した第2実施形態に係る無機成形体1Bを用いて構成することもできる。
<第4実施形態>
次に、第4実施形態に係る発光装置について説明する。
第4実施形態に係る発光装置は、互いに変換する色が異なる複数種類の透過型の色変換用成形部材を用いた発光装置である。
[発光装置の構成]
まず、図10を参照(適宜図1参照)して、発光装置10Aの構成について説明する。図10に示すように、発光装置10Aは、光源11と、カラーホイール13とを備えて構成されている。
本実施形態に係る発光装置10Aは、カラーホイール13の回転に伴って、光源11からの入射光L1を、3色の異なる色に順次色変換して透過光L2として出力するものである。この発光装置10Aは、例えば、プロジェクタの光源装置として用いられるものである。
(光源)
光源11は、図9(a)に示した第3実施形態における光源11と同様に、半導体発光素子であるLDやLED、又は高圧水銀ランプやキセノンランプなどの他の方式の光源を用いることができるから、詳細な説明は省略する。
なお、本実施形態では、光源11は、青色光を出射するものとする。
(カラーホイール)
カラーホイール13は、円盤状をしており、回転軸13aを中心として回転し、光源11からの入射光L1が、所定の方向から照射されるように構成されている。また、カラーホイール13は、回転軸13aを中心として、3分割された扇形の色変換用成形部材12A,12A及び透光部材16から構成されている。そして、回転軸13aを中心として回転することで、順次に色変換用成形部材12A,12A及び透光部材16に照射され、透過光L2が発光装置10Aから出力される。なお、3分割される領域の中心角は等角度であってもよいし、それぞれ異なる角度であってもよい。
(色変換用成形部材(波長変換用無機成形体))
色変換用成形部材12A及び色変換用成形部材12Aは、光源11からの入射光L1を、入射光L1とは異なる色の透過光L2として出射する、透過型の色変換用無機成形体である。本実施形態では、色変換用成形部材12A及び色変換用成形部材12Aには、第1実施形態に係る無機成形体1が適用される。また、色変換用成形部材12A及び色変換用成形部材12Aは、青色光を、それぞれ赤色光及び緑色光に色変換する無機蛍光体31を含有する蛍光体層3を有している。
なお、蛍光体層3は、少なくとも入射光L1が照射される領域に設けられていればよい。従って、カラーホイール13の中心付近の内周部には蛍光体層3を設けず、外周部に円環状に設けるようにしてもよい。
(透光部材)
透光部材16は、第1実施形態に係る無機成形体1において、蛍光体層3に代えて、無機蛍光体31を含有せず、代わりに無色の無機フィラーを含有したセラミックス層が形成された、色変換を行わない無機成形体である。
また、色変換用成形部材12A,12Aは、蛍光体層3を設けられた面を、光の入射側又は出射側の何れに向けて配置してもよい。無機蛍光体31の粒子に起因する凹凸形状を有する蛍光体層3を有する面を出射側とすることで、色変換用成形部材12A,12Aからの光取り出し効率が向上するため好ましい。透光部材16についても同様に、無機フィラーの粒子に起因する凹凸形状を有するセラミックス層を有する面を出射側とすることが好ましい。
[発光装置の動作]
次に、引き続き図10を参照(適宜図8参照)して、発光装置10Aの動作について説明する。
光源11からの入射光L1が、カラーホイール13の色変換用成形部材12Aが設けられた領域に入射される期間は、青色の入射光L1は、色変換用成形部材12Aの蛍光体層3によって、赤色光に色変換され、透過光L2として発光装置10Aから出力される。
カラーホイール13が矢印の方向に回転し、光源11からの入射光L1が、カラーホイール13の色変換用成形部材12Aが設けられた領域に入射される期間は、青色の入射光L1は、色変換用成形部材12Aの蛍光体層3によって、緑色光に色変換され、透過光L2として発光装置10Aから出力される。
カラーホイール13が矢印の方向に更に回転し、光源11からの入射光L1が、カラーホイール13の透光部材16が設けられた領域に入射される期間は、青色の入射光L1は、透光部材16を、色変換されることなく透過して、青色の透過光L2として発光装置10Aから出力される。
すなわち、発光装置10Aは、カラーホイール13の回転に伴って、赤色光、緑色光及び青色光を周期的に出力する。
なお、本実施形態では、光源11からの入射光L1を青色光としたが、これに限定されるものではない。例えば、光源11からの入射光L1を紫外光とし、色変換用成形部材12A,12A及び透光部材16に、第3実施形態に係る無機成形体1を適用し、色変換用成形部材12Aには紫外光を赤色光に、色変換用成形部材12Aには紫外光を緑色光に、透光部材16には紫外光を青色光に、それぞれ色変換する無機蛍光体31を含有させた蛍光体層3を設けるように構成することもできる。
その他、入射光L1の色と、透過光L2の色の組み合わせを自由に設定することもでき、2色又は4色以上の透過光L2を順次出力するように構成することもできる。
また、本実施形態では、色変換用成形部材12A及び色変換用成形部材12Aは、それぞれ青色の入射光L1の全部を吸収し、赤色光及び緑色光に変換して出力することとしたが、入射光L1の一部を吸収して色変換し、元の青色光と混色させて出力するように構成することもできる。
次に、本発明の実施例について説明する。
<実施例1>
実施例1として、図1に示した第1実施形態に係る無機成形体1の作製例について説明する。
基板としてLAG蛍光体を含有したセラミックス焼結板を用いる。この基板は、LAG蛍光体を高圧成形してバルク体とした後、HIP(ホット・アイソスタティック・プレス;熱間等方圧プレス)で高温高圧焼結させたバルク焼結体を、スライス、切削、研磨した約100μmの厚さの基板である。
(導電体層形成工程)
この基板の片面に導電性を持たせるため、スパッタリング法により、約0.1μmの厚さのAl層を形成する。
(蛍光体層形成工程)
その後、導電体層が形成された基板を、無機蛍光体としてF.S.S.S.No法による平均粒径が7μmのCASNの粒子を分散させた約25℃の電着槽に対極と共に浸漬させ、電気泳動法により無機蛍光体を基板の導電体層形成部に電着させる。電着槽には無機結着材としてMgイオンが添加されており、これが水酸化マグネシウム及び/又は炭酸マグネシウムとして析出することで結着力が得られる。なお、無機蛍光体の粒子層の厚さは、電極間に通電するクーロン量を制御することで30μmの厚さに制御する。
洗浄・乾燥後、導電体層であるAl層を介して無機蛍光体の粒子層が積層された基板を得る。
(導電体層透明化工程)
洗浄、乾燥後、Al層を90℃の熱水で処理し、導電体層であるAl層を酸化してAl層とすることにより、導電体層を透明化する。
(被覆層形成工程)
乾燥後、ALD法により、被覆層として約3μmの厚さのSiO層を形成する。
なお、ALD法による成膜の第1原料としてTTBS(Tris(tert-Buthoxy)Silanol)用い、第2原料としてTMAを用い、実施例1と同様の手順でSiO層を形成する。
[被覆層形成工程]
実施例1のALD法による被覆層形成工程について、更に詳細に説明する。
なお、本実施例におけるALD装置の反応容器の内径はφ300mmである。
(プリベーク工程)
まず、基板上に無機蛍光体の粒子層が形成された試料をオーブンに入れ、120℃で2時間加熱し、試料中の水分を蒸発させる。
(試料設置工程)
次に、ALD装置の反応容器内に試料を設置し、反応容器の蓋を閉める。
(成膜前保管工程)
次に、ロータリーポンプを用いて、反応容器内を低圧状態にする。反応容器内の圧力設定は、10torr(13332Pa)とする。また、反応容器内に窒素ガス流を導入する。窒素ガスの流量は20sccm(33×10−3Pa・m/s)とし、安定化及び最終的な水分除去のためにこの状態を約60分間維持する。
また、反応容器の温度は、150℃とし、以降の成膜中は、この温度を維持する。
(第1原料供給工程)
反応容器内に、第1原料として、TTBSを1秒間導入する。
試料とTTBSとを反応させるため、反応容器と真空ラインとを接続するバルブであるストップバルブを閉じ、試料をTTBSに15秒間暴露させる。
(第1排気工程)
ストップバルブを開け、窒素ガス流で反応容器内から未反応のTTBS及び副生成物を60秒間排気する。
(第2原料供給工程)
反応容器内に、第2原料として、TMAを1秒間導入する。
試料とTMAとを反応させるため、反応容器のストップバルブを閉じ、試料をTMAに15秒間暴露させる。
(第2排気工程)
ストップバルブを開け、窒素ガス流で反応容器内から未反応のTMA及び副生成物を60秒間排気する。
前記した第1原料供給工程から第2排気工程までを1サイクルとして、所望の厚さのSiO膜となるように、このサイクルを繰り返す。
成膜完了後に、ストップバルブを閉じ、窒素ガス流を流量100sccm(169×10−3Pa・m/s)とし、反応容器内の圧力を常圧にしてから試料を取り出す。
以上の手順により、被覆層としてSiO層で被覆されたCASN蛍光体の粒子層が積層されたLAG蛍光体板という構成の色変換用無機成形体を得ることができる。本実施例の無機成形体は、LAG蛍光体板側及びCASN蛍光体側の、何れの面からもLED/LDに装着して色変換用成形部材として用いることができる。また、プロセス中の最高温度は150℃以下であるため、無機蛍光体としてCASNのように熱に弱い窒化物蛍光体も利用することができる。
本発明で得られた色変換用無機成形体を用いた発光装置は、高出力励起で使用しても、高効率で、かつ長寿命であり、照明用の光源として優れた性能を示す。
<実施例2>
実施例2として、図1に示した第1実施形態に係る無機成形体1の他の製造例について説明する。
基板として高放熱性のAlN板を用いる。この基板の片面にITOからなる導電体層を形成する。この基板に、実施例1と同様の方法で、フッ化物蛍光体の粒子層を積層する。洗浄、乾燥後、ALD法により、約1μmの厚さのAl層を形成する。
本実施例における導電体層は透光性を有するため、導電体層透明化工程を行うことなく、透過型の色変換用成形部材として使用する無機成形体を作製することができる。
<実施例3>
実施例3として、YAG系の無機蛍光体を用い、被覆層としてALD法によりAl層を形成することで作製した無機成形体について、蛍光体層の断面を撮影した写真画像から、画像解析手法により蛍光体層の空隙率を測定した。以下、空隙率を測定する手順について説明する。
なお、本実施例で用いた無機蛍光体の平均粒径は、F.S.S.S.No法による測定で3.6μmであった。また、コールターカウンターを用いて測定した粒度分布から求めた体積分布による中心粒径は6.2μmであった。
まず、図11に示すように、作製した無機成形体を分割して、蛍光体層の断面を走査型電子顕微鏡で撮影する。図11において、粒状の塊の薄い灰色部分が無機蛍光体31であり、粒状の塊の外縁部の濃い灰色部分が被覆層32である。
なお、図11の右下部に表示されている目盛りは、1目盛りが1μmを示し、被覆層32の膜厚は、約300nmである。
次に、図11に示した写真画像から測定対象とする領域Aを切出し、図12に示すように、被覆層32の部分を黒く塗りつぶす。
次に、粒子解析ソフトを用いて、黒く塗りつぶした被覆層32に囲まれた領域を、図13に示すように黒く塗りつぶし、この黒く塗りつぶした領域を、被覆層32を含む無機蛍光体の領域(31+32)とする。ここで、黒く塗りつぶした領域以外を空隙33とする。そして、黒く塗りつぶした領域の面積(画素数)を、領域Aの面積(画素数)で除することで、被覆層32を含む無機蛍光体(31+32)の含有率が求められ、その残余の部分として空隙率が求められる。
本実施例では、無機蛍光体の含有率が75.4%であった。従って、空隙率は24.6%であった。
1、1A、1A、1A、1B 無機成形体(波長変換用無機成形体)
2、2B 基板(基体)
3 蛍光体層(無機粒子層)
31 無機蛍光体(波長変換部材)
32 被覆層
33 空隙
34 粒子層(凝集体)
5 透光性層
6 導電体層
10、10A 発光装置
11 光源
12、12A、12A 色変換用成形部材(波長変換用無機成形体)
13 カラーホイール
13a 回転軸
15 サブマウント
15a 凹部
16 透光部材
20 マスキング部材

Claims (20)

  1. 透光性の基体と、
    前記基体上に設けられた、第1の波長の光を吸収し、前記第1の波長とは異なる第2の波長の光を発光する無機材料からなる波長変換部材の粒子を含有する無機粒子層と、を有し、
    前記無機粒子層は、
    前記粒子が、当該粒子同士又は前記基体と接触することで連続的に繋がった凝集体と、
    前記基体の表面及び前記粒子の表面を連続的に被覆する無機材料からなる被覆層と、
    前記被覆層で被覆された前記粒子、又は、前記被覆層で被覆された前記粒子及び前記被覆層で被覆された前記基体によって取り囲まれた空隙と、
    を有し、
    前記波長変換部材の粒子は、当該粒子同士及び前記基体と無機結着材により結着していることを特徴とする波長変換用無機成形体。
  2. 透光性の基体と、
    前記基体上に設けられた、第1の波長の光を吸収し、前記第1の波長とは異なる第2の波長の光を発光する無機材料からなる波長変換部材の粒子を含有する無機粒子層と、を有し、
    前記無機粒子層は、
    前記粒子が、当該粒子同士又は前記基体と接触することで連続的に繋がった凝集体と、
    前記基体の表面及び前記粒子の表面を連続的に被覆する無機材料からなる被覆層と、
    前記被覆層で被覆された前記粒子、又は、前記被覆層で被覆された前記粒子及び前記被覆層で被覆された前記基体によって取り囲まれた空隙と、
    を有し、
    前記基体と前記無機粒子層との間に、透光性を有する無機材料からなる透光性層を設けたことを特徴とする波長変換用無機成形体。
  3. 前記透光性層と前記被覆層とが同じ材料で形成されていることを特徴とする請求項2に記載の波長変換用無機成形体。
  4. 前記波長変換部材の粒子は、当該粒子同士及び前記基体と無機結着材により結着していることを特徴とする請求項2又は請求項3に記載の波長変換用無機成形体。
  5. 前記無機結着材は、アルカリ土類金属の水酸化物又は炭酸塩であることを特徴とする請求項1又は請求項4に記載の波長変換用無機成形体。
  6. 前記波長変換部材は、フッ化物蛍光体を、少なくとも含有することを特徴とする請求項1乃至又は請求項何れか一項に記載の波長変換用無機成形体。
  7. 前記無機粒子層における前記空隙は、空隙率が1〜50%であることを特徴とする請求項1乃至請求項6の何れか一項に記載の波長変換用無機成形体。
  8. 前記波長変換部材の粒子の平均粒径は、0.1〜100μmであり、
    前記被覆層の平均厚さが10nm〜50μmであることを特徴とする請求項1乃至請求項7の何れか一項に記載の波長変換用無機成形体。
  9. 前記無機粒子層の表面は、前記波長変換部材の粒子の粒径に起因する凹凸形状が形成されていることを特徴とする請求項1乃至請求項の何れか一項に記載の波長変換用無機成形体。
  10. 前記被覆層は、Al、SiO、ZrO、HfO、TiO、ZnO、Ta、Nb、In、SnO、TiN、及びAlNから構成される群から選択される少なくとも一種の化合物を含有することを特徴とする請求項1乃至請求項の何れか一項に記載の波長変換用無機成形体。
  11. 前記波長変換部材は、硫化物系蛍光体、ハロゲンケイ酸塩系蛍光体、窒化物蛍光体、及び酸窒化物蛍光体から構成される群から選択される少なくとも一種の化合物を含有することを特徴とする請求項1乃至請求項10の何れか一項に記載の波長変換用無機成形体。
  12. 前記基体は、無機材料からなることを特徴とする請求項1乃至請求項11の何れか一項に記載の波長変換用無機成形体。
  13. 前記基体の熱伝導度が5W/m・K以上であることを特徴とする請求項1乃至請求項12の何れか一項に記載の波長変換用無機成形体。
  14. 前記基体が、導電性を有する材料からなることを特徴とする請求項1又は請求項1を引用する請求項5乃至請求項13の何れか一項に記載の波長変換用無機成形体。
  15. 光源と、
    前記光源が発光する第1の波長の光を吸収して、前記第1の波長とは異なる第2の波長の光を発光する請求項1乃至請求項14の何れか一項に記載の波長変換用無機成形体とを備え、
    前記第2の波長の光を含む光を出力することを特徴とする発光装置。
  16. 前記光源が発光する前記第1の波長の光の一部と、前記波長変換用無機成形体が発光する前記第2の波長の光とを混色させた光を出力することを特徴とする請求項15に記載の発光装置。
  17. 透光性の基体上に、第1の波長の光を吸収し、前記第1の波長とは異なる第2の波長の光を発光する無機材料からなる波長変換部材の粒子を含有する凝集体を形成する無機粒子層形成工程と、
    前記基体の表面及び前記粒子の表面を連続的に被覆する無機材料からなる被覆層を形成する被覆層形成工程と、を含み、
    前記波長変換部材の平均粒径は、0.1〜100μmであり、
    前記被覆層の平均厚さが10nm〜50μmであり、
    前記被覆層形成工程において、前記被覆層を原子層堆積法により形成することを特徴とする波長変換用無機成形体の製造方法。
  18. 透光性の基体上に、第1の波長の光を吸収し、前記第1の波長とは異なる第2の波長の光を発光する無機材料からなる波長変換部材の粒子を含有する凝集体を形成する無機粒子層形成工程と、
    前記基体の表面及び前記粒子の表面を連続的に被覆する無機材料からなる被覆層を形成する被覆層形成工程と、を含み、
    前記被覆層は、Al、SiO、ZrO、HfO、TiO、ZnO、Ta、Nb、In、SnO、TiN、及びAlNから構成される群から選択される少なくとも一種の化合物を含有し、
    前記被覆層形成工程において、前記被覆層を原子層堆積法により形成することを特徴とする波長変換用無機成形体の製造方法。
  19. 前記無機粒子層形成工程において、前記凝集体を、電気沈着法、静電塗装法、パルススプレー法もしくは遠心沈降法、又はこれらの方法の組み合わせにより前記基体上に形成することを特徴とする請求項17又は請求項18に記載の波長変換用無機成形体の製造方法。
  20. 前記無機粒子層形成工程において、前記凝集体を形成する際に、無機結着材として、少なくともアルカリ土類金属元素を成分として含む化合物を用いることを特徴とする請求項19に記載の波長変換用無機成形体の製造方法。
JP2012089068A 2012-03-28 2012-04-10 波長変換用無機成形体及びその製造方法、並びに発光装置 Active JP5966539B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012089068A JP5966539B2 (ja) 2012-04-10 2012-04-10 波長変換用無機成形体及びその製造方法、並びに発光装置
CN201310100170.2A CN103367611B (zh) 2012-03-28 2013-03-26 波长变换用无机成型体及其制造方法以及发光装置
KR1020130032959A KR101549736B1 (ko) 2012-03-28 2013-03-27 파장 변환용 무기 성형체 및 그 제조 방법, 및 발광 장치
EP13161479.4A EP2645433B1 (en) 2012-03-28 2013-03-27 Wave-length conversion inorganic member, method for manufacturing the same, and light emitting device
US13/852,332 US8994259B2 (en) 2012-03-28 2013-03-28 Wave-length conversion inorganic member, and method for manufacturing the same
US14/590,520 US9835310B2 (en) 2012-03-28 2015-01-06 Wave-length conversion inorganic member, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012089068A JP5966539B2 (ja) 2012-04-10 2012-04-10 波長変換用無機成形体及びその製造方法、並びに発光装置

Publications (3)

Publication Number Publication Date
JP2013216800A JP2013216800A (ja) 2013-10-24
JP2013216800A5 JP2013216800A5 (ja) 2015-05-21
JP5966539B2 true JP5966539B2 (ja) 2016-08-10

Family

ID=49589298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012089068A Active JP5966539B2 (ja) 2012-03-28 2012-04-10 波長変換用無機成形体及びその製造方法、並びに発光装置

Country Status (1)

Country Link
JP (1) JP5966539B2 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3063250B1 (en) * 2013-11-01 2018-08-01 Merck Patent GmbH Silicate phosphors
JP2015142046A (ja) * 2014-01-29 2015-08-03 シャープ株式会社 波長変換部材、発光装置、および波長変換部材の製造方法
JP6428194B2 (ja) * 2014-11-21 2018-11-28 日亜化学工業株式会社 波長変換部材及びその製造方法ならびに発光装置
JP2016162860A (ja) * 2015-02-27 2016-09-05 シチズン電子株式会社 Led発光装置
DE112016004313B4 (de) * 2015-09-24 2023-10-05 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Stabile rote Keramikleuchtstoffe und Technologien damit
EP3428697B1 (en) 2016-03-10 2023-03-01 Panasonic Intellectual Property Management Co., Ltd. Light emitting device
KR101856623B1 (ko) 2016-08-12 2018-05-10 주식회사 테토스 반사성 입자의 스퍼터링 방법
WO2018055903A1 (ja) 2016-09-20 2018-03-29 ソニー株式会社 光源装置および投射型表示装置
US10700242B2 (en) 2016-12-27 2020-06-30 Nichia Corporation Method of producing wavelength conversion member
JP6963720B2 (ja) 2018-08-30 2021-11-10 日亜化学工業株式会社 発光装置
JP6695461B1 (ja) 2019-02-20 2020-05-20 浜松ホトニクス株式会社 蛍光体パネルの製造方法、蛍光体パネル、イメージインテンシファイア、及び走査型電子顕微鏡
WO2020259950A1 (en) * 2019-06-25 2020-12-30 Lumileds Holding B.V. Phosphor layer for micro-led applications
US11362243B2 (en) 2019-10-09 2022-06-14 Lumileds Llc Optical coupling layer to improve output flux in LEDs
CN113024251A (zh) * 2019-12-09 2021-06-25 上海航空电器有限公司 具有平凹形结构薄膜的高显色性激光照明用荧光陶瓷及其制备方法
EP3855515A1 (en) * 2020-01-23 2021-07-28 Lumileds LLC Manufacturing phosphor wavelength conversion layer
US11411146B2 (en) * 2020-10-08 2022-08-09 Lumileds Llc Protection layer for a light emitting diode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4418685B2 (ja) * 2003-01-10 2010-02-17 豊田合成株式会社 発光デバイス
JP5614675B2 (ja) * 2010-02-16 2014-10-29 独立行政法人物質・材料研究機構 波長変換部材の製造方法

Also Published As

Publication number Publication date
JP2013216800A (ja) 2013-10-24

Similar Documents

Publication Publication Date Title
JP5966501B2 (ja) 波長変換用無機成形体及びその製造方法、並びに発光装置
JP5966539B2 (ja) 波長変換用無機成形体及びその製造方法、並びに発光装置
JP6069890B2 (ja) 波長変換用無機成形体及び発光装置
JP6051578B2 (ja) 発光装置
KR101549736B1 (ko) 파장 변환용 무기 성형체 및 그 제조 방법, 및 발광 장치
JP6428194B2 (ja) 波長変換部材及びその製造方法ならびに発光装置
JP5966529B2 (ja) 波長変換用無機成形体及び発光装置
JP5468985B2 (ja) 照明装置
JP5863291B2 (ja) 平面発光モジュール
JP6178413B2 (ja) オプトエレクトロニクス半導体素子およびその製造方法
JP5989268B2 (ja) 蛍光体セラミックス、封止光半導体素子、回路基板、光半導体装置および発光装置
WO2011108194A1 (ja) 発光装置
CN114008800B (zh) 磷光体转换器发射器的结合
JP2011029497A (ja) 白色発光装置およびそれを用いた照明装置
EP2748277B1 (en) PHOSPHOR IN WATER GLASS FOR LEDs
JP2015065425A (ja) 発光装置及びその製造方法
JP2015090887A (ja) 発光素子及び発光装置
KR20150055578A (ko) 발광소자, 발광장치 및 그들의 제조방법
KR20150026929A (ko) 발광소자, 발광장치 및 그것들의 제조방법
JP6818997B2 (ja) 発光装置の製造方法
JPWO2014020897A1 (ja) 波長変換粒子、波長変換部材及び発光装置
JP2019125683A (ja) Ledモジュール
JP2016222743A (ja) 波長変換粒子、波長変換部材及び発光装置
JP2016028170A (ja) 被覆蛍光体の製造方法、被覆蛍光体及び白色光源

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160408

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160620

R150 Certificate of patent or registration of utility model

Ref document number: 5966539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250