JP5961635B2 - 1、5−ペンタメチレンジアミンの製造方法 - Google Patents

1、5−ペンタメチレンジアミンの製造方法 Download PDF

Info

Publication number
JP5961635B2
JP5961635B2 JP2013554351A JP2013554351A JP5961635B2 JP 5961635 B2 JP5961635 B2 JP 5961635B2 JP 2013554351 A JP2013554351 A JP 2013554351A JP 2013554351 A JP2013554351 A JP 2013554351A JP 5961635 B2 JP5961635 B2 JP 5961635B2
Authority
JP
Japan
Prior art keywords
amino acid
changed
base sequence
sequence encoding
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013554351A
Other languages
English (en)
Other versions
JPWO2013108860A1 (ja
Inventor
大資 望月
大資 望月
正 安楽城
安楽城  正
明子 夏地
明子 夏地
智美 酒井
智美 酒井
友則 秀崎
友則 秀崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Publication of JPWO2013108860A1 publication Critical patent/JPWO2013108860A1/ja
Application granted granted Critical
Publication of JP5961635B2 publication Critical patent/JP5961635B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/001Amines; Imines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/68Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C263/00Preparation of derivatives of isocyanic acid
    • C07C263/10Preparation of derivatives of isocyanic acid by reaction of amines with carbonyl halides, e.g. with phosgene
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01018Lysine decarboxylase (4.1.1.18)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、1,5−ペンタメチレンジアミンの製造方法、1,5−ペンタメチレンジイソシアネートの製造方法およびポリイソシアネート組成物の製造方法に関するものである。
1,5−ペンタメチレンジアミンは、アミノ酸のリジンが脱炭酸することによって生成することが知られているジアミンであり、近年、バイオマス由来のポリマー原料、農薬、医薬の中間体として注目が集まりつつある。
1,5−ペンタメチレンジアミンの製造法としてはアミノ酸のリジンに大腸菌由来のリジン脱炭酸酵素を反応させて製造する方法が知られている(例えば、下記特許文献1参照。)。
本文献によれば使用する酵素量に制限はないが、適量は、精製酵素で25mg/Lから70mg/L、触媒休止菌体ならば5g/Lから15g/Lの酵素が必要とされている。また、実施例からは50mg/Lの精製酵素を用いて45℃、48時間の反応でアジピン酸で中和された1Mのリジンから0.97Mの1,5−ペンタメチレンジアミンが得られることが示されている。しかし、一般的に精製酵素の製造には多大な費用がかかるため、ポリマー原料製造には触媒休止菌体を触媒として利用できることが好ましい。また、本文献によれば10g/Lのリジンを含む発酵液からは50mg/Lの精製酵素を用いて45℃、24時間の反応で6.6g/Lの1,5−ペンタメチレンジアミンが得られることが示されている。
また、Saboらによれば精製した大腸菌由来のリジン脱炭酸酵素の比活性は酵素1mgあたり900から1100μmol/minと示されている(例えば、下記非特許文献1参照。)。
また、TAKATSUKAらによればセレノモナス ルミナンティウム(Selenomonas ruminantium)由来のリジン脱炭酸酵素の比活性は1kgの酵素あたり1秒間に0.198molの1,5−ペンタメチレンジアミンを生成することが示されている(例えば、下記非特許文献2参照。)。
これは酵素1mgあたり1分間に11.88μmolの1,5−ペンタメチレンジアミンを生成する活性であり、酵素あたりのリジン脱炭酸酵素としての活性は、大腸菌のものと比較すると1/100程度の活性であった。
また、セレノモナス ルミナンティウム(Selenomonas ruminantium)由来のリジン脱炭酸酵素遺伝子の改変により活性向上する方法が知られている(例えば、下記非特許文献3参照。)。
本文献によれば2箇所のアミノ酸の変更によりKcatが1.3倍となることが示されている。
特開2009−207495
Sabo, D. L.ら、Biochemistry 13(1974)pp.662-670. TAKATSUKAら、Bioscience, Biotechnology, and Biochemistry Vol. 63 (1999) , No. 6 pp.1063−1069 TAKATSUKAら、Bioscience, Biotechnology, and Biochemistry Vol. 63 (1999) , No. 10 pp.1843−1846
安価な1,5−ペンタメチレンジアミン製造のためには、より少ない酵素、または触媒休止菌体量、またはその処理物量で、より高濃度の1,5−ペンタメチレンジアミン蓄積量を短時間で実現することが必要であることは自明である。しかしながらリジンから1,5−ペンタメチレンジアミンを生成する反応において精製酵素、または触媒休止菌体量、またはその処理物量を削減していくと反応時間を延長しても反応が進まなくなる現象が見出された。
すなわち、本発明の課題は少ない精製酵素、触媒休止菌体または触媒死菌体量のとき反応が進まなくなる現象を解決し、高濃度の1,5−ペンタメチレンジアミンを短時間に製造する方法を提供することである。
また、本発明の別の課題はより少ない酵素、または触媒休止菌体量、またはその処理物量で、より高濃度の1,5−ペンタメチレンジアミン蓄積量を短時間で実現する触媒を提供し、また、その触媒を用いて高濃度の1,5−ペンタメチレンジアミンを短時間に製造する方法を提供することである。
さらに、本発明の別の課題は、効率的に1,5−ペンタメチレンジイソシアネートおよびポリイソシアネート組成物を製造する方法を提供することにある。
上記問題点を解決するために、本発明者らは、1,5−ペンタメチレンジアミンの製造方法について鋭意研究を行った結果、L−リジン水溶液にL−リジン脱炭酸酵素を作用させる際にリジン脱炭酸反応の失活を防ぐ物質を含む反応液で1,5−ペンタメチレンジアミンを製造することにより1,5−ペンタメチレンジアミンを効率的に得られることを見出した。
また、本発明者らは鋭意検討したところ、リジン脱炭酸酵素の特定部位に変異を導入することで、顕著に効率よく、1,5−ペンタメチレンジアミンを製造する変異型リジン脱炭酸酵素、もしくは該酵素を発現する菌体を見出した。さらに該リジン脱炭酸酵素を利用することで、工業的に有利な1,5−ペンタメチレンジアミン製造法を見出した。
すなわち本発明は、
[1]リジン脱炭酸反応の減速または停止を防ぐ物質の存在下において、L−リジン及び/またはその塩を、リジン脱炭酸酵素及び/または変異型リジン脱炭酸酵素によって、リジン脱炭酸反応させることを特徴とする、1、5−ペンタメチレンジアミンの製造方法、
[2]リジン脱炭酸酵素及び/または変異型リジン脱炭酸酵素をリジン1g当たり5unitから165unit使用する、または、リジン1gあたり精製酵素換算で5μgから165μg使用することを特徴とする、[1]に記載の1、5−ペンタメチレンジアミンの製造方法、
[3]リジン脱炭酸反応の減速または停止を防ぐ物質が、微生物の発酵液またはその処理物またはそれらに含まれる成分であることを特徴とする、[1]または[2]に記載の1、5−ペンタメチレンジアミンの製造方法、
[4]リジン脱炭酸反応の減速または停止を防ぐ物質が、リジン生産時の発酵液、またはその処理物に含まれる成分であることを特徴とする、[1]〜[3]のいずれかに記載の1、5−ペンタメチレンジアミンの製造方法、
[5]リジン脱炭酸反応の減速または停止を防ぐ物質が、微生物を培養した培養液に含まれる成分であることを特徴とする、[1]〜[4]のいずれかに記載の1、5−ペンタメチレンジアミンの製造方法、
[6]リジン脱炭酸反応の減速または停止を防ぐ物質が、微生物または微生物処理物であることを特徴とする、[1]〜[5]のいずれかに記載の1、5−ペンタメチレンジアミンの製造方法、
[7]微生物が、原核生物および/または真核生物であることを特徴とする、[5]または[6]に記載の1、5−ペンタメチレンジアミンの製造方法、
[8]微生物がリジン生産菌であることを特徴とする、[5]〜[7]のいずれかに記載の1、5−ペンタメチレンジアミンの製造方法、
[9]リジン脱炭酸反応の減速または停止を防ぐ物質が、微生物が炭素源としうる化合物であることを特徴とする、[1]〜[5]のいずれかに記載の1、5−ペンタメチレンジアミンの製造方法、
[10]微生物が炭素源としうる化合物が、コーンスティープリカー、廃糖蜜、糖類およびアミノ酸類からなる群から選択される少なくとも1種であることを特徴とする、[9]に記載の1、5−ペンタメチレンジアミンの製造方法、
[11]反応の減速または停止を防ぐ物質が、微生物と、微生物が炭素源としうる化合物との混合物であることを特徴とする、[1]〜[5]のいずれかに記載の1、5−ペンタメチレンジアミンの製造方法、
[12]変異型リジン脱炭酸酵素が、配列表の配列番号4に記載のアミノ酸配列において、前記アミノ酸配列中のアミノ酸の少なくとも1つが、活性が上昇する他のアミノ酸に置換されている変異型リジン脱炭酸酵素であることを特徴とする、[1]〜[11]のいずれかに記載の1、5−ペンタメチレンジアミンの製造方法、
[13]他のアミノ酸に置換される前記アミノ酸が、10量体形成ドメインおよび/または活性領域ドメインに存在することを特徴とする、[12]に記載の1、5−ペンタメチレンジアミンの製造方法、
[14]前記10量体形成ドメインが、ウィングドメインおよび/またはリンカードメインであり、前記活性領域ドメインが、ピリドキサールリン酸酵素共通ドメインおよび/または基質出入口であることを特徴とする、[13]に記載の1、5−ペンタメチレンジアミンの製造方法、
[15]配列表の配列番号4に記載のアミノ酸配列において、前記10量体形成ドメインに存在する前記アミノ酸が、14、28、39、64、67、70、75、79、83、84、85、88、89、94、95、98、99、104、112、119、137、138、139、143、145、148、182番目のアミノ酸であり、前記活性領域ドメインに存在する前記アミノ酸が、184、253、262、286、290、295、303、317、335、352、353、386、430、443、446、460、466、471、475、506、524、539、544、546、553、623、626、636、646、648、711番目のアミノ酸であることを特徴とする、[13]または[14]に記載の1,5−ペンタメチレンジアミンの製造方法、
[16]配列表の配列番号4に記載のアミノ酸配列において、前記ウィングドメインに存在する前記アミノ酸が、14、28、39、64、67、70、75、79、83、84、85、88、89、94、95、98、99、104、112、119番目のアミノ酸であり、前記リンカードメインに存在する前記アミノ酸が、137、138、139、143、145、148、182番目のアミノ酸であり、前記ピリドキサールリン酸酵素共通ドメインに存在する前記アミノ酸が、184、253、262、286、290、295、303、317、335、352、353、386番目のアミノ酸であり、前記基質出入口に存在する前記アミノ酸が、430、443、446、460、466、471、475、506、524、539、544、546、553、623、626、636、646、648、711番目のアミノ酸であることを特徴とする、[14]または[15]に記載の1,5−ペンタメチレンジアミンの製造方法、
[17]配列表の配列番号4に記載のアミノ酸配列において、10量体形成ドメインに存在するアミノ酸のうち14番目のアミノ酸をPheからGlnに変更したもの、28番目のアミノ酸をArgからIleに変更したもの、39番目のアミノ酸をArgからIleに変更したもの、39番目のアミノ酸をArgからValに変更したもの、64番目のアミノ酸をLeuからLysに変更したもの、67番目のアミノ酸をCysからThrに変更したもの、67番目のアミノ酸をCysからLeuに変更したもの、70番目のアミノ酸をIleからLeuに変更したもの、70番目のアミノ酸をIleからProに変更したもの、75番目のアミノ酸をGluからProに変更したもの、75番目のアミノ酸をGluからHisに変更したもの、79番目のアミノ酸をLeuからIleに変更したもの、83番目のアミノ酸をAlaからLeuに変更したもの、84番目のアミノ酸をAsnからAspに変更したもの、84番目のアミノ酸をAsnからThrに変更したもの、85番目のアミノ酸をThrからProに変更したもの、88番目のアミノ酸をThrからLysに変更したもの、88番目のアミノ酸をThrからArgに変更したもの、88番目のアミノ酸をThrからAsnに変更したもの、89番目のアミノ酸をLeuからPheに変更したもの、94番目のアミノ酸をAsnからIleに変更したもの、95番目のアミノ酸をAspからProに変更したもの、98番目のアミノ酸をLeuからIleに変更したもの、99番目のアミノ酸をGlnからThrに変更したもの、104番目のアミノ酸をGluからAsnに変更したもの、104番目のアミノ酸をGluからLysに変更したもの、112番目のアミノ酸をAspからGluに変更したもの、119番目のアミノ酸をGlnからAsnに変更したもの、119番目のアミノ酸をGlnからIleに変更したもの、119番目のアミノ酸をGlnからThrに変更したもの、119番目のアミノ酸をGlnからSerに変更したもの、137番目のアミノ酸をPheからValに変更したもの、138番目のアミノ酸をLysからIleに変更したもの、139番目のアミノ酸をTyrからValに変更したもの、139番目のアミノ酸をTyrからCysに変更したもの、139番目のアミノ酸をTyrからThrに変更したもの、139番目のアミノ酸をTyrからSerに変更したもの、139番目のアミノ酸をTyrからAsnに変更したもの、143番目のアミノ酸をGlyからGluに変更したもの、145番目のアミノ酸をTyrからArgに変更したもの、148番目のアミノ酸をCysからSerに変更したもの、148番目のアミノ酸をCysからAlaに変更したもの、182番目のアミノ酸をIleからMetに変更したもの、活性領域ドメインに存在するアミノ酸のうち184番目のアミノ酸をValからAlaに変更したもの、253番目のアミノ酸をMetからLeuに変更したもの、262番目のアミノ酸をPheからTyrに変更したもの、286番目のアミノ酸をAlaからAspに変更したもの、290番目のアミノ酸をLysからHisに変更したもの、295番目のアミノ酸をAlaからSerに変更したもの、303番目のアミノ酸をIleからThrに変更したもの、317番目のアミノ酸をPheからGlnに変更したもの、335番目のアミノ酸をProからAlaに変更したもの、352番目のアミノ酸をGlyからAlaに変更したもの、353番目のアミノ酸をArgからHisに変更したもの、386番目のアミノ酸をGluからSerに変更したもの、430番目のアミノ酸をGluからPheに変更したもの、443番目のアミノ酸をArgからMetに変更したもの、446番目のアミノ酸をSerからTyrに変更したもの、446番目のアミノ酸をSerからGlnに変更したもの、460番目のアミノ酸をAspからIleに変更したもの、460番目のアミノ酸をAspからAsnに変更したもの、460番目のアミノ酸をAspからCysに変更したもの、460番目のアミノ酸をAspからGlnに変更したもの、460番目のアミノ酸をAspからProに変更したもの、460番目のアミノ酸をAspからSerに変更したもの、466番目のアミノ酸をProからAsnに変更したもの、466番目のアミノ酸をProからGlyに変更したもの、466番目のアミノ酸をProからSerに変更したもの、471番目のアミノ酸をSerからTyrに変更したもの、475番目のアミノ酸をGlyからAsnに変更したもの、506番目のアミノ酸をAspからProに変更したもの、524番目のアミノ酸をValからLeuに変更したもの、524番目のアミノ酸をValからLeuに変更したもの、539番目のアミノ酸をIleからCysに変更したもの、539番目のアミノ酸をIleからLeuに変更したもの、544番目のアミノ酸をThrからAlaに変更したもの、544番目のアミノ酸をThrからSerに変更したもの、544番目のアミノ酸をThrからProに変更したもの、546番目のアミノ酸をAlaからSerに変更したもの、553番目のアミノ酸をLeuからValに変更したもの、623番目のアミノ酸をAlaからCysに変更したもの、623番目のアミノ酸をAlaからPheに変更したもの、623番目のアミノ酸をAlaからGlnに変更したもの、626番目のアミノ酸をLysからValに変更したもの、636番目のアミノ酸をTyrからCysに変更したもの、636番目のアミノ酸をTyrからProに変更したもの、646番目のアミノ酸をAlaからLeuに変更したもの、646番目のアミノ酸をAlaからIleに変更したもの、648番目のアミノ酸をMetからSerに変更したもの、710番目のアミノ酸をLysからThrに変更したもの、711番目のアミノ酸をGluからAspに変更したものに少なくとも1箇所以上置換されている変異型リジン脱炭酸酵素であることを特徴とする、[15]または[16]に記載の1,5−ペンタメチレンジアミンの製造方法、
[18]配列表の配列番号4に記載のアミノ酸配列において、ウィングドメインに存在するアミノ酸のうち14番目のアミノ酸をPheからGlnに変更したもの、28番目のアミノ酸をArgからIleに変更したもの、39番目のアミノ酸をArgからIleに変更したもの、39番目のアミノ酸をArgからValに変更したもの、64番目のアミノ酸をLeuからLysに変更したもの、67番目のアミノ酸をCysからThrに変更したもの、67番目のアミノ酸をCysからLeuに変更したもの、70番目のアミノ酸をIleからLeuに変更したもの、70番目のアミノ酸をIleからProに変更したもの、75番目のアミノ酸をGluからProに変更したもの、75番目のアミノ酸をGluからHisに変更したもの、79番目のアミノ酸をLeuからIleに変更したもの、83番目のアミノ酸をAlaからLeuに変更したもの、84番目のアミノ酸をAsnからAspに変更したもの、84番目のアミノ酸をAsnからThrに変更したもの、85番目のアミノ酸をThrからProに変更したもの、88番目のアミノ酸をThrからLysに変更したもの、88番目のアミノ酸をThrからArgに変更したもの、88番目のアミノ酸をThrからAsnに変更したもの、89番目のアミノ酸をLeuからPheに変更したもの、94番目のアミノ酸をAsnからIleに変更したもの、95番目のアミノ酸をAspからProに変更したもの、98番目のアミノ酸をLeuからIleに変更したもの、99番目のアミノ酸をGlnからThrに変更したもの、104番目のアミノ酸をGluからAsnに変更したもの、104番目のアミノ酸をGluからLysに変更したもの、112番目のアミノ酸をAspからGluに変更したもの、119番目のアミノ酸をGlnからAsnに変更したもの、119番目のアミノ酸をGlnからIleに変更したもの、119番目のアミノ酸をGlnからThrに変更したもの、119番目のアミノ酸をGlnからSerに変更したもの、リンカードメインに存在するアミノ酸のうち137番目のアミノ酸をPheからValに変更したもの、138番目のアミノ酸をLysからIleに変更したもの、139番目のアミノ酸をTyrからValに変更したもの、139番目のアミノ酸をTyrからCysに変更したもの、139番目のアミノ酸をTyrからThrに変更したもの、139番目のアミノ酸をTyrからSerに変更したもの、139番目のアミノ酸をTyrからAsnに変更したもの、143番目のアミノ酸をGlyからGluに変更したもの、145番目のアミノ酸をTyrからArgに変更したもの、148番目のアミノ酸をCysからSerに変更したもの、148番目のアミノ酸をCysからAlaに変更したもの、182番目のアミノ酸をIleからMetに変更したもの、ピリドキサールリン酸酵素共通ドメインに存在するアミノ酸のうち184番目のアミノ酸をValからAlaに変更したもの、253番目のアミノ酸をMetからLeuに変更したもの、262番目のアミノ酸をPheからTyrに変更したもの、286番目のアミノ酸をAlaからAspに変更したもの、290番目のアミノ酸をLysからHisに変更したもの、295番目のアミノ酸をAlaからSerに変更したもの、303番目のアミノ酸をIleからThrに変更したもの、317番目のアミノ酸をPheからGlnに変更したもの、335番目のアミノ酸をProからAlaに変更したもの、352番目のアミノ酸をGlyからAlaに変更したもの、353番目のアミノ酸をArgからHisに変更したもの、386番目のアミノ酸をGluからSerに変更したもの、基質出入口に存在するアミノ酸のうち430番目のアミノ酸をGluからPheに変更したもの、443番目のアミノ酸をArgからMetに変更したもの、446番目のアミノ酸をSerからTyrに変更したもの、446番目のアミノ酸をSerからGlnに変更したもの、460番目のアミノ酸をAspからIleに変更したもの、460番目のアミノ酸をAspからAsnに変更したもの、460番目のアミノ酸をAspからCysに変更したもの、460番目のアミノ酸をAspからGlnに変更したもの、460番目のアミノ酸をAspからProに変更したもの、460番目のアミノ酸をAspからSerに変更したもの、466番目のアミノ酸をProからAsnに変更したもの、466番目のアミノ酸をProからGlyに変更したもの、466番目のアミノ酸をProからSerに変更したもの、471番目のアミノ酸をSerからTyrに変更したもの、475番目のアミノ酸をGlyからAsnに変更したもの、506番目のアミノ酸をAspからProに変更したもの、524番目のアミノ酸をValからLeuに変更したもの、524番目のアミノ酸をValからLeuに変更したもの、539番目のアミノ酸をIleからCysに変更したもの、539番目のアミノ酸をIleからLeuに変更したもの、544番目のアミノ酸をThrからAlaに変更したもの、544番目のアミノ酸をThrからSerに変更したもの、544番目のアミノ酸をThrからProに変更したもの、546番目のアミノ酸をAlaからSerに変更したもの、553番目のアミノ酸をLeuからValに変更したもの、623番目のアミノ酸をAlaからCysに変更したもの、623番目のアミノ酸をAlaからPheに変更したもの、623番目のアミノ酸をAlaからGlnに変更したもの、626番目のアミノ酸をLysからValに変更したもの、636番目のアミノ酸をTyrからCysに変更したもの、636番目のアミノ酸をTyrからProに変更したもの、646番目のアミノ酸をAlaからLeuに変更したもの、646番目のアミノ酸をAlaからIleに変更したもの、648番目のアミノ酸をMetからSerに変更したもの、710番目のアミノ酸をLysからThrに変更したもの、711番目のアミノ酸をGluからAspに変更したものに少なくとも1箇所以上置換されている変異型リジン脱炭酸酵素であることを特徴とする、[16]または[17]に記載の1,5−ペンタメチレンジアミンの製造方法。
[19]変異型リジン脱炭酸酵素が、配列表の配列番号4に記載のアミノ酸配列において、290、335、475および711番目のアミノ酸が、他のアミノ酸に置換されている変異型リジン脱炭酸酵素であることを特徴とする、[12]〜[18]のいずれかに記載の1、5−ペンタメチレンジアミンの製造方法、
[20]変異型リジン脱炭酸酵素が、配列表の配列番号4に記載のアミノ酸配列において、286、290、335、475および711番目のアミノ酸が、他のアミノ酸に置換されている変異型リジン脱炭酸酵素であることを特徴とする、[12]〜[18]のいずれかに記載の1、5−ペンタメチレンジアミンの製造方法、
[21][1]〜[20]のいずれかに記載の方法により得られた1、5−ペンタメチレンジアミンまたはその塩を、イソシアネート化することを特徴とする、1、5−ペンタメチレンジイソシアネートの製造方法、
[22][21]に記載の方法により得られた1、5−ペンタメチレンジイソシアネートを、下記(a)〜(e)の官能基を少なくとも1種含有するように変性することを特徴とする、ポリイソシアネート組成物の製造方法。
(a)イソシアヌレート基
(b)アロファネート基
(c)ビウレット基
(d)ウレタン基
(e)ウレア基
である。
本発明によれば、従来より少ない精製酵素、触媒休止菌体または触媒死菌体量のとき反応が進まなくなる現象を解決し、反応速度を向上し、高濃度の1,5−ペンタメチレンジアミンを短時間に製造する方法を提供することができ、さらに、そのような1,5−ペンタメチレンジアミンを用いることにより、効率的に1,5−ペンタメチレンジイソシアネートおよびポリイソシアネート組成物を製造することができる。
図1は、イオン交換水中におけるリジンの脱炭酸酵素反応の反応効率を示すグラフである。 図2は、発酵液A中におけるリジンの脱炭酸酵素反応の反応効率を示すグラフである。 図3は、発酵液B中におけるリジンの脱炭酸酵素反応の反応効率を示すグラフである。
発明の実施形態
以下に本発明を詳しく説明する。
(1)リジン脱炭酸酵素
本発明におけるリジン脱炭酸酵素とは、国際生化学連合(I.U.B.)酵素委員会報告に準拠した酵素番号EC4.1.1.18に分類され、ピリドキサールリン酸(PLP)を補酵素として要求し、L−リジン(リジンとも記載する)から1,5−ペンタメチレンジアミン(ペンタン1,5―ジアミン、1,5―ペンタメチレンジアミンとも記載する)及び炭酸を生成する反応を触媒する酵素、及びこの酵素を遺伝子組み換え等の技術で高生産している菌体、及びその処理物を指す。本発明のリジン脱炭酸酵素はその由来は特に限定されるものではなく、例えば、公知の生物に由来するものが挙げられる。リジン脱炭酸酵素として、より具体的には、例えば、バシラス・ハロドゥランス(Bacillus halodurans)、バシラス・サブチリス(Bacillus subtilis)、エシェリシア・コリ(Escherichia coli)、ビブリオ・コレラ(Vibrio cholerae)、ビブリオ・パラヘモリティカス(Vibrio parahaemolyticus)、ストレプトマイセス・コエリカーラ(Streptomyces coelicolor)、ストレプトマイセス・ピロサス(Streptomyces pilosus)、エイケネラ・コロデンス(Eikenella corrodens)、イユバクテリウム・アシダミノフィルム(Eubacterium acidaminophilum)、サルモネラ・ティフィムリウム(Salmonella typhimurium)、ハフニア・アルベイ(Hafnia alvei)、ナイセリア・メニンギチデス(Neisseria meningitidis)、テルモプラズマ・アシドフィルム(Thermoplasma acidophilum)、ピロコッカス・アビシ(Pyrococcus abyssi)またはコリネバクテリウム・グルタミカス(Corynebacterium glutamicum)などの微生物に由来するものが挙げられる。安全性の観点から、好ましくは、Escherichia coliに由来するものが挙げられる。
発現する遺伝子は同様な効果を示せば特に制限はないが大腸菌由来のcadA(GenBank Accession No.AP009048)が好適である。
(2)リジン脱炭酸酵素活性
本発明において、リジン脱炭酸酵素活性とは、リジンを脱炭酸して1,5−ペンタメチレンジアミンへと変換する反応を触媒する活性を意味する。本発明においてはリジンからの1,5−ペンタメチレンジアミンの生成量を高速液体クロマトグラフィー(HPLC)で測定することにより、算出することができる。
活性の単位は、1分間に1μmolの1,5−ペンタメチレンジアミンを製造する活性を1unit(U)とし、菌体活性は、乾燥菌体換算重量1mg当たりの酵素活性(U/mg dry cells)で表示する。乾燥菌体換算重量とは乾燥して水分を含まない重量を表わし、例えば、菌体を含む液(菌体液)から遠心分離やろ過などの方法で菌体を分離し、重量が一定になるまで乾燥し、その重量を測定することで乾燥菌体換算重量を求めることができる。測定はSaboらの方法に従い測定することができる。
(3)反応の減速または停止を防ぐ物質
本発明における反応の減速または停止を防ぐ物質とは、L−リジン、PLP、リジン脱炭酸酵素、水、pHを調製するために使用される無機の酸類、塩基類およびジカルボン酸類を除く反応液中の物質であり、L−リジン水溶液にL−リジン脱炭酸酵素を作用させる際にリジン脱炭酸反応の反応速度の急激な低下、または停止する現象を防ぐ効果がある物質、言い換えると、当該反応系において、リジン脱炭酸反応を促進する物質である。例えば、微生物を培養した培養液、微生物、微生物が利用しうる炭素源、及びリジン発酵液等が例示できる。
すなわち、後述するように、培養された微生物を用いて、グルコースなどを発酵させることにより、リジンを生産する場合、そのリジン生産時の発酵液(リジン発酵液)は、微生物を培養した培養液を含有しており、また、その培養液は、微生物および微生物が利用しうる炭素源を含有している。
本発明における菌体とは複数の種類に分けられる。誤解を避けるため本発明においては以下のように定める。リジン脱炭酸酵素を高生産し、野生株より高いリジン脱炭酸活性を有する菌体を「触媒菌体」とする。さらに生きている触媒菌体を「触媒生菌体」、生育を休止している触媒菌体を「触媒休止菌体」、増殖能を消失している触媒菌体を「触媒死菌体」とする。また、グルコースからリジンを10g/L以上培養液中に生産する菌体を「リジン生産菌」とする。
本発明における微生物とは、触媒菌体以外の一般の菌体を「微生物」とし、リジン生産菌は微生物に含まれるものとする。微生物の種類は特に限定されないが、好適なものとして酵母、コリネバクテリウム、ブレビバクテリウム、大腸菌などが例示できる。特にコリネバクテリウムは効果が高い。好適な濃度は反応液の組成により変化するが、例えば水、PLP、酵素、リジン塩酸塩のみの組成では大腸菌であれば生菌数で1×10^8個/ml以上の濃度が好適である。また、酵母であれば生菌数で1×10^7個/ml以上の濃度が好適である。また、コリネバクテリウムであれば生菌数で1×10^6個/ml以上の濃度が好適である。上限は基質であるリジンが溶解し、反応液に流動性があれば特に制限はないが、一般には菌体湿重量で500g/L以下である。また、反応液中に微生物が炭素源としうる添加物がある場合は混合する微生物の濃度を下げることが可能であり、例えば糖蜜やコーンスティープリカー(CSL)を0.5g/L混合すればコリネバクテリウムであれば生菌数で1×10^3個/ml以上の濃度が好適となる。さらに反応液が発酵液の遠心分離上静を含む場合、または発酵液の遠心分離上静そのものである場合は50個/ml以上の濃度が好適となる。ただし、発酵液を使用する場合は遠心分離前のリジン生産菌が残っている状態で反応を行い、反応終了後にリジン生産菌と共に触媒菌体を遠心分離等により除菌するのが効率が良い。また、反応開始はリジン発酵終了前に開始することも出来る。
本発明における微生物処理物とは、例えばドライイーストやアルコール発酵スターター、凍結保存菌体のように生育可能な状態になれば生育を開始する休止状態の微生物を指す。
本発明における微生物が炭素源としうる化合物とは、特に微生物が増殖に利用できる炭素源ならば限定はされないが、好適なものとしてはコーンスティープリカー、酵母エキス、糖蜜、糖類、ポリペプトン、アミノ酸類が例示でき、特にコーンスティープリカー及び酵母エキスは効果が高い。好適な濃度としては酵母エキス、及びコーンスティープリカーであれば1g/L以上、ポリペプトンならば5g/L以上、糖蜜ならば10g/L以上で効果がみられる。これらはコリネバクテリウムと共に混合すればさらに低濃度で効果を示し、例えば生菌数で1×10^3個/ml以上のコリネバクテリウムを混合すればそれぞれ0.5g/Lで効果を示すことが出来る。
本発明におけるリジン生産時の発酵液とは培養液にリジン生産菌を植菌し、一定時間培養した液のことであり、少なくとも10g/L以上のリジンとリジン生産菌を含む液である。
本発明におけるリジン生産時の発酵液の処理物とはリジン生産時の発酵液の濃縮、または希釈した液、またはリジン生産時の発酵液からリジン生産菌を遠心分離等で除去した発酵液上清およびその濃縮、希釈物を指す。
本発明におけるリジン生産時の発酵液またはその処理物を反応液に添加する際は、少なくとも反応液の5%容量好ましくは20%容量さらに好ましくは50%容量以上である。
本発明におけるリジン生産時の発酵液に用いる培地は、炭素源、窒素源、無機イオン及び必要に応じその他の有機微量栄養素を含有する通常の培地である。炭素源としては、グルコース、ラクトース、ガラクトース、フラクトース、シュクロース、廃糖蜜、澱粉加水分解物などの炭水化物、エタノールやイノシトールなどのアルコール類、酢酸、フマール酸、クエン酸、コハク酸等の有機酸類を用いることができる。窒素源としては、硫酸アンモニウム、硝酸アンモニウム、塩化アンモニウム、リン酸アンモニウム、酢酸アンモニウム等の無機アンモニウム塩、アンモニア、ペプトン、肉エキス、酵母エキス、酵母エキス、コーン・スティープ・リカー、大豆加水分解物などの有機窒素、アンモニアガス、アンモニア水等を用いることができる。無機イオンとしては、リン酸カリウム、硫酸マグネシウム、鉄イオン、マンガンイオン等が少量添加される。有機微量栄養素としては、ビタミンB1などの要求物質または酵母エキス等を必要に応じ適量含有させることができる。培養は、振とう培養、通気撹拌培養等による好気的条件下で16〜72時間実施するのがよく、培養温度は30℃〜45℃に、培養中pHは5〜9に制御する。尚、pH調整には無機あるいは有機の酸性あるいはアルカリ性物質、更にアンモニアガス等を使用することができる。
本発明におけるリジン生産時の発酵液に用いる微生物は、L−リジンを生成する能力を有する微生物であれば、野生株であってもよいし、該野生株から人工的に育種された育種株であってもよい。
例えば、コリネバクテリウム(Corynebacterium)属、ブレビバクテリウム(Brevibacterium)属、ミクロバクテリウム属(Microbacterium)属、エシェリヒア(Escherichia)属に属する微生物等をあげることができるが、コリネバクテリウム属、ブレビバクテリウム属、ミクロバクテリウム属に属する微生物が好ましい。
(4)変異型リジン脱炭酸酵素
本発明における変異型リジン脱炭酸酵素とは、主に遺伝子組換え技術を利用して野生型リジン脱炭酸酵素のアミノ酸配列において少なくとも1つのアミノ酸が他のアミノ酸に置換された変異を有し、かつ、リジン脱炭酸酵素自体の酵素活性が向上したことを特徴とするリジン脱炭酸酵素と定義される。変異型リジン脱炭酸酵素は、本発明の範囲に含まれる。
なお、アミノ酸配列中のアミノ酸は、リジン脱炭酸酵素中のアミノ酸残基に対応しており、それらは互いに対応関係にある。以下において、アミノ酸と称する場合には、アミノ酸配列として表記されるアミノ酸を示し、アミノ酸残基と称する場合には、リジン脱炭酸酵素中に含まれるアミノ酸残基を示す。
本発明において、変異型リジン脱炭酸酵素遺伝子の調製を行う方法は、変異を導入する既知の如何なる方法でもよく、通常は公知の方法で行うことができる。例えば、部位特異的変異法(Kramer,W. and frita,H.J.、 Methods in Enzymology,1987年、第154巻,第350頁)、リコンビナントPCR法(PCR Technology、Stockton Press、1989年)、特定の部分の核酸を化学合成する方法、遺伝子をヒドロキシアミン処理する方法、遺伝子を保有する菌株を紫外線照射処理、または、ニトロソグアニジンや亜硝酸などの化学薬剤で処理する方法などが挙げられる。
このような変異を導入する方法のなかでは、好ましくは、部位特異的変異法が挙げられる。具体的には、野生型リジン脱炭酸酵素遺伝子を基に、市販のキットを利用して、部位特異的な置換を生じさせる方法である。
アミノ酸残基が挿入、欠失又は置換されている場合、その挿入、欠失又は置換の位置は、リジン脱炭酸活性を消失させなければどの様な位置であっても構わない。挿入、欠失又は置換したアミノ酸残基の数としては1アミノ酸残基又は2アミノ酸残基以上が挙げられ、例えば1アミノ酸残基〜10アミノ酸残基、好ましくは1アミノ酸残基〜5アミノ酸残基が挙げられる。
本発明において、変異型リジン脱炭酸酵素をコードするアミノ酸配列及び塩基配列、又はプライマーの個々の配列に関して、これら互いの相補的な関係に基づいて記述された事項は、特に断らない限り、それぞれの配列と、各配列に対して相補的な配列とについても適用される。各配列に対して相補的な当該配列について本発明の事項を適用する際には、当該相補的な配列が認識する配列について、当業者にとっての技術常識の範囲内で、対応する本明細書に記載された配列に相補的な配列として、明細書全体を読み替えるものとする。
具体的には、本発明において、変異型リジン脱炭酸酵素は、配列表の配列番号4に記載のアミノ酸配列において、そのアミノ酸配列中のアミノ酸の少なくとも1つが、活性が上昇する他のアミノ酸に置換されている。
配列表の配列番号4に記載のアミノ酸配列は、配列表の配列番号3に記載のDNA配列より生成されるタンパク質のアミノ酸配列であって、そのN末端のメチオニンを1番目のアミノ酸として、1〜129番目のアミノ酸がウィングドメインであり、130〜183番目のアミノ酸がリンカードメインであり、これら1〜183番目のアミノ酸が10量体形成ドメインを形成している。また、184〜417番目のアミノ酸がピリドキサールリン酸酵素(PLP酵素)共通ドメインであり、418〜715番目のアミノ酸が基質出入口であり、これら184〜715番目のアミノ酸が活性領域ドメインを形成している。
そして、本発明における変異型リジン脱炭酸酵素では、配列表の配列番号4に記載のアミノ酸配列において、10量体形成ドメインおよび/または活性領域ドメインに存在するアミノ酸が、他のアミノ酸に置換されており、詳しくは、10量体形成ドメイン中のウィングドメインおよび/またはリンカードメインに存在するアミノ酸、および/または、活性領域ドメイン中のピリドキサールリン酸酵素共通ドメインおよび/または基質出入口に存在するアミノ酸が、他のアミノ酸に置換されている。
つまり、変異型リジン脱炭酸酵素において、上記のアミノ酸配列中のアミノ酸に対応するアミノ酸残基が、他のアミノ酸残基に置換されている。
変異型リジン脱炭酸酵素として、好ましくは、少なくとも137、138、286、290、295、303、317、335、352、353、386、443、466、475、553、711番目のアミノ酸残基及び14、28、39、64、67、70、75、79、83、84、85、88、89、94、95、98、99、104、112、119、139、143、145、148、182、184、253、262、430、446、460、471、506、524、539、544、546、623、626、636、646、648番目のアミノ酸残基を他のアミノ酸残基に1つ以上置換した変異型酵素が挙げられる。
本発明における少なくとも137、138、286、290、295、303、317、335、352、353、386、443、466、475、553、711番目のアミノ酸残基及び14、28、39、64、67、70、75、79、83、84、85、88、89、94、95、98、99、104、112、119、139、143、145、148、182、184、253、262、430、446、460、471、506、524、539、544、546、623、626、636、646、648番目のアミノ酸残基を他のアミノ酸残基に1つ以上置換した変異型酵素とは、配列表の配列番号3に記載のDNA配列より生成されるタンパク質のアミノ酸配列(配列表の配列番号4)のN末端のメチオニンを1番目のアミノ酸として137、138、286、290、295、303、317、335、352、353、386、443、466、475、553、711番目のアミノ酸及び14、28、39、64、67、70、75、79、83、84、85、88、89、94、95、98、99、104、112、119、139、143、145、148、182、184、253、262、430、446、460、471、506、524、539、544、546、623、626、636、646、648番目のアミノ酸を少なくとも1つ以上、元のアミノ酸とは異なるアミノ酸に置換した配列の変異型酵素を指す。ただし89番目のアミノ酸をアルギニンに変更したものは除く。変更後のアミノ酸配列は変更前よりも良い性質、例えば比活性の向上、反応中のpH変化に強い性質、反応生成物に対する耐性、阻害の緩和等、があれば特に制限はないが、表1〜6に記載の配列により生成されるアミノ酸配列は特に好ましい。
好ましい変異型リジン脱炭酸酵素として、より具体的には、配列表の配列番号4に記載のアミノ酸配列において、10量体形成ドメインに存在するアミノ酸のうち14番目のアミノ酸をPheからGlnに変更したもの、28番目のアミノ酸をArgからIleに変更したもの、39番目のアミノ酸をArgからIleに変更したもの、39番目のアミノ酸をArgからValに変更したもの、64番目のアミノ酸をLeuからLysに変更したもの、67番目のアミノ酸をCysからThrに変更したもの、67番目のアミノ酸をCysからLeuに変更したもの、70番目のアミノ酸をIleからLeuに変更したもの、70番目のアミノ酸をIleからProに変更したもの、75番目のアミノ酸をGluからProに変更したもの、75番目のアミノ酸をGluからHisに変更したもの、79番目のアミノ酸をLeuからIleに変更したもの、83番目のアミノ酸をAlaからLeuに変更したもの、84番目のアミノ酸をAsnからAspに変更したもの、84番目のアミノ酸をAsnからThrに変更したもの、85番目のアミノ酸をThrからProに変更したもの、88番目のアミノ酸をThrからLysに変更したもの、88番目のアミノ酸をThrからArgに変更したもの、88番目のアミノ酸をThrからAsnに変更したもの、89番目のアミノ酸をLeuからPheに変更したもの、94番目のアミノ酸をAsnからIleに変更したもの、95番目のアミノ酸をAspからProに変更したもの、98番目のアミノ酸をLeuからIleに変更したもの、99番目のアミノ酸をGlnからThrに変更したもの、104番目のアミノ酸をGluからAsnに変更したもの、104番目のアミノ酸をGluからLysに変更したもの、112番目のアミノ酸をAspからGluに変更したもの、119番目のアミノ酸をGlnからAsnに変更したもの、119番目のアミノ酸をGlnからIleに変更したもの、119番目のアミノ酸をGlnからThrに変更したもの、119番目のアミノ酸をGlnからSerに変更したもの、137番目のアミノ酸をPheからValに変更したもの、138番目のアミノ酸をLysからIleに変更したもの、139番目のアミノ酸をTyrからValに変更したもの、139番目のアミノ酸をTyrからCysに変更したもの、139番目のアミノ酸をTyrからThrに変更したもの、139番目のアミノ酸をTyrからSerに変更したもの、139番目のアミノ酸をTyrからAsnに変更したもの、143番目のアミノ酸をGlyからGluに変更したもの、145番目のアミノ酸をTyrからArgに変更したもの、148番目のアミノ酸をCysからSerに変更したもの、148番目のアミノ酸をCysからAlaに変更したもの、182番目のアミノ酸をIleからMetに変更したもの、活性領域ドメインに存在するアミノ酸のうち184番目のアミノ酸をValからAlaに変更したもの、253番目のアミノ酸をMetからLeuに変更したもの、262番目のアミノ酸をPheからTyrに変更したもの、286番目のアミノ酸をAlaからAspに変更したもの、290番目のアミノ酸をLysからHisに変更したもの、295番目のアミノ酸をAlaからSerに変更したもの、303番目のアミノ酸をIleからThrに変更したもの、317番目のアミノ酸をPheからGlnに変更したもの、335番目のアミノ酸をProからAlaに変更したもの、352番目のアミノ酸をGlyからAlaに変更したもの、353番目のアミノ酸をArgからHisに変更したもの、386番目のアミノ酸をGluからSerに変更したもの、430番目のアミノ酸をGluからPheに変更したもの、443番目のアミノ酸をArgからMetに変更したもの、446番目のアミノ酸をSerからTyrに変更したもの、446番目のアミノ酸をSerからGlnに変更したもの、460番目のアミノ酸をAspからIleに変更したもの、460番目のアミノ酸をAspからAsnに変更したもの、460番目のアミノ酸をAspからCysに変更したもの、460番目のアミノ酸をAspからGlnに変更したもの、460番目のアミノ酸をAspからProに変更したもの、460番目のアミノ酸をAspからSerに変更したもの、466番目のアミノ酸をProからAsnに変更したもの、466番目のアミノ酸をProからGlyに変更したもの、466番目のアミノ酸をProからSerに変更したもの、471番目のアミノ酸をSerからTyrに変更したもの、475番目のアミノ酸をGlyからAsnに変更したもの、506番目のアミノ酸をAspからProに変更したもの、524番目のアミノ酸をValからLeuに変更したもの、524番目のアミノ酸をValからLeuに変更したもの、539番目のアミノ酸をIleからCysに変更したもの、539番目のアミノ酸をIleからLeuに変更したもの、544番目のアミノ酸をThrからAlaに変更したもの、544番目のアミノ酸をThrからSerに変更したもの、544番目のアミノ酸をThrからProに変更したもの、546番目のアミノ酸をAlaからSerに変更したもの、553番目のアミノ酸をLeuからValに変更したもの、623番目のアミノ酸をAlaからCysに変更したもの、623番目のアミノ酸をAlaからPheに変更したもの、623番目のアミノ酸をAlaからGlnに変更したもの、626番目のアミノ酸をLysからValに変更したもの、636番目のアミノ酸をTyrからCysに変更したもの、636番目のアミノ酸をTyrからProに変更したもの、646番目のアミノ酸をAlaからLeuに変更したもの、646番目のアミノ酸をAlaからIleに変更したもの、648番目のアミノ酸をMetからSerに変更したもの、710番目のアミノ酸をLysからThrに変更したもの、711番目のアミノ酸をGluからAspに変更したものに少なくとも1箇所以上置換されている変異型リジン脱炭酸酵素が挙げられる。
より具体的には、配列表の配列番号4に記載のアミノ酸配列において、ウィングドメインに存在するアミノ酸のうち14番目のアミノ酸をPheからGlnに変更したもの、28番目のアミノ酸をArgからIleに変更したもの、39番目のアミノ酸をArgからIleに変更したもの、39番目のアミノ酸をArgからValに変更したもの、64番目のアミノ酸をLeuからLysに変更したもの、67番目のアミノ酸をCysからThrに変更したもの、67番目のアミノ酸をCysからLeuに変更したもの、70番目のアミノ酸をIleからLeuに変更したもの、70番目のアミノ酸をIleからProに変更したもの、75番目のアミノ酸をGluからProに変更したもの、75番目のアミノ酸をGluからHisに変更したもの、79番目のアミノ酸をLeuからIleに変更したもの、83番目のアミノ酸をAlaからLeuに変更したもの、84番目のアミノ酸をAsnからAspに変更したもの、84番目のアミノ酸をAsnからThrに変更したもの、85番目のアミノ酸をThrからProに変更したもの、88番目のアミノ酸をThrからLysに変更したもの、88番目のアミノ酸をThrからArgに変更したもの、88番目のアミノ酸をThrからAsnに変更したもの、89番目のアミノ酸をLeuからPheに変更したもの、94番目のアミノ酸をAsnからIleに変更したもの、95番目のアミノ酸をAspからProに変更したもの、98番目のアミノ酸をLeuからIleに変更したもの、99番目のアミノ酸をGlnからThrに変更したもの、104番目のアミノ酸をGluからAsnに変更したもの、104番目のアミノ酸をGluからLysに変更したもの、112番目のアミノ酸をAspからGluに変更したもの、119番目のアミノ酸をGlnからAsnに変更したもの、119番目のアミノ酸をGlnからIleに変更したもの、119番目のアミノ酸をGlnからThrに変更したもの、119番目のアミノ酸をGlnからSerに変更したもの、リンカードメインに存在するアミノ酸のうち137番目のアミノ酸をPheからValに変更したもの、138番目のアミノ酸をLysからIleに変更したもの、139番目のアミノ酸をTyrからValに変更したもの、139番目のアミノ酸をTyrからCysに変更したもの、139番目のアミノ酸をTyrからThrに変更したもの、139番目のアミノ酸をTyrからSerに変更したもの、139番目のアミノ酸をTyrからAsnに変更したもの、143番目のアミノ酸をGlyからGluに変更したもの、145番目のアミノ酸をTyrからArgに変更したもの、148番目のアミノ酸をCysからSerに変更したもの、148番目のアミノ酸をCysからAlaに変更したもの、182番目のアミノ酸をIleからMetに変更したもの、ピリドキサールリン酸酵素共通ドメインに存在するアミノ酸のうち184番目のアミノ酸をValからAlaに変更したもの、253番目のアミノ酸をMetからLeuに変更したもの、262番目のアミノ酸をPheからTyrに変更したもの、286番目のアミノ酸をAlaからAspに変更したもの、290番目のアミノ酸をLysからHisに変更したもの、295番目のアミノ酸をAlaからSerに変更したもの、303番目のアミノ酸をIleからThrに変更したもの、317番目のアミノ酸をPheからGlnに変更したもの、335番目のアミノ酸をProからAlaに変更したもの、352番目のアミノ酸をGlyからAlaに変更したもの、353番目のアミノ酸をArgからHisに変更したもの、386番目のアミノ酸をGluからSerに変更したもの、基質出入口に存在するアミノ酸のうち430番目のアミノ酸をGluからPheに変更したもの、443番目のアミノ酸をArgからMetに変更したもの、446番目のアミノ酸をSerからTyrに変更したもの、446番目のアミノ酸をSerからGlnに変更したもの、460番目のアミノ酸をAspからIleに変更したもの、460番目のアミノ酸をAspからAsnに変更したもの、460番目のアミノ酸をAspからCysに変更したもの、460番目のアミノ酸をAspからGlnに変更したもの、460番目のアミノ酸をAspからProに変更したもの、460番目のアミノ酸をAspからSerに変更したもの、466番目のアミノ酸をProからAsnに変更したもの、466番目のアミノ酸をProからGlyに変更したもの、466番目のアミノ酸をProからSerに変更したもの、471番目のアミノ酸をSerからTyrに変更したもの、475番目のアミノ酸をGlyからAsnに変更したもの、506番目のアミノ酸をAspからProに変更したもの、524番目のアミノ酸をValからLeuに変更したもの、524番目のアミノ酸をValからLeuに変更したもの、539番目のアミノ酸をIleからCysに変更したもの、539番目のアミノ酸をIleからLeuに変更したもの、544番目のアミノ酸をThrからAlaに変更したもの、544番目のアミノ酸をThrからSerに変更したもの、544番目のアミノ酸をThrからProに変更したもの、546番目のアミノ酸をAlaからSerに変更したもの、553番目のアミノ酸をLeuからValに変更したもの、623番目のアミノ酸をAlaからCysに変更したもの、623番目のアミノ酸をAlaからPheに変更したもの、623番目のアミノ酸をAlaからGlnに変更したもの、626番目のアミノ酸をLysからValに変更したもの、636番目のアミノ酸をTyrからCysに変更したもの、636番目のアミノ酸をTyrからProに変更したもの、646番目のアミノ酸をAlaからLeuに変更したもの、646番目のアミノ酸をAlaからIleに変更したもの、648番目のアミノ酸をMetからSerに変更したもの、710番目のアミノ酸をLysからThrに変更したもの、711番目のアミノ酸をGluからAspに変更したものに少なくとも1箇所以上置換されている変異型リジン脱炭酸酵素が挙げられる。
また、好ましい変異型リジン脱炭酸酵素としては、活性領域ドメイン、具体的には、290、335、475、711番目のアミノ酸残基、286、290、335、475、711番目のアミノ酸残基、148、646番目のアミノ酸残基、471、626番目のアミノ酸残基、626、646番目のアミノ酸残基を他のアミノ酸残基に置換した変異型酵素が挙げられる。
本発明における290、335、475、711番目のアミノ酸残基を他のアミノ酸残基に置換した変異型酵素とは配列表の配列番号3に記載のDNA配列より生成されるタンパク質のアミノ酸配列のN末端のメチオニンを1番目のアミノ酸として290、335、475、711番目の4箇所のアミノ酸を元のアミノ酸とは異なるアミノ酸に置換した配列の変異型酵素を指す。
本発明における286、290、335、475、711番目のアミノ酸残基を他のアミノ酸残基に置換した変異型酵素とは配列表の配列番号3に記載のDNA配列より生成されるタンパク質のアミノ酸配列のN末端のメチオニンを1番目のアミノ酸として286、290、335、475、711番目の5箇所のアミノ酸を元のアミノ酸とは異なるアミノ酸に置換した配列の変異型酵素を指す。
本発明における148、646番目のアミノ酸残基を他のアミノ酸残基に置換した変異型酵素とは配列表の配列番号3に記載のDNA配列より生成されるタンパク質のアミノ酸配列のN末端のメチオニンを1番目のアミノ酸として148、646番目の2箇所のアミノ酸を元のアミノ酸とは異なるアミノ酸に置換した配列の変異型酵素を指す。
本発明における471、626番目のアミノ酸残基を他のアミノ酸残基に置換した変異型酵素とは配列表の配列番号3に記載のDNA配列より生成されるタンパク質のアミノ酸配列のN末端のメチオニンを1番目のアミノ酸として471、626番目の2箇所のアミノ酸を元のアミノ酸とは異なるアミノ酸に置換した配列の変異型酵素を指す。
本発明における626、646番目のアミノ酸残基を他のアミノ酸残基に置換した変異型酵素とは配列表の配列番号3に記載のDNA配列より生成されるタンパク質のアミノ酸配列のN末端のメチオニンを1番目のアミノ酸として626、646番目の2箇所のアミノ酸を元のアミノ酸とは異なるアミノ酸に置換した配列の変異型酵素を指す。
変更後のアミノ酸配列は元の配列の酵素よりも良い性質があれば特に制限はないが、それぞれ表1〜6に記載の配列により生成されるアミノ酸配列は特に好ましい。
また、上記では、変更変異型リジン脱炭酸酵素が、アミノ酸配列のアミノ酸を変更したものとして示したが、変更変異型リジン脱炭酸酵素は、アミノ酸をコードする塩基配列を変更したものとして示すこともできる。
そのような変異型リジン脱炭酸酵素としては、配列表の配列番号3に記載のアミノ酸配列において、10量体形成ドメインに存在するアミノ酸のうち14番目のアミノ酸であるPheをコードする塩基配列がTTTからGlnをコードする塩基配列であるCAAに変更したもの、22番目のアミノ酸であるLeuをコードする塩基配列がCTTからLeuをコードする塩基配列であるTTGに変更したもの、28番目のアミノ酸であるArgをコードする塩基配列がCGTからIleをコードする塩基配列であるATTに変更したもの、39番目のアミノ酸であるArgをコードする塩基配列がCGTからIleをコードする塩基配列であるATAに変更したもの、39番目のアミノ酸であるArgをコードする塩基配列がCGTからIleをコードする塩基配列であるATCに変更したもの、39番目のアミノ酸であるArgをコードする塩基配列がCGTからValをコードする塩基配列であるGTGに変更したもの、64番目のアミノ酸であるLeuをコードする塩基配列がCTCからLysをコードする塩基配列であるAAAに変更したもの、67番目のアミノ酸であるCysをコードする塩基配列がTGCからThrをコードする塩基配列であるACCに変更したもの、67番目のアミノ酸であるCysをコードする塩基配列がTGCからLeuをコードする塩基配列であるTTAに変更したもの、70番目のアミノ酸であるIleをコードする塩基配列がATTからLeuをコードする塩基配列であるTTGに変更したもの、70番目のアミノ酸であるIleをコードする塩基配列がATTからLeuをコードする塩基配列であるCTGに変更したもの、70番目のアミノ酸であるIleをコードする塩基配列がATTからProをコードする塩基配列であるCCGに変更したもの、75番目のアミノ酸であるGluをコードする塩基配列がGAGからProをコードする塩基配列であるCCCに変更したもの、75番目のアミノ酸であるGluをコードする塩基配列がGAGからHisをコードする塩基配列であるCACに変更したもの、79番目のアミノ酸であるLeuをコードする塩基配列がTTGからIleをコードする塩基配列であるATAに変更したもの、83番目のアミノ酸であるAlaをコードする塩基配列がGCTからLeuをコードする塩基配列であるCTGに変更したもの、83番目のアミノ酸であるAlaをコードする塩基配列がGCTからLeuをコードする塩基配列であるCTAに変更したもの、83番目のアミノ酸であるAlaをコードする塩基配列がGCTからLeuをコードする塩基配列であるCTTに変更したもの、83番目のアミノ酸であるAlaをコードする塩基配列がGCTからAlaをコードする塩基配列であるATAに変更したもの、83番目のアミノ酸であるAlaをコードする塩基配列がGCTからAlaをコードする塩基配列であるGCCに変更したもの、84番目のアミノ酸であるAsnをコードする塩基配列がAATからAspをコードする塩基配列であるGACに変更したもの、84番目のアミノ酸であるAsnをコードする塩基配列がAATからThrをコードする塩基配列であるACAに変更したもの、85番目のアミノ酸であるThrをコードする塩基配列がACGからProをコードする塩基配列であるCCAに変更したもの、88番目のアミノ酸であるThrをコードする塩基配列がACTからLysをコードする塩基配列であるAAAに変更したもの、88番目のアミノ酸であるThrをコードする塩基配列がACTからLysをコードする塩基配列であるAAGに変更したもの、88番目のアミノ酸であるThrをコードする塩基配列がACTからArgをコードする塩基配列であるAGAに変更したもの、88番目のアミノ酸であるThrをコードする塩基配列がACTからAsnをコードする塩基配列であるAATに変更したもの、89番目のアミノ酸であるLeuをコードする塩基配列がCTCからPheをコードする塩基配列であるTTTに変更したもの、94番目のアミノ酸であるAsnをコードする塩基配列がAATからIleをコードする塩基配列であるATCに変更したもの、95番目のアミノ酸であるAspをコードする塩基配列がGACからProをコードする塩基配列であるCCGに変更したもの、98番目のアミノ酸であるLeuをコードする塩基配列がTTAからIleをコードする塩基配列であるATAに変更したもの、99番目のアミノ酸であるGlnをコードする塩基配列がCAGからThrをコードする塩基配列であるACTに変更したもの、104番目のアミノ酸であるGluをコードする塩基配列がGAAからAsnをコードする塩基配列であるAATに変更したもの、104番目のアミノ酸であるGluをコードする塩基配列がGAAからLysをコードする塩基配列であるAAAに変更したもの、112番目のアミノ酸であるAspをコードする塩基配列がGATからGluをコードする塩基配列であるGAGに変更したもの、119番目のアミノ酸であるGlnをコードする塩基配列がCAGからAsnをコードする塩基配列であるAACに変更したもの、119番目のアミノ酸であるGlnをコードする塩基配列がCAGからAsnをコードする塩基配列であるAATに変更したもの、119番目のアミノ酸であるGlnをコードする塩基配列がCAGからIleをコードする塩基配列であるATTに変更したもの、119番目のアミノ酸であるGlnをコードする塩基配列がCAGからThrをコードする塩基配列であるACCに変更したもの、119番目のアミノ酸であるGlnをコードする塩基配列がCAGからSerをコードする塩基配列であるAGTに変更したもの、137番目のアミノ酸であるPheをコードする塩基配列がTTTからValをコードする塩基配列であるGTCに変更したもの、138番目のアミノ酸であるLysをコードする塩基配列がAAAからIleをコードする塩基配列であるATCに変更したもの、139番目のアミノ酸であるTyrをコードする塩基配列がTATからValをコードする塩基配列であるGTAに変更したもの、139番目のアミノ酸であるTyrをコードする塩基配列がTATからValをコードする塩基配列であるGTGに変更したもの、139番目のアミノ酸であるTyrをコードする塩基配列がTATからCysをコードする塩基配列であるTGCに変更したもの、139番目のアミノ酸であるTyrをコードする塩基配列がTATからThrをコードする塩基配列であるACAに変更したもの、139番目のアミノ酸であるTyrをコードする塩基配列がTATからSerをコードする塩基配列であるTCTに変更したもの、139番目のアミノ酸であるTyrをコードする塩基配列がTATからSerをコードする塩基配列であるAGTに変更したもの、139番目のアミノ酸であるTyrをコードする塩基配列がTATからAsnをコードする塩基配列であるAACに変更したもの、143番目のアミノ酸であるGlyをコードする塩基配列がGGTからGluをコードする塩基配列であるGAAに変更したもの、145番目のアミノ酸であるTyrをコードする塩基配列がTATからArgをコードする塩基配列であるCGTに変更したもの、145番目のアミノ酸であるTyrをコードする塩基配列がTATからArgをコードする塩基配列であるAGAに変更したもの、148番目のアミノ酸であるCysをコードする塩基配列がTGTからSerをコードする塩基配列であるAGTに変更したもの、148番目のアミノ酸であるCysをコードする塩基配列がTGTからSerをコードする塩基配列であるTCTに変更したもの、148番目のアミノ酸であるCysをコードする塩基配列がTGTからSerをコードする塩基配列であるTCCに変更したもの、148番目のアミノ酸であるCysをコードする塩基配列がTGTからSerをコードする塩基配列であるTCAに変更したもの、148番目のアミノ酸であるCysをコードする塩基配列がTGTからAlaをコードする塩基配列であるGCGに変更したもの、148番目のアミノ酸であるCysをコードする塩基配列がTGTからAlaをコードする塩基配列であるGCAに変更したもの、182番目のアミノ酸であるIleをコードする塩基配列がATTからMetをコードする塩基配列であるATGに変更したもの、活性領域ドメインに存在するアミノ酸のうち184番目のアミノ酸であるValをコードする塩基配列がGTAからAlaをコードする塩基配列であるGCCに変更したもの、184番目のアミノ酸であるValをコードする塩基配列がGTAからAlaをコードする塩基配列であるGCAに変更したもの、253番目のアミノ酸であるMetをコードする塩基配列がATGからLeuをコードする塩基配列であるCTAに変更したもの、262番目のアミノ酸であるPheをコードする塩基配列がTTCからTyrをコードする塩基配列であるTATに変更したもの、286番目のアミノ酸であるAlaをコードする塩基配列がGCTからAspをコードする塩基配列であるGACに変更したもの、290番目のアミノ酸であるLysをコードする塩基配列がAAAからHisをコードする塩基配列であるCACに変更したもの、295番目のアミノ酸であるAlaをコードする塩基配列がGCA からSerをコードする塩基配列であるTCAに変更したもの、303番目のアミノ酸であるIleをコードする塩基配列がATTからThrをコードする塩基配列であるACAに変更したもの、317番目のアミノ酸であるPheをコードする塩基配列がTTCからGlnをコードする塩基配列であるCAGに変更したもの、335番目のアミノ酸であるProをコードする塩基配列がCCTからAlaをコードする塩基配列であるGCTに変更したもの、352番目のアミノ酸であるGlyをコードする塩基配列がGGCからAlaをコードする塩基配列であるGCAに変更したもの、353番目のアミノ酸であるArgをコードする塩基配列がCGTからHisをコードする塩基配列であるCATに変更したもの、386番目のアミノ酸であるGluをコードする塩基配列がGAAからSerをコードする塩基配列であるTCCに変更したもの、430番目のアミノ酸であるGluをコードする塩基配列がGAAからPheをコードする塩基配列であるTTCに変更したもの、443番目のアミノ酸であるArgをコードする塩基配列がAGAからMetをコードする塩基配列であるATGに変更したもの、446番目のアミノ酸であるSerをコードする塩基配列がTCTからTyrをコードする塩基配列であるTACに変更したもの、446番目のアミノ酸であるSerをコードする塩基配列がTCTからGlnをコードする塩基配列であるCAAに変更したもの、460番目のアミノ酸であるAspをコードする塩基配列がGATからIleをコードする塩基配列であるATTに変更したもの、460番目のアミノ酸であるAspをコードする塩基配列がGATからAsnをコードする塩基配列であるAATに変更したもの、460番目のアミノ酸であるAspをコードする塩基配列がGATからCysをコードする塩基配列であるTGTに変更したもの、460番目のアミノ酸であるAspをコードする塩基配列がGATからGlnをコードする塩基配列であるCAGに変更したもの、460番目のアミノ酸であるAspをコードする塩基配列がGATからProをコードする塩基配列であるCCCに変更したもの、460番目のアミノ酸であるAspをコードする塩基配列がGATからProをコードする塩基配列であるCCTに変更したもの、460番目のアミノ酸であるAspをコードする塩基配列がGATからProをコードする塩基配列であるCCGに変更したもの、460番目のアミノ酸であるAspをコードする塩基配列がGATからSerをコードする塩基配列であるTCAに変更したもの、466番目のアミノ酸であるProをコードする塩基配列がCCGからAsnをコードする塩基配列であるAACに変更したもの、466番目のアミノ酸であるProをコードする塩基配列がCCGからGlyをコードする塩基配列であるGGCに変更したもの、466番目のアミノ酸であるProをコードする塩基配列がCCGからSerをコードする塩基配列であるTCTに変更したもの、471番目のアミノ酸であるSerをコードする塩基配列がAGCからTyrをコードする塩基配列であるTATに変更したもの、475番目のアミノ酸であるGlyをコードする塩基配列がGGCからAsnをコードする塩基配列であるAATに変更したもの、506番目のアミノ酸であるAspをコードする塩基配列がGACからProをコードする塩基配列であるCCAに変更したもの、524番目のアミノ酸であるValをコードする塩基配列がGTTからLeuをコードする塩基配列であるTTAに変更したもの、524番目のアミノ酸であるValをコードする塩基配列がGTTからLeuをコードする塩基配列であるCTGに変更したもの、539番目のアミノ酸であるIleをコードする塩基配列がATCからCysをコードする塩基配列であるTGCに変更したもの、539番目のアミノ酸であるIleをコードする塩基配列がATCからLeuをコードする塩基配列であるCTTに変更したもの、539番目のアミノ酸であるIleをコードする塩基配列がATCからLeuをコードする塩基配列であるCTAに変更したもの、544番目のアミノ酸であるThrをコードする塩基配列がACCからAlaをコードする塩基配列であるGCGに変更したもの、544番目のアミノ酸であるThrをコードする塩基配列がACCからAlaをコードする塩基配列であるGCTに変更したもの、544番目のアミノ酸であるThrをコードする塩基配列がACCからSerをコードする塩基配列であるTCTに変更したもの、54
4番目のアミノ酸であるThrをコードする塩基配列がACCからSerをコードする塩基配列であるTCCに変更したもの、544番目のアミノ酸であるThrをコードする塩基配列がACCからProをコードする塩基配列であるCCTに変更したもの、544番目のアミノ酸であるThrをコードする塩基配列がACCからProをコードする塩基配列であるCCGに変更したもの、546番目のアミノ酸であるAlaをコードする塩基配列がGCAからSerをコードする塩基配列であるAGCに変更したもの、553番目のアミノ酸であるLeuをコードする塩基配列がCTGからValをコードする塩基配列であるGTAに変更したもの、623番目のアミノ酸であるAlaをコードする塩基配列がGCAからCysをコードする塩基配列であるTGTに変更したもの、623番目のアミノ酸であるAlaをコードする塩基配列がGCAからPheをコードする塩基配列であるTTTに変更したもの、623番目のアミノ酸であるAlaをコードする塩基配列がGCAからPheをコードする塩基配列であるTTCに変更したもの、623番目のアミノ酸であるAlaをコードする塩基配列がGCAからGlnをコードする塩基配列であるCAGに変更したもの、626番目のアミノ酸であるLysをコードする塩基配列がAAAからValをコードする塩基配列であるGTGに変更したもの、636番目のアミノ酸であるTyrをコードする塩基配列がTACからCysをコードする塩基配列であるTGTに変更したもの、636番目のアミノ酸であるTyrをコードする塩基配列がTACからProをコードする塩基配列であるCCCに変更したもの、646番目のアミノ酸であるAlaをコードする塩基配列がGCCからLeuをコードする塩基配列であるTTGに変更したもの、646番目のアミノ酸であるAlaをコードする塩基配列がGCCからIleをコードする塩基配列であるATCに変更したもの、648番目のアミノ酸であるMetをコードする塩基配列がATGからSerをコードする塩基配列であるTCTに変更したもの、648番目のアミノ酸であるMetをコードする塩基配列がATGからSerをコードする塩基配列であるTCCに変更したもの、710番目のアミノ酸であるLysをコードする塩基配列がAAAからThrをコードする塩基配列であるACGに変更したもの、711番目のアミノ酸であるGluをコードする塩基配列がGAAからAspをコードする塩基配列であるGACに変更したものに少なくとも1箇所以上置換されている変異型リジン脱炭酸酵素が挙げられる。
より具体的には、配列表の配列番号3に記載のアミノ酸配列において、ウィングドメインに存在するアミノ酸のうち14番目のアミノ酸であるPheをコードする塩基配列がTTTからGlnをコードする塩基配列であるCAAに変更したもの、22番目のアミノ酸であるLeuをコードする塩基配列がCTTからLeuをコードする塩基配列であるTTGに変更したもの、28番目のアミノ酸であるArgをコードする塩基配列がCGTからIleをコードする塩基配列であるATTに変更したもの、39番目のアミノ酸であるArgをコードする塩基配列がCGTからIleをコードする塩基配列であるATAに変更したもの、39番目のアミノ酸であるArgをコードする塩基配列がCGTからIleをコードする塩基配列であるATCに変更したもの、39番目のアミノ酸であるArgをコードする塩基配列がCGTからValをコードする塩基配列であるGTGに変更したもの、64番目のアミノ酸であるLeuをコードする塩基配列がCTCからLysをコードする塩基配列であるAAAに変更したもの、67番目のアミノ酸であるCysをコードする塩基配列がTGCからThrをコードする塩基配列であるACCに変更したもの、67番目のアミノ酸であるCysをコードする塩基配列がTGCからLeuをコードする塩基配列であるTTAに変更したもの、70番目のアミノ酸であるIleをコードする塩基配列がATTからLeuをコードする塩基配列であるTTGに変更したもの、70番目のアミノ酸であるIleをコードする塩基配列がATTからLeuをコードする塩基配列であるCTGに変更したもの、70番目のアミノ酸であるIleをコードする塩基配列がATTからProをコードする塩基配列であるCCGに変更したもの、75番目のアミノ酸であるGluをコードする塩基配列がGAGからProをコードする塩基配列であるCCCに変更したもの、75番目のアミノ酸であるGluをコードする塩基配列がGAGからHisをコードする塩基配列であるCACに変更したもの、79番目のアミノ酸であるLeuをコードする塩基配列がTTGからIleをコードする塩基配列であるATAに変更したもの、83番目のアミノ酸であるAlaをコードする塩基配列がGCTからLeuをコードする塩基配列であるCTGに変更したもの、83番目のアミノ酸であるAlaをコードする塩基配列がGCTからLeuをコードする塩基配列であるCTAに変更したもの、83番目のアミノ酸であるAlaをコードする塩基配列がGCTからLeuをコードする塩基配列であるCTTに変更したもの、83番目のアミノ酸であるAlaをコードする塩基配列がGCTからAlaをコードする塩基配列であるATAに変更したもの、83番目のアミノ酸であるAlaをコードする塩基配列がGCTからAlaをコードする塩基配列であるGCCに変更したもの、84番目のアミノ酸であるAsnをコードする塩基配列がAATからAspをコードする塩基配列であるGACに変更したもの、84番目のアミノ酸であるAsnをコードする塩基配列がAATからThrをコードする塩基配列であるACAに変更したもの、85番目のアミノ酸であるThrをコードする塩基配列がACGからProをコードする塩基配列であるCCAに変更したもの、88番目のアミノ酸であるThrをコードする塩基配列がACTからLysをコードする塩基配列であるAAAに変更したもの、88番目のアミノ酸であるThrをコードする塩基配列がACTからLysをコードする塩基配列であるAAGに変更したもの、88番目のアミノ酸であるThrをコードする塩基配列がACTからArgをコードする塩基配列であるAGAに変更したもの、88番目のアミノ酸であるThrをコードする塩基配列がACTからAsnをコードする塩基配列であるAATに変更したもの、89番目のアミノ酸であるLeuをコードする塩基配列がCTCからPheをコードする塩基配列であるTTTに変更したもの、94番目のアミノ酸であるAsnをコードする塩基配列がAATからIleをコードする塩基配列であるATCに変更したもの、95番目のアミノ酸であるAspをコードする塩基配列がGACからProをコードする塩基配列であるCCGに変更したもの、98番目のアミノ酸であるLeuをコードする塩基配列がTTAからIleをコードする塩基配列であるATAに変更したもの、99番目のアミノ酸であるGlnをコードする塩基配列がCAGからThrをコードする塩基配列であるACTに変更したもの、104番目のアミノ酸であるGluをコードする塩基配列がGAAからAsnをコードする塩基配列であるAATに変更したもの、104番目のアミノ酸であるGluをコードする塩基配列がGAAからLysをコードする塩基配列であるAAAに変更したもの、112番目のアミノ酸であるAspをコードする塩基配列がGATからGluをコードする塩基配列であるGAGに変更したもの、119番目のアミノ酸であるGlnをコードする塩基配列がCAGからAsnをコードする塩基配列であるAACに変更したもの、119番目のアミノ酸であるGlnをコードする塩基配列がCAGからAsnをコードする塩基配列であるAATに変更したもの、119番目のアミノ酸であるGlnをコードする塩基配列がCAGからIleをコードする塩基配列であるATTに変更したもの、119番目のアミノ酸であるGlnをコードする塩基配列がCAGからThrをコードする塩基配列であるACCに変更したもの、119番目のアミノ酸であるGlnをコードする塩基配列がCAGからSerをコードする塩基配列であるAGTに変更したもの、リンカードメインに存在するアミノ酸のうち137番目のアミノ酸であるPheをコードする塩基配列がTTTからValをコードする塩基配列であるGTCに変更したもの、138番目のアミノ酸であるLysをコードする塩基配列がAAAからIleをコードする塩基配列であるATCに変更したもの、139番目のアミノ酸であるTyrをコードする塩基配列がTATからValをコードする塩基配列であるGTAに変更したもの、139番目のアミノ酸であるTyrをコードする塩基配列がTATからValをコードする塩基配列であるGTGに変更したもの、139番目のアミノ酸であるTyrをコードする塩基配列がTATからCysをコードする塩基配列であるTGCに変更したもの、139番目のアミノ酸であるTyrをコードする塩基配列がTATからThrをコードする塩基配列であるACAに変更したもの、139番目のアミノ酸であるTyrをコードする塩基配列がTATからSerをコードする塩基配列であるTCTに変更したもの、139番目のアミノ酸であるTyrをコードする塩基配列がTATからSerをコードする塩基配列であるAGTに変更したもの、139番目のアミノ酸であるTyrをコードする塩基配列がTATからAsnをコードする塩基配列であるAACに変更したもの、143番目のアミノ酸であるGlyをコードする塩基配列がGGTからGluをコードする塩基配列であるGAAに変更したもの、145番目のアミノ酸であるTyrをコードする塩基配列がTATからArgをコードする塩基配列であるCGTに変更したもの、145番目のアミノ酸であるTyrをコードする塩基配列がTATからArgをコードする塩基配列であるAGAに変更したもの、148番目のアミノ酸であるCysをコードする塩基配列がTGTからSerをコードする塩基配列であるAGTに変更したもの、148番目のアミノ酸であるCysをコードする塩基配列がTGTからSerをコードする塩基配列であるTCTに変更したもの、148番目のアミノ酸であるCysをコードする塩基配列がTGTからSerをコードする塩基配列であるTCCに変更したもの、148番目のアミノ酸であるCysをコードする塩基配列がTGTからSerをコードする塩基配列であるTCAに変更したもの、148番目のアミノ酸であるCysをコードする塩基配列がTGTからAlaをコードする塩基配列であるGCGに変更したもの、148番目のアミノ酸であるCysをコードする塩基配列がTGTからAlaをコードする塩基配列であるGCAに変更したもの、182番目のアミノ酸であるIleをコードする塩基配列がATTからMetをコードする塩基配列であるATGに変更したもの、ピリドキサールリン酸酵素共通ドメインに存在するアミノ酸のうち184番目のアミノ酸であるValをコードする塩基配列がGTAからAlaをコードする塩基配列であるGCCに変更したもの、184番目のアミノ酸であるValをコードする塩基配列がGTAからAlaをコードする塩基配列であるGCAに変更したもの、253番目のアミノ酸であるMetをコードする塩基配列がATGからLeuをコードする塩基配列であるCTAに変更したもの、262番目のアミノ酸であるPheをコードする塩基配列がTTCからTyrをコードする塩基配列であるTATに変更したもの、286番目のアミノ酸であるAlaをコードする塩基配列がGCTからAspをコードする塩基配列であるGACに変更したもの、290番目のアミノ酸であるLysをコードする塩基配列がAAAからHisをコードする塩基配列であるCACに変更したもの、295番目のアミノ酸であるAlaをコードする塩基配列がGCA からSerをコードする塩基配列であるTCAに変更したもの、303番目のアミノ酸であるIleをコードする塩基配列がATTからThrをコードする塩基配列であるACAに変更したもの、317番目のアミノ酸であるPheをコードする塩基配列がTTCからGlnをコードする塩基配列であるCAGに変更したもの、335番目のアミノ酸であるProをコードする塩基配列がCCTからAlaをコードする塩基配列であるGCTに変更したもの、352番目のアミノ酸であるGlyをコードする塩基配列がGGCからAlaをコードする塩基配列であるGCAに変更したもの、353番目のアミノ酸であるArgをコードする塩基配列がCGTからHisをコードする塩基配列であるCATに変更したもの、386番目のアミノ酸であるGluをコードする塩基配列がGAAからSerをコードする塩基配列であるTCCに変更したもの、基質出入口に存在するアミノ酸のうち430番目のアミノ酸であるGluをコードする塩基配列がGAAからPheをコードする塩基配列であるTTCに変更したもの、443番目のアミノ酸であるArgをコードする塩基配列がAGAからMetをコードする塩基配列であるATGに変更したもの、446番目のアミノ酸であるSerをコードする塩基配列がTCTからTyrをコードする塩基配列であるTACに変更したもの、446番目のアミノ酸であるSerをコードする塩基配列がTCTからGlnをコードする塩基配列であるCAAに変更したもの、460番目のアミノ酸であるAspをコードする塩基配列がGATからIleをコードする塩基配列であるATTに変更したもの、460番目のアミノ酸であるAspをコードする塩基配列がGATからAsnをコードする塩基配列であるAATに変更したもの、460番目のアミノ酸であるAspをコードする塩基配列がGATからCysをコードする塩基配列であるTGTに変更したもの、460番目のアミノ酸であるAspをコードする塩基配列がGATからGlnをコードする塩基配列であるCAGに変更したもの、460番目のアミノ酸であるAspをコードする塩基配列がGATからProをコードする塩基配列であるCCCに変更したもの、460番目のアミノ酸であるAspをコードする塩基配列がGATからProをコードする塩基配列であるCCTに変更したもの、460番目のアミノ酸であるAspをコードする塩基配列がGATからProをコードする塩基配列であるCCGに変更したもの、460番目のアミノ酸であるAspをコードする塩基配列がGATからSerをコードする塩基配列であるTCAに変更したもの、466番目のアミノ酸であるProをコードする塩基配列がCCGからAsnをコードする塩基配列であるAACに変更したもの、466番目のアミノ酸であるProをコードする塩基配列がCCGからGlyをコードする塩基配列であるGGCに変更したもの、466番目のアミノ酸であるProをコードする塩基配列がCCGからSerをコードする塩基配列であるTCTに変更したもの、471番目のアミノ酸であるSerをコードする塩基配列がAGCからTyrをコードする塩基配列であるTATに変更したもの、475番目のアミノ酸であるGlyをコードする塩基配列がGGCからAsnをコードする塩基配列であるAATに変更したもの、506番目のアミノ酸であるAspをコードする塩基配列がGACからProをコードする塩基配列であるCCAに変更したもの、524番目のアミノ酸であるValをコードする塩基配列がGTTからLeuをコードする塩基配列であるTTAに変更したもの、524番目のアミノ酸であるValをコードする塩基配列がGTTからLeuをコードする塩基配列であるCTGに変更したもの、539番目のアミノ酸であるIleをコードする塩基配列がATCからCysをコードする塩基配列であるTGCに変更したもの、539番目のアミノ酸であるIleをコードする塩基配列がATCからLeuをコードする塩基配列であるCTTに変更したもの、539番目のアミノ酸であるIleをコードする塩基配列がATCからLeuをコードする塩基配列であるCTAに変更したもの、544番目のアミノ酸であるThrをコードする塩基配列がACCからAlaをコードする塩基配列であるGCGに変更したもの、544番目のアミノ酸であるThrをコードする塩基配列がACCからAlaをコードする塩基配列であるGCTに変更したもの、544番目のアミノ酸であるThrをコードする塩基
配列がACCからSerをコードする塩基配列であるTCTに変更したもの、544番目のアミノ酸であるThrをコードする塩基配列がACCからSerをコードする塩基配列であるTCCに変更したもの、544番目のアミノ酸であるThrをコードする塩基配列がACCからProをコードする塩基配列であるCCTに変更したもの、544番目のアミノ酸であるThrをコードする塩基配列がACCからProをコードする塩基配列であるCCGに変更したもの、546番目のアミノ酸であるAlaをコードする塩基配列がGCAからSerをコードする塩基配列であるAGCに変更したもの、553番目のアミノ酸であるLeuをコードする塩基配列がCTGからValをコードする塩基配列であるGTAに変更したもの、623番目のアミノ酸であるAlaをコードする塩基配列がGCAからCysをコードする塩基配列であるTGTに変更したもの、623番目のアミノ酸であるAlaをコードする塩基配列がGCAからPheをコードする塩基配列であるTTTに変更したもの、623番目のアミノ酸であるAlaをコードする塩基配列がGCAからPheをコードする塩基配列であるTTCに変更したもの、623番目のアミノ酸であるAlaをコードする塩基配列がGCAからGlnをコードする塩基配列であるCAGに変更したもの、626番目のアミノ酸であるLysをコードする塩基配列がAAAからValをコードする塩基配列であるGTGに変更したもの、636番目のアミノ酸であるTyrをコードする塩基配列がTACからCysをコードする塩基配列であるTGTに変更したもの、636番目のアミノ酸であるTyrをコードする塩基配列がTACからProをコードする塩基配列であるCCCに変更したもの、646番目のアミノ酸であるAlaをコードする塩基配列がGCCからLeuをコードする塩基配列であるTTGに変更したもの、646番目のアミノ酸であるAlaをコードする塩基配列がGCCからIleをコードする塩基配列であるATCに変更したもの、648番目のアミノ酸であるMetをコードする塩基配列がATGからSerをコードする塩基配列であるTCTに変更したもの、648番目のアミノ酸であるMetをコードする塩基配列がATGからSerをコードする塩基配列であるTCCに変更したもの、710番目のアミノ酸であるLysをコードする塩基配列がAAAからThrをコードする塩基配列であるACGに変更したもの、711番目のアミノ酸であるGluをコードする塩基配列がGAAからAspをコードする塩基配列であるGACに変更したものに少なくとも1箇所以上置換されている変異型リジン脱炭酸酵素が挙げられる。
変更後の塩基配列は元の配列の酵素よりも良い性質があれば特に制限はないが、それぞれ表1〜6に記載の配列により生成される塩基配列は特に好ましい。
(5)変異型リジン脱炭酸酵素の製造方法
本発明にかかる前記変異型リジン脱炭酸酵素の製造方法(以下、単に「製造方法」とも言う。)は、形質転換体を培養し、培養された形質転換体及び該形質転換体の培養物のうち少なくともいずれか一方から、前記変異型リジン脱炭酸酵素を回収するものである。
ここで形質転換体とは、前記変異型リジン脱炭酸酵素のアミノ酸配列をコードする塩基配列で示される核酸を含む発現ベクターで形質転換されたものを示す。
本発明にかかる前記変異型リジン脱炭酸酵素の製造方法は、前記変異型リジン脱炭酸酵素のアミノ酸配列をコードする塩基配列で示される核酸を含む発現ベクターで形質転換された形質転換体を培養することにより前記変異型リジン脱炭酸酵素を製造するものである。当該製造方法により、酵素が失活しやすい厳しい条件下においても、安定した活性を示すとともに、対応する野生型リジン脱炭酸酵素と比較しても反応の初速度が大きく低下することのない野生型もしくは前記変異型リジン脱炭酸酵素を、低コストで製造することができる。
以下に、製造方法に含まれうる各工程を説明するが、本発明にかかる前記変異型リジン脱炭酸酵素の製造方法は、前記変異型リジン脱炭酸酵素のアミノ酸配列をコードする塩基配列で示される核酸を含む発現ベクターで形質転換された形質転換体を培養する工程(宿主細胞培養工程)、及び培養された形質転換体及び該形質転換体の培養物のうち少なくともいずれか一方から、前記変異型リジン脱炭酸酵素を回収する工程(変異型リジン脱炭酸酵素回収工程)を含んでいればよく、必要に応じてさらに他の工程を含んでいてもよい。
(6)形質転換体培養工程
形質転換体培養工程は、野生型および前記変異型リジン脱炭酸酵素のアミノ酸配列をコードする塩基配列で示される核酸を含む発現ベクターで形質転換された形質転換体を培養する工程である。
〔形質転換体〕
本発明にかかる製造方法において、形質転換体とは野生型および前記変異型リジン脱炭酸酵素のアミノ酸配列をコードする塩基配列で示される核酸を含む発現ベクターで形質転換されたものであれば特に限定されない。
前記形質転換体は、例えば、細菌、酵母、放線菌、糸状菌等由来の細胞を宿主細胞とするものが挙げられ、大腸菌、コリネバクテリウム属細菌由来の細胞を宿主細胞とするものが好ましい。
〔核酸〕
前記核酸は、野生型および前記変異型リジン脱炭酸酵素のアミノ酸配列をコードする塩基配列で示される。
前記変異型リジン脱炭酸酵素のアミノ酸配列をコードする塩基配列は、対応する野生型リジン脱炭酸酵素をコードする塩基配列に変異点を導入する方法などにより、合成することができる。
〔発現ベクター〕
前記発現ベクターは、野生型および前記変異型リジン脱炭酸酵素のアミノ酸配列をコードする塩基配列で示される核酸を含むものであれば特に限定されるものではないが、形質転換効率や翻訳効率を向上させるなどの観点より、以下に示すような構成を示すプラスミドベクターやファージベクターであることがより好ましい。
〔発現ベクターの基本構成〕
発現ベクターは、野生型および前記変異型リジン脱炭酸酵素をコードする塩基配列を含み、前記宿主細胞を形質転換しうるものであれば特に限定されない。必要に応じて、該塩基配列の他に、他の領域を構成する塩基配列(以下、単に「他の領域」とも言う。)を含んでいてもよい。
他の領域としては、例えば、前記形質転換体が、野生型および前記変異型リジン脱炭酸酵素を産生するために必要とする制御領域や、自律複製に必要な領域などが挙げられる。
また、前記形質転換体の選択を容易にするという観点より、選択マーカーとなりうる選択遺伝子をコードする塩基配列をさらに含んでいてもよい。
野生型および前記変異型リジン脱炭酸酵素を産生するために必要となる制御領域としては、プロモーター配列(転写を制御するオペレーター配列を含む。)、リボゾーム結合配列(SD配列)、転写終結配列等を挙げることができる。
〔原核生物を宿主細胞とした場合の発現ベクター〕
原核生物を宿主細胞とする場合、発現ベクターは、野生型および前記変異型リジン脱炭酸酵素をコードする塩基配列の他に、野生型および前記変異型リジン脱炭酸酵素の産生効率の観点より、プロモーター配列を含んでいることが好ましい。また、プロモーター配列の他にリボゾーム結合配列や転写終結配列等を含んでいてもよい。
プロモーター配列の例としては、大腸菌由来のトリプトファンオペロンのtrpプロモーター、ラクトースオペロンのlacプロモーター、ラムダファージ由来のPLプロモーター及びPRプロモーターや、枯草菌由来のグルコン酸合成酵素プロモーター(gnt)、アルカリプロテアーゼプロモーター(apr)、中性プロテアーゼプロモーター(npr)、α−アミラーゼプロモーター(amy)等が挙げられる。
また、tacプロモーターのように独自に改変又は設計されたプロモーター配列も利用できる。
リボゾーム結合配列としては、大腸菌由来または枯草菌由来の配列が挙げられるが、大腸菌や枯草菌等の所望の宿主細胞内で機能する配列であれば特に限定されるものではない。
前記リボゾーム結合配列としては、例えば、16SリボゾームRNAの3’末端領域に相補的な配列のうち、4塩基以上連続したコンセンサス配列をDNA合成により作成した配列などが挙げられる。
転写終結配列は必ずしも必要ではないが、ρ因子非依存性のもの、例えばリポプロテインターミネーター、trpオペロンターミネーター等が利用できる。
これら制御領域の発現ベクター上での配列順序は、特に制限されるものではないが、転写効率を考慮すると5’末端側上流からプロモーター配列、リボゾーム結合配列、目的蛋白質をコードする遺伝子、転写終結配列の順に並ぶことが望ましい。
ここでいう発現ベクターの具体例としては、大腸菌中での自律複製可能な領域を有しているpBR322、pUC18、Bluescript II SK(+)、pKK223−3、pSC101や、枯草菌中での自律複製可能な領域を有しているpUB110、pTZ4、pC194、ρ11、φ1、φ105等を発現ベクターとして利用することができる。
また、2種類以上の宿主内での自律複製が可能な発現ベクターの例として、pHV14、TRp7、YEp7及びpBS7等を発現ベクターとして利用することができる。
〔形質転換体の作製方法〕
本発明にかかる形質転換体は、公知の方法により作製することができる。例えば、本発明にかかる野生型および変異型リジン脱炭酸酵素をコードする塩基配列と、必要に応じて前記他の領域とを含む前記発現ベクターを構築し、該発現ベクターを所望の宿主細胞に形質転換する方法等が挙げられる。具体的には、Sambrook、J.、et.al.、”Molecular Cloning A Laboratory Manual、 3rd Edition”、Cold Spring Harbor Laboratory Press、(2001)等に記載されている分子生物学、生物工学及び遺伝子工学の分野において公知の一般的な方法を利用することができる。
また、相同組換えを利用した染色体への導入方法を用いることもできる。
本発明にかかる形質転換体は、前記宿主細胞に前記発現ベクターを組み込むだけではなく、必要に応じて前記宿主細胞での使用頻度の低いコドンを、使用頻度の高いコドンにするように、サイレント変異を導入すること等を併せて行い作製することもできる。
これにより、発現ベクターに組み込んだ野生型および前記変異型リジン脱炭酸酵素由来のタンパク質の生産量を増加させることができる可能性がある。
サイレント変異の導入方法は、宿主細胞でのコドン使用頻度に発現ベクターのコドンを合わせるものであれば、その手法、変異点、変更する塩基の種類等は特に制限されない。
〔形質転換体の培養方法〕
本発明の形質転換体を培養する培地は、宿主が資化し得る炭素源、窒素源、無機塩類などを含有し、形質転換体の培養を効率的に行うことができる培地であれば、天然培地、合成培地のいずれを用いてもよい。
炭素源としては、例えば、グルコース、ラクトース、ガラクトース、フラクトース、アラビノース、マルトース、キシロース、トレハロース、リボースや澱粉の加水分解物などの糖類、例えば、グリセロール、マンニトールやソルビトールなどのアルコール類、例えば、グルコン酸、フマル酸、クエン酸やコハク酸などの有機酸類などが挙げられる。
このような炭素源は、単独で使用してもよく、あるいは、併用することもできる。
窒素源としては、例えば、硫酸アンモニウム、塩化アンモニウム、リン酸アンモニウムなどの無機アンモニウム塩、例えば、大豆加水分解物などの有機窒素、例えば、アンモニアガス、アンモニア水などが挙げられる。
このような窒素源は、単独で使用してもよく、あるいは、併用することもできる。
無機イオンとしては、例えば、ナトリウムイオン、マグネシウムイオン、カリウムイオン、カルシウムイオン、塩素イオン、マンガンイオン、鉄イオン、リン酸イオン、硫酸イオンなどが挙げられる。
このような無機イオンは、単独で使用してもよく、あるいは、併用することもできる。
また、培地には、必要に応じて、その他の有機成分(有機微量栄養素)を添加することもでき、そのような有機成分としては、例えば、各種アミノ酸、例えば、ビタミンB1などのビタミン類、例えば、RNAなどの核酸類などの要求物質、さらには、例えば、酵母エキスなどが挙げられる。
このような培地としては、例えば、LB培地、YT培地、M9培地が挙げられる。
このような培地のなかでは、好ましくは、LB培地が挙げられる。
形質転換体の培養条件は、前記形質転換体、培地、培養方法の種類により適宜選択すればよく、形質転換体が生育し、本発明にかかる野生型リジン脱炭酸酵素および変異型リジン脱炭酸酵素を産生できる条件であれば特に制限はないが、例えば、大腸菌を培養する場合には、好気条件下において、培養温度が、例えば、20〜45℃、好ましくは、25〜40℃であり、培養pHが、例えば、5.0〜8.5、好ましくは、6.5〜8.0であり、培養期間は1日間〜7日間の範囲で目的の変異型リジン脱炭酸酵素活性を有する蛋白質の含量が最大になるまで培養すればよい。
例えば、12〜72時間、好ましくは、14〜48時間である。なお、pHの調整には、例えば、無機または有機の酸性またはアルカリ性物質や、アンモニアガスなどを用いることができる。
培養は前記培地を含有する液体培地中で、前記形質転換体を振とう培養、通気攪拌培養、連続培養、流加培養などの通常の培養方法を用いて行なうことが出来る。
リジン脱炭酸酵素回収工程は、培養された形質転換体及び該形質転換体の培養物のうち少なくともいずれか一方から、野生型リジン脱炭酸酵素および前記変異型リジン脱炭酸酵素を回収する工程である。
形質転換した形質転換体を培養した後、本発明にかかる野生型および前記変異型リジン脱炭酸酵素を回収する方法は、この分野で慣用されている方法を使用することができる。
本発明にかかる野生型リジン脱炭酸酵素および前記変異型リジン脱炭酸酵素が形質転換した形質転換体外に分泌される場合は、該形質転換体の培養物を遠心分離、ろ過等を行うことで粗酵素液を容易に得ることができる。また、本発明にかかる野生型および前記変異型リジン脱炭酸酵素が形質転換した形質転換体内に蓄積される場合は、培養した該形質転換体を遠心分離等の手段により回収し、回収した該形質転換体を水、もしくは緩衝液に懸濁し、リゾチーム処理、凍結融解、超音波破砕などの公知の方法に従い該形質転換体の細胞膜を破壊することにより、粗酵素液を回収すればよい。
前記粗酵素液を、限外ろ過法などにより濃縮し、防腐剤などを加えて濃縮酵素として利用することが可能である。また、濃縮した後、スプレードライ法などによって野生型および前記変異型リジン脱炭酸酵素の粉末酵素を得ることもできる。
回収されたリジン脱炭酸酵素活性を有する粗酵素液について、分離精製を必要とする場合は、例えば、硫酸アンモニウムなどによる塩析、アルコールなどによる有機溶媒沈殿法、透析及び限外ろ過などによる膜分離法、あるいはイオン交換体クロマトグラフィー、逆相高速クロマトグラフィー、アフィニティークロマトグラフィー、ゲルろ過クロマトグラフィーなどの公知のクロマト分離法を適宜組み合わせて行うことができる。
以上のようにして得られた変異型リジン脱炭酸酵素は本発明の範囲に含まれる。
(7)1、5−ペンタメチレンジアミンの製造方法
上述のように製造された野生型および変異型リジン脱炭酸酵素は酵素触媒として物質生産に利用することができる。例えばリジンに上述の野生型および変異型リジン脱炭酸酵素を接触させることにより、1、5−ペンタメチレンジアミンを製造することができる。すなわち、リジンと、野生型および変異型リジン脱炭酸酵素、野生型および変異型リジン脱炭酸酵素を発現する形質転換体、形質転換体の処理物、形質転換体およびその処理物の固定化物からなる群から選択された少なくとも1種と、反応溶媒とを混合し、反応溶媒中でリジン脱炭酸酵素と、リジンを接触させて、リジンの脱炭酸酵素反応により、1、5−ペンタメチレンジアミンを製造する。
本発明で原料として用いられるリジンは、その塩であってもよい。リジンの塩としては、例えば、塩酸塩、酢酸塩、炭酸塩、炭酸水素塩、硫酸塩、もしくは硝酸塩などが挙げられる。
このようなリジンの塩の中で、好ましくは、リジンの塩酸塩が挙げられる。
反応溶媒中におけるリジンの濃度は、特に制限されないが、例えば、1〜70質量%、好ましくは、2〜50質量%である。
本発明における反応の減速または停止を防ぐ物質の存在下であれば、野生型および変異型リジン脱炭酸酵素の必要量は、反応溶媒中におけるリジン濃度が10質量%以下であればリジン塩酸塩1g当たり5U以上165U以下、さらに好ましくは20U以上82.5U以下である。また、精製酵素に換算すると野生型および変異型リジン脱炭酸酵素の必要量は、反応溶媒中におけるリジン濃度が10質量%以下であればリジン塩酸塩1g当たり5μg以上165μg以下、さらに好ましくは20μg以上82.5μg以下である。
また、触媒休止菌体または触媒死菌体量に換算すると反応溶媒中におけるリジン濃度が10質量%以下であればリジン塩酸塩100g当たり5mg以上161mg以下、さらに好ましくは5.4mg以上80mg以下が好ましい。
また、リジン濃度が10質量%を超過し45質量%未満であれば、野生型および変異型リジン脱炭酸酵素の必要量は、リジン塩酸塩1gあたり5U以上165U以下、より好ましくは20U以上110U以下であり、また、精製酵素に換算すると、野生型および変異型リジン脱炭酸酵素の必要量は、リジン塩酸塩1g当たり5μg以上165μg以下、さらに好ましくは20μg以上110μg以下である。
また、リジン濃度45質量%以上であればリジン塩酸塩1gあたり5U以上165U以下であり、より好ましくは100U以上165U以下であり、また、精製酵素に換算すると、野生型および変異型リジン脱炭酸酵素の必要量は、リジン塩酸塩1g当たり5μg以上165μg以下、さらに好ましくは100μg以上165μg以下である。
反応溶媒としては、例えば、水、水性媒体、有機溶媒、水もしくは水性媒体と有機溶媒との混合液が挙げられる。
水性媒体としては、例えば、リン酸緩衝液などの緩衝液が挙げられる。
有機溶媒としては、反応を阻害しないものであればいずれでもよい。
リジンの脱炭酸酵素反応の条件としては、温度が、例えば、28〜55℃、好ましくは、35〜45℃、時間が、例えば、0.1〜72時間、好ましくは、1〜72時間、より好ましくは、12〜36時間である。また、反応pHが、例えば、5.0〜9.0、好ましくは、5.5〜8.5である。
反応は振盪、攪拌または静置条件下で行なうことができる。
これにより、リジンが脱炭酸され、1、5−ペンタメチレンジアミンへと変換し、1、5−ペンタメチレンジアミンが製造される。
本発明で製造される1、5−ペンタメチレンジアミンは、その塩であってもよい。
1、5−ペンタメチレンジアミンの塩としては、例えば、1、5−ペンタメチレンジアミンの塩酸塩、酢酸塩、炭酸塩、炭酸水素塩、硫酸塩もしくは硝酸塩などが挙げられる。
このような1、5−ペンタメチレンジアミンの塩のなかでは、好ましくは、塩酸塩が挙げられる。
なお、この反応では、得られる1、5−ペンタメチレンジアミンがアルカリ性であるため、リジンが1、5−ペンタメチレンジアミンに変換されるに伴って反応液のpHが増加する場合がある。このような場合には、必要により、酸性物質(例えば、有機酸、例えば、塩酸などの無機酸など)などを添加し、pHを調整することができる。
また、この反応では、必要により、例えば、ビタミンBおよび/またはその誘導体を反応液中に添加することもできる。
ビタミンBおよび/またはその誘導体としては、例えば、ピリドキシン、ピリドキサミン、ピリドキサール、ピリドキサールリン酸などが挙げられる。
このようなビタミンBおよび/またはその誘導体は、単独で使用してもよく、あるいは、併用することもできる。
ビタミンBおよび/またはその誘導体のなかでは、好ましくは、ピリドキサールリン酸が挙げられる。
ビタミンBおよび/またはその誘導体を添加することにより、1、5−ペンタメチレンジアミンの生産速度および反応収率を向上することができる。
また、この方法では、得られたペンタメチレンジアミン水溶液から、必要により、水の一部を留去させることができる。
より具体的には、例えば、連続多段蒸留塔、回分多段蒸留塔などを備えた蒸留装置などにより、0.1kPa〜常圧下、ペンタメチレンジアミン水溶液を加熱(熱処理)し、蒸留することにより、水の一部が留去されたペンタメチレンジアミン水溶液を得ることができる。
加熱温度としては、例えば、25℃以上、90℃未満、好ましくは、25℃以上、85℃以下、より好ましくは、25℃以上、80℃未満、さらに好ましくは、30℃以上、70℃以下である。
ペンタメチレンジアミン水溶液を、90℃以上で加熱(熱処理)すると、ペンタメチレンジアミン(またはその塩)の抽出率が低下する場合がある。
(8)1、5−ペンタメチレンジイソシアネートの製造方法
また、ペンタメチレンジアミン水溶液を、90℃以上で加熱(熱処理)すると、その水溶液から得られたペンタメチレンジアミンを用いてペンタメチレンジイソシアネートを製造し、さらに、そのペンタメチレンジイソシアネートからイソシアネート変性体(後述)を製造する場合に、反応速度が低い場合や、得られるイソシアネート変性体(後述)の貯蔵安定性が低い場合がある。
そのため、好ましくは、ペンタメチレンジアミン水溶液を、90℃以上で加熱(熱処理)することなく、より好ましくは、80℃以上で加熱することなく、さらに好ましくは、ペンタメチレンジアミン水溶液を加熱(熱処理)することなく、後述するように、その水溶液からそのままペンタメチレンジアミン(またはその塩)を抽出する。
そして、この方法では、好ましくは、上記により得られたペンタメチレンジアミン水溶液から、ペンタメチレンジアミン(またはその塩)を抽出する。抽出では、例えば、液−液抽出法が採用される。
液−液抽出法では、例えば、(1)回分的、半連続的または連続的にペンタメチレンジアミン水溶液に、抽出溶媒(後述)を接触させ、混合および撹拌することにより、ペンタメチレンジアミン(またはその塩)を抽出溶媒(後述)へと抽出(分配)し、その抽出溶媒(後述)からペンタメチレンジアミン(またはその塩)を分離する方法、(2)多孔板を備えた塔(スプレー塔、段型抽出塔)や、充填物、ノズル、オリフィス板、バッフル、インジェクターおよび/またはスタティックミキサーを備えた塔(向流微分型抽出塔、非撹拌式段型抽出塔:改訂五版 化学工学便覧、p566から569、化学工学会編、丸善(1988))に、ペンタメチレンジアミン水溶液と抽出溶媒(後述)とを、向流で連続的に供給し、ペンタメチレンジアミン(またはその塩)を、抽出溶媒(後述)へと抽出(分配)した後、抽出溶媒(後述)を連続的に流出させ、その抽出溶媒(後述)から、ペンタメチレンジアミン(またはその塩)を分離する方法、(3)邪魔板および撹拌羽根を備えた塔(撹拌式段型抽出塔:改訂五版 化学工学便覧 p569から574、化学工学会編、丸善(1988))に、ペンタメチレンジアミン水溶液と抽出溶媒(後述)とを、向流で連続的に供給し、ペンタメチレンジアミン(またはその塩)を、抽出溶媒(後述)へと抽出(分配)した後、抽出溶媒(後述)を連続的に流出させ、その抽出溶媒(後述)から、ペンタメチレンジアミン(またはその塩)を分離する方法、(4)ミキサーセトラー抽出器、または、遠心式抽出機(改訂五版 化学工学便覧 p563から566、p574、化学工学会編、丸善(1988))を用いて、ペンタメチレンジアミン水溶液に、抽出溶媒(後述)を接触させ、ペンタメチレンジアミン(またはその塩)を抽出溶媒(後述)へと抽出(分配)し、その抽出溶媒(後述)からペンタメチレンジアミン(またはその塩)を分離する方法などが採用される。
これら液−液抽出法としては、単独使用または2種類以上併用することができる。
液−液抽出法として、生産効率の観点から、好ましくは、ペンタメチレンジアミン(またはその塩)を、抽出溶媒(後述)へと連続的に抽出(分配)する方法、より具体的には、例えば、上記(1)〜(3)の方法が挙げられる。
液−液抽出におけるペンタメチレンジアミン水溶液と抽出溶媒(後述)との配合割合は、ペンタメチレンジアミン水溶液(抽出が連続的である場合は、単位時間あたりの供給量。以下同様。)100質量部に対して、抽出溶媒(後述)が、例えば、30〜300質量部であり、経済性および生産性の観点から、好ましくは、50〜200質量部、より好ましくは50〜150質量、とりわけ好ましくは、80〜120質量部である。
また、液−液抽出では、ペンタメチレンジアミン水溶液と抽出溶媒(後述)とを、例えば、常圧(大気圧)下、例えば、5〜60℃、好ましくは、10〜60℃、より好ましくは、15〜50℃、さらに好ましくは、15〜40℃において、例えば、撹拌羽根などにより、例えば、1〜120分間、好ましくは、5〜90分間、好ましくは、5〜60分間混合する。
撹拌羽根としては、特に限定されないが、例えば、プロペラ、平羽根、角度付平羽根、ピッチ付平羽根、平羽根ディスクタービン、傾斜付羽根ディスクタービン、湾曲羽根、ファウドラー型、ブルーマージン型、ディゾルバー、アンカーなどが挙げられる。
また、混合における回転数としては、例えば、5〜3000rpm、好ましくは、10〜2000rpm、より好ましくは、20〜1000rpmである。
これにより、ペンタメチレンジアミン(またはその塩)を、抽出溶媒(後述)中へと抽出する。
次いで、この方法では、ペンタメチレンジアミン(またはその塩)と抽出溶媒(後述)との混合物を、例えば、5〜300分間、好ましくは、10〜240分間、より好ましくは、20〜180分間静置し、その後、ペンタメチレンジアミン(またはその塩)が抽出された抽出溶媒(ペンタメチレンジアミン抽出液、すなわち、抽出溶媒(後述)とペンタメチレンジアミン(またはその塩)との混合物)を、公知の方法により取り出す。
なお、1回の液−液抽出によりペンタメチレンジアミン(またはその塩)を十分に抽出できない場合には、複数回(例えば、2〜5回)繰り返し液−液抽出することもできる。
これにより、ペンタメチレンジアミン水溶液中のペンタメチレンジアミン(またはその塩)を、抽出溶媒(後述)に抽出することができる。
このようにして得られる抽出溶媒(抽出溶媒(後述)とペンタメチレンジアミン(またはその塩)との混合物)において、ペンタメチレンジアミン(またはその塩)の濃度は、例えば、0.2〜40質量%、好ましくは、0.3〜35質量%、より好ましくは、0.4〜30質量%、とりわけ好ましくは、0.8〜25質量%である。
また、抽出後におけるペンタメチレンジアミン(またはその塩)の収率(抽出率)は、リシン(またはその塩)を基準として、例えば、65〜100モル%、好ましくは、70〜100モル%、より好ましくは、80〜100モル%、とりわけ好ましくは、90〜100モル%である。
なお、この方法では、必要により、得られた抽出溶媒(後述)とペンタメチレンジアミン(またはその塩)との混合物から、例えば、ペンタメチレンジアミン(またはその塩)を単離することもできる。ペンタメチレンジアミン(またはその塩)の単離では、特に制限されないが、例えば、連続多段蒸留塔、回分多段蒸留塔などを備えた蒸留装置などにより、例えば、50〜182℃、0.1kPa〜常圧下、抽出溶媒(後述)とペンタメチレンジアミン(またはその塩)との混合物を蒸留し、抽出溶媒(後述)を除去する。
そして、このような抽出において、抽出溶媒としては、例えば、非ハロゲン系有機溶剤が挙げられる。
非ハロゲン系有機溶剤は、ハロゲン原子(フッ素、塩素、臭素、ヨウ素など)を分子中に含有しない有機溶剤であって、例えば、非ハロゲン脂肪族系有機溶剤、非ハロゲン脂環族系有機溶剤、非ハロゲン芳香族系有機溶剤などが挙げられる。
非ハロゲン脂肪族系有機溶剤としては、例えば、直鎖状の非ハロゲン脂肪族系有機溶剤、分岐状の非ハロゲン脂肪族系有機溶剤などが挙げられる。
直鎖状の非ハロゲン脂肪族系有機溶剤としては、例えば、直鎖状の非ハロゲン脂肪族炭化水素類、直鎖状の非ハロゲン脂肪族エーテル類、直鎖状の非ハロゲン脂肪族アルコール類などが挙げられる。
直鎖状の非ハロゲン脂肪族炭化水素類としては、例えば、n−ヘキサン、n−ヘプタン、n−ノナン、n−デカン、n−ドデカンなどが挙げられる。
直鎖状の非ハロゲン脂肪族エーテル類としては、例えば、ジエチルエーテル、ジブチルエーテル、ジヘキシルエーテルなどが挙げられる。
直鎖状の非ハロゲン脂肪族アルコール類としては、例えば、直鎖状の炭素数1〜3の1価アルコール(例えば、メタノール、エタノール、n−プロパノール、イソプロパノールなど)、直鎖状の炭素数4〜7の1価アルコール(例えば、n−ブタノール、n−ペンタノール、n−ヘキサノール、n−ヘプタノールなど)、直鎖状の炭素数8以上の1価アルコール(例えば、n−オクタノール、n−ノナノール、n−デカノール、n−ウンデカノール、n−ドデカノールなど)などが挙げられる。
分岐状の非ハロゲン脂肪族系有機溶剤としては、例えば、分岐状の非ハロゲン脂肪族炭化水素類、分岐状の非ハロゲン脂肪族エーテル類、分岐状の非ハロゲン脂肪族1価アルコール類、分岐状の非ハロゲン脂肪族多価アルコール類などが挙げられる。
分岐状の非ハロゲン脂肪族炭化水素類としては、例えば、2−メチルペンタン、2、2−ジメチルブタン、2、3−ジメチルブタン、2−メチルヘキサン、3−メチルヘキサン、2、3−ジメチルペンタン、2、4−ジメチルペンタン、n−オクタン、2−メチルヘプタン、3−メチルヘプタン、4−メチルヘプタン、3−エチルへキサン、2、2−ジメチルへキサン、2、3−ジメチルへキサン、2、4−ジメチルへキサン、2、5−ジメチルへキサン、3、3−ジメチルへキサン、3、4−ジメチルへキサン、2−メチル−3−エチルペンタン、3−メチル−3−エチルペンタン、2、3、3−トリメチルペンタン、2、3、4−トリメチルペンタン、2、2、3、3−テトラメチルブタン、2、2、5−トリメチルヘキサンなどが挙げられる。
分岐状の非ハロゲン脂肪族エーテル類としては、例えば、ジイソプロピルエーテル、ジイソブチルエーテルなどが挙げられる。
分岐状の非ハロゲン脂肪族1価アルコール類としては、例えば、分岐状の炭素数4〜7の1価アルコール(例えば、2−ブタノール、イソブタノール、tert−ブタノール、2−ペンタノール、3−ペンタノール、イソペンタノール、2−メチル−1−ブタノール、2−メチル−3−ブタノール、2、2−ジメチル−1−プロパノール、tert−ペンタノール、2−ヘキサノール、3−ヘキサノール、イソヘキサノール、2−メチル−2−ペンタノール、2−メチル−1−ペンタノール、3−メチル−1−ペンタノール、2−エチル−1−ブタノール、3、3−ジメチル−1−ブタノール、2−ヘプタノール、3−ヘプタノール、4−ヘプタノール、5−メチル−1−ヘキサノール、4−メチル−1−ヘキサノール、3−メチル−1−ヘキサノール、2−エチル−2−メチル−1−ブタノールなど)、分岐状の炭素数8以上の1価アルコール(例えば、イソオクタノール、イソノナノール、イソデカノール、5−エチル−2−ノナノール、トリメチルノニルアルコール、2−ヘキシルデカノール、3、9−ジエチル−6−トリデカノール、2−イソヘプチルイソウンデカノール、2−オクチルドデカノールなど)が挙げられる。
分岐状の非ハロゲン脂肪族多価アルコール類としては、例えば、2−エチル−1、3−ヘキサンジオールなどが挙げられる。
これら非ハロゲン脂肪族系有機溶剤は、単独使用または2種類以上併用することができる。
非ハロゲン脂肪族系有機溶剤として、好ましくは、直鎖状の非ハロゲン脂肪族系有機溶剤、より好ましくは、直鎖状の非ハロゲン脂肪族アルコール類が挙げられる。
直鎖状の非ハロゲン脂肪族アルコール類を用いると、ペンタメチレンジアミンを、高収率で抽出することができる。
また、非ハロゲン脂肪族系有機溶剤として、好ましくは、炭素数4〜7の1価アルコール(直鎖状の炭素数4〜7の1価アルコール、分岐状の炭素数4〜7の1価アルコール)が挙げられる。
炭素数4〜7の1価アルコールを用いると、ペンタメチレンジアミンまたはその塩を効率良く抽出することができ、さらには、ペンタメチレンジアミンまたはその塩の不純物の含有割合を、低減することができる。
非ハロゲン脂環族系有機溶剤としては、例えば、非ハロゲン脂環族炭化水素類(例えば、シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、p−メンタン、ビシクロヘキシルなど)が挙げられる。
これら非ハロゲン脂環族系有機溶剤は、単独使用または2種類以上併用することができる。
非ハロゲン芳香族系有機溶剤としては、例えば、非ハロゲン芳香族炭化水素類(例えば、ベンゼン、トルエン、キシレン、エチルベンゼン、イソプロピルベンゼン、1、3、5−トリメチルベンゼン、1、2、3、4−テトラヒドロナフタレン、n−ブチルベンゼン、sec−ブチルベンゼン、tert−ブチルベンゼン、エチルベンゼンなど)、フェノール類(例えば、フェノール、クレゾールなど)などが挙げられる。
これら非ハロゲン芳香族系有機溶剤は、単独使用または2種類以上併用することができる。
また、非ハロゲン系有機溶剤としては、例えば、脂肪族炭化水素類と芳香族炭化水素類との混合物なども挙げられ、そのような混合物としては、例えば、石油エーテル、石油ベンジンなどが挙げられる。
これら非ハロゲン系有機溶剤は、単独使用または2種類以上併用することができる。
なお、抽出溶媒としては、本発明の優れた効果を阻害しない範囲において、例えば、ハロゲン系有機溶剤(ハロゲン原子を分子中に含有する有機溶剤)を用いることもできる。
ハロゲン系有機溶剤としては、例えば、ハロゲン系脂肪族炭化水素類(例えば、クロロホルム、ジクロロメタン、四塩化炭素、テトラクロロエチレンなど)、ハロゲン系芳香族炭化水素類(例えば、クロロベンゼン、ジクロロベンゼン、クロロトルエンなど)などが挙げられる。
これらハロゲン系有機溶剤は、単独使用または2種類以上併用することができる。
一方、抽出溶媒として、ハロゲン系有機溶剤を用いると、得られるペンタメチレンジアミンまたはその塩を用いてペンタメチレンジイソシアネート(後述)を製造し、さらに、そのペンタメチレンジイソシアネート(後述)を反応させて、イソシアネート変性体(後述)や、ポリウレタン樹脂(後述)を製造する場合において、イソシアネート変性体(後述)の生産性や物性(例えば、耐黄変性など)に劣る場合がある。
また、そのようなペンタメチレンジイソシアネート(後述)やイソシアネート変性体(後述)と、活性水素化合物(後述)とを反応させ、ポリウレタン樹脂を製造する場合にも、やはり、得られるポリウレタン樹脂の物性(例えば、機械強度、耐薬品性など)に劣る場合がある。
そのため、抽出溶媒として、好ましくは、非ハロゲン系有機溶剤、より好ましくは、非ハロゲン脂肪族系有機溶剤が挙げられる。
ペンタメチレンジアミンまたはその塩を、非ハロゲン脂肪族系有機溶剤により抽出する場合には、得られるペンタメチレンジアミンまたはその塩を用いて、ペンタメチレンジイソシアネートを製造する場合に、優れた性質を備えるイソシアネート変性体や、優れた性質を備えるポリウレタン樹脂を効率良く製造することができるペンタメチレンジイソシアネートを、製造することができる。
また、本発明において、抽出溶媒の沸点は、例えば、60〜250℃、好ましくは、80〜200℃、より好ましくは、90〜150℃である。
抽出溶媒の沸点が、上記下限未満であると、ペンタメチレンジアミン水溶液から抽出により、ペンタメチレンジアミンまたはその塩を得る際に、抽出溶媒との分離が困難となる場合がある。
一方、抽出溶媒の沸点が、上記上限を超過すると、抽出溶媒とペンタメチレンジアミンまたはその塩との混合物からペンタメチレンジアミンまたはその塩を得る際に、分離工程での消費エネルギーが増大する場合がある。
また、ペンタメチレンジアミン水溶液からペンタメチレンジアミンまたはその塩を得る方法としては、上記の抽出に限定されず、例えば、蒸留など、公知の単離精製方法を採用することもできる。
このようにして得られたペンタメチレンジアミンからはアミド、イミド、エポキシなどを誘導することができる。
また、本発明は、このようにして得られた1、5−ペンタメチレンジアミン(またはその塩)から製造される1、5−ペンタメチレンジイソシアネート(以下、単にペンタメチレンジイソシアネートと称する場合がある。)を含んでいる。
1、5−ペンタメチレンジイソシアネートを合成する方法としては、例えば、1、5−ペンタメチレンジアミン(またはその塩)をホスゲン化する方法(以下、ホスゲン化法と称する場合がある。)や、1、5−ペンタメチレンジアミン((またはその塩))をカルバメート化し、その後、熱分解する方法(以下、カルバメート化法と称する場合がある。)などが挙げられる。
ホスゲン化法として、より具体的には、例えば、ペンタメチレンジアミンを直接ホスゲンと反応させる方法(以下、冷熱二段ホスゲン化法と称する場合がある。)や、ペンタメチレンジアミンの塩酸塩を不活性溶媒(後述)中に懸濁させてホスゲンと反応させる方法(以下、アミン塩酸塩のホスゲン化法と称する場合がある。)などが挙げられる。
冷熱二段ホスゲン化法では、例えば、まず、撹拌可能とされ、かつ、ホスゲン導入管を備えた反応器に、不活性溶媒を装入し、反応系内の圧力を、例えば、常圧〜1.0MPa、好ましくは、常圧〜0.5MPaとし、また、温度を、例えば、0〜80℃、好ましくは、0〜60℃とする。
不活性溶媒としては、例えば、ベンゼン、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素類、例えば、酢酸エチル、酢酸ブチル、酢酸アミルなどの脂肪酸エステル類、例えば、サリチル酸メチル、フタル酸ジメチル、フタル酸ジブチル、安息香酸メチルなどの芳香族カルボン酸エステル類、例えば、モノジクロロベンゼン、オルトジクロロベンゼン、トリクロロベンゼンなどの塩素化芳香族炭化水素類、例えば、クロロホルム、四塩化炭素などの塩素化炭化水素類などが挙げられる。
これら不活性溶媒は、単独使用または2種類以上併用することができる。
不活性溶媒の配合量(総量)は、原料であるペンタメチレンジアミン100質量部に対して、例えば、400〜3000質量部、好ましくは、500〜2000質量部である。
次いで、この方法では、ホスゲンを、ペンタメチレンジアミンのアミノ基1つに対して、例えば、1〜10倍モル、好ましくは、1〜6倍モル導入し、上記の不活性溶媒に溶解したペンタメチレンジアミンを添加する。また、この間、反応液を、例えば、0〜80℃、好ましくは、0〜60℃に維持するとともに、発生する塩化水素を、還流冷却器を通じて反応系外に放出する(冷ホスゲン化反応)。これにより、反応器の内容物をスラリー状とする。
そして、この冷ホスゲン化反応では、ペンタメチレンジカルバモイルクロリドおよびアミン塩酸塩が生成される。
次いで、この方法では、反応系内の圧力を、例えば、常圧〜1.0MPa、好ましくは、0.05〜0.5MPaとし、例えば、30分〜5時間で、例えば、80〜180℃の温度範囲に昇温する。昇温後、例えば、30分〜8時間反応を継続して、スラリー液を完全に溶解させる(熱ホスゲン化反応)。
なお、熱ホスゲン化反応において、昇温時および高温反応時には、溶解ホスゲンが気化して還流冷却器を通じて反応系外に逃げるため、還流冷却器からの還流量が確認できるまでホスゲンを適宜導入する。
なお、熱ホスゲン化反応終了後、反応系内を、例えば、80〜180℃、好ましくは、90〜160℃において、窒素ガスなどの不活性ガスを導入し、溶解している過剰のホスゲンおよび塩化水素をパージする。
この熱ホスゲン化反応では、冷ホスゲン化反応で生成したペンタメチレンジカルバモイルクロリドが熱分解され、ペンタメチレンジイソシアネートが生成され、さらに、ペンタメチレンジアミンのアミン塩酸塩がホスゲン化され、ペンタメチレンジイソシアネートが生成される。
一方、アミン塩酸塩のホスゲン化法では、ペンタメチレンジアミンの塩酸塩を十分に乾燥し、微粉砕した後、上記の冷熱二段ホスゲン化法と同様の反応器内で、ペンタメチレンジアミンの塩酸塩を、上記の不活性溶媒中で撹拌し、分散させて、スラリーとする。
次いで、この方法では、反応温度を、例えば、80〜180℃、好ましくは、90〜160℃、反応圧力を、例えば、常圧〜1.0MPa、好ましくは、0.05〜0.5MPaに維持し、ホスゲンを1〜10時間かけて、ホスゲン総量が化学量論の1〜10倍になるように導入する。
これにより、ペンタメチレンジイソシアネートを合成することができる。
なお、反応の進行は、発生する塩化水素ガスの量と、上記の不活性溶媒に不溶のスラリーが消失し、反応液が澄明均一になることより推測できる。また、発生する塩化水素は、例えば、還流冷却器を通じて反応系外に放出する。また、反応の終了時には、上記の方法で溶解している過剰のホスゲンおよび塩化水素をパージする。その後、冷却し、減圧下において、不活性溶媒を留去する。
ペンタメチレンジイソシアネートは、加水分解性塩素の濃度(HC)が上昇しやすい傾向にあるため、ホスゲン化法を採用する場合において、HCを低減する必要がある場合には、例えば、ホスゲン化反応させ、脱溶剤させた後、留去させたペンタメチレンジイソシアネートを、例えば、窒素などの不活性ガスを通気しながら、例えば、150℃〜200℃、好ましくは、160〜190℃で、例えば、1〜8時間、好ましくは、3〜6時間加熱処理する。その後、精留処理することによって、ペンタメチレンジイソシアネートのHCを著しく低減することができる。
本発明において、ペンタメチレンジイソシアネートの加水分解性塩素の濃度は、例えば、100ppm以下、好ましくは、80ppm以下、より好ましくは、60ppm以下、さらに好ましくは、50ppm以下である。
なお、加水分解性塩素の濃度は、例えば、JIS K−1556(2000)の附属書3に記載されている加水分解性塩素の試験方法に準拠して測定することができる。
加水分解性塩素の濃度が100ppmを超過すると、トリマー化(後述)の反応速度が低下し、多量のトリマー化触媒(後述)を必要とする場合があり、トリマー化触媒(後述)を多量に用いると、得られるポリイソシアネート組成物(後述)の黄変度が高くなる場合や、数平均分子量が高くなり、粘度が高くなる場合がある。
また、加水分解性塩素の濃度が100ppmを超過すると、ポリイソシアネート組成物(後述)の貯蔵工程、および、ポリウレタン樹脂(後述)の製造工程において、粘度、色相が大きく変化する場合がある。
カルバメート化法としては、例えば、尿素法などが挙げられる。
尿素法では、例えば、まず、ペンタメチレンジアミンをカルバメート化し、ペンタメチレンジカルバメート(PDC)を生成させる。
より具体的には、反応原料として、ペンタメチレンジアミンと、尿素および/またはN−無置換カルバミン酸エステルと、アルコールとを反応させる。
N−無置換カルバミン酸エステルとしては、例えば、N−無置換カルバミン酸脂肪族エステル類(例えば、カルバミン酸メチル、カルバミン酸エチル、カルバミン酸プロピル、カルバミン酸iso−プロピル、カルバミン酸ブチル、カルバミン酸iso−ブチル、カルバミン酸sec−ブチル、カルバミン酸tert−ブチル、カルバミン酸ペンチル、カルバミン酸iso−ペンチル、カルバミン酸sec−ペンチル、カルバミン酸ヘキシル、カルバミン酸ヘプチル、カルバミン酸オクチル、カルバミン酸2−エチルヘキシル、カルバミン酸ノニル、カルバミン酸デシル、カルバミン酸イソデシル、カルバミン酸ドデシル、カルバミン酸テトラデシル、カルバミン酸ヘキサデシルなど)、N−無置換カルバミン酸芳香族エステル類(例えば、カルバミン酸フェニル、カルバミン酸トリル、カルバミン酸キシリル、カルバミン酸ビフェニル、カルバミン酸ナフチル、カルバミン酸アントリル、カルバミン酸フェナントリルなど)などが挙げられる。
これらN−無置換カルバミン酸エステルは、単独使用または2種類以上併用することができる。
N−無置換カルバミン酸エステルとして、好ましくは、N−無置換カルバミン酸脂肪族エステル類が挙げられる。
アルコールとしては、例えば、1〜3級の1価のアルコールが挙げられ、より具体的には、例えば、脂肪族アルコール類、芳香族アルコール類などが挙げられる。
脂肪族アルコール類としては、例えば、直鎖状の脂肪族アルコール類(例えば、メタノール、エタノール、n−プロパノール、n−ブタノール(1−ブタノール)、n−ペンタノール、n−ヘキサノール、n−ヘプタノール、n−オクタノール(1−オクタノール)、n−ノナノール、n−デカノール、n−ドデカノール、n−テトラデカノール、n−ヘキサデカノールなど)、分岐状の脂肪族アルコール類(例えば、iso−プロパノール、iso−ブタノール、sec−ブタノール、tert−ブタノール、iso−ペンタノール、sec−ペンタノール、2−エチルヘキサノール、iso−デカノールなど)などが挙げられる。
芳香族アルコール類としては、例えば、フェノール、ヒドロキシトルエン、ヒドロキシキシレン、ビフェニルアルコール、ナフタレノール、アントラセノール、フェナントレノールなどが挙げられる。
これらアルコールは、単独使用または2種類以上併用することができる。
アルコールとして、好ましくは、脂肪族アルコール類、より好ましくは、直鎖状の脂肪族アルコール類が挙げられる。
また、アルコールとして、好ましくは、上記した炭素数4〜7の1価アルコール(直鎖状の炭素数4〜7の1価アルコール、分岐状の炭素数4〜7の1価アルコール)が挙げられる。
さらには、上記した抽出において抽出溶媒としてアルコール(炭素数4〜7の1価アルコールなど)が用いられる場合には、好ましくは、そのアルコールを、反応原料アルコールとして用いる。
そして、この方法では、ペンタメチレンジアミンと、尿素および/またはN−無置換カルバミン酸エステルと、アルコールとを配合し、好ましくは、液相で反応させる。
ペンタメチレンジアミンと、尿素および/またはN−無置換カルバミン酸エステルと、アルコールとの配合割合は、特に制限はなく、比較的広範囲において適宜選択することができる。
通常は、尿素およびN−無置換カルバミン酸エステルの配合量、および、アルコールの配合量が、ペンタメチレンジアミンのアミノ基に対して等モル以上あればよく、そのため、尿素および/または上記したN−無置換カルバミン酸エステルや、アルコールそのものを、この反応における反応溶媒として用いることもできる。
また、上記した抽出において抽出溶媒としてアルコール(炭素数4〜7の1価アルコールなど)が用いられる場合には、好ましくは、そのアルコールをそのまま、反応原料および反応溶媒として用いる。
なお、尿素および/または上記したN−無置換カルバミン酸エステルや、アルコールを反応溶媒として兼用する場合には、必要に応じて過剰量の尿素および/または上記したN−無置換カルバミン酸エステルやアルコールが用いられるが、過剰量が多いと、反応後の分離工程での消費エネルギーが増大するので、工業生産上、不適となる。
そのため、尿素および/または上記したN−無置換カルバミン酸エステルの配合量は、カルバメートの収率を向上させる観点から、ペンタメチレンジアミンのアミノ基1つに対して、0.5〜20倍モル、好ましくは、1〜10倍モル、さらに好ましくは、1〜5倍モルであり、アルコールの配合量は、ペンタメチレンジアミンのアミノ基1つに対して、0.5〜100倍モル、好ましくは、1〜20倍モル、さらに好ましくは、1〜10倍モルである。
また、この方法においては、触媒を用いることもできる。
触媒としては、特に制限されないが、例えば、周期律表第1族(IUPAC Periodic Table of the Elements(version date 22 June 2007)に従う。以下同じ。)金属化合物(例えば、リチウムメタノラート、リチウムエタノラート、リチウムプロパノラート、リチウムブタノラート、ナトリウムメタノラート、カリウム−tert−ブタノラートなど)、第2族金属化合物(例えば、マグネシウムメタノラート、カルシウムメタノラートなど)、第3族金属化合物(例えば、酸化セリウム(IV)、酢酸ウラニルなど)、第4族金属化合物(チタンテトライソプロパノラート、チタンテトラブタノラート、四塩化チタン、チタンテトラフェノラート、ナフテン酸チタンなど)、第5族金属化合物(例えば、塩化バナジウム(III)、バナジウムアセチルアセトナートなど)、第6族金属化合物(例えば、塩化クロム(III)、酸化モリブデン(VI)、モリブデンアセチルアセトナート、酸化タングステン(VI)など)、第7族金属化合物(例えば、塩化マンガン(II)、酢酸マンガン(II)、酢酸マンガン(III)など)、第8族金属化合物(例えば、酢酸鉄(II)、酢酸鉄(III)、リン酸鉄、シュウ酸鉄、塩化鉄(III)、臭化鉄(III)など)、第9族金属化合物(例えば、酢酸コバルト、塩化コバルト、硫酸コバルト、ナフテン酸コバルトなど)、第10族金属化合物(例えば、塩化ニッケル、酢酸ニッケル、ナフテン酸ニッケルなど)、第11族金属化合物(例えば、酢酸銅(II)、硫酸銅(II)、硝酸銅(II)、ビス−(トリフェニル−ホスフィンオキシド)−塩化銅(II)、モリブデン酸銅、酢酸銀、酢酸金など)、第12族金属化合物(例えば、酸化亜鉛、塩化亜鉛、酢酸亜鉛、亜鉛アセトニルアセタート、オクタン酸亜鉛、シュウ酸亜鉛、ヘキシル酸亜鉛、安息香酸亜鉛、ウンデシル酸亜鉛など)、第13族金属化合物(例えば、アルミニウムアセチルアセトナート、アルミニウム−イソブチラート、三塩化アルミニウムなど)、第14族金属化合物(例えば、塩化スズ(II)、塩化スズ(IV)、酢酸鉛、リン酸鉛など)、第15族金属化合物(例えば、塩化アンチモン(III)、塩化アンチモン(V)、塩化ビスマス(III)など)などが挙げられる。
さらに、触媒としては、例えば、Zn(OSOCF(別表記:Zn(OTf)、トリフルオロメタンスルホン酸亜鉛)、Zn(OSO、Zn(OSO、Zn(OSO、Zn(OSOCH(p−トルエンスルホン酸亜鉛)、Zn(OSO、Zn(BF、Zn(PF、Hf(OTf)(トリフルオロメタンスルホン酸ハフニウム)、Sn(OTf)、Al(OTf)、Cu(OTf)なども挙げられる。
これら触媒は、単独使用または2種類以上併用することができる。
また、触媒の配合量は、ペンタメチレンジアミン1モルに対して、例えば、0.000001〜0.1モル、好ましくは、0.00005〜0.05モルである。触媒の配合量がこれより多くても、それ以上の顕著な反応促進効果が見られない反面、配合量の増大によりコストが上昇する場合がある。一方、配合量がこれより少ないと、反応促進効果が得られない場合がある。
なお、触媒の添加方法は、一括添加、連続添加および複数回の断続分割添加のいずれの添加方法でも、反応活性に影響を与えることがなく、特に制限されることはない。
また、この反応において、反応溶媒は必ずしも必要ではないが、例えば、反応原料が固体の場合や反応生成物が析出する場合には、溶媒を配合することにより操作性を向上させることができる。
溶媒としては、反応原料であるペンタメチレンジアミン、尿素および/またはN−無置換カルバミン酸エステル、および、アルコールと、反応生成物であるウレタン化合物などに対して不活性であるか反応性に乏しいものであれば、特に制限されるものではなく、例えば、脂肪族炭化水素類(例えば、ヘキサン、ペンタン、石油エーテル、リグロイン、シクロドデカン、デカリン類など)、芳香族炭化水素類(例えば、ベンゼン、トルエン、キシレン、エチルベンゼン、イソプロピルベンゼン、ブチルベンゼン、シクロヘキシルベンゼン、テトラリン、クロロベンゼン、o−ジクロロベンゼン、メチルナフタレン、クロロナフタレン、ジベンジルトルエン、トリフェニルメタン、フェニルナフタレン、ビフェニル、ジエチルビフェニル、トリエチルビフェニルなど)、エーテル類(例えば、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、アニソール、ジフェニルエーテル、テトラヒドロフラン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテルなど)、カーボネート類(例えば、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、ジブチルカーボネートなど)、ニトリル類(例えば、アセトニトリル、プロピオニトリル、アジポニトリル、ベンゾニトリルなど)、脂肪族ハロゲン化炭化水素類(例えば、塩化メチレン、クロロホルム、1、2−ジクロロエタン、1、2−ジクロロプロパン、1、4−ジクロロブタンなど)、アミド類(例えば、ジメチルホルムアミド、ジメチルアセトアミドなど)、ニトロ化合物類(例えば、ニトロメタン、ニトロベンゼンなど)や、N−メチルピロリジノン、N、N−ジメチルイミダゾリジノン、ジメチルスルホキシドなどが挙げられる。
さらに、反応溶媒として、例えば、上記した抽出における抽出溶媒も挙げられる。
これら反応溶媒のなかでは、経済性、操作性などを考慮すると、脂肪族炭化水素類、芳香族炭化水素類が好ましく用いられる。
また、反応溶媒として、好ましくは、上記した抽出における抽出溶媒が挙げられる。
抽出溶媒を反応溶媒として用いることにより、抽出されたペンタメチレンジイソシアネートをそのままカルバメート化反応に供することができ、操作性の向上を図ることができる。
また、このような反応溶媒は、単独もしくは2種以上を組み合わせて用いることができる。
また、反応溶媒の配合量は、目的生成物のペンタメチレンジカルバメートが溶解する程度の量であれば特に制限されないが、工業的には、反応液から反応溶媒を回収する必要があるため、その回収に消費されるエネルギーをできる限り低減し、かつ、配合量が多いと、反応基質濃度が低下して反応速度が遅くなるため、できるだけ少ない方が好ましい。より具体的には、ペンタメチレンジアミン1質量部に対して、通常、0.1〜500質量部、好ましくは、1〜100質量部の範囲で用いられる。
また、この反応においては、反応温度は、例えば、100〜350℃、好ましくは、150〜300℃の範囲において適宜選択される。反応温度がこれより低いと、反応速度が低下する場合があり、一方、これより高いと、副反応が増大して目的生成物であるペンタメチレンジカルバメートの収率が低下する場合がある。
また、反応圧力は、通常、大気圧であるが、反応液中の成分の沸点が反応温度よりも低い場合には加圧してもよく、さらには、必要により減圧してもよい。
また、反応時間は、例えば、0.1〜20時間、好ましくは、0.5〜10時間である。反応時間がこれより短いと、目的生成物であるペンタメチレンジカルバメートの収率が低下する場合がある。一方、これより長いと、工業生産上、不適となる。
そして、この反応は、上記した条件で、例えば、反応容器内に、ペンタメチレンジアミン、尿素および/またはN−無置換カルバミン酸エステル、アルコール、および、必要により触媒、反応溶媒を仕込み、攪拌あるいは混合すればよい。そうすると、温和な条件下において、短時間、低コストかつ高収率で、ペンタメチレンジカルバメートが生成する。
なお、得られるペンタメチレンジカルバメートは、通常、原料成分として用いられる上記のペンタメチレンジアミンに対応し、より具体的には、1、5−ペンタメチレンジカルバメートが得られる。
また、この反応においては、アンモニアが副生される。
また、この反応において、N−無置換カルバミン酸エステルを配合する場合には、そのエステルに対応するアルコールが副生される。
なお、この反応において、反応型式としては、回分式、連続式いずれの型式も採用することができる。
また、この反応は、好ましくは、副生するアンモニアを系外に流出させながら反応させる。さらには、N−無置換カルバミン酸エステルを配合する場合には、副生するアルコールを系外に留出させながら反応させる。
これにより、目的生成物であるペンタメチレンジカルバメートの生成を促進し、その収率を、より一層向上することができる。
また、得られたペンタメチレンジカルバメートを単離する場合には、例えば、過剰(未反応)の尿素および/またはN−無置換カルバミン酸エステル、過剰(未反応)のアルコール、触媒、ペンタメチレンジカルバメート、反応溶媒、副生するアンモニア、場合により副生するアルコールなどを含む反応液から、公知の分離精製方法によって、ペンタメチレンジカルバメートを分離すればよい。
次いで、このペンタメチレンジイソシアネートの製造方法では、得られたペンタメチレンジカルバメートを熱分解して、ペンタメチレンジイソシアネートを製造する。
すなわち、このようなイソシアネートの製造方法では、上記によって得られたペンタメチレンジカルバメートを熱分解し、ペンタメチレンジイソシアネート、および、副生物であるアルコールを生成させる。
なお、得られるペンタメチレンジイソシアネートは、通常、原料成分として用いられる上記のペンタメチレンジアミンに対応し、より具体的には、1、5−ペンタメチレンジイソシアネートが得られる。
また、アルコールとしては、通常、原料成分として用いられるアルコールと同種のアルコールが、副生する。
この熱分解は、特に限定されず、例えば、液相法、気相法などの公知の分解法を用いることができる。
気相法では、熱分解により生成するペンタメチレンジイソシアネートおよびアルコールは、気体状の生成混合物から、分別凝縮によって分離することができる。また、液相法では、熱分解により生成するペンタメチレンジイソシアネートおよびアルコールは、例えば、蒸留や、担持物質としての溶剤および/または不活性ガスを用いて、分離することができる。
熱分解として、好ましくは、作業性の観点から、液相法が挙げられる。
液相法におけるペンタメチレンジカルバメートの熱分解反応は、可逆反応であるため、好ましくは、熱分解反応の逆反応(ペンタメチレンジイソシアネートとアルコールとのウレタン化反応)を抑制するため、ペンタメチレンジカルバメートを熱分解するとともに、反応混合物からペンタメチレンジイソシアネート、および/または、副生するアルコールを、例えば、気体として抜き出し、それらを分離する。
熱分解反応の反応条件として、好ましくは、ペンタメチレンジカルバメートを良好に熱分解できるとともに、熱分解において生成したペンタメチレンジイソシアネートおよびアルコールが蒸発し、これによりペンタメチレンジカルバメートとペンタメチレンジイソシアネートとが平衡状態とならず、さらには、ペンタメチレンジイソシアネートの重合などの副反応が抑制される条件が挙げられる。
このような反応条件として、より具体的には、熱分解温度は、通常、350℃以下であり、好ましくは、80〜350℃、より好ましくは、100〜300℃である。80℃よりも低いと、実用的な反応速度が得られない場合があり、また、350℃を超えると、ペンタメチレンジイソシアネートの重合など、好ましくない副反応を生じる場合がある。また、熱分解反応時の圧力は、上記の熱分解反応温度に対して、生成するアルコールが気化し得る圧力であることが好ましく、設備面および用役面から実用的には、0.133〜90kPaであることが好ましい。
また、この熱分解に用いられるペンタメチレンジカルバメートは、精製したものでもよいが、上記反応(すなわち、ペンタメチレンジアミンと、尿素および/またはN−無置換カルバミン酸エステルと、アルコールとの反応)の終了後に、過剰(未反応)の尿素および/またはN−無置換カルバミン酸エステル、過剰(未反応)のアルコール、触媒、反応溶媒、副生するアンモニア、場合により副生するアルコールを回収して分離されたペンタメチレンジカルバメートの粗原料を用いて、引き続き熱分解してもよい。
さらに、必要により、触媒および不活性溶媒を添加してもよい。これら触媒および不活性溶媒は、それらの種類により異なるが、上記反応時、反応後の蒸留分離の前後、ペンタメチレンジカルバメートの分離の前後の、いずれかに添加すればよい。
熱分解に用いられる触媒としては、イソシアネートと水酸基とのウレタン化反応に用いられる、Sn、Sb、Fe、Co、Ni、Cu、Zn、Cr、Ti、Pb、Mo、Mnなどから選ばれる1種以上の金属単体またはその酸化物、ハロゲン化物、カルボン酸塩、リン酸塩、有機金属化合物などの金属化合物が用いられる。これらのうち、この熱分解においては、Fe、Sn、Co、Sb、Mnが副生成物を生じにくくする効果を発現するため、好ましく用いられる。
Snの金属触媒としては、例えば、酸化スズ、塩化スズ、臭化スズ、ヨウ化スズ、ギ酸スズ、酢酸スズ、シュウ酸スズ、オクチル酸スズ、ステアリン酸スズ、オレイン酸スズ、リン酸スズ、二塩化ジブチルスズ、ジラウリン酸ジブチルスズ、1、1、3、3−テトラブチル−1、3−ジラウリルオキシジスタノキサンなどが挙げられる。
Fe、Co、Sb、Mnの金属触媒としては、例えば、それらの酢酸塩、安息香酸塩、ナフテン酸塩、アセチルアセトナート塩などが挙げられる。
なお、触媒の配合量は、金属単体またはその化合物として、反応液に対して0.0001〜5質量%の範囲、好ましくは、0.001〜1質量%の範囲である。
また、不活性溶媒は、少なくとも、ペンタメチレンジカルバメートを溶解し、ペンタメチレンジカルバメートおよびイソシアネートに対して不活性であり、かつ、熱分解における温度において安定であれば、特に制限されないが、熱分解反応を効率よく実施するには、生成するイソシアネートよりも高沸点であることが好ましい。このような不活性溶媒としては、例えば、フタル酸ジオクチル、フタル酸ジデシル、フタル酸ジドデシルなどのエステル類、例えば、ジベンジルトルエン、トリフェニルメタン、フェニルナフタレン、ビフェニル、ジエチルビフェニル、トリエチルビフェニルなどの熱媒体として常用される芳香族系炭化水素や脂肪族系炭化水素などが挙げられる。
また、不活性溶媒は、市販品としても入手可能であり、例えば、バーレルプロセス油B−01(芳香族炭化水素類、沸点:176℃)、バーレルプロセス油B−03(芳香族炭化水素類、沸点:280℃)、バーレルプロセス油B−04AB(芳香族炭化水素類、沸点:294℃)、バーレルプロセス油B−05(芳香族炭化水素類、沸点:302℃)、バーレルプロセス油B−27(芳香族炭化水素類、沸点:380℃)、バーレルプロセス油B−28AN(芳香族炭化水素類、沸点:430℃)、バーレルプロセス油B−30(芳香族炭化水素類、沸点:380℃)、バーレルサーム200(芳香族炭化水素類、沸点:382℃)、バーレルサーム300(芳香族炭化水素類、沸点:344℃)、バーレルサーム400(芳香族炭化水素類、沸点:390℃)、バーレルサーム1H(芳香族炭化水素類、沸点:215℃)、バーレルサーム2H(芳香族炭化水素類、沸点:294℃)、バーレルサーム350(芳香族炭化水素類、沸点:302℃)、バーレルサーム470(芳香族炭化水素類、沸点:310℃)、バーレルサームPA(芳香族炭化水素類、沸点:176℃)、バーレルサーム330(芳香族炭化水素類、沸点:257℃)、バーレルサーム430(芳香族炭化水素類、沸点:291℃)、(以上、松村石油社製)、NeoSK−OIL1400(芳香族炭化水素類、沸点:391℃)、NeoSK−OIL1300(芳香族炭化水素類、沸点:291℃)、NeoSK−OIL330(芳香族炭化水素類、沸点:331℃)、NeoSK−OIL170(芳香族炭化水素類、沸点:176℃)、NeoSK−OIL240(芳香族炭化水素類、沸点:244℃)、KSK−OIL260(芳香族炭化水素類、沸点:266℃)、KSK−OIL280(芳香族炭化水素類、沸点:303℃)、(以上、綜研テクニックス社製)などが挙げられる。
不活性溶媒の配合量は、ペンタメチレンジカルバメート1質量部に対して0.001〜100質量部の範囲、好ましくは、0.01〜80質量部、より好ましくは、0.1〜50質量部の範囲である。
また、この熱分解反応は、ペンタメチレンジカルバメート、触媒および不活性溶媒を一括で仕込む回分反応、また、触媒を含む不活性溶媒中に、減圧下でペンタメチレンジカルバメートを仕込んでいく連続反応のいずれでも実施することができる。
また、熱分解では、ペンタメチレンジイソシアネートおよびアルコールが生成するとともに、副反応によって、例えば、アロファネート、アミン類、尿素、炭酸塩、カルバミン酸塩、二酸化炭素などが生成する場合があるため、必要により、得られたペンタメチレンジイソシアネートは、公知の方法により精製される。
また、カルバメート法としては、詳しくは述べないが、上記した尿素法の他、公知のカーボネート法、すなわち、ペンタメチレンジアミンと、炭酸ジアルキルあるいは炭酸ジアリールとからペンタメチレンジカルバメートを合成し、そのペンタメチレンジカルバメートを、上記と同様に熱分解して、ペンタメチレンジイソシアネートを得る方法などを採用することもできる。
このようにして得られる本発明のペンタメチレンジイソシアネートの純度は、例えば、95〜100質量%、好ましくは、97〜100質量%、より好ましくは98〜100質量%、とりわけ好ましくは、99〜100質量%、最も好ましくは、99.5〜100質量%である。
また、ペンタメチレンジイソシアネートには、例えば、安定剤などを添加することができる。
安定剤としては、例えば、酸化防止剤、酸性化合物、スルホンアミド基を含有する化合物、有機亜リン酸エステルなどが挙げられる。
酸化防止剤としては、例えば、ヒンダードフェノール系酸化防止剤などが挙げられ、具体的には、例えば、2、6−ジ(t−ブチル)−4−メチルフェノール、2、4、6−トリ−t−ブチルフェノール、2、2’−メチレンビス−(4−メチル−6−t−ブチルフェノール)、2、2’−チオ−ビス−(4−メチル−6−t−ブチルフェノール)、4、4’−チオ−ビス(3−メチル−6−t−ブチルフェノール)、4、4’−ブチリデン−ビス−(6−t−ブチル−3−メチルフェノール)、4、4’−メチリデン−ビス−(2、6−ジ−t−ブチルフェノール)、2、2’−メチレン−ビス−[4−メチル−6−(1−メチルシクロヘキシル)−フェノール]、テトラキス−[メチレン−3−(3、5−ジ−t−ブチル−4−ヒドロキシフェニル)−プロピオニル]−メタン、1、3、5−トリメチル−2、4、6−トリス−(3、5−ジ−t−ブチル−4−ヒドロキシフェニル)−プロピオニル−メタン、1、3、5−トリメチル−2、4、6−トリス−(3、5−ジ−t−ブチル−4−ヒドロキシベンジル)−ベンゼン、N、N’−ヘキサメチレン−ビス−(3、5−ジ−t−ブチル−4−ヒドロキシヒドロ桂皮酸アミド、1、3、5−トリス−(3、5−ジ−t−ブチル−4−ヒドロキシベンジル)−イソシアヌレート、1、1、3−トリス−(5−t−ブチル−4−ヒドロキシ−2−メチルフェニル)−ブタン、1、3、5−トリス−(3、5−ジ−t−ブチル−4−ヒドロキシベンジル)−メシチレン、エチレングリコール−ビス−[3、3−ビス−(3’−t−ブチルー4’−ヒドロキシフェニル)−ブチレート、2、2’−チオジエチル−ビス−3−(3、5−ジ−t−ブチル−4−ヒドロキシフェニル)−プロピオネート、ジ−(3−t−ブチル−4’−ヒドロキシ−5−メチルフェニル)−ジシクロペンタジエン、2、2’−メチレン−ビス−(4−メチル−6−シクロヘキシルフェノール)、1、6−ヘキサンジオール−ビス−(3、5−ジ−t−ブチル−4−ヒドロキシフェニル)−プロピオネート、2、4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3、5−ジ−t−ブチルアニリノ)−1、3、5−トリアジン、ジエチル−3、5−ジ−t−ブチル−4−ヒドロキシベジルホスホネート、トリエチレングリコール−ビス−3−(t−ブチル−4−ヒドロキシ−5−メチルフェニル)−プロピオネート、さらには、例えば、IRGANOX1010、IRGANOX1076、IRGANOX1098、IRGANOX1135、IRGANOX1726、IRGANOX245、IRGANOX3114、IRGANOX3790(以上、BASFジャパン社製、商品名)などが挙げられる。
これら酸化防止剤は、単独使用または2種類以上併用することができる。
酸性化合物としては、例えば、有機酸性化合物が挙げられ、具体的には、例えば、リン酸エステル、亜リン酸エステル、次亜リン酸エステル、ギ酸、酢酸、プロピオン酸、ヒドロキシ酢酸、シュウ酸、乳酸、クエン酸、リンゴ酸、スルホン酸、スルホン酸エステル、フェノール、エノール、イミド、オキシムなどが挙げられる。
これら酸性化合物は、単独使用または2種類以上併用することができる。
スルホンアミド基を含有する化合物としては、例えば、芳香族スルホンアミド類、脂肪族スルホンアミド類などが挙げられる。
芳香族スルホンアミド類としては、例えば、ベンゼンスルホンアミド、ジメチルベンゼンスルホンアミド、スルファニルアミド、o−およびp−トルエンスルホンアミド、ヒドロキシナフタレンスルホンアミド、ナフタレン−1−スルホンアミド、ナフタレン−2−スルホンアミド、m−ニトロベンゼンスルホンアミド、p−クロロベンゼンスルホンアミドなどが挙げられる。
脂肪族スルホンアミド類としては、例えば、メタンスルホンアミド、N、N−ジメチルメタンスルホンアミド、N、N−ジメチルエタンスルホンアミド、N、N−ジエチルメタンスルホンアミド、N−メトキシメタンスルホンアミド、N−ドデシルメタンスルホンアミド、N−シクロヘキシル−1−ブタンスルホンアミド、2−アミノエタンスルホンアミドなどが挙げられる。
これらスルホンアミド基を含有する化合物は、単独使用または2種類以上併用することができる。
有機亜リン酸エステルとしては、例えば、有機亜リン酸ジエステル、有機亜リン酸トリエステルなどが挙げられ、より具体的には、例えば、トリエチルホスファイト、トリブチルホスファイト、トリス(2−エチルヘキシル)ホスファイト、トリデシルホスファイト、トリラウリルホスファイト、トリス(トリデシル)ホスファイト、トリステアリルホスファイト、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2、4−ジ−t−ブチルフェニル)ホスファイト、ジフェニルデシルホスファイト、ジフェニル(トリデシル)ホスファイトなどのモノフォスファイト類、例えば、ジステアリル・ペンタエリスリチル・ジホスファイト、ジ・ドデシル・ペンタエリスリトール・ジホスファイト、ジ・トリデシル・ペンタエリスリトール・ジホスファイト、ジノニルフェニル・ペンタエリスリトール・ジホスファイト、テトラフェニル・テトラ・トリデシル・ペンタエリスリチル・テトラホスファイト、テトラフェニル・ジプロピレングリコール・ジホスファイト、トリペンタエリスリトール・トリホスファイトなどの多価アルコールから誘導されたジ、トリあるいはテトラホスファイト類、さらに、例えば、炭素数が1〜20のジ・アルキル・ビスフェノールA・ジホスファイト、4、4’−ブチリデン−ビス(3−メチル−6−t−ブチルフェニル−ジ・トリデシル)ホスファイトなどのビスフェノール系化合物から誘導されたジホスファイト類、水添ビスフェノールAホスファイトポリマー(分子量2400〜3000)などのポリホスファイト類、トリス(2、3−ジクロロプロピル)ホスファイトなどが挙げられる。
これら有機亜リン酸エステルは、単独使用または2種類以上併用することができる。
安定剤として、好ましくは、酸化防止剤、酸性化合物、スルホンアミド基を含有する化合物が挙げられる。より好ましくは、ペンタメチレンジイソシアネートに、酸化防止剤と、酸性化合物および/またはスルホンアミド基を含有する化合物とを配合し、含有させる。
これら安定剤を添加することにより、そのペンタメチレンジイソシアネートを用いて得られるイソシアネート変性体(後述)の、貯蔵安定性の向上を図ることができる。
なお、安定剤の配合割合は、特に制限されず、必要および用途に応じて、適宜設定される。
具体的には、酸化防止剤の配合割合は、ペンタメチレンジイソシアネート100質量部に対して、例えば、0.0005〜0.05質量部である。
また、酸性化合物および/またはスルホンアンド基を含有する化合物の配合割合(併用される場合には、それらの総量)は、ペンタメチレンジイソシアネート100質量部に対して、例えば、0.0005〜0.02質量部である。
また、本発明は、さらに、ポリイソシアネート組成物を含んでいる。
ポリイソシアネート組成物は、より具体的には、ペンタメチレンジイソシアネートを変性することにより得られ、下記(a)〜(e)の官能基を少なくとも1種含有している。(a)イソシアヌレート基
(b)アロファネート基
(c)ビウレット基
(d)ウレタン基
(e)ウレア基
上記(a)の官能基(イソシアヌレート基)を含有するポリイソシアネート組成物は、ペンタメチレンジイソシアネートのトリマー(三量体)であって、例えば、ペンタメチレンジイソシアネートを公知のイソシアヌレート化触媒の存在下において反応させ、三量化することにより、得ることができる。
上記(b)の官能基(アロファネート基)を含有するポリイソシアネート組成物は、ペンタメチレンジイソシアネートのアロファネート変性体であって、例えば、ペンタメチレンジイソシアネートとモノアルコールとを反応させた後、公知のアロファネート化触媒の存在下でさらに反応させることにより、得ることができる。
上記(c)の官能基(ビウレット基)を含有するポリイソシアネート組成物は、ペンタメチレンジイソシアネートのビウレット変性体であって、例えば、ペンタメチレンジイソシアネートと、例えば、水、第三級アルコール(例えば、t−ブチルアルコールなど)、第二級アミン(例えば、ジメチルアミン、ジエチルアミンなど)などとを反応させた後、公知のビウレット化触媒の存在下でさらに反応させることにより、得ることができる。
上記(b)の官能基(ウレタン基)を含有するポリイソシアネート組成物は、ペンタメチレンジイソシアネートのポリオール変性体であって、例えば、ペンタメチレンジイソシアネートとポリオール成分(例えば、トリメチロールプロパンなど。詳しくは後述)との反応により、得ることができる。
上記(e)の官能基(ウレア基)を含有するポリイソシアネート組成物は、ペンタメチレンジイソシアネートのポリアミン変性体であって、例えば、ペンタメチレンジイソシアネートと水、ポリアミン成分(後述)などとの反応により、得ることができる。
なお、ポリイソシアネート組成物は、上記(a)〜(e)の官能基を少なくとも1種含有していればよく、2種以上含有することもできる。そのようなポリイソシアネート組成物は、上記の反応を適宜併用することにより、生成される。
ポリイソシアネート組成物として、好ましくは、ペンタメチレンジイソシアネートのトリマー(イソシアヌレート基を含有するポリイソシアネート組成物)が挙げられる。
なお、ペンタメチレンジイソシアネートのトリマーは、イソシアヌレート基の他、さらに、イミノオキサジアジンジオン基などを有するポリイソシアネートを、含んでいる。
そして、本発明のポリウレタン樹脂は、上記のペンタメチレンジイソシアネート、および/または、上記のポリイソシアネート組成物と、活性水素化合物とを反応させることにより得ることができる。
活性水素化合物としては、例えば、ポリオール成分(水酸基を2つ以上有するポリオールを主として含有する成分)、ポリアミン成分(アミノ基を2つ以上有するポリアミンを主として含有する化合物)などが挙げられる。
本発明において、ポリオール成分としては、低分子量ポリオールおよび高分子量ポリオールが挙げられる。
低分子量ポリオールは、水酸基を2つ以上有する数平均分子量400未満の化合物であって、例えば、エチレングリコール、プロピレングリコール、1、3−プロパンジオール、1、4−ブチレングリコール、1、3−ブチレングリコール、1、2−ブチレングリコール、1、5−ペンタンジオール、1、6−ヘキサンジオール、ネオペンチルグリコール、3−メチル−1、5−ペンタンジオール、2、2、2−トリメチルペンタンジオール、3、3−ジメチロールヘプタン、アルカン(C7〜20)ジオール、1、3−または1、4−シクロヘキサンジメタノールおよびそれらの混合物、1、3−または1、4−シクロヘキサンジオールおよびそれらの混合物、水素化ビスフェノールA、1、4−ジヒドロキシ−2−ブテン、2、6−ジメチル−1−オクテン−3、8−ジオール、ビスフェノールA、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコールなどの2価アルコール、例えば、グリセリン、トリメチロールプロパンなどの3価アルコール、例えば、テトラメチロールメタン(ペンタエリスリトール)、ジグリセリンなどの4価アルコール、例えば、キシリトールなどの5価アルコール、例えば、ソルビトール、マンニトール、アリトール、イジトール、ダルシトール、アルトリトール、イノシトール、ジペンタエリスリトールなどの6価アルコール、例えば、ペルセイトールなどの7価アルコール、例えば、ショ糖などの8価アルコールなどが挙げられる。
これら低分子量ポリオールは、単独使用または2種類以上併用することができる。
高分子量ポリオールは、水酸基を2つ以上有する数平均分子量400以上の化合物であって、例えば、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、ポリウレタンポリオール、エポキシポリオール、植物油ポリオール、ポリオレフィンポリオール、アクリルポリオール、および、ビニルモノマー変性ポリオールが挙げられる。
ポリエーテルポリオールとしては、例えば、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコールなどが挙げられる。
ポリプロピレングリコールとしては、例えば、上記した低分子量ポリオールまたは芳香族/脂肪族ポリアミンを開始剤とする、エチレンオキサイド、プロピレンオキサイドなどのアルキレンオキサイドの付加重合物(2種以上のアルキレンオキサイドのランダムおよび/またはブロック共重合体を含む。)が挙げられる。
ポリテトラメチレンエーテルグリコールとしては、例えば、テトラヒドロフランのカチオン重合により得られる開環重合物や、テトラヒドロフランの重合単位に上記した2価アルコールを共重合した非晶性ポリテトラメチレンエーテルグリコールなどが挙げられる。
ポリエステルポリオールとしては、例えば、上記した低分子量ポリオールと多塩基酸とを、公知の条件下、反応させて得られる重縮合物が挙げられる。
多塩基酸としては、例えば、シュウ酸、マロン酸、コハク酸、メチルコハク酸、グルタール酸、アジピン酸、1、1−ジメチル−1、3−ジカルボキシプロパン、3−メチル−3−エチルグルタール酸、アゼライン酸、セバシン酸、その他の飽和脂肪族ジカルボン酸(C11〜13)、例えば、マレイン酸、フマル酸、イタコン酸、その他の不飽和脂肪族ジカルボン酸、例えば、オルソフタル酸、イソフタル酸、テレフタル酸、トルエンジカルボン酸、ナフタレンジカルボン酸、その他の芳香族ジカルボン酸、例えば、ヘキサヒドロフタル酸、その他の脂環族ジカルボン酸、例えば、ダイマー酸、水添ダイマー酸、ヘット酸などのその他のカルボン酸、および、それらカルボン酸から誘導される酸無水物、例えば、無水シュウ酸、無水コハク酸、無水マレイン酸、無水フタル酸、無水2−アルキル(C12〜C18)コハク酸、無水テトラヒドロフタル酸、無水トリメリット酸、さらには、これらのカルボン酸などから誘導される酸ハライド、例えば、シュウ酸ジクロライド、アジピン酸ジクロライド、セバシン酸ジクロライドなどが挙げられる。
また、ポリエステルポリオールとして、例えば、植物由来のポリエステルポリオール、具体的には、上記した低分子量ポリオールを開始剤として、ヒドロキシル基含有植物油脂肪酸(例えば、リシノレイン酸を含有するひまし油脂肪酸、12−ヒドロキシステアリン酸を含有する水添ひまし油脂肪酸など)などのヒドロキシカルボン酸を、公知の条件下、縮合反応させて得られる植物油系ポリエステルポリオールなどが挙げられる。
また、ポリエステルポリオールとして、例えば、上記した低分子量ポリオール(好ましくは、2価アルコール)を開始剤として、例えば、ε−カプロラクトン、γ−バレロラクトンなどのラクトン類や、例えば、L−ラクチド、D−ラクチドなどのラクチド類などを開環重合して得られる、ポリカプロラクトンポリオール、ポリバレロラクトンポリオール、さらには、それらに上記した2価アルコールを共重合したラクトン系ポリエステルポリオールなどが挙げられる。
ポリカーボネートポリオールとしては、例えば、上記した低分子量ポリオール(好ましくは、2価アルコール)を開始剤とするエチレンカーボネートの開環重合物や、例えば、1、4−ブタンジオール、1、5−ペンタンジオール、3−メチル−1、5−ペンタンジオールや1、6−ヘキサンジオールなどの2価アルコールと、開環重合物とを共重合した非晶性ポリカーボネートポリオールなどが挙げられる。
また、ポリウレタンポリオールは、上記により得られたポリエステルポリオール、ポリエーテルポリオールおよび/またはポリカーボネートポリオールを、イソシアネート基(NCO)に対する水酸基(OH)の当量比(OH/NCO)が1を超過する割合で、ポリイソシアネートと反応させることによって、ポリエステルポリウレタンポリオール、ポリエーテルポリウレタンポリオール、ポリカーボネートポリウレタンポリオール、あるいは、ポリエステルポリエーテルポリウレタンポリオールなどとして得ることができる。
エポキシポリオールとしては、例えば、上記した低分子量ポリオールと、例えば、エピクロルヒドリン、β−メチルエピクロルヒドリンなどの多官能ハロヒドリンとの反応により得られるエポキシポリオールが挙げられる。
植物油ポリオールとしては、例えば、ひまし油、やし油などのヒドロキシル基含有植物油などが挙げられる。例えば、ひまし油ポリオール、または、ひまし油脂肪酸とポリプロピレンポリオールとの反応により得られるエステル変性ひまし油ポリオールなどが挙げられる。
ポリオレフィンポリオールとしては、例えば、ポリブタジエンポリオール、部分ケン価エチレン−酢酸ビニル共重合体などが挙げられる。
アクリルポリオールとしては、例えば、ヒドロキシル基含有アクリレートと、ヒドロキシル基含有アクリレートと共重合可能な共重合性ビニルモノマーとを、共重合させることによって得られる共重合体が挙げられる。
ヒドロキシル基含有アクリレートとしては、例えば、2−ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、2、2−ジヒドロキシメチルブチル(メタ)アクリレート、ポリヒドロキシアルキルマレエート、ポリヒドロキシアルキルフマレートなどが挙げられる。好ましくは、2−ヒドロキシエチル(メタ)アクリレートなどが挙げられる。
共重合性ビニルモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、s−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、イソペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、シクロヘキシルアクリレートなどのアルキル(メタ)アクリレート(炭素数1〜12)、例えば、スチレン、ビニルトルエン、α−メチルスチレンなどの芳香族ビニル、例えば、(メタ)アクリロニトリルなどのシアン化ビニル、例えば、(メタ)アクリル酸、フマル酸、マレイン酸、イタコン酸などのカルボキシル基を含むビニルモノマー、または、そのアルキルエステル、例えば、エチレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、オリゴエチレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレートなどのアルカンポリオールポリ(メタ)アクリレート、例えば、3−(2−イソシアネート−2−プロピル)−α−メチルスチレンなどのイソシアネート基を含むビニルモノマーなどが挙げられる。
そして、アクリルポリオールは、これらヒドロキシル基含有アクリレート、および、共重合性ビニルモノマーを、適当な溶剤および重合開始剤の存在下において共重合させることにより得ることができる。
また、アクリルポリオールには、例えば、シリコーンポリオールやフッ素ポリオールが含まれる。
シリコーンポリオールとしては、例えば、上記したアクリルポリオールの共重合において、共重合性ビニルモノマーとして、例えば、γ−メタクリロキシプロピルトリメトキシシランなどのビニル基を含むシリコーン化合物が配合されたアクリルポリオールが挙げられる。
フッ素ポリオールとしては、例えば、上記したアクリルポリオールの共重合において、共重合性ビニルモノマーとして、例えば、テトラフルオロエチレン、クロロトリフルオロエチレンなどのビニル基を含むフッ素化合物が配合されたアクリルポリオールが挙げられる。
ビニルモノマー変性ポリオールは、上記した高分子量ポリオールと、ビニルモノマーとの反応により得ることができる。
高分子量ポリオールとして、好ましくは、ポリエーテルポリオール、ポリエステルポリオールおよびポリカーボネートポリオールから選択される高分子量ポリオールが挙げられる。
また、ビニルモノマーとしては、例えば、上記したアルキル(メタ)アクリレート、シアン化ビニルまたはシアン化ビニリデンなどが挙げられる。これらビニルモノマーは、単独使用または2種類以上併用することができる。また、これらのうち、好ましくは、アルキル(メタ)アクリレートが挙げられる。
そして、ビニルモノマー変性ポリオールは、これら高分子量ポリオール、および、ビニルモノマーを、例えば、ラジカル重合開始剤(例えば、過硫酸塩、有機過酸化物、アゾ系化合物など)の存在下などにおいて反応させることにより得ることができる。
これら高分子量ポリオールは、単独使用または2種類以上併用することができる。
高分子量ポリオールとして、好ましくは、ポリエステルポリオール、アクリルポリオールが挙げられ、より好ましくは、ポリエステルポリオールが挙げられ、さらに好ましくは、植物由来のポリエステルポリオールが挙げられる。
これらポリオール成分は、単独使用または2種類以上併用することができる。
ポリアミン成分としては、例えば、芳香族ポリアミン、芳香脂肪族ポリアミン、脂環族ポリアミン、脂肪族ポリアミン、アミノアルコール、第1級アミノ基、または、第1級アミノ基および第2級アミノ基を有するアルコキシシリル化合物、ポリオキシエチレン基含有ポリアミンなどが挙げられる。
芳香族ポリアミンとしては、例えば、4、4’−ジフェニルメタンジアミン、トリレンジアミンなどが挙げられる。
芳香脂肪族ポリアミンとしては、例えば、1、3−または1、4−キシリレンジアミンもしくはその混合物などが挙げられる。
脂環族ポリアミンとしては、例えば、3−アミノメチル−3、5、5−トリメチルシクロヘキシルアミン(別名:イソホロンジアミン)、4、4’−ジシクロヘキシルメタンジアミン、2、5(2、6)−ビス(アミノメチル)ビシクロ[2.2.1]ヘプタン、1、4−シクロヘキサンジアミン、1−アミノ−3−アミノメチル−3、5、5−トリメチルシクロヘキサン、ビス−(4−アミノシクロヘキシル)メタン、ジアミノシクロヘキサン、3、9−ビス(3−アミノプロピル)−2、4、8、10−テトラオキサスピロ[5.5]ウンデカン、1、3−および1、4−ビス(アミノメチル)シクロヘキサンおよびそれらの混合物などが挙げられる。
脂肪族ポリアミンとしては、例えば、エチレンジアミン、プロピレンジアミン、1、3−プロパンジアミン、1、4−ブタンジアミン、1、5−ペンタンジアミン、1、6−ヘキサメチレンジアミン、ヒドラジン(水和物を含む。)、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、1、2−ジアミノエタン、1、2−ジアミノプロパン、1、3−ジアミノペンタンなどが挙げられる。
アミノアルコールとしては、例えば、N−(2−アミノエチル)エタノールアミンなどが挙げられる。
第1級アミノ基、または、第1級アミノ基および第2級アミノ基を有するアルコキシシリル化合物としては、例えば、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシランなどのアルコキシシリル基含有モノアミン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジメトキシシランなどが挙げられる。
ポリオキシエチレン基含有ポリアミンとしては、例えば、ポリオキシエチレンエーテルジアミンなどのポリオキシアルキレンエーテルジアミンが挙げられる。より具体的には、例えば、日本油脂製のPEG#1000ジアミンや、ハンツマン社製のジェファーミンED―2003、EDR−148、XTJ−512などが挙げられる。
これらポリアミン成分は、単独使用または2種類以上併用することができる。
なお、本発明では、必要に応じて、公知の添加剤、例えば、可塑剤、ブロッキング防止剤、耐熱安定剤、耐光安定剤、酸化防止剤、離型剤、触媒、さらには、顔料、染料、滑剤、フィラー、加水分解防止剤などを添加することができる。これら添加剤は、各成分の合成時に添加してもよく、あるいは、各成分の混合・溶解時に添加してもよく、さらには、合成後に添加することもできる。
そして、本発明のポリウレタン樹脂は、例えば、バルク重合や溶液重合などの重合方法により製造することができる。
バルク重合では、例えば、窒素気流下において、ペンタメチレンジイソシアネートおよび/またはポリイソシアネート組成物を撹拌しつつ、これに、活性水素化合物を加えて、反応温度50〜250℃、さらに好ましくは50〜200℃で、0.5〜15時間程度反応させる。
溶液重合では、有機溶剤に、ペンタメチレンジイソシアネートおよび/またはポリイソシアネート組成物、活性水素化合物を加えて、反応温度50〜120℃、さらに好ましくは50〜100℃で、0.5〜15時間程度反応させる。
有機溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類、例えば、アセトニトリルなどのニトリル類、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソブチルなどのアルキルエステル類、例えば、n−ヘキサン、n−ヘプタン、オクタンなどの脂肪族炭化水素類、例えば、シクロヘキサン、メチルシクロヘキサンなどの脂環族炭化水素類、例えば、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素類、例えば、メチルセロソルブアセテート、エチルセロソルブアセテート、メチルカルビトールアセテート、エチルカルビトールアセテート、エチレングリコールエチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、3−メチル−3−メトキシブチルアセテート、エチル−3−エトキシプロピオネートなどのグリコールエーテルエステル類、例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、例えば、塩化メチル、塩化メチレン、クロロホルム、四塩化炭素、臭化メチル、ヨウ化メチレン、ジクロロエタンなどのハロゲン化脂肪族炭化水素類、例えば、N−メチルピロリドン、ジメチルホルムアミド、N、N’−ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホニルアミドなどの極性非プロトン類などが挙げられる。
さらに、有機溶剤としては、例えば、非極性溶剤(非極性有機溶剤)が挙げられ、これら非極性溶剤としては、脂肪族、ナフテン系炭化水素系有機溶剤を含む、アニリン点が、例えば、10〜70℃、好ましくは、12〜65℃の、低毒性で溶解力の弱い非極性有機溶剤や、ターペン油に代表される植物性油などが挙げられる。
かかる非極性有機溶剤は、市販品として入手可能であり、そのような市販品としては、例えば、ハウス(シェル化学製、アニリン点15℃)、スワゾール310(丸善石油製、アニリン点16℃)、エッソナフサNo.6(エクソン化学製、アニリン点43℃)、ロウス(シェル化学製、アニリン点43℃)、エッソナフサNo.5(エクソン製、アニリン点55℃)、ペガゾール3040(モービル石油製、アニリン点55℃)などの石油炭化水素系有機溶剤、その他、メチルシクロヘキサン(アニリン点40℃)、エチルシクロヘキサン(アニリン点44℃)、ガムテレピンN(安原油脂製、アニリン点27℃)などのターペン油類などが挙げられる。
さらに、上記重合反応においては、必要に応じて、例えば、ウレタン化触媒を添加することができる。
アミン類としては、例えば、トリエチルアミン、トリエチレンジアミン、ビス−(2−ジメチルアミノエチル)エーテル、N−メチルモルホリンなどの3級アミン類、例えば、テトラエチルヒドロキシルアンモニウムなどの4級アンモニウム塩、例えば、イミダゾール、2−エチル−4−メチルイミダゾールなどのイミダゾール類などが挙げられる。
有機金属化合物としては、例えば、酢酸錫、オクチル酸錫、オレイン酸錫、ラウリル酸錫、ジブチル錫ジアセテート、ジメチル錫ジラウレート、ジブチル錫ジラウレート、ジブチル錫ジメルカプチド、ジブチル錫マレエート、ジブチル錫ジラウレート、ジブチル錫ジネオデカノエート、ジオクチル錫ジメルカプチド、ジオクチル錫ジラウリレート、ジブチル錫ジクロリドなどの有機錫系化合物、例えば、オクタン酸鉛、ナフテン酸鉛などの有機鉛化合物、例えば、ナフテン酸ニッケルなどの有機ニッケル化合物、例えば、ナフテン酸コバルトなどの有機コバルト化合物、例えば、オクテン酸銅などの有機銅化合物、例えば、オクチル酸ビスマス、ネオデカン酸ビスマスなどの有機ビスマス化合物などが挙げられる。
さらに、ウレタン化触媒として、例えば、炭酸カリウム、酢酸カリウム、オクチル酸カリウムなどのカリウム塩が挙げられる。
これらウレタン化触媒は、単独使用または2種類以上併用することができる。
また、上記重合反応においては、(未反応の)ペンタメチレンジイソシアネートおよび/またはポリイソシアネート組成物を、例えば、蒸留や抽出などの公知の除去手段により除去することができる。
バルク重合および溶液重合では、例えば、ペンタメチレンジイソシアネートおよび/またはポリイソシアネート組成物と、活性水素化合物とを、活性水素化合物中の活性水素基(水酸基、アミノ基)に対するペンタメチレンジイソシアネートおよび/またはポリイソシアネート組成物中のイソシアネート基の当量比(NCO/活性水素基)が、例えば、0.75〜1.3、好ましくは、0.9〜1.1となるように配合する。
また、上記重合反応をより工業的に実施する場合には、ポリウレタン樹脂は、その用途に応じて、例えば、ワンショット法およびプレポリマー法などの公知の方法により、得ることができる。また、その他の方法により、ポリウレタン樹脂を、例えば、水系ディスパージョン(PUD)などとして得ることもできる。
ワンショット法では、例えば、ペンタメチレンジイソシアネートおよび/またはポリイソシアネート組成物と活性水素化合物とを、活性水素化合物中の活性水素基(水酸基、アミノ基)に対するペンタメチレンジイソシアネートおよび/またはポリイソシアネート組成物中のイソシアネート基の当量比(NCO/活性水素基)が、例えば、0.75〜1.3、好ましくは、0.9〜1.1となるように処方(混合)した後、例えば、室温〜250℃、好ましくは、室温〜200℃で、例えば、5分〜72時間、好ましくは、4〜24時間硬化反応させる。なお、硬化温度は、一定温度であってもよく、あるいは、段階的に昇温または冷却することもできる。
また、プレポリマー法では、例えば、まず、ペンタメチレンジイソシアネートおよび/またはポリイソシアネート組成物と活性水素化合物の一部(好ましくは、高分子量ポリオール)とを反応させて、分子末端にイソシアネート基を有するイソシアネート基末端プレポリマーを合成する。次いで、得られたイソシアネート基末端プレポリマーと、活性水素化合物の残部(好ましくは、低分子量ポリオールおよび/またはポリアミン成分)とを反応させて、硬化反応させる。なお、プレポリマー法において、活性水素化合物の残部は、鎖伸長剤として用いられる。
イソシアネート基末端プレポリマーを合成するには、ペンタメチレンジイソシアネートおよび/またはポリイソシアネート組成物と活性水素化合物の一部とを、活性水素化合物の一部中の活性水素基に対するペンタメチレンジイソシアネートおよび/またはポリイソシアネート組成物中のイソシアネート基の当量比(NCO/活性水素基)が、例えば、1.1〜20、好ましくは、1.3〜10、さらに好ましくは、1.3〜6となるように処方(混合)し、反応容器中にて、例えば、室温〜150℃、好ましくは、50〜120℃で、例えば、0.5〜18時間、好ましくは、2〜10時間反応させる。なお、この反応においては、必要に応じて、上記したウレタン化触媒を添加してもよく、また、反応終了後には、必要に応じて、未反応のペンタメチレンジイソシアネートおよび/またはポリイソシアネート組成物を、例えば、蒸留や抽出などの公知の除去手段により、除去することもできる。
次いで、得られたイソシアネート基末端プレポリマーと、活性水素化合物の残部とを反応させるには、イソシアネート基末端プレポリマーと、活性水素化合物の残部とを、活性水素化合物の残部中の活性水素基に対するイソシアネート基末端プレポリマー中のイソシアネート基の当量比(NCO/活性水素基)が、例えば、0.75〜1.3、好ましくは、0.9〜1.1となるように処方(混合)し、例えば、室温〜250℃、好ましくは、室温〜200℃で、例えば、5分〜72時間、好ましくは、1〜24時間硬化反応させる。
また、ポリウレタン樹脂を水系ディスパージョンとして得るには、例えば、まず、ペンタメチレンジイソシアネートおよび/またはポリイソシアネート組成物と、後述する親水基を含有する活性水素化合物(以下、親水基含有活性水素化合物と略する。)を含む活性水素化合物とを反応させることにより、イソシアネート基末端プレポリマーを得る。
次いで、得られたイソシアネート基末端プレポリマーと鎖伸長剤とを水中で反応させて分散させる。これによって、イソシアネート基末端プレポリマーが鎖伸長剤によって鎖伸長された水性ポリウレタン樹脂を、内部乳化型の水系ディスパージョンとして得ることができる。
イソシアネート基末端プレポリマーと鎖伸長剤とを水中で反応させるには、例えば、まず、イソシアネート基末端プレポリマーを水に添加して、イソシアネート基末端プレポリマーを分散させる。次いで、これに鎖伸長剤を添加して、イソシアネート基末端プレポリマーを鎖伸長する。
親水基含有活性水素化合物は、親水基と活性水素基とを併有する化合物であって、親水基としては、例えば、アニオン性基(例えば、カルボキシル基など)、カチオン性基、ノニオン性基(例えば、ポリオキシエチレン基など)が挙げられる。親水基含有活性水素化合物として、より具体的には、カルボン酸基含有活性水素化合物、ポリオキシエチレン基含有活性水素化合物などが挙げられる。
カルボン酸基含有活性水素化合物としては、例えば、2、2−ジメチロール酢酸、2、2−ジメチロール乳酸、2、2−ジメチロールプロピオン酸、2、2−ジメチロールブタン酸、2、2−ジメチロール酪酸、2、2−ジメチロール吉草酸などのジヒドロキシルカルボン酸、例えば、リジン、アルギニンなどのジアミノカルボン酸、または、それらの金属塩類やアンモニウム塩類などが挙げられる。
ポリオキシエチレン基含有活性水素化合物は、主鎖または側鎖にポリオキシエチレン基を含み、2つ以上の活性水素基を有する化合物であって、例えば、ポリエチレングリコール、ポリオキシエチレン側鎖含有ポリオール(側鎖にポリオキシエチレン基を含み、2つ以上の活性水素基を有する化合物)などが挙げられる。
これら親水基含有活性水素化合物は、単独使用または2種類以上併用することができる。
鎖伸長剤としては、例えば、上記した2価アルコール、上記した3価アルコールなどの低分子量ポリオール、例えば、脂環族ジアミン、脂肪族ジアミンなどのジアミンなどを使用することができる。
これら鎖伸長剤は、単独使用または2種類以上併用することができる。
このように、親水基含有活性水素化合物を含む活性水素化合物を使用する場合には、必要により、親水基を公知の中和剤で中和する。
また、活性水素化合物として、親水基含有活性水素化合物を使用しない場合には、例えば、公知の界面活性剤を用いて乳化することにより、外部乳化型の水系ディスパージョンとして得ることができる。
そして、このような、5−ペンタメチレンジイソシアネート、ポリイソシアネート組成物およびポリウレタン樹脂は、高生産速度および高反応収率で得られる1、5−ペンタメチレンジアミンを原料として製造されるため、高生産速度および高反応収率で得ることができる。
[実施例]
以下、本発明を実施例にて詳細に説明する。しかしながら、本発明はそれらに何ら限定されるものではない。
なお、L−リジンおよび1、5−ペンタメチレンジアミンは高速液体クロマトグラフ(HPLC)により定量した。これらの分析条件およびリジン脱炭酸酵素活性の測定方法は次の通りである。
<1、5−ペンタメチレンジアミンの分析条件>
カラム;Asahipak ODP−50 4E(昭和電工社製)
カラム温度;40℃
溶離液;0.2M リン酸ナトリウム(pH7.7)+2.3mM 1−オクタンスルホン酸ナトリウム
溶離液の流量;0.5mL/min
検出はオルトフタルアルデヒドを用いたポストカラム誘導体化法〔J.Chromatogr.、83、353−355(1973)〕を用いた。
<リジン脱炭酸酵素活性の測定方法>
200mM L−リジン一塩酸塩および0.15mM ピリドキサールリン酸(広島和光工業社製)を含む200mM リン酸ナトリウム緩衝液(pH7.0)に菌体懸濁液またはその処理物を添加して合計0.2mLとし、37℃で6分間反応した。反応液に0.2M 塩酸を1mL添加して反応を停止した。この反応停止液を水で適当に希釈し、生成した1、5−ペンタメチレンジアミンをHPLCにより定量した。
活性の単位は1分間に1μmolの1、5−ペンタメチレンジアミンを生成する活性を1unitとした。
<ペンタメチレンジイソシアネート濃度(単位:質量%)>
後述する実施例12で得られたペンタメチレンジイソシアネートを用い、以下のHPLC分析条件下で得られたクロマトグラムの面積値から作成した検量線により、ポリイソシアネート組成物中のペンタメチレンジイソシアネートの濃度を算出した。
装置;Prominence(島津製作所社製)
1) ポンプ LC−20AT
2) デガッサ DGU−20A3
3) オートサンプラ SIL−20A
4) カラム恒温槽 COT−20A
5) 検出器 SPD−20A
カラム;SHISEIDO SILICA SG−120
カラム温度;40℃
溶離液;n−ヘキサン/メタノール/1、2−ジクロロエタン=90/5/5(体積
比)
流量;0.2mL/min
検出方法;UV 225nm
<イソシアネート基の転化率(単位:%)>
イソシアネート基の転化率は、以下のGPC測定条件において得られたクロマトグラムにより、全ピーク面積に対するペンタメチレンジイソシアネートのピークよりも高分子量側にあるピークの面積の割合を、イソシアネート基の転化率とした。
装置;HLC−8020(東ソー社製)
カラム;G1000HXL、G2000HXLおよびG3000HXL(以上、東ソー製商品名)を直列に連結
カラム温度;40℃
溶離液;テトラヒドロフラン
流量;0.8mL/min
検出方法;示差屈折率
標準物質;ポリエチレンオキシド(東ソー社製、商品名:TSK標準ポリエチレンオキシド)
<イソシアネート3量体濃度(単位:質量%)>
上記した(イソシアネート基の転化率)と同様の測定を行い、ペンタメチレンジイソシアネートの3倍の分子量に相当するピーク面積比率を、イソシアネート3量体濃度とした。
<イソシアネート基濃度(単位:質量%)>
ポリイソシアネート組成物のイソシアネート基濃度は、電位差滴定装置を用いて、JIS K−1556に準拠したn−ジブチルアミン法により、測定した。
<粘度(単位:mPa・s)>
東機産業社製のE型粘度計TV−30を用いて、ポリイソシアネート組成物の25℃における粘度を測定した。
<色相(単位:APHA)>
JIS K−0071に準拠した方法により、ポリイソシアネート組成物の色相を測定した。
(参考例1)
[リジン脱炭酸酵素遺伝子(cadA)のクローニング]
Escherichia coli W3110株(ATCC27325)から常法に従い調製したゲノムDNAをPCRの鋳型に用いた。
PCR用のプライマーには、リジン脱炭酸酵素遺伝子(cadA)(GenBank Accession No.AP009048)の塩基配列に基づいて設計した配列番号1および2に示す塩基配列を有するオリゴヌクレオチド(インビトロジェン社に委託して合成した)を用いた。これらのプライマーは、5’末端付近にそれぞれKpnIおよびXbaIの制限酵素認識配列を有する。
前記のゲノムDNA1ng/μLおよび各プライマー0.5pmol/μLを含む25μLのPCR反応液を用いて、変性:94℃、30秒間、アニーリング:55℃、30秒間、伸長反応:68℃、2分間からなる反応サイクルを30サイクルの条件でPCRを行った。
PCR反応産物およびプラスミドpUC18(宝酒造社製)をKpnIおよびXbaIで消化し、ライゲーション・ハイ(東洋紡社製)を用いて連結した後、得られた組換えプラスミドを用いて、Eschrichia coli DH5α(東洋紡社製)を形質転換した。形質転換体を、アンピシリン(Am)100μg/mL及びX−Gal(5−ブロモ−4−クロロ−3−インドリル−β−D−ガラクトシド)を含むLB寒天培地で培養し、Am耐性でかつ白色コロニーとなった形質転換体を得た。このようにして得られた形質転換体よりプラスミドを抽出した。
通常の塩基配列の決定法に従い、プラスミドに導入されたDNA断片の塩基配列が配列番号3に示す塩基配列であることを確認した。
得られたリジン脱炭酸酵素をコードするDNAを持つプラスミドをpCADA1と命名した。
また配列番号3に記載のDNA配列をアミノ酸配列に翻訳した配列を配列番号4に示した。
[形質転換体の調製]
pCADA1を用いてEscherichia coli W3110株を通常の方法で形質転換し、得られた形質転換体をW/pCADA1と命名した。
該形質転換体を2Lのバッフル付き三角フラスコ中のAm100μg/mLを含むLB培地500mlに接種し、30℃にて26.5時間振盪培養した。その後、培養液を8000rpmで10分間遠心分離し、菌体を回収した(乾燥菌体換算濃度は31%(w/w))。
[触媒菌体の超音波破砕物の調製]
得られた形質転換体W/pCADA1の回収菌体を希釈液(0.15mM ピリドキサールリン酸および5g/L ウシアルブミン(SIGMA社製)を含む10mM リン酸ナトリウム緩衝液(pH7.0))に懸濁し、菌体懸濁液を調製した。そして、菌体懸濁液をそれぞれバイオラピュター(オリンパス社製)により氷水中で15分間破砕した。
[触媒死菌体の調製]
形質転換体W/pCADA1の回収菌体を水に懸濁し、乾燥菌体換算濃度12.5wt%の菌体懸濁液を調製した。この菌体懸濁液を58℃の湯浴で30分間保温し、熱処理を施し、使用するまで−20℃で凍結保存した。
[精製酵素の調製]
精製酵素は上記の方法で形質転換体を培養し、回収した菌体をSaboら(Biochemistry 13(1974)pp.662-670.)の方法により精製した。精製した酵素の酵素活性を測定したところ1000unit/mgの精製酵素が得られた。
これにより、精製酵素1μgあたりの活性が1unit(U)であることが確認された。
また、触媒死菌体の活性を測定したところ、100unit/mg−乾燥菌体(Dry Cell)であった。
(参考例2)
[変異酵素の作製]
pCADA1を鋳型として表1〜6に示す塩基配列を有するオリゴヌクレオチド(インビトロジェン社に委託して合成した)を用いて、PCRを行った。
即ち、pCADA1を鋳型として配列表の配列番号5と配列番号6を用いて変性:96℃、30秒間、アニーリング:55℃、30秒間、伸長反応:68℃、5分間20秒からなる反応サイクルを16サイクルの条件でPCRを行った。
得られた増幅断片をDpnI処理し、ライゲーション・ハイを用いて連結した後、得られた組換えプラスミドを用いて、または、DpnI処理した増幅断片を直接コンピテントセルDH5αに添加し、大腸菌DH5α株を形質転換した。作成した株よりプラスミドを調製して塩基配列を決定し目的の塩基が置換されていることを確認した。得られたプラスミドをpCAD2と命名した。
同様にpCAD3からpCAD20およびpCAD23からpCAD119のプラスミドを構築した。使用したオリゴヌクレオチドの配列を表1〜6に示す。
pCADA2からpCADA20を用いてEscherichia coli W3110株を通常の方法で形質転換し、得られた形質転換体をW/pCADA2〜W/pCADA20と命名した。同様にpCAD23からpCAD119を用いてEscherichia coli W3110株を通常の方法で形質転換し、得られた形質転換体をW/pCADA23〜W/pCADA119と命名した。
該形質転換体を2Lのバッフル付き三角フラスコ中のAm100μg/mLを含むLB培地500mlに接種し、30℃にて26.5時間振盪培養した。その後、培養液を8000rpmで10分間遠心分離し、菌体を回収した(乾燥菌体換算濃度は31wt%)。
触媒菌体の超音波破砕物の調製及び触媒死菌体の調製は参考例1の方法に従った。
また、変異酵素の変異前と変異後との対応関係を、表7〜9に示す。
(参考例3)
[多重変異株の作成]
pCADA5を鋳型として配列番号19および20に示す塩基配列を有するオリゴヌクレオチド(インビトロジェン社に委託して合成した)を用いて、PCRを行った。
そして、変性:96℃、30秒間、アニーリング:55℃、30秒間、伸長反応:68℃、5分間20秒からなる反応サイクルを16サイクルの条件でPCRを行った。
得られた増幅断片をDpnI処理し、ライゲーション・ハイを用いて連結した後、得られた組換えプラスミドを用いて、または、DpnI処理した増幅断片を直接コンピテントセルDH5αに添加し、大腸菌DH5α株を形質転換した。作成した株よりプラスミドを調製して塩基配列を決定し目的の塩基が置換されていることを確認した。このプラスミドを鋳型として同様に配列番号35および36に示す塩基配列を用いて同様にプラスミドを作製し、さらにこのプラスミドに配列番号41および42に示す塩基配列を用いて上記の方法でプラスミドを作製することにより4重変異体の配列をもつプラスミドpCADA21を作製した。得られた4重変異体のDNA配列を配列表の配列番号43に示す。アミノ酸配列を配列表の配列番号44に示す。
さらにこのプラスミドに配列番号9および10に示す塩基配列を用いて上記の方法でプラスミドを作製することにより5重変異体の配列をもつプラスミドpCADA22を作製した。このプラスミドを通常の方法でEscherichia coli W3110株を通常の方法で形質転換し、得られた形質転換体をW/pCADA21及びW/pCADA22と命名した。得られた5重変異体のDNA配列を配列表の配列番号45に示す。アミノ酸配列を配列表の配列番号46に示す。
次にpCADA73を鋳型として配列番号235および236に示す塩基配列を有するオリゴヌクレオチドを用いて、PCRを行った。そして、変性:96℃、30秒間、アニーリング:55℃、30秒間、伸長反応:68℃、5分間20秒からなる反応サイクルを16サイクルの条件でPCRを行った。得られた増幅断片をDpnI処理し、この断片を用いて、大腸菌DH5α株を形質転換した。作成した株よりプラスミドを調製して塩基配列を決定し目的の塩基が置換されていることを確認した。得られたプラスミドをpCADA120と命名した。
次にpCADA95を鋳型として配列番号227および228に示す塩基配列を有するオリゴヌクレオチドを用いて、PCRを行った。そして、変性:96℃、30秒間、アニーリング:55℃、30秒間、伸長反応:68℃、5分間20秒からなる反応サイクルを16サイクルの条件でPCRを行った。得られた増幅断片をDpnI処理し、この断片を用いて、大腸菌DH5α株を形質転換した。作成した株よりプラスミドを調製して塩基配列を決定し目的の塩基が置換されていることを確認した。得られたプラスミドをpCADA121と命名した。
次にpCADA113を鋳型として配列番号235および236に示す塩基配列を有するオリゴヌクレオチドを用いて、PCRを行った。そして、変性:96℃、30秒間、アニーリング:55℃、30秒間、伸長反応:68℃、5分間20秒からなる反応サイクルを16サイクルの条件でPCRを行った。得られた増幅断片をDpnI処理し、この断片を用いて、大腸菌DH5α株を形質転換した。作成した株よりプラスミドを調製して塩基配列を決定し目的の塩基が置換されていることを確認した。得られたプラスミドをpCADA122と命名した。
これらのプラスミド、pCADA120、pCADA121、pCADA122を通常の方法でEscherichia coli W3110株を形質転換し、得られた形質転換体をW/pCADA120、W/pCADA121、およびW/pCADA122と命名した。
該形質転換体を2Lのバッフル付き三角フラスコ中のアンピシリン100μg/mLを含むLB培地500mlに接種し、30℃にて26.5時間振盪培養した。その後、培養液を8000rpmで10分間遠心分離し、菌体を回収した(乾燥菌体換算濃度は31wt%)。
触媒菌体の超音波破砕物の調製及び触媒死菌体の調製は参考例1の方法に従った。
(参考例4)
[リジン生産菌の作製とリジン発酵]
Corynebacterium glutamicum(ATCC13032)に対しM.Ikedaら(J Ind Microbiol Biotechnol (2006) 33: 610-615)が記載の方法によりAPG−4株(hom、lysC、pyc、gnd変異株)を作製した。
リジン発酵のためにあらかじめ30gの炭酸カルシウムを入れ、滅菌した500mlバッフル付きフラスコに75mlの滅菌した表10に示す前培養用培地を無菌的に加えたもの2本を用意し、上記で得られたAPG−4株をそれぞれ1コロニー植菌したのち30℃、120rpmで18時間攪拌培養し、これを前培養液とした。
得られた前培養液全量を表11に示す本培養用培地840mlを入れた3L通気培養槽に入れ、通気量1L/min、攪拌回転数800rpm、30℃で50時間培養した。培養中のpHはアンモニアで7.0に調整し、培養20時間目から40%グルコース、4.5%塩化アンモニウムの混合液を1時間あたり26.7gの流速で培養終了まで添加した。培養終了時のOD660は370であった。培養終了後の発酵液には27g/Lのリジンが蓄積していた。得られた発酵液を発酵液Aとした。
また、別の発酵液を得るために5%グルコース及び2%硫安を含むLB培地(Difco Cat.244620)15mlを100mlバッフル付きフラスコに入れ、上記で得られたAPG−4株を1コロニー植菌したのち30℃、120rpmで24時間培養し前培養液とした。
得られた前培養液全量を表12に示す本培養用培地350mlを入れた1L通気培養槽に入れ、通気量180ml/min、攪拌回転数700rpm、31.5℃で50時間培養した。培養中のpHはアンモニアで7.0に調整し、本培養開始後25時間目に50g、42時間目に30gの糖蜜を添加した。
培養終了後の発酵液には16g/Lのリジンが蓄積していた。得られた発酵液を発酵液Bとした。
なお、Corynebacterium glutamicum(ATCC13032)はアメリカン・タイプ・カルチャー・コレクションより入手した。
(実施例5)
[野生型酵素における 大腸菌、コリネバクテリウム、酵母の添加効果]
500mlのバッフル付きフラスコに100mlのLB培地(Difco Cat.244620)をいれ滅菌したものを2本用意し、大腸菌(ATCC27325)及びCorynebacterium glutamicum(ATCC13032)をそれぞれに植菌し、30℃、20時間、120rpmの振盪培養を行った。
また、500mlのバッフル付きフラスコに100mlのYPD培地(Difco Cat. 242820)をいれたものを1本用意し、Saccharomyces cerevisiae(ATCC201388)を植菌し、30℃、20時間、120rpmの振盪培養を行った。
得られた培養液からそれぞれ菌体を遠心分離し上清を除き、上清と同量の脱イオン交換水で菌体を懸濁し、再度遠心分離を行った。この操作を10回繰り返し菌体を洗浄した後、以下の実験に使用した。
得られた菌体に12.5%のリジン塩酸塩水溶液10mlを加え、良く懸濁した。この懸濁液から1ml取り、9mlの12.5%のリジン塩酸塩水溶液と混合し、菌体濃度1/10の溶液を作製した。
この操作を10回繰り返し、菌体濃度1/10ずつの希釈系列を作製した。菌体濃度を測定するために各濃度の溶液から100μlずつをLBプレートに撒き、24時間30℃で培養し、出てきたコロニー数を測定した。また、各濃度の溶液から5mlずつを15mlスクリューキャップつきのPP容器に入れ、0.4%PLP水溶液を50μl、及び参考例1で調製した触媒死菌体を乾燥菌体換算で0.153%に希釈して50μl添加した。コントロールには菌体を加えない12.5%のリジン塩酸塩水溶液を使用し、上記と同様に実施した。
反応は容器を振盪方向に並行、水平に設置し、200rpm、42℃、20時間反応を行った。反応液50μlに0.2M 塩酸を950μlを添加して反応を停止した。この反応停止液を水で適当に希釈し、生成した1、5−ペンタメチレンジアミンをHPLCにより定量した。
結果を表13に示す。
なお、表13において、蓄積濃度はコントロールの蓄積濃度を1としたときの相対値で示した。
(実施例6)
[野生型酵素における コーンスティープリカー、酵母エキス、糖蜜、ペプトンの添加効果]
12.5%のリジン塩酸塩水溶液に20g/Lのコーンスティープリカー(日本食品加工)(6N NaOHで中和)(以後CSLと略すことがある)、酵母エキス(Difco)、糖蜜(大日本明治製糖)、またはペプトン(Difco)を混合した溶液を調製し、それぞれ1/2倍ずつ12.5%のリジン塩酸塩水溶液で希釈することにより20g/Lから0.156g/Lの希釈系列を作製した。
各濃度の溶液から5mlずつを15mlスクリューキャップつきのPP容器に入れ、0.4%PLP水溶液を50μl、及び参考例1で調製した触媒死菌体を乾燥菌体換算で0.153%に希釈して50μl添加した。コントロールには添加物を加えない12.5%のリジン塩酸塩水溶液を使用し、上記と同様に実施した。
反応は容器を振盪方向に並行、水平に設置し、200rpm、42℃、20時間反応を行った。結果を表14に示す。
なお、表14において、蓄積濃度はコントロールの蓄積濃度を1としたときの相対値で示した。
(実施例7)
[野生型酵素における コリネバクテリウム+コーンスティープリカー、コリネバクテリウム+酵母エキス、コリネバクテリウム+糖蜜の添加効果]
500mlのバッフル付きフラスコに100mlのLB培地(Difco Cat.244620)をいれ滅菌したものを用意し、Corynebacterium glutamicum(ATCC13032)を植菌し、30℃、20時間、120rpmの振盪培養を行った。得られた培養液から菌体を遠心分離し上清を除き、上清と同量の脱イオン交換水で菌体を懸濁し、再度遠心分離を行った。この操作を10回繰り返し菌体を洗浄した後、12.5%のリジン塩酸塩水溶液に懸濁し、以下の実験に使用した。
12.5%のリジン塩酸塩水溶液に0.5g/Lのコーンスティープリカー(日本食品加工)(6N NaOHで中和)、酵母エキス(Difco)、糖蜜(大日本明治製糖)、またはペプトン(Difco)を混合した溶液をそれぞれ調製し、これらの液9mlに、実施例5と同様に上記菌体溶液1mlを混合し、菌体濃度1/10ずつの希釈系列を作製した。各濃度の溶液から5mlずつを15mlスクリューキャップつきのPP容器に入れ、0.4%PLP水溶液を50μl、及び参考例1で調製した触媒死菌体を乾燥菌体換算で0.153%に希釈して50μl添加した。コントロールにはそれぞれ菌体を添加しない溶液を使用した。
反応は容器を振盪方向に並行、水平に設置し、200rpm、42℃、20時間反応を行った。反応液50μlに0.2M 塩酸を950μlを添加して反応を停止した。この反応停止液を水で適当に希釈し、生成した1、5−ペンタメチレンジアミンをHPLCにより定量した。結果を表15に示す。
なお、表15において、蓄積濃度はコントロールの蓄積濃度を1としたときの相対値で示した。
(実施例8)
[野生型酵素における 発酵液の反応の効果]
参考例4で調製した発酵液Aから5mlをとり、15mlスクリューキャップつきのPP容器に入れ、0.4%PLP水溶液を50μl、及び参考例1で調製した触媒死菌体を乾燥菌体換算で0.153%に希釈して10μl添加した。次に発酵液Aを遠心分離し、上清を0.22μmのフィルターでろ過し、除菌した。この上清を5mlをとり、15mlスクリューキャップつきのPP容器に入れ、0.4%PLP水溶液を50μl、及び参考例1で調製した触媒死菌体を乾燥菌体換算で0.153%に希釈して10μl添加した。さらにこの上清1mlとリジン濃度が27g/Lとなるようにリジン塩酸塩(Wako)をイオン交換水に溶解したものを9mlを混合し、この液を発酵液の希釈混合液とした。この液から5mlをとり、15mlスクリューキャップつきのPP容器に入れ、0.4%PLP水溶液を50μl、及び参考例1で調製した触媒死菌体を乾燥菌体換算で0.153%に希釈して10μl添加した。コントロールにはリジン濃度が27g/Lとなるようにリジン塩酸塩(Wako)をイオン交換水に溶解したものを用いた。
反応は容器を振盪方向に並行、水平に設置し、200rpm、42℃、24時間反応を行った。反応液50μlに0.2M 塩酸を950μlを添加して反応を停止した。この反応停止液を水で適当に希釈し、生成した1、5−ペンタメチレンジアミンをHPLCにより定量した。結果を表16に示す。
なお、転換率(%)=生成した1、5−ペンタメチレンジアミン(mol)/基質リジン(mol)とした。
次に参考例4で調製した発酵液A、および発酵液Bにリジン濃度が100g/Lとなるようにリジン塩酸塩(Wako)を溶解した液をそれぞれ5mlをとり、15mlスクリューキャップつきのPP容器に入れ、0.4%PLP水溶液を50μl、及び参考例1で調製した触媒死菌体を乾燥菌体換算で0.83%に希釈して100、50、25、12.5μl添加した。これらは精製酵素に換算するとそれぞれ16.1mg/L、8mg/L、4mg/L、2mg/Lに相当する活性であった。また、これらはリジン1gあたり161U、80U、40U、20Uに相当する活性であった。コントロールにはリジン濃度が100g/Lとなるようにリジン塩酸塩(Wako)をイオン交換水に溶解したものを用いた。
反応は容器を振盪方向に並行、水平に設置し、200rpm、42℃、24時間反応を行った。反応液50μlに0.2M 塩酸を950μlを添加して反応を停止した。この反応停止液を水で適当に希釈し、生成した1、5−ペンタメチレンジアミンをHPLCにより定量した。結果を表17〜20および図1〜3に示す。
なお、転換率(%)=生成した1、5−ペンタメチレンジアミン(mol)/基質リジン(mol)とした。
(実施例9)
[変異酵素の反応]
参考例1、参考例2及び参考例3で得られたW/pCADA1からW/pCADA22をを2Lのバッフル付き三角フラスコ中のアンピシリン100μg/mLを含むLB培地500mLに接種し、30℃にて光学密度(OD)(660nm)が0.5になるまで振盪培養した後、IPTG(イソプロピルーβーチオガラクトピラノシド)が0.1mMとなるように添加し、さらに14時間振盪培養した。培養液を8000rpmで20分間遠心分離し、菌体を回収した(乾燥菌体換算濃度は約30wt%)。
[菌体破砕液の調製]
得られた形質転換体W/pCADA1からW/pCADA22の回収菌体を希釈液(0.15mM ピリドキサールリン酸および5g/L ウシアルブミン(SIGMA社製)を含む10mM リン酸ナトリウム緩衝液(pH7.0))に懸濁し、菌体懸濁液を調製した。この菌体懸濁液を参考例1の方法と同様にそれぞれバイオラピュター(オリンパス社製)により氷水中で5分間破砕し、菌体破砕液を調製した。
[リジン脱炭酸酵素活性の測定方法]
200mM L−リジン一塩酸塩および0.15mM ピリドキサールリン酸(広島和光工業社製)を含む200mM リン酸ナトリウム緩衝液(pH7.0、pH8.0)に菌体破砕液を20μl添加して合計0.2mLとし、37℃で4分間反応した。反応液に0.2M塩酸を1mL添加して反応を停止した。この反応停止液を水で適当に希釈し、生成した1、5−ペンタメチレンジアミンをHPLCにより定量した。結果を表21(pH7.0)、表22(pH8.0)に示す。
なお、表21中の数値は濃度であり、W/pCADA1の濃度を1としたときの相対値で示した。
なお、表22中の数値は濃度であり、W/pCADA1の濃度を1としたときの相対値で示した。
また、0.5M1、5−ペンタメチレンジアミン、200mM L−リジン一塩酸塩および0.15mM ピリドキサールリン酸(広島和光工業社製)を含む200mM リン酸ナトリウム緩衝液(pH7.5)に菌体破砕液を20μl添加して合計0.2mLとし、37℃で6分間反応した。比較として200mM L−リジン一塩酸塩および0.15mM ピリドキサールリン酸(広島和光工業社製)を含む200mM リン酸ナトリウム緩衝液(pH7.5)に菌体破砕液を20μl添加して合計0.2mLとし、37℃で6分間反応した。反応液に0.2M 塩酸を1mL添加して反応を停止した。この反応停止液を水で適当に希釈し、減少したリジンの量をHPLCにより定量した。結果を表23に示す。
なお、表23中の数値は濃度であり、W/pCADA1の濃度を1としたときの相対値で示した。
(実施例10)
[変異酵素 発酵液での反応の効果]
参考例1、参考例2及び参考例3で得られたW/pCADA1からW/pCADA22を3mlのLB培地(Difco Cat.244620)を入れた試験管に植菌し、26℃、200rpmで24時間培養した。得られた培養液1mlを1.5mlチューブに入れ、遠心分離により菌体を集菌した。上清を取り除き得られた菌体に1mlの菌体破砕液(0.1%TritonX−100、0.004%PLP、100mMリン酸ナトリウム緩衝液(pH7.0))を加えた後、菌体を懸濁し、58℃で30分加熱した。
次に参考例4で調製した発酵液Aに100g/Lとなるようにリジン塩酸塩(Wako)を溶解した液をそれぞれ5mlをとり、15mlスクリューキャップつきのPP容器に入れ、0.4%PLP水溶液を50μl、及び上記で調製した菌体破砕液を50μl添加した。これは精製酵素に換算して0.54mg/Lの濃度に相当する活性であった。また、これは、リジン1gに対して5.4Uに相当する活性であった。コントロールにはリジン濃度が100g/Lとなるようにリジン塩酸塩(Wako)をイオン交換水に溶解したものを用いた。
反応は容器を振盪方向に並行、水平に設置し、200rpm、42℃、20時間反応を行った。反応液に0.2M 塩酸を1mL添加して反応を停止した。この反応停止液を水で適当に希釈し、生成した1、5−ペンタメチレンジアミンをHPLCにより定量した。結果を表24に示す。
なお、表24中の数値は濃度であり、コントロール試験区のW/pCADA1の濃度を1としたときの相対値で示した。
次に参考例1、参考例2及び参考例3で得られたW/pCADA1及びW/pCADA23からW/pCADA119を3mlのLB培地(Difco Cat.244620)を入れた試験管に植菌し、IPTG(イソプロピルーβーチオガラクトピラノシド)が0.1mMとなるように添加し、33℃、200rpmで24時間培養した。得られた培養液1mlを1.5mlチューブに入れ、使用するまで−20℃で保存した。
次に参考例4で調製した発酵液Aに10質量%となるようにリジン塩酸塩(Wako)を溶解した液をそれぞれ5mlをとり、15mlスクリューキャップつきのPP容器に入れ、0.4%PLP水溶液を50μl、及び上記で凍らせた培養液を溶解した後、良く攪拌したものを200μl添加した。コントロールにはリジン濃度が10質量%となるようにリジン塩酸塩(Wako)をイオン交換水に溶解したものを用いた。反応は容器を振盪方向に並行、水平に設置し、200rpm、45℃、2時間反応を行った。反応液に2M塩酸を1mL添加して反応を停止した。この反応停止液を水で適当に希釈し、生成した1、5−ペンタメチレンジアミンをHPLCにより定量した。
結果を表25〜29に示す。
なお、表25〜29中の数値は濃度であり、コントロール試験区のW/pCADA1の濃度を1としたときの相対値で示した。
(実施例11)
[高濃度蓄積反応]
300mLのフラスコに、L−リジン塩酸塩を、終濃度が45質量%となるように、およびピリドキサールリン酸を終濃度0.15mMとなるように調製した基質溶液120gを加えた。次に、実施例5に記載のコリネバクテリウム菌を2.5x10^7細胞/mLとなるように添加し、参考例3で調製したW/pCAD21の触媒死菌体を(乾燥菌体重量換算0.0648g、菌体活性164unit/mg乾燥菌体)を添加して42℃、200rpm、24時間反応した。反応収率は99%であった。
(実施例12)
[1、5−ペンタメチレンジイソシアネートの製造]
(リジン発酵液から製造したPDAの精製)
実施例8の表17に示した触媒死菌体を25μL添加した反応液を硫酸でpHを6.0に調整した後、8000rpm、20分の遠心分離により菌体などの沈殿物を除去した。陽イオン交換樹脂(Dowex 50WX8 (H+ 型))を充填したカラムに通液し、陽イオン交換樹脂に1、5−ペンタメチレンジアミンを吸着させた後、0.7M食塩水をカラムに通液して樹脂を充分洗浄して不純物を除去し、吸着した1、5−ペンタメチレンジアミンを6N塩酸で溶出した。そして、この溶出液に30%水酸化ナトリウム溶液を加えてpHを12に調整した。
(精製PDAの濃縮)
分液ロートに1、5−ペンタメチレンジアミン水溶液100質量部をn−ブタノール(抽出溶媒)100質量部とを仕込み、10分間混合し、その後30分間静置した。次いで有機層(1、5−ペンタメチレンジアミンを含むn−ブタノール)を抜き出した。
次いで、温度計、蒸留塔、冷却管および窒素導入管を備えた4つ口フラスコに、有機層の抽出液(1、5−ペンタメチレンジアミンを含むn−ブタノール)100質量部を仕込み、100kPaの減圧下、オイルバス温度120℃として、n−ブタノールを留去させ、純度99.9質量%の1、5−ペンタメチレンジアミンを得た。
(PDIの合成)
電磁誘導撹拌機、自動圧力調整弁、温度計、窒素導入ライン、ホスゲン導入ライン、凝縮器、原料フィードポンプを備え付けたジャケット付き加圧反応器に、オルトジクロロベンゼン2000質量部を仕込んだ。次いで、ホスゲン2300質量部をホスゲン導入ラインから加え、撹拌を開始した。反応器のジャケットには冷水を通し、内温を約10℃に保った。そこへ、ペンタメチレンジアミン400質量部をオルトジクロロベンゼン2600質量部に溶解した溶液を、フィードポンプにて60分かけてフィードし、30℃以下、常圧下で冷ホスゲン化を開始した。フィード終了後、加圧反応器内は淡褐白色スラリー状液となった。
次いで、反応器の内液を徐々に160℃まで昇温しながら、0.25MPaに加圧し、さらに圧力0.25MPa、反応温度160℃で90分間熱ホスゲン化した。なお、熱ホスゲン化の途中で、ホスゲン1100質量部を、さらに添加した。熱ホスゲン化の過程で、加圧反応器内液は、淡褐色澄明溶液となった。熱ホスゲン化終了後、100〜140℃において、窒素ガスを100L/時で通気し、脱ガスした。
次いで、減圧下でオルトジクロルベンゼンを留去した後、同じく減圧下でペンタメチレンジイソシアネートを留去させた。
次いで、留去させたペンタメチレンジイソシアネートを、攪拌機、温度計、還流管、および、窒素導入管を備えた4つ口フラスコに装入し、窒素を導入しながら、常圧下で、190℃、3時間加熱処理を行った。
次いで、加熱処理後のペンタメチレンジイソシアネートを、ガラス製フラスコに装入し、充填物を充填した蒸留管、還流比調節タイマーを装着した蒸留塔、および、冷却器を装備する精留装置を用いて、127〜132℃、2.7KPaの条件下、さらに還流しながら精留し、純度99.8質量%のペンタメチレンジイソシアネートを450質量部得た。
(実施例13)
[ポリイソシアネート組成物の製造]
攪拌機、温度計、還流管、および、窒素導入管を備えた4つ口フラスコに、上記により得られたペンタメチレンジイソシアネートを500質量部、1、3−ブタンジオール(以下、1、3−BGと略する場合がある。)を3.9質量部、2、6−ジ(tert-ブチル)−4−メチルフ
ェノールを0.25質量部、トリス(トリデシル)ホスファイトを0.25質量部装入し、80℃で3時間反応させた。この溶液を60℃に降温した後、トリマー化触媒としてN−(2−ヒドロキシプロピル)−N、N、N−トリメチルアンモニウム−2−エチルヘキサノエートを0.1質量部添加した。1時間反応させた後、o−トルエンスルホンアミドを0.12質量部添加した(イソシアネート基の転化率:10質量%)。得られた反応液を薄膜蒸留装置(真空度0.093KPa、温度150℃)に通液して未反応のペンタメチレンジイソシアネートを除去し、さらに、得られた組成物100質量部に対し、o−トルエンスルホンアミドを0.02質量部添加し、ポリイソシアネート組成物を得た。
このポリイソシアネート組成物のペンタメチレンジイソシアネート濃度は0.4質量%、イソシアネート3量体濃度は46質量%、イソシアネート基濃度は24.0質量%、25℃における粘度は1930mPa・s、色相はAPHA20であった。
なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記特許請求の範囲に含まれる。
本発明の1、5−ペンタメチレンジアミンの製造方法を用いて得られる1、5−ペンタメチレンジアミンは、例えば、バイオマス由来のポリマー原料、農薬、医薬の中間体などの種々の産業分野において、好適に用いることができる。

Claims (1)

  1. リジン脱炭酸反応の減速または停止を防ぐ物質の存在下において、L−リジン及び/またはその塩を、リジン脱炭酸酵素及び/または変異型リジン脱炭酸酵素によって、リジン脱炭酸反応させ、
    前記リジン脱炭酸反応の減速または停止を防ぐ物質が、
    大腸菌、酵母、コリネバクテリウムの培養液、コリネバクテリウムの培養上清、コーンスティープリカー、酵母エキス、糖蜜、ペプトンの炭素源、および、コリネバクテリウムと前記炭素源との混合物
    からなる群から選択される少なくとも1種であり、
    リジン脱炭酸酵素及び/または変異型リジン脱炭酸酵素をリジン1g当たり5unitから165unit使用する、または、リジン1gあたり精製酵素換算で5μgから165μg使用する
    ことを特徴とする、1、5−ペンタメチレンジアミンの製造方法。
JP2013554351A 2012-01-18 2013-01-17 1、5−ペンタメチレンジアミンの製造方法 Active JP5961635B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012008173 2012-01-18
JP2012008173 2012-01-18
PCT/JP2013/050863 WO2013108860A1 (ja) 2012-01-18 2013-01-17 1,5-ペンタメチレンジアミンの製造方法、1,5-ペンタメチレンジイソシアネートの製造方法およびポリイソシアネート組成物の製造方法

Publications (2)

Publication Number Publication Date
JPWO2013108860A1 JPWO2013108860A1 (ja) 2015-05-11
JP5961635B2 true JP5961635B2 (ja) 2016-08-02

Family

ID=48799282

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013554351A Active JP5961635B2 (ja) 2012-01-18 2013-01-17 1、5−ペンタメチレンジアミンの製造方法
JP2013554350A Active JP5961634B2 (ja) 2012-01-18 2013-01-17 変異型リジン脱炭酸酵素、および、1、5−ペンタメチレンジアミンの製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2013554350A Active JP5961634B2 (ja) 2012-01-18 2013-01-17 変異型リジン脱炭酸酵素、および、1、5−ペンタメチレンジアミンの製造方法

Country Status (4)

Country Link
US (1) US9765369B2 (ja)
EP (1) EP2806026B1 (ja)
JP (2) JP5961635B2 (ja)
WO (2) WO2013108860A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9765369B2 (en) 2012-01-18 2017-09-19 Mitsui Chemicals, Inc. Method for producing 1,5-pentamethylenediamine, mutant lysine decarboxylase, method for producing 1,5-pentamethylene diisocyanate and method for producing polyisocyanate composition
JP6460092B2 (ja) * 2014-03-11 2019-01-30 味の素株式会社 熱安定性向上リジン脱炭酸酵素変異体を用いる1,5−ペンタジアミンの製造方法
EP3286273B1 (de) 2015-04-20 2019-07-24 Basf Se Zweikomponentige beschichtungsmassen
KR101791837B1 (ko) * 2015-08-06 2017-10-31 서울대학교산학협력단 라이신 디카르복실라아제의 변이주 개발 방법 및 그의 응용
KR102217093B1 (ko) 2016-10-26 2021-02-17 미쓰이 가가쿠 가부시키가이샤 펜타메틸렌 다이아이소사이아네이트의 제조 방법
EP3562938A4 (en) * 2016-12-30 2020-11-11 Cathay Biotech Inc. LYSINE DECARBOXYLASES WITH CHANGES IN THE LEVELS OF TITRABLE AMINO ACIDS
JP2018177273A (ja) * 2017-04-07 2018-11-15 三井化学株式会社 ペンタメチレンジイソシアネート入り容器、および、ペンタメチレンジイソシアネートの保存方法
CN108795912B (zh) * 2017-05-05 2022-08-02 上海凯赛生物技术股份有限公司 赖氨酸脱羧酶突变体及其应用
CN110546255B (zh) * 2017-05-16 2023-07-04 上海凯赛生物技术股份有限公司 对赖氨酸脱羧酶酶类的修饰
CN111748549B (zh) * 2017-05-16 2022-09-23 中国科学院天津工业生物技术研究所 新的赖氨酸脱羧酶突变体及其应用
JP2019154313A (ja) * 2018-03-13 2019-09-19 三井化学株式会社 リジン脱炭酸酵素、1,5−ペンタメチレンジイソシアネートの製造方法、および、ポリイソシアネート組成物の製造方法
CN108795916B (zh) * 2018-07-16 2020-02-21 南京工业大学 一种赖氨酸脱羧酶突变体、其编码基因及其表达和应用
CN115125229B (zh) * 2021-03-25 2023-11-14 中国科学院过程工程研究所 一种用于合成戊二胺的赖氨酸脱羧酶突变体
US20220356150A1 (en) 2021-04-30 2022-11-10 Evoco Limited Biobased diisocyanates, and process for preparation of same
KR20240000147A (ko) * 2022-06-23 2024-01-02 서울대학교산학협력단 용해도 증대 라이신 디카르복실라아제 변이주 개발 및 그의 응용

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5553394B2 (ja) * 2001-02-01 2014-07-16 東レ株式会社 カダベリンの製造方法
JP4196620B2 (ja) * 2002-04-08 2008-12-17 東レ株式会社 ポリアミド原料用カダベリンの製造方法
JP4356320B2 (ja) * 2003-01-08 2009-11-04 東レ株式会社 カダベリン・ジカルボン酸塩およびポリアミドの製造方法
AU2006214064B2 (en) * 2005-02-18 2012-04-26 J. Craig Venter Institute, Inc. Proteins and nucleic acids from meningitis/sepsis-associated escherichia coli
JP4983861B2 (ja) 2009-06-15 2012-07-25 東レ株式会社 カダベリン・ジカルボン酸塩を原料にしたポリアミド
WO2011108473A1 (ja) 2010-03-01 2011-09-09 三井化学株式会社 1,5-ペンタメチレンジアミンの製造方法、1,5-ペンタメチレンジアミン、1,5-ペンタメチレンジイソシアネート、1,5-ペンタメチレンジイソシアネートの製造方法、ポリイソシアネート組成物、および、ポリウレタン樹脂
JP2011201863A (ja) 2010-03-01 2011-10-13 Mitsui Chemicals Inc ペンタメチレンジイソシアネート、ポリイソシアネート組成物、ペンタメチレンジイソシアネートの製造方法、および、ポリウレタン樹脂
US9765369B2 (en) * 2012-01-18 2017-09-19 Mitsui Chemicals, Inc. Method for producing 1,5-pentamethylenediamine, mutant lysine decarboxylase, method for producing 1,5-pentamethylene diisocyanate and method for producing polyisocyanate composition

Also Published As

Publication number Publication date
EP2806026A4 (en) 2016-02-10
WO2013108860A1 (ja) 2013-07-25
JPWO2013108859A1 (ja) 2015-05-11
EP2806026A1 (en) 2014-11-26
US20150132808A1 (en) 2015-05-14
JP5961634B2 (ja) 2016-08-02
JPWO2013108860A1 (ja) 2015-05-11
EP2806026B1 (en) 2018-12-26
US9765369B2 (en) 2017-09-19
WO2013108859A1 (ja) 2013-07-25

Similar Documents

Publication Publication Date Title
JP5961635B2 (ja) 1、5−ペンタメチレンジアミンの製造方法
JP5700575B2 (ja) 1,5−ペンタメチレンジイソシアネートの製造方法
JP5849088B2 (ja) ペンタメチレンジイソシアネート組成物、ポリイソシアネート変性体組成物、ポリウレタン樹脂およびポリウレア樹脂
JP2011201863A (ja) ペンタメチレンジイソシアネート、ポリイソシアネート組成物、ペンタメチレンジイソシアネートの製造方法、および、ポリウレタン樹脂
JP5899309B2 (ja) 1,5−ペンタメチレンジアミンの製造方法、および、触媒菌体の保存方法
JP5711940B2 (ja) ペンタメチレンジアミンまたはその塩の保存方法
JP5764336B2 (ja) ペンタメチレンジイソシアネートの製造方法
JP5623310B2 (ja) ペンタメチレンジアミンまたはその塩、および、その製造方法
JP2019154313A (ja) リジン脱炭酸酵素、1,5−ペンタメチレンジイソシアネートの製造方法、および、ポリイソシアネート組成物の製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160627

R150 Certificate of patent or registration of utility model

Ref document number: 5961635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250