JP5953432B2 - Copper base alloy - Google Patents

Copper base alloy Download PDF

Info

Publication number
JP5953432B2
JP5953432B2 JP2015521449A JP2015521449A JP5953432B2 JP 5953432 B2 JP5953432 B2 JP 5953432B2 JP 2015521449 A JP2015521449 A JP 2015521449A JP 2015521449 A JP2015521449 A JP 2015521449A JP 5953432 B2 JP5953432 B2 JP 5953432B2
Authority
JP
Japan
Prior art keywords
component
less
resistance
alloy
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015521449A
Other languages
Japanese (ja)
Other versions
JPWO2014196518A1 (en
Inventor
美治 上坂
美治 上坂
伸也 上野
伸也 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAN-ETSU METALS Co.,Ltd.
Original Assignee
SAN-ETSU METALS Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAN-ETSU METALS Co.,Ltd. filed Critical SAN-ETSU METALS Co.,Ltd.
Application granted granted Critical
Publication of JP5953432B2 publication Critical patent/JP5953432B2/en
Publication of JPWO2014196518A1 publication Critical patent/JPWO2014196518A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Domestic Plumbing Installations (AREA)
  • Heat Treatment Of Steel (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

本発明は、銅基合金に関し、特に水栓やバルブ等の水等と接触する部品に好適な、耐脱亜鉛性,耐エロージョン・コロージョン性,耐応力腐食割れ性等に優れた黄銅合金に係る。   The present invention relates to a copper-based alloy, and particularly to a brass alloy excellent in dezincing resistance, erosion / corrosion resistance, stress corrosion cracking resistance, etc., suitable for parts that come into contact with water such as a faucet or a valve. .

銅基合金の中でも青銅合金は鋳造のままで耐脱亜鉛性,耐エロージョン・コロージョン性及び耐応力腐食割れ性に優れるものの、黄銅合金に比較して高価であり、青銅合金の代替可能な黄銅合金に対するニーズが近年高くなっている。
特許文献1に耐食性に優れた合金として、α相とβ相との2相からなる銅合金に少なくとも、Sn0.05〜0.2重量%、Sb,As又はPのいずれか1種又は2種以上0.05〜0.3重量%を含有し、最大浸食深さ200μm以下(JBMA試験)、凝固温度範囲17℃以下である銅合金が開示されている。
しかし、特許文献1に開示されている合金は熱処理を施すことで耐脱亜鉛腐食性を保持することができるものである。
また、蛇口などの流速が速くなる部位に使用する部品では、耐エロ―ジョン・コロージョン性が不十分で、使用できる分野が限られていた。
特許文献2に、質量比で、61.2≦Cu<64.0%、Sn:0.8〜2.0%、Sb:0.04〜0.15%、Al:0.4〜0.7%、Pb:0.5〜3.0%、B:1〜200ppmと残部がZn及び不可避不純物とからなり、さらに質量比でNi:0.2〜1.0%含有させることで熱処理することなく耐脱亜鉛性を向上させ、かつ、マクロ結晶粒の微細化によりISO最大脱亜鉛腐食深さを200μm以下に確保した合金が開示されている。
しかし、特許文献2に開示する合金は、BとFeによる微細化効果でISO最大脱亜鉛腐食深さ200μm以下をクリアしているが、溶湯被覆材を使用しない大気溶解が一般的である砂型鋳造では、添加するBの量が多くBとFeで金属間化合物が生じて、それが研磨性を劣化させる恐れがある。
特に研磨後メッキする水栓金具ではBとFeの金属間化合物の発生は致命的である。
また、ISO最大脱亜鉛腐食深さが200μmというのは、耐脱亜鉛材としての規格値であるが、これは規格下限値というもので、一般的には100μm以下が望まれる。
さらに同公報に開示する銅基合金は、実施例には全てNiが記載されているとおり、実質的にNiが必要元素になっている。
しかし、Niは環境負荷物質で、近々に、水質基準に追加される見込みであることから水栓やバルブに用いる鋳造材にNiを添加することは好ましくない。
Among copper-based alloys, bronze alloys are excellent in dezincing resistance, erosion / corrosion resistance and stress corrosion cracking resistance as cast, but are more expensive than brass alloys and can be used as a substitute for bronze alloys. In recent years, the need for has increased.
As an alloy excellent in corrosion resistance in Patent Document 1, at least one of Sn 0.05 to 0.2% by weight, Sb, As or P, or two of a copper alloy composed of two phases of an α phase and a β phase. A copper alloy containing 0.05 to 0.3% by weight, having a maximum erosion depth of 200 μm or less (JBMA test) and a solidification temperature range of 17 ° C. or less is disclosed.
However, the alloy disclosed in Patent Document 1 can maintain dezincification corrosion resistance by heat treatment.
In addition, the parts used for the part where the flow velocity is high, such as a faucet, have insufficient erosion / corrosion resistance, and the fields that can be used are limited.
In Patent Document 2, in terms of mass ratio, 61.2 ≦ Cu <64.0%, Sn: 0.8-2.0%, Sb: 0.04-0.15%, Al: 0.4-0. 7%, Pb: 0.5 to 3.0%, B: 1 to 200 ppm, the balance is made of Zn and inevitable impurities, and heat treatment is performed by adding Ni: 0.2 to 1.0% by mass ratio. There has been disclosed an alloy in which the dezincing resistance is improved and the ISO maximum dezincification corrosion depth is ensured to 200 μm or less by refining macro crystal grains.
However, although the alloy disclosed in Patent Document 2 has cleared the ISO maximum dezincification corrosion depth of 200 μm or less due to the refinement effect by B and Fe, sand casting is generally used for melting in the air without using a molten metal coating material. Then, the amount of B to be added is large, and an intermetallic compound is formed by B and Fe, which may deteriorate the polishing properties.
In particular, in the faucet fitting plated after polishing, the generation of an intermetallic compound of B and Fe is fatal.
Further, the ISO maximum dezincification corrosion depth of 200 μm is a standard value as a dezincing-resistant material, which is a standard lower limit value, and generally 100 μm or less is desired.
Furthermore, the copper-based alloy disclosed in the publication has substantially Ni as a necessary element as described in the examples.
However, since Ni is an environmentally hazardous substance and is expected to be added to the water quality standard soon, it is not preferable to add Ni to casting materials used for faucets and valves.

日本国特許第3461081号公報Japanese Patent No. 3461081 日本国特開2009−263787号公報Japanese Unexamined Patent Publication No. 2009-263787

本発明は、熱処理することなく耐脱亜鉛性等に優れた黄銅合金からなる銅基合金の提供を目的とする。   An object of this invention is to provide the copper base alloy which consists of a brass alloy excellent in dezincing resistance etc., without heat-processing.

本発明による銅基合金は、熱処理せずに耐脱亜鉛腐食性に優れ、かつ、耐エロ―ジョン・コロージョン性及び耐応力腐食割れ性に優れていて、Pb系の銅基合金とBi系の銅基合金の2つのタイプがあり、まず、Pb系の銅基合金としては、質量%において、Cu:63.5〜69.0%、Sn:1.2〜2.0%、Fe:≦0.15%、Pb:0.1〜2.0%、Al:0.01〜0.2%、Sb:0.06〜0.15%の範囲であり、P成分は、Cu:63.5〜65.0%未満のときはP:0.04〜0.15%,Cu:65.0〜69.0%のときはP:≦0.15%の範囲で任意の添加成分であり、残部がZnと不純物からなることを特徴とする。
本発明の特徴は銅基合金(黄銅)において、水栓金具にとって有害元素となるBやNiを添加せずとも熱処理しないでISO最大脱亜鉛深さ100μm以下という耐脱亜鉛性を保持する点にある。
耐応力腐食割れ性に関しては、鋳造材は結晶の方向性が無いので亀裂が進展しにくいという特徴がある。
The copper-based alloy according to the present invention is excellent in dezincification corrosion resistance without heat treatment, and is excellent in erosion / corrosion resistance and stress corrosion cracking resistance. There are two types of copper-based alloys. First, as a Pb-based copper-based alloy, Cu: 63.5 to 69.0%, Sn: 1.2 to 2.0%, Fe: ≦ 0.15%, Pb: 0.1 to 2.0%, Al: 0.01 to 0.2%, Sb: 0.06 to 0.15%, and P component is Cu: 63. When it is less than 5 to 65.0%, P: 0.04 to 0.15%, Cu: When it is 65.0 to 69.0%, P: ≦ 0.15% The remainder is made of Zn and impurities.
The feature of the present invention is that the copper-based alloy (brass) retains the dezincing resistance of ISO maximum dezincing depth of 100 μm or less without heat treatment without adding B or Ni which are harmful elements to the faucet fitting. is there.
Regarding the stress corrosion cracking resistance, the cast material has a feature that cracks are difficult to progress because there is no crystal orientation.

また、本発明に係る鋳造用に適した銅基合金は、質量%において、Cu:63.5〜69.0%、Sn:1.2〜2.0%、Fe:≦0.15%、Pb:0.1〜2.0%、Al:0.01〜0.2%、Sb:0.06〜0.15%の範囲であり、P成分は、Cu:63.5〜65.0%未満のときはP:0.04〜0.15%,Cu:65.0〜69.0%のときはP:≦0.15%の範囲で任意の添加成分であり、Te:0.01〜0.45%、Se:0.02〜0.45%のうち、少なくとも1種の元素又は/及び、Mg:0.001〜0.2%、Zr:0.005〜0.2%のうち、少なくとも1種の元素を含有し、残部がZnと不純物からなることを特徴とする。   Moreover, the copper base alloy suitable for casting according to the present invention is, in mass%, Cu: 63.5 to 69.0%, Sn: 1.2 to 2.0%, Fe: ≦ 0.15%, Pb: 0.1 to 2.0%, Al: 0.01 to 0.2%, Sb: 0.06 to 0.15%, P component is Cu: 63.5 to 65.0 %: P: 0.04 to 0.15%, Cu: 65.0 to 69.0%, P: ≦ 0.15% is an optional additive component, Te: 0.0. 01 to 0.45%, Se: 0.02 to 0.45%, at least one element or / and Mg: 0.001 to 0.2%, Zr: 0.005 to 0.2% Among them, it contains at least one element and the balance is made of Zn and impurities.

次に、本発明に係るBi系の銅基合金としては、質量%において、Cu:63.5〜69.0%、Sn:1.2〜2.0%、Fe:≦0.15%、Bi:0.5〜1.5%、Al:0.01〜0.2%、Sb:0.06〜0.15%の範囲であり、P成分は、Cu:63.5〜65.0%未満のときはP:0.04〜0.15%,Cu:65.0〜69.0%のときはP:≦0.15%の範囲で任意の添加成分であり、残部がZnと不純物からなることを特徴とする。   Next, as the Bi-based copper-based alloy according to the present invention, in mass%, Cu: 63.5 to 69.0%, Sn: 1.2 to 2.0%, Fe: ≦ 0.15%, Bi: 0.5 to 1.5%, Al: 0.01 to 0.2%, Sb: 0.06 to 0.15%, P component is Cu: 63.5 to 65.0 Is less than%, P: 0.04 to 0.15%, Cu: 65.0 to 69.0%, P: ≤ 0.15% of any additive component, the balance is Zn It consists of impurities.

また、質量%において、Cu:63.5〜69.0%、Sn:1.2〜2.0%、Fe:≦0.15%、Bi:0.5〜1.5%、Al:0.01〜0.2%、Sb:0.06〜0.15%の範囲であり、成分は、Cu:63.5〜65.0%未満のときはP:0.04〜0.15%,Cu:65.0〜69.0%のときはP:≦0.15%の範囲で任意の添加成分であり、Te:0.01〜0.45%、Se:0.02〜0.45%のうち、少なくとも1種の元素又は/及び、Mg:0.001〜0.2%、Zr:0.005〜0.2%のうち、少なくとも1種の元素を含有し、残部がZnと不純物からなることを特徴とする。   Moreover, in mass%, Cu: 63.5-69.0%, Sn: 1.2-2.0%, Fe: ≦ 0.15%, Bi: 0.5-1.5%, Al: 0 0.01% to 0.2%, Sb: 0.06% to 0.15%, and when Cu is less than 63.5% to 65.0%, P: 0.04% to 0.15% , Cu: 65.0 to 69.0%, P: ≦ 0.15% is an optional additive component, Te: 0.01 to 0.45%, Se: 0.02 to 0.05%. 45% of at least one element or / and Mg: 0.001 to 0.2%, Zr: 0.005 to 0.2% of at least one element, with the balance being Zn And impurities.

本発明に係る黄銅合金は、青銅合金の代替としての使用が可能である。
水と接触する用途に用いる合金としては有害な元素であるNiやBを添加することなく熱処理をしないで、ISO最大脱亜鉛腐食深さ100μm以下をクリアすることができる。
そして、耐エロ―ジョン・コロージョン性と耐応力腐食割れ性にも優れる。
The brass alloy according to the present invention can be used as an alternative to a bronze alloy.
An alloy used for contact with water can clear the ISO maximum dezincification corrosion depth of 100 μm or less without heat treatment without adding harmful elements such as Ni and B.
It also has excellent erosion / corrosion resistance and stress corrosion cracking resistance.

評価に用いた銅基合金の成分表及び評価結果を示す。The component table | surface and evaluation result of the copper base alloy used for evaluation are shown. 評価に用いた銅基合金の成分表及び評価結果を示す。The component table | surface and evaluation result of the copper base alloy used for evaluation are shown. サンプル採取図を示す。A sample collection diagram is shown. エロ―ジョン・コロージョンの試験方法を示す。The test method of erosion corrosion is shown.

以下、本発明における銅基合金の成分について説明する。
Cu成分は、63.5〜69.0%の範囲が好ましい。
Cu成分が63.5%未満ではβ相が増え、耐食性が低下する。
Cu成分を増やすと耐脱亜鉛腐食性などの耐食性は向上するが、高価になるのと強度が低下するために好ましくは63.5〜69.0%の範囲である。
Hereinafter, the components of the copper-based alloy in the present invention will be described.
The Cu component is preferably in the range of 63.5 to 69.0%.
If the Cu component is less than 63.5%, the β phase increases and the corrosion resistance decreases.
Increasing the Cu component improves the corrosion resistance such as dezincification corrosion resistance, but it is preferably in the range of 63.5 to 69.0% because it becomes expensive and the strength decreases.

Pbは切削性を向上させるための添加元素であり、本発明においては、必要に応じて、0.1%以上を含有するが、2.0%を超えると、強度が低下する恐れがあるので、2.0%以下とする。
また、被削性向上の観点からはPbの代わりにBiを0.5〜1.5%含有してもよい。
Pb is an additive element for improving the machinability, and in the present invention, if necessary, it contains 0.1% or more, but if it exceeds 2.0%, the strength may decrease. 2.0% or less.
Further, from the viewpoint of improving machinability, 0.5 to 1.5% Bi may be contained instead of Pb.

Snは、耐脱亜鉛性及び耐エロ―ジョン・コロージョン性を確保するために必要な元素である。青銅材並の耐エロ―ジョン・コロージョン性を得るにはSnの含有量は1.2%以上、より好ましくは1.5%以上が必要である。
また、Snの含有量が2.0%を超えると、耐脱亜鉛性は良くても鋳造のままで使用するに際し、機械的性質のうち、伸び値が低下してしまう。伸び値を確保する点から、より好ましくは1.8%以下である。よって、Snの範囲は1.2〜2.0%であり、より好ましくは1.5〜1.8%である。
Sn is an element necessary for ensuring dezincing resistance and erosion / corrosion resistance. In order to obtain the erosion / corrosion resistance equivalent to that of a bronze material, the Sn content needs to be 1.2% or more, more preferably 1.5% or more.
On the other hand, when the Sn content exceeds 2.0%, even if the dezincing resistance is good, the elongation value decreases among the mechanical properties when used as cast. From the viewpoint of securing the elongation value, it is more preferably 1.8% or less. Therefore, the range of Sn is 1.2 to 2.0%, more preferably 1.5 to 1.8%.

FeはPと化合物を形成しやすくPの効果を減ずるので0.15%以下が望ましい。   Fe is preferable to be 0.15% or less because it easily forms a compound with P and reduces the effect of P.

Alは、Pの酸化防止のために含有する。
Pの酸化防止には少なくとも0.01%以上の含有が必要である。
また、Alが0.2%以上では、本成分範囲において耐脱亜鉛性を減じるので、Alの範囲を0.01〜0.2%とした。
耐脱亜鉛性の観点から、より好ましくは0.01〜0.1%である。
また、Alは湯流れ性の改善にも効果があるが、青銅と同等レベルの湯流れ性を保持するには、この程度のAl含有量で十分である。
Al is contained for preventing oxidation of P.
In order to prevent oxidation of P, it is necessary to contain at least 0.01%.
Further, when Al is 0.2% or more, dezincing resistance is reduced in the range of this component, so the Al range is set to 0.01 to 0.2%.
From the viewpoint of dezincing resistance, it is more preferably 0.01 to 0.1%.
Al is also effective in improving the hot water flow, but this level of Al content is sufficient to maintain the same hot water flow as bronze.

Sbは、耐脱亜鉛性を向上させるために含有する。
熱処理しないでISO最大脱亜鉛深さが100μm以下を確保するには、γ相中に0.3%以上含有させる必要がある。
そのためには少なくとも0.06%以上の含有が必要になる。
また、0.15%を超えると脆化するので、Sbの含有範囲は0.06〜0.15%とした。
耐脱亜鉛性と機械的性質の両面から、より好ましくは0.08〜0.13%の範囲である。
Sb is contained in order to improve the dezincing resistance.
In order to ensure that the ISO maximum dezincing depth is 100 μm or less without heat treatment, it is necessary to contain 0.3% or more in the γ phase.
For that purpose, the content of at least 0.06% is necessary.
Moreover, since it will embrittle if it exceeds 0.15%, the content range of Sb was made into 0.06 to 0.15%.
More preferably, it is 0.08 to 0.13% in terms of both dezincing resistance and mechanical properties.

Pは、Sbと共に耐脱亜鉛性を向上させるために含有する。ただし、Cuが65%未満では必須元素だが、Cuが65%以上では任意元素とする。
熱処理しないでISO最大脱亜鉛深さが100μmを確保するためには、Cuが65%未満の場合、少なくとも0.04%以上の含有が必要である。
より好ましくは0.06%以上である。
また、0.15%を超えると鋳造のままでは偏析を生じやすいので0.04〜0.15%の範囲とした。
なお、Cuが65%以上ではPが含まれていなくても耐脱亜鉛性に優れ、0.15%以下の範囲で任意に添加してもよい。
P is contained together with Sb in order to improve the dezincing resistance. However, it is an essential element when Cu is less than 65%, but an optional element when Cu is 65% or more.
In order to ensure that the ISO maximum dezincing depth is 100 μm without heat treatment, when Cu is less than 65%, it is necessary to contain at least 0.04%.
More preferably, it is 0.06% or more.
On the other hand, if it exceeds 0.15%, segregation is likely to occur if it is cast, so the range was 0.04 to 0.15%.
In addition, even if P is not contained when Cu is 65% or more, it is excellent in dezincing resistance, and may be arbitrarily added within a range of 0.15% or less.

Te成分は、切削性が向上するが、0.01%以上で効果があり、添加量相応の効果を得る点、及び経済性の点から添加する場合は0.45%を上限とした。   The Te component improves the machinability, but is effective at 0.01% or more, and when added from the point of obtaining an effect corresponding to the amount added and economical, the upper limit was 0.45%.

Se成分は,切削性が向上するが、材料単価が高価であるため、極力抑える。
また、熱間加工性が悪くなるため0.45%以下が望ましい。
Se成分を添加する場合は、0.02〜0.45%の範囲が好ましい。
The Se component improves machinability, but is suppressed as much as possible because the material unit price is expensive.
Moreover, since hot workability worsens, 0.45% or less is desirable.
When adding Se component, the range of 0.02 to 0.45% is preferable.

Mg成分は、結晶粒微細化による強度向上、湯流れ性向上、脱酸・脱硫効果がある。
溶湯に0.001%以上のMgを含有させると、溶湯中のS成分がMgSの形で除去される。
また、Mgが0.2%を超えると酸化して、溶湯の粘性が高められ、酸化物の巻き込みなどの鋳造欠陥を生じる恐れがある。
よって、Mg成分を添加する場合は0.001〜0.2%の範囲にて効果が認められる。
The Mg component has the effect of improving the strength by refining crystal grains, improving the flowability of hot water, and deoxidizing / desulfurizing effects.
When 0.001% or more of Mg is contained in the molten metal, the S component in the molten metal is removed in the form of MgS.
On the other hand, if Mg exceeds 0.2%, it is oxidized, and the viscosity of the molten metal is increased, which may cause casting defects such as oxide entrainment.
Therefore, when adding the Mg component, an effect is recognized in the range of 0.001 to 0.2%.

Zr成分は、結晶粒の微細化作用がある。
0.005%以上の添加で効果が現れる。
また、Zrは酸素との親和力が強く、0.2%を超えると酸化して、溶湯の粘性が高められ、酸化物の巻き込みなどの鋳造欠陥を生じる恐れがある。
よって、Zrを添加する場合は0.005〜0.2%の範囲である。
The Zr component has a crystal grain refining effect.
The effect appears with addition of 0.005% or more.
Zr has a strong affinity for oxygen, and when it exceeds 0.2%, it oxidizes, increasing the viscosity of the molten metal, and may cause casting defects such as oxide entrainment.
Therefore, when adding Zr, it is 0.005 to 0.2% of range.

供試材として、図1及び図2の表に示すような各種合金組成の溶湯を調整し、約1000℃で図3に示したようなJIS H5120 A号供試材(砂型)に鋳込み冷却(凝固)し、枠バラシを行ってサンプル採取した。
なお、供試材となる鋳造型にはA号,B号等があるが、今回はA号供試材にて確認した。
表中の残部Znには、不可避的な不純物も含まれている。
<評価試験>
(1)耐脱亜鉛試験
図3に示した試験片採取位置の部分を切り出し、ISOに準拠して、試験材を75±3℃のCuCl・2HOの12.7g/l溶液に24時間浸漬し、脱亜鉛腐食深さを測定し、以下の基準により評価した。
脱亜鉛深さ100μm以下のものは合格、脱亜鉛深さが100μmを超えるものは不合格とした。
なお、本評価試験においては、ISOの基準200μm以下よりも厳しく評価した。
(2)引張試験
JIS H5120 A号供試材(砂型)から採取し、機械加工したJIS Z 2201 4号試験片をアムスラー万能試験機にて引張試験を行った。
強度が200MPaを超えたものを〇,200MPa未満のものを×とした。
伸びが15%を超える物を◎、12%を超える物を〇,12%未満のものを×とした。
(3)エロージョン・コロージョン評価試験
図4に示すような試験装置を用いて、試験片表面に試験液を噴出させ、試験片・ノズル間の隙間を流れる試験液の乱れにより発生するせん断力により、強制的にエロ−ジョン・コロージョンを発生させ、その最大腐食摩耗深さと腐食形態を評価した。
・試験液:CuCl・2HO(12.7g/1000ml)
・試験温度:40℃
・流量:0.2l/min
・最大流速:0.62m/sec
・試験時間:7時間
As a test material, melts having various alloy compositions as shown in the tables of FIGS. 1 and 2 were prepared, and poured into a JIS H5120 A test material (sand mold) as shown in FIG. Solidified), and the sample was collected by carrying out frame separation.
In addition, although there exist No. A, No. B, etc. in the casting die used as a test material, it checked with the No. A test material this time.
The balance Zn in the table also contains inevitable impurities.
<Evaluation test>
(1) Dezincing resistance test The test piece sampling position shown in FIG. 3 was cut out, and the test material was added to a 12.7 g / l solution of CuCl 2 .2H 2 O at 75 ± 3 ° C. according to ISO 24. It was immersed for a time, the dezincification corrosion depth was measured, and evaluated according to the following criteria.
Those having a dezincification depth of 100 μm or less were accepted, and those having a dezincification depth exceeding 100 μm were rejected.
In this evaluation test, the evaluation was evaluated more strictly than the ISO standard of 200 μm or less.
(2) Tensile test A JIS Z 2201 No. 4 specimen taken from JIS H5120 A specimen (sand mold) and machined was subjected to a tensile test using an Amsler universal testing machine.
A sample having a strength exceeding 200 MPa was marked with ◯, and a sample having a strength less than 200 MPa was marked with ×.
A product with an elongation exceeding 15% was marked with ◎, a material with elongation exceeding 12% was marked with ○, and a material with elongation less than 12% was marked with ×.
(3) Erosion / corrosion evaluation test Using a test apparatus as shown in FIG. 4, the test liquid is jetted onto the surface of the test piece, and the shear force generated by the disturbance of the test liquid flowing through the gap between the test piece and the nozzle The erosion-corrosion was forcibly generated, and the maximum corrosion wear depth and corrosion form were evaluated.
Test liquid: CuCl 2 · 2H 2 O (12.7 g / 1000 ml)
Test temperature: 40 ° C
・ Flow rate: 0.2 l / min
・ Maximum flow velocity: 0.62 m / sec
・ Test time: 7 hours

評価結果を図1及び図2の表に示す。
強度は、上記の引張試験による引張強度の評価結果を示し、伸びも上記の基準にて評価した。
脱亜鉛深さは、具体的な測定値を示し、単位はμmである。
発明合金の実施例1〜20及び27〜47は、Pb系の黄銅合金を示し、実施例21〜24及び48〜69は、Bi系の黄銅合金を示す。
実施例25,26は、Pを添加しないPb系の合金である。
これらいずれも各成分が所定の範囲に含まれており、熱処理をすることなく、耐脱亜鉛性に優れていた。
実施例47は、Cu成分が69.34%であっても品質目標がクリアーしていることから、Cu成分は69.0%を超えても問題ないと推定される。
また、実施例39はPb成分2.10%でも品質目標がクリアーしているので、Pb成分も2.0%を少し超えても問題がない。
これに対して、比較例101,102は、Cu成分が63.5%よりも少なく、Alが多い目であったので、耐脱亜鉛性に劣っていた。
また、伸びも目標を達しなかった。
特に比較例113は、P,Sbが含まれていなく、耐脱亜鉛性に劣っていた。
比較例103〜107は、Sn成分が2.0%を超えているので、耐脱亜鉛性はよくても、伸びが目標を達成しなかった。
比較例108,109はCu成分が63.5%よりも少なかった、また、110はAlが0.2%よりも高かったことにより耐脱亜鉛性が劣っていた。
比較例111はSnが2%を超えているので、伸びが目標を達成できなかった。
また、比較例112はCuが65%未満でPが入っていないため耐脱亜鉛性が劣っていた。
The evaluation results are shown in the tables of FIGS.
The strength indicates the evaluation result of the tensile strength by the above tensile test, and the elongation is also evaluated based on the above criteria.
Dezincing depth indicates a specific measured value, and its unit is μm.
Inventive alloys Examples 1 to 20 and 27 to 47 show Pb-based brass alloys, and Examples 21 to 24 and 48 to 69 show Bi-based brass alloys.
Examples 25 and 26 are Pb-based alloys to which P is not added.
In any of these, each component was included in a predetermined range, and it was excellent in dezincing resistance without heat treatment.
In Example 47, since the quality target is clear even if the Cu component is 69.34%, it is estimated that there is no problem even if the Cu component exceeds 69.0%.
In Example 39, the quality target was cleared even when the Pb component was 2.10%. Therefore, there is no problem even if the Pb component slightly exceeds 2.0%.
On the other hand, Comparative Examples 101 and 102 were inferior in dezincing resistance because the Cu component was less than 63.5% and Al was more.
Also, the growth did not reach the target.
In particular, Comparative Example 113 did not contain P and Sb, and was inferior in dezincing resistance.
In Comparative Examples 103 to 107, since the Sn component exceeds 2.0%, even though the dezincing resistance is good, the elongation does not reach the target.
In Comparative Examples 108 and 109, the Cu component was less than 63.5%, and 110 was inferior in dezincing resistance because Al was higher than 0.2%.
In Comparative Example 111, Sn exceeded 2%, so the growth could not achieve the target.
Moreover, since the comparative example 112 was less than 65% of Cu and did not contain P, the dezincing resistance was inferior.

次にエロージョン・コロージョン評価試験を行った。
サンプルは、発明合金3,比較例113の合金及び青銅材(CAC406C:Sn:3.67%,Zn:5.76%,Pb:4.20%,残部がCu)も比較のために評価した。
その結果、最大腐食摩耗深さにおいて、発明合金3は66μm,比較例113は700μm,青銅材は63μmであった。
また、腐食形態は、発明合金3が層状であったのに対して、比較例113が環状であった。
なお、青銅材は層状であった。
このことから、本発明に係る黄銅合金は、青銅合金の代替材として充分に使用できることが明らかになった。
Next, an erosion / corrosion evaluation test was conducted.
Samples were also evaluated for comparison, invention alloy 3, alloy of comparative example 113 and bronze material (CAC406C: Sn: 3.67%, Zn: 5.76%, Pb: 4.20%, balance Cu). .
As a result, at the maximum corrosion wear depth, the invention alloy 3 was 66 μm, the comparative example 113 was 700 μm, and the bronze material was 63 μm.
Further, the corrosion form of the invention alloy 3 was laminar, while the comparative example 113 was cyclic.
The bronze material was layered.
From this, it became clear that the brass alloy according to the present invention can be sufficiently used as a substitute for a bronze alloy.

本発明に係る銅基合金は、高い耐脱亜鉛性及び耐エロージョン・コロージョンが要求される水廻り製品等に広く適用できる。
また、鋳造後の熱処理を必要としない点で、従来の黄銅合金の低コスト化に有用である。
The copper-based alloy according to the present invention can be widely applied to water-based products that require high dezincing resistance and erosion / corrosion resistance.
Moreover, it is useful for cost reduction of the conventional brass alloy in that heat treatment after casting is not required.

Claims (4)

質量%において、Cu:63.5〜69.0%、Sn:1.2〜2.0%、Fe:≦0.15%、Pb:0.1〜2.0%、Al:0.01〜0.2%、Sb:0.06〜0.15%の範囲であり、
P成分は、Cu:63.5〜65.0%未満のときはP:0.04〜0.15%,Cu:65.0〜69.0%のときはP:≦0.15%の範囲で任意の添加成分であり、
残部がZnと不純物からなることを特徴とする銅基合金。
In mass%, Cu: 63.5-69.0%, Sn: 1.2-2.0%, Fe: ≦ 0.15%, Pb: 0.1-2.0%, Al: 0.01 -0.2%, Sb: 0.06-0.15% of range,
The P component is P: 0.04 to 0.15% when Cu: 63.5 to less than 65.0%, and P: ≤ 0.15% when Cu: 65.0 to 69.0%. Is an optional additive component in the range,
A copper-base alloy characterized in that the balance consists of Zn and impurities.
質量%において、Cu:63.5〜69.0%、Sn:1.2〜2.0%、Fe:≦0.15%、Pb:0.1〜2.0%、Al:0.01〜0.2%、Sb:0.06〜0.15%の範囲であり、
P成分は、Cu:63.5〜65.0%未満のときはP:0.04〜0.15%,Cu:65.0〜69.0%のときはP:≦0.15%の範囲で任意の添加成分であり、
Te:0.01〜0.45%、Se:0.02〜0.45%のうち、少なくとも1種の元素又は/及び、Mg:0.001〜0.2%、Zr:0.005〜0.2%のうち、少なくとも1種の元素を含有し、残部がZnと不純物からなることを特徴とする銅基合金。
In mass%, Cu: 63.5-69.0%, Sn: 1.2-2.0%, Fe: ≦ 0.15%, Pb: 0.1-2.0%, Al: 0.01 -0.2%, Sb: 0.06-0.15% of range,
The P component is P: 0.04 to 0.15% when Cu: 63.5 to less than 65.0%, and P: ≤ 0.15% when Cu: 65.0 to 69.0%. Is an optional additive component in the range,
Te: 0.01 to 0.45%, Se: 0.02 to 0.45%, at least one element or / and Mg: 0.001 to 0.2%, Zr: 0.005 A copper-based alloy containing 0.2% of at least one element, the balance being Zn and impurities.
質量%において、Cu:63.5〜69.0%、Sn:1.2〜2.0%、Fe:≦0.15%、Bi:0.5〜1.5%、Al:0.01〜0.2%、Sb:0.06〜0.15%の範囲であり、
P成分は、Cu:63.5〜65.0%未満のときはP:0.04〜0.15%,Cu:65.0〜69.0%のときはP:≦0.15%の範囲で任意の添加成分であり、
残部がZnと不純物からなることを特徴とする銅基合金。
In mass%, Cu: 63.5-69.0%, Sn: 1.2-2.0%, Fe: ≦ 0.15%, Bi: 0.5-1.5%, Al: 0.01 -0.2%, Sb: 0.06-0.15% of range,
The P component is P: 0.04 to 0.15% when Cu: 63.5 to less than 65.0%, and P: ≤ 0.15% when Cu: 65.0 to 69.0%. Is an optional additive component in the range,
A copper-base alloy characterized in that the balance consists of Zn and impurities.
質量%において、Cu:63.5〜69.0%、Sn:1.2〜2.0%、Fe:≦0.15%、Bi:0.5〜1.5%、Al:0.01〜0.2%、Sb:0.06〜0.15%の範囲であり、
P成分は、Cu:63.5〜65.0%未満のときはP:0.04〜0.15%,Cu:65.0〜69.0%のときはP:≦0.15%の範囲で任意の添加成分であり、
Te:0.01〜0.45%、Se:0.02〜0.45%のうち、少なくとも1種の元素又は/及び、Mg:0.001〜0.2%、Zr:0.005〜0.2%のうち、少なくとも1種の元素を含有し、残部がZnと不純物からなることを特徴とする銅基合金。
In mass%, Cu: 63.5-69.0%, Sn: 1.2-2.0%, Fe: ≦ 0.15%, Bi: 0.5-1.5%, Al: 0.01 -0.2%, Sb: 0.06-0.15% of range,
The P component is P: 0.04 to 0.15% when Cu: 63.5 to less than 65.0%, and P: ≤ 0.15% when Cu: 65.0 to 69.0%. Is an optional additive component in the range,
Te: 0.01 to 0.45%, Se: 0.02 to 0.45%, at least one element or / and Mg: 0.001 to 0.2%, Zr: 0.005 A copper-based alloy containing 0.2% of at least one element, the balance being Zn and impurities.
JP2015521449A 2013-06-05 2014-06-03 Copper base alloy Active JP5953432B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013118383 2013-06-05
JP2013118383 2013-06-05
PCT/JP2014/064710 WO2014196518A1 (en) 2013-06-05 2014-06-03 Copper-based alloy

Publications (2)

Publication Number Publication Date
JP5953432B2 true JP5953432B2 (en) 2016-07-20
JPWO2014196518A1 JPWO2014196518A1 (en) 2017-02-23

Family

ID=52008159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015521449A Active JP5953432B2 (en) 2013-06-05 2014-06-03 Copper base alloy

Country Status (6)

Country Link
US (1) US20150368759A1 (en)
JP (1) JP5953432B2 (en)
KR (1) KR101852053B1 (en)
CN (1) CN105264101B (en)
DE (1) DE112014002690T5 (en)
WO (1) WO2014196518A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6482530B2 (en) * 2014-03-31 2019-03-13 株式会社栗本鐵工所 Low lead brass alloy for water supply components
JP2016113660A (en) * 2014-12-13 2016-06-23 サンエツ金属株式会社 Copper-based alloy for mold casting excellent in dezincification corrosion resistance
CN109266900A (en) * 2018-12-07 2019-01-25 宁波艾维洁具有限公司 A kind of Anti-dezincificationyellow yellow brass alloy of lead-free corrosion resistant and preparation method thereof
CN112359248A (en) * 2020-09-28 2021-02-12 浙江天马轴承集团有限公司 High-strength lead brass with corrosion resistance and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838500B2 (en) * 1980-09-11 1983-08-23 株式会社 北沢バルブ Dezincification corrosion resistant special brass
JP2005281800A (en) * 2004-03-30 2005-10-13 Kitz Corp Copper-based alloy, and ingot and product using it
WO2006016630A1 (en) * 2004-08-10 2006-02-16 Sanbo Shindo Kogyo Kabushiki Kaisha Cast copper alloy article and method for casting thereof
WO2008081947A1 (en) * 2006-12-28 2008-07-10 Kitz Corporation Lead-free brass alloy with excellent resistance to stress corrosion cracking

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE8800931D0 (en) * 1988-03-16 1988-03-16 Tour & Andersson Ab BRASS ALLOY AND SET TO MAKE IT SAME
JP3461081B2 (en) 1995-04-10 2003-10-27 東陶機器株式会社 Copper alloy for mold casting excellent in corrosion resistance, method for producing the alloy, and faucet using the alloy
JP4294196B2 (en) * 2000-04-14 2009-07-08 Dowaメタルテック株式会社 Copper alloy for connector and manufacturing method thereof
KR101040909B1 (en) * 2004-03-29 2011-06-10 산에츠긴조쿠가부시키가이샤 Brass material
ATE498699T1 (en) * 2005-09-30 2011-03-15 Mitsubishi Shindo Kk MELTED AND SOLID COPPER ALLOY THAT CONTAINS PHOSPHORUS AND ZIRCON
JP5566622B2 (en) 2008-03-31 2014-08-06 株式会社キッツ Cast alloy and wetted parts using the alloy
TW201100564A (en) * 2009-06-26 2011-01-01 Chan Wen Copper Industry Co Ltd Lead free copper zinc alloy
CN101812610B (en) * 2009-11-23 2011-08-31 中南大学 Low-lead and easy-cutting casting brass
JP5591661B2 (en) * 2010-03-25 2014-09-17 サンエツ金属株式会社 Copper-based alloy for die casting with excellent dezincification corrosion resistance
KR101832289B1 (en) * 2011-04-13 2018-02-26 산에츠긴조쿠가부시키가이샤 Copper-based alloy having excellent forgeability, stress corrosion cracking resistance and dezincification corrosion resistance
DE102012002450A1 (en) * 2011-08-13 2013-02-14 Wieland-Werke Ag Use of a copper alloy
CN102312123A (en) * 2011-09-02 2012-01-11 浙江艾迪西流体控制股份有限公司 Brass alloy
WO2013065830A1 (en) * 2011-11-04 2013-05-10 三菱伸銅株式会社 Hot-forged copper alloy article
US20130115128A1 (en) * 2011-11-07 2013-05-09 Nibco Inc. Sulfur-rich corrosion-resistant copper-zinc alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838500B2 (en) * 1980-09-11 1983-08-23 株式会社 北沢バルブ Dezincification corrosion resistant special brass
JP2005281800A (en) * 2004-03-30 2005-10-13 Kitz Corp Copper-based alloy, and ingot and product using it
WO2006016630A1 (en) * 2004-08-10 2006-02-16 Sanbo Shindo Kogyo Kabushiki Kaisha Cast copper alloy article and method for casting thereof
WO2008081947A1 (en) * 2006-12-28 2008-07-10 Kitz Corporation Lead-free brass alloy with excellent resistance to stress corrosion cracking

Also Published As

Publication number Publication date
CN105264101A (en) 2016-01-20
JPWO2014196518A1 (en) 2017-02-23
KR101852053B1 (en) 2018-04-25
US20150368759A1 (en) 2015-12-24
CN105264101B (en) 2017-11-14
WO2014196518A1 (en) 2014-12-11
DE112014002690T5 (en) 2016-02-25
KR20160015252A (en) 2016-02-12

Similar Documents

Publication Publication Date Title
JP6239767B2 (en) Lead-free, high-sulfur and easy-to-cut copper-manganese alloy and method for preparing the same
JP4838859B2 (en) Low migration copper alloy
WO2006016630A1 (en) Cast copper alloy article and method for casting thereof
JP5591661B2 (en) Copper-based alloy for die casting with excellent dezincification corrosion resistance
JP6177441B2 (en) Antibacterial white copper alloy
JP5953432B2 (en) Copper base alloy
JP2014531516A (en) Free-cutting lead-free copper alloy and manufacturing method thereof
JP6359523B2 (en) Antimony-modified low-lead copper alloy
TW201812036A (en) Free cutting copper alloy casting and method for manufacturing the same
WO2013145964A1 (en) Brass alloy for tap water supply member
JP5143948B1 (en) Lead-free brass alloy for hot working
JP6363611B2 (en) White copper alloy with antibacterial properties
US10507520B2 (en) Copper-based alloys, processes for producing the same, and products formed therefrom
JP4522736B2 (en) Copper-base alloy for die casting and ingots and products using this alloy
JPWO2012140977A1 (en) Copper-based alloy with excellent forging, stress corrosion cracking resistance and dezincification corrosion resistance
JP5566622B2 (en) Cast alloy and wetted parts using the alloy
JP2002060868A (en) Lead-free bronze alloy
JP6561116B2 (en) Copper alloy for water supply components
JP3830946B2 (en) Bronze alloy and ingot and wetted parts using the alloy
JP2012241202A (en) Lead-free brass alloy for hot working
KR100834201B1 (en) Copper-base alloy casting with refined crystal grains
JP2016113660A (en) Copper-based alloy for mold casting excellent in dezincification corrosion resistance
JP6000300B2 (en) Lead-free free-cutting bronze alloy for casting
JP3776441B2 (en) Bronze alloy

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160613

R150 Certificate of patent or registration of utility model

Ref document number: 5953432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250