JP2016113660A - Copper-based alloy for mold casting excellent in dezincification corrosion resistance - Google Patents
Copper-based alloy for mold casting excellent in dezincification corrosion resistance Download PDFInfo
- Publication number
- JP2016113660A JP2016113660A JP2014252540A JP2014252540A JP2016113660A JP 2016113660 A JP2016113660 A JP 2016113660A JP 2014252540 A JP2014252540 A JP 2014252540A JP 2014252540 A JP2014252540 A JP 2014252540A JP 2016113660 A JP2016113660 A JP 2016113660A
- Authority
- JP
- Japan
- Prior art keywords
- copper
- corrosion resistance
- based alloy
- component
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
- Forging (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
Description
本発明は、耐脱亜鉛腐食性に優れた銅基合金に関し、特に水栓やバルブなどに最適な、耐食性に優れた金型鋳造用銅基合金及び金型鋳造材の製造方法に係る。 The present invention relates to a copper base alloy excellent in dezincification corrosion resistance, and particularly relates to a copper base alloy for die casting excellent in corrosion resistance and a method for producing a mold casting material, which is optimal for faucets and valves.
耐食性に優れ、金型鋳造にて鋳造割れを抑えた銅基合金として、日本国特許3461081に、組成がSn,Sb,As,P,Pb,Al,Fe,Zn,及びCuである金型鋳造用合金において、各組成分の配合比が、Sn0.05〜0.2重量%、Sb,As又はPのいずれか1種又は2種以上0.05〜0.3重量%、Zn=1、Sn=2、Pb=1、Al=6、Fe=0.9のGuilletの係数により算出される亜鉛当量が35.7〜41.0重量%、残部がCuからなり、β相の面積占有比率を15%以下とした、凝固温度範囲17℃以下であることを特徴とする金型鋳造用合金が開示されている。 As a copper-based alloy that has excellent corrosion resistance and suppresses casting cracks by die casting, Japanese Patent No. 3461081 has a composition of Sn, Sb, As, P, Pb, Al, Fe, Zn, and Cu. In the alloy for alloy, the blending ratio of each component is Sn 0.05 to 0.2% by weight, any one or more of Sb, As or P 0.05 to 0.3% by weight, Zn = 1, Zinc equivalent calculated by Guillet's coefficient of Sn = 2, Pb = 1, Al = 6, Fe = 0.9 is 35.7-41.0% by weight, the balance is made of Cu, and the area occupation ratio of β phase An alloy for die casting characterized by having a solidification temperature range of 17 ° C. or lower with a content of 15% or lower is disclosed.
しかし、同公報に開示する銅基合金では、Snが0.2重量%以上で、(凝固温度範囲が17℃を越えると)金型鋳造した場合に凝固割れを起こすと明記されている。
ところで、黄銅材の製造には一般的にバージン材のみならず、リサイクル原料も使用されているが、一般快削黄銅のリサイクル原料中にはSnが最大で0.8%程度含有している場合がある。
従って、同公報に開示する銅基合金では、リサイクル原料を少量しか使えず、電気銅や電気亜鉛などのバージン材料の使用比率が高くなる結果、コストアップになる。
また、Sn成分は耐エロージョン・コロージョン性も改善する作用があることから、ある程度Snの添加を許容した金型鋳造用合金の開発が要望されている。
However, in the copper-based alloy disclosed in the publication, it is specified that Sn is 0.2% by weight or more and solidification cracking occurs when the mold is cast (when the solidification temperature range exceeds 17 ° C.).
By the way, in general, not only virgin materials but also recycled materials are used for the production of brass materials. However, when Sn is contained in the recycled materials of general free-cutting brass at most about 0.8% There is.
Therefore, the copper-based alloy disclosed in this publication can use only a small amount of recycled raw material, and the usage rate of virgin materials such as electrolytic copper and electrolytic zinc increases, resulting in an increase in cost.
Further, since the Sn component has an effect of improving erosion resistance and corrosion resistance, development of an alloy for die casting that allows the addition of Sn to some extent is desired.
本発明は、金型鋳造時に凝固割れを起こさない耐食性金型鋳造用銅基合金からなる鋳造材の製造方法を提供することを目的とする。 An object of this invention is to provide the manufacturing method of the cast material which consists of a copper base alloy for corrosion-resistant metal mold | die casting which does not raise | generate a solidification crack at the time of metal mold | die casting.
本発明に用いる銅基合金は、耐脱亜鉛腐食性及び金型鋳造性に優れていて、低Pbの銅基合金である。
本合金は質量%において、Cu:65.1〜69%、Pb:0.05〜0.25%、Al:0.2〜0.7%、Mn:0.2〜0.7%、Si:0.2〜0.7%、Fe:0.06〜0.2%、Sn:0.1〜2.0%と、Sb、As及びPのいずれか1種又は2種以上の合計:0.03〜0.2%及び残部がZnと不純物からなる銅基合金を用いたことを特徴とする。
本発明の特徴は銅基合金(黄銅)において,Sn成分の添加により耐食性を改善しつつ、Fe成分やSi成分の組み合せの最適化により鋳造性を改善した点にある。
The copper base alloy used in the present invention is excellent in dezincification corrosion resistance and mold castability, and is a low Pb copper base alloy.
This alloy is, in mass%, Cu: 65.1 to 69%, Pb: 0.05 to 0.25%, Al: 0.2 to 0.7%, Mn: 0.2 to 0.7%, Si : 0.2-0.7%, Fe: 0.06-0.2%, Sn: 0.1-2.0%, and the total of any one or more of Sb, As and P: A copper base alloy comprising 0.03 to 0.2% and the balance of Zn and impurities is used.
The feature of the present invention lies in that in a copper base alloy (brass), the castability is improved by optimizing the combination of the Fe component and the Si component while improving the corrosion resistance by adding the Sn component.
また、本発明に用いる金型鋳造用銅基合金は、質量%において、Cu:65.1〜69%、Pb:0.05〜0.25%、Al:0.2〜0.7%、Mn:0.2〜0.7%、Si:0.2〜0.7%、Fe:0.06〜0.2%、Sn:0.1〜2.0%と、Sb、As及びPのいずれか1種又は2種以上の合計:0.03〜0.2%更に、Te:0.01〜0.45%、Se:0.02〜0.45%のうち、少なくとも1種の元素を含有し、残部がZnと不純物からなることを特徴とする。 Moreover, the copper base alloy for die casting used in the present invention is, in mass%, Cu: 65.1 to 69%, Pb: 0.05 to 0.25%, Al: 0.2 to 0.7%, Mn: 0.2-0.7%, Si: 0.2-0.7%, Fe: 0.06-0.2%, Sn: 0.1-2.0%, Sb, As and P Any one or two or more of total: 0.03 to 0.2%, Te: 0.01 to 0.45%, Se: 0.02 to 0.45%, at least one of It contains an element, and the balance consists of Zn and impurities.
また、本発明に用いる金型鋳造用銅基合金は、質量%において、Cu:65.1〜69%、Pb:0.05〜0.25%、Al:0.2〜0.7%、Mn:0.2〜0.7%、Si:0.2〜0.5%、Fe:0.06〜0.2%、Sn:0.1〜2.0%と、Sb、As,又はPのいずれか1種又は2種以上の合計:0.03〜0.2%更に、Te:0.01〜0.45%、Se:0.02〜0.45%のうち、少なくとも1種の元素又は/及び、Mg:0.001〜0.2%、Zr:0.005〜0.2%のうち、少なくとも1種の元素を含有し、残部がZnと不純物からなることを特徴とする。 Moreover, the copper base alloy for die casting used in the present invention is, in mass%, Cu: 65.1 to 69%, Pb: 0.05 to 0.25%, Al: 0.2 to 0.7%, Mn: 0.2 to 0.7%, Si: 0.2 to 0.5%, Fe: 0.06 to 0.2%, Sn: 0.1 to 2.0%, Sb, As, or Total of any one or more of P: 0.03 to 0.2%, Te: 0.01 to 0.45%, Se: at least one of 0.02 to 0.45% And / or Mg: 0.001 to 0.2%, Zr: 0.005 to 0.2%, at least one element is contained, and the balance is composed of Zn and impurities. To do.
本発明において上記合金はさらにB成分を3〜15ppm添加されているのが好ましい。
本発明は、本合金を用いて金型鋳造後に450〜550℃で30分以上3時間以内保持して、β相の面積占有比率を15%以下にする。
In the present invention, the above alloy is preferably further added with 3 to 15 ppm of B component.
In the present invention, after die casting using this alloy, it is held at 450 to 550 ° C. for 30 minutes or more and 3 hours or less, so that the β phase area occupation ratio is 15% or less.
本発明に係る銅基合金は、金型鋳造にて鋳造割れの発生を抑えることができ、耐脱亜鉛腐食性にも優れる。 The copper-based alloy according to the present invention can suppress the occurrence of casting cracks in die casting, and is excellent in dezincification corrosion resistance.
以下、本発明に用いた銅基合金の成分について説明する。
Cu成分は、65.1〜69%の範囲が好ましい。
Cu成分が65%未満ではβ相が増え、耐食性が低下する。
Cu成分を増やすと耐脱亜鉛腐食性等の耐食性は向上するが高価になるために好ましくは65.1〜69%の範囲である。
Hereinafter, the components of the copper base alloy used in the present invention will be described.
The Cu component is preferably in the range of 65.1 to 69%.
If the Cu component is less than 65%, the β phase increases and the corrosion resistance decreases.
Increasing the Cu component improves corrosion resistance such as dezincification corrosion resistance, but becomes expensive, so the content is preferably in the range of 65.1 to 69%.
Pbは被削性を向上させるための添加元素であり、本発明においては必要に応じて、0.05%以上を添加するが、0.25%を超えると、鉛の溶出値が高くなるので、0.25%以下とする。 Pb is an additive element for improving machinability. In the present invention, 0.05% or more is added as necessary, but if it exceeds 0.25%, the elution value of lead increases. , 0.25% or less.
Sn成分は、前述したように鋳造時に凝固割れを起こしやすい。銅基合金を金型鋳造に使用する場合は、一般にSn成分を0.2%以下に設定しなければならないとされていた。
本発明では、Sn:0.05〜2.0%の範囲にて鋳造割れを防止できる。
また、耐脱亜鉛性を付与するには、Snが0.1%以上必要である。
As described above, the Sn component is liable to cause solidification cracking during casting. In the case of using a copper base alloy for die casting, it was generally said that the Sn component had to be set to 0.2% or less.
In the present invention, casting cracks can be prevented in the range of Sn: 0.05 to 2.0%.
Moreover, in order to provide dezincing resistance, 0.1% or more of Sn is necessary.
Fe成分は、結晶の微細化を促進し、鋳造時の割れを抑え、鋳造性が向上する。
Fe成分は、0.06〜0.2%の範囲がよい。
Fe成分をこの範囲に制御するとSnの添加による鋳造割れを抑える。
特にFe:0.06〜0.1%の範囲ではSnを2.0%まで多くしても鋳造割れが起きない。
The Fe component promotes refinement of crystals, suppresses cracking during casting, and improves castability.
The Fe component is preferably in the range of 0.06 to 0.2%.
When the Fe component is controlled within this range, casting cracks due to the addition of Sn are suppressed.
In particular, in the range of Fe: 0.06 to 0.1%, casting crack does not occur even if Sn is increased to 2.0%.
Al成分は、湯流れ性を向上させるが、多いと耐脱亜鉛腐食性が低下するので、0.2〜0.7%の範囲、好ましくは、0.2〜0.5%の範囲がよい。 The Al component improves the hot water flowability, but if it is too much, the resistance to dezincification decreases, so the range is 0.2 to 0.7%, preferably 0.2 to 0.5%. .
Si成分も鋳造性の改善に寄与し、結晶の微細化を促進し、鋳造時の凝固割れを抑え、鋳造性が向上する。
特に、Siを0.2%以上添加すると、その効果が大きく、Sn:0.05〜2.0%の範囲にて鋳造割れを防止できることが明らかになった。
特に、従来はSnの添加量を0.20%以下に抑えるのが好ましいと言われていたのに本発明では、Sn:0.21〜2.0%の範囲でも充分に鋳造性を確保できる。
ただし、Siは亜鉛当量が10と大きく、量が多いとβ相が多くなって耐脱亜鉛腐食性を損ねるので、Siの上限は0.7%とした。
Si component also contributes to improvement of castability, promotes refinement of crystals, suppresses solidification cracking during casting, and improves castability.
In particular, when 0.2% or more of Si was added, the effect was great, and it became clear that casting cracks could be prevented in the range of Sn: 0.05 to 2.0%.
In particular, it has been said that the amount of Sn added is preferably 0.20% or less in the past, but in the present invention, sufficient castability can be secured even in the range of Sn: 0.21 to 2.0%. .
However, Si has a large zinc equivalent of 10, and if the amount is large, the β phase increases and the dezincification corrosion resistance is impaired. Therefore, the upper limit of Si is set to 0.7%.
Mn成分は、マトリックスを強化するがFeと結びついて硬い金属間化合物を生成し、被削性を損なうので、0.2〜0.7%の範囲とした。 The Mn component strengthens the matrix but combines with Fe to form a hard intermetallic compound and impair the machinability, so the content was made 0.2 to 0.7%.
Sb成分は耐食性を向上させるため0.03%以上添加するとよいが、0.2%を超えると凝固ワレを起こしやすいので、0.2%以下とした。
なお、Sbの代わりにSbと同様な作用をするAs又はPを0.05〜0.2%添加してもよいし、これらを組み合わせて添加してもよい。
組み合せて添加する場合には合計の上限は0.3%である。
The Sb component is preferably added in an amount of 0.03% or more in order to improve the corrosion resistance. However, if it exceeds 0.2%, it is liable to cause coagulation cracking.
In addition, 0.05% to 0.2% of As or P that acts in the same manner as Sb may be added instead of Sb, or these may be added in combination.
When adding in combination, the upper limit of the total is 0.3%.
Te成分は、切削性が向上するが、0.01%以上で効果があり、添加量相応の効果を得る点、及び経済性の点から0.45%を上限とした。 The Te component improves the machinability, but is effective at 0.01% or more, and the upper limit is set to 0.45% from the viewpoint of obtaining an effect corresponding to the addition amount and economical efficiency.
Se成分は、切削性が向上するが、材料単価が高価であるため、極力抑える。
また、熱間加工性が悪くなるので0.45%以下が望ましい。
Se成分を添加する場合は、0.02〜0.45%の範囲が好ましい。
The Se component improves machinability, but is suppressed as much as possible because the material unit price is expensive.
Moreover, since hot workability worsens, 0.45% or less is desirable.
When adding Se component, the range of 0.02 to 0.45% is preferable.
Mg成分は、結晶微細化による強度向上、湯流れ性向上、脱酸・脱硫効果がある。
溶湯に0.001%以上のMgを含有させると、溶湯中のS成分がMgSの形で除去される。
また、Mgが0.2%を超えると酸化して、溶湯の粘性が高められ、酸化物の巻き込みなどの鋳造欠陥を生じる恐れがある。
よって、Mg成分は0.001〜0.2%の範囲にて効果が認められる。
The Mg component has an effect of improving strength by crystal refining, improving hot water flow, and deoxidizing / desulfurizing effects.
When 0.001% or more of Mg is contained in the molten metal, the S component in the molten metal is removed in the form of MgS.
On the other hand, if Mg exceeds 0.2%, it is oxidized, and the viscosity of the molten metal is increased, which may cause casting defects such as oxide entrainment.
Therefore, the Mg component has an effect in the range of 0.001 to 0.2%.
Zr成分は、結晶粒の微細化作用がある。
0.005%以上の添加で効果が現れる。
また、Zrは酸素との親和力が強く、0.2%を超えると酸化して、溶湯の粘性が高められ、酸化物の巻き込みなどの鋳造欠陥を生じる恐れがある。
The Zr component has a crystal grain refining effect.
The effect appears with addition of 0.005% or more.
Zr has a strong affinity for oxygen, and when it exceeds 0.2%, it oxidizes, increasing the viscosity of the molten metal, and may cause casting defects such as oxide entrainment.
次に熱処理について説明する。
本発明合金は、鋳放し状態では、α+βの2相組織となるが、450〜550℃の熱処理によって、β相が縮小し、耐食性が増加する。
また、熱処理時間は、30分未満ではβ相が減少しにくいため30分以上保持する必要がある。
また、3時間を越えても熱処理効果が変わらないため、30分以上、3時間以内とする。
Next, heat treatment will be described.
The alloy of the present invention has an α + β two-phase structure in an as-cast state, but the β phase is reduced by heat treatment at 450 to 550 ° C., and the corrosion resistance is increased.
In addition, if the heat treatment time is less than 30 minutes, it is difficult to reduce the β phase, so it is necessary to keep it for 30 minutes or more.
Moreover, since the heat treatment effect does not change even if it exceeds 3 hours, it is set to 30 minutes or more and 3 hours or less.
銅基合金として、図1に示すような各種合金組成の溶湯を調整し、下記のような評価試験を実施した。
その結果を図2の表を示す。
<評価試験>
(1)鋳造割れ試験
鋳造割れ性を両端拘束試験法により評価した。
使用した金型の形状を図3に示す。
金型の材質としてはベリリウム銅合金を用いた。
図3において中央部に断熱材1を設けて、中央部の冷却が両端拘束部2より遅れるようにした。
拘束距離Lは150mmで断熱材1の長さは100mmとした。
試験は、拘束部が急冷されて両端が拘束され、発生した凝固収縮力により、最終凝固部となる試験片中央部で割れが生じるかどうか調べることにより判定した。
評価としては、中央部に割れが生じないものを○、部分的に割れが認められたが破断しなかったものを△、中央部で破断したものを×とした。
(2)耐脱亜鉛試験
鋳造割れ試験で評価したテストピースを470〜550℃で3時間熱処理した後、ISO法に準拠して、試験材を75±3℃のCuCl2・2H2Oの12.7g/l溶液に24時間浸漬し、脱亜鉛腐食深さを測定し、以下の基準により評価した。
脱亜鉛深さ100μm以下のものは合格(○)、脱亜鉛深さが100μmを超えるものは不合格(×)とした。
As the copper-based alloy, melts having various alloy compositions as shown in FIG. 1 were prepared, and the following evaluation tests were performed.
The result is shown in the table of FIG.
<Evaluation test>
(1) Casting crack test Cast cracking property was evaluated by a both-end restraint test method.
The shape of the mold used is shown in FIG.
A beryllium copper alloy was used as the material of the mold.
In FIG. 3, the heat insulating material 1 is provided at the center so that the cooling at the center is delayed from the both-end restraining portion 2.
The restraint distance L was 150 mm, and the length of the heat insulating material 1 was 100 mm.
In the test, the both ends were constrained by quenching the constrained portion, and it was determined by examining whether the generated solidification shrinkage force caused cracks in the central portion of the test piece serving as the final solidified portion.
In the evaluation, a case where no crack occurred in the central portion was indicated as “◯”, a portion where cracks were partially observed but not broken was indicated as “Δ”, and a case where fracture occurred at the central portion was indicated as “X”.
(2) Dezincing resistance test The test piece evaluated in the casting crack test was heat-treated at 470 to 550 ° C. for 3 hours, and then the test material was made of CuCl 2 · 2H 2 O 12 at 75 ± 3 ° C. according to the ISO method. It was immersed in a 7 g / l solution for 24 hours, the dezincification corrosion depth was measured, and evaluated according to the following criteria.
Those having a dezincification depth of 100 μm or less were accepted (◯), and those having a dezincification depth exceeding 100 μm were rejected (x).
<考察>
実施例合金No.2(Sn:約0.4%)とNo.4(Sn:約0.2%)とNo.5(Sn:約1.5%)とNo.6(Sn:約1.0%)とNo.7(Sn:約0.8%)に対応したSnの添加量と比較例No.21のSn:0.08%について、熱処理後の組織写真を図4〜図6に示す。
470℃と550℃で、それぞれ3時間熱処理した結果、No.21だけがβ相が多量に残留している。
他の合金はβ相が殆ど消失している。
このβ相は耐脱亜鉛性に劣ることが知られている。
図7に脱亜鉛試験後の組織写真を示す。
No.5、No.6、No.7は470℃で3時間熱処理した後、脱亜鉛試験をしたものである。
脱亜鉛深さは、No.5(Sn:約1.5%)が60μm、No.6(Sn:約1.0%)が48μm、No.7(Sn:約0.8%)が36μmとそれぞれ100μm以下であり、耐脱亜鉛性に優れている。
また、No.2(Sn:約0.4%)、No.4(Sn:約0.2%)とNo.21は550℃で3時間熱処理した後、脱亜鉛試験したものである。
脱亜鉛深さはNo.2が16μm、No.4が12μmとそれぞれ100μm以下であるが、No.21に当たるSn:0.08%は、100μm以上になっており、全体的に脱亜鉛腐食を起こしている。
このことから、Snが0.1%未満の時、熱処理を行なっても耐脱亜鉛性を保持することができない。
また、比較例のNo.23が鋳造割れを起こす。
以上から、Snは0.1%以上2%以下が良い。また、Sbは、0.02%では耐食性が悪く、0.2%を超えると鋳造割れを起こすので、Sbの範囲は、0.03%以上0.2%以下が良い。
<Discussion>
Example Alloy No. 2 (Sn: about 0.4%) and No. 2 4 (Sn: about 0.2%) and No. 4 5 (Sn: about 1.5%) and No. 6 (Sn: about 1.0%) and No. 6 No. 7 (Sn: about 0.8%) and the amount of Sn added and Comparative Example No. With respect to Sn of 21: 0.08%, structural photographs after heat treatment are shown in FIGS.
As a result of heat treatment at 470 ° C. and 550 ° C. for 3 hours, No. Only 21 has a large amount of β phase remaining.
Other alloys have almost lost the β phase.
This β phase is known to be inferior in dezincing resistance.
FIG. 7 shows a structure photograph after the dezincing test.
No. 5, no. 6, no. 7 shows a dezincing test after heat treatment at 470 ° C. for 3 hours.
The dezincing depth is no. 5 (Sn: about 1.5%) is 60 μm, No. 5 6 (Sn: about 1.0%) is 48 μm, no. 7 (Sn: about 0.8%) is 36 μm and 100 μm or less, respectively, and is excellent in dezincing resistance.
No. 2 (Sn: about 0.4%), No. 2 4 (Sn: about 0.2%) and No. 4 No. 21 was subjected to a dezincing test after heat treatment at 550 ° C. for 3 hours.
The dezincing depth is No. 2 is 16 μm. 4 is 12 μm and 100 μm or less, respectively. Sn: 0.08% corresponding to 21 is 100 μm or more, and dezincification corrosion occurs as a whole.
Therefore, when Sn is less than 0.1%, dezincing resistance cannot be maintained even if heat treatment is performed.
Moreover, No. of the comparative example. 23 causes casting cracks.
From the above, Sn is preferably 0.1% or more and 2% or less. Further, if Sb is 0.02%, the corrosion resistance is poor, and if it exceeds 0.2%, casting cracks occur. Therefore, the range of Sb is preferably 0.03% or more and 0.2% or less.
1 断熱材
2 両端拘束部
1 Thermal insulation material 2 Both ends restraint part
Claims (4)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014252540A JP2016113660A (en) | 2014-12-13 | 2014-12-13 | Copper-based alloy for mold casting excellent in dezincification corrosion resistance |
TW103144278A TWI622657B (en) | 2014-12-13 | 2014-12-18 | Copper-based alloy for mold casting excellent in dezincification resistance |
CN201510009330.1A CN105821239B (en) | 2014-12-13 | 2015-01-08 | The manufacture method for the metal mould casting forging piece being made up of acid bronze alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014252540A JP2016113660A (en) | 2014-12-13 | 2014-12-13 | Copper-based alloy for mold casting excellent in dezincification corrosion resistance |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016113660A true JP2016113660A (en) | 2016-06-23 |
Family
ID=56140974
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014252540A Pending JP2016113660A (en) | 2014-12-13 | 2014-12-13 | Copper-based alloy for mold casting excellent in dezincification corrosion resistance |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2016113660A (en) |
CN (1) | CN105821239B (en) |
TW (1) | TWI622657B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109266900A (en) * | 2018-12-07 | 2019-01-25 | 宁波艾维洁具有限公司 | A kind of Anti-dezincificationyellow yellow brass alloy of lead-free corrosion resistant and preparation method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004244672A (en) * | 2003-02-13 | 2004-09-02 | Dowa Mining Co Ltd | Copper-base alloy with excellent dezincification resistance |
CN101440443A (en) * | 2008-12-10 | 2009-05-27 | 宁波博威集团有限公司 | Dezincification corrosion resistant low-stibium aluminum yellow brass alloy and manufacturing method thereof |
EP2743360B2 (en) * | 2012-02-01 | 2021-06-23 | Toto Ltd. | Brass with excellent corrosion resistance |
DE102013003817A1 (en) * | 2013-03-07 | 2014-09-11 | Grohe Ag | Copper-zinc alloy for a sanitary fitting and method for its production |
JP5953432B2 (en) * | 2013-06-05 | 2016-07-20 | サンエツ金属株式会社 | Copper base alloy |
-
2014
- 2014-12-13 JP JP2014252540A patent/JP2016113660A/en active Pending
- 2014-12-18 TW TW103144278A patent/TWI622657B/en active
-
2015
- 2015-01-08 CN CN201510009330.1A patent/CN105821239B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
TW201621057A (en) | 2016-06-16 |
CN105821239A (en) | 2016-08-03 |
TWI622657B (en) | 2018-05-01 |
CN105821239B (en) | 2018-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5591661B2 (en) | Copper-based alloy for die casting with excellent dezincification corrosion resistance | |
JP6493473B2 (en) | Brass with excellent corrosion resistance | |
JP5454719B2 (en) | Lead-free free-cutting brass with excellent castability | |
JP3966896B2 (en) | Brass | |
US8580191B2 (en) | Brass alloys having superior stress corrosion resistance and manufacturing method thereof | |
US2336512A (en) | Aluminum base alloy | |
JP4813814B2 (en) | Cu-Ni-Si based copper alloy and method for producing the same | |
JP2010242184A (en) | Lead-free, free-machining brass excellent in castability and corrosion resistance | |
JP5143948B1 (en) | Lead-free brass alloy for hot working | |
JP5642603B2 (en) | Lead-free free-cutting brass alloy for casting | |
JP5953432B2 (en) | Copper base alloy | |
JP2007107062A (en) | Cu-ni-si-based copper alloy for electronic material | |
JP2011214095A (en) | Lead-free free-machining bronze casting alloy | |
TWI452153B (en) | Excellent lead-free quick-brushed brass | |
JP2016113660A (en) | Copper-based alloy for mold casting excellent in dezincification corrosion resistance | |
JP5513230B2 (en) | Copper-base alloy for casting | |
JP2009041088A (en) | Lead-free free-cutting brass with excellent castability | |
JP2012241202A (en) | Lead-free brass alloy for hot working | |
WO2015137048A1 (en) | Lead-free brass material and instrument for water supply | |
JP6000300B2 (en) | Lead-free free-cutting bronze alloy for casting | |
JPH09176762A (en) | Copper base alloy for casting excellent in corrosion resistance and production of casting using the same | |
KR20240085465A (en) | Low silicon-based lead-free brass alloy with excellent machinability | |
JPH11131157A (en) | Apparatus concerning to warm water, electric and machine parts and parts for ship using copper base alloy excellent in corrosion resistance and hot workability |