WO2015137048A1 - Lead-free brass material and instrument for water supply - Google Patents

Lead-free brass material and instrument for water supply Download PDF

Info

Publication number
WO2015137048A1
WO2015137048A1 PCT/JP2015/054100 JP2015054100W WO2015137048A1 WO 2015137048 A1 WO2015137048 A1 WO 2015137048A1 JP 2015054100 W JP2015054100 W JP 2015054100W WO 2015137048 A1 WO2015137048 A1 WO 2015137048A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
mass
brass material
content
bismuth
Prior art date
Application number
PCT/JP2015/054100
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 宏昌
継志 伊藤
文康 石黒
佐藤 浩司
Original Assignee
株式会社Lixil
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Lixil filed Critical 株式会社Lixil
Publication of WO2015137048A1 publication Critical patent/WO2015137048A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent

Definitions

  • the present invention relates to a lead-less brass material and a water supply device.
  • brass-based alloys are often used for water supply appliances, and some of these alloys contain lead (Pb).
  • Pb lead
  • lead has been used as a material useful for reducing nests generated during casting and improving cutting workability. Therefore, if the brass material simply does not contain lead or lead is reduced, the desired characteristics cannot be satisfied.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide an alloy material capable of simultaneously satisfying characteristics such as cutting workability, castability, and corrosion resistance.
  • the lead-less brass material according to an aspect of the present invention includes copper, zinc, bismuth, selenium, and silicon.
  • This lead-less brass material has a selenium content of 0.04 to 0.58 mass%.
  • the castability can be improved while maintaining the machinability to some extent.
  • lead-free may include not only the case where lead is not completely contained or the case where it is slightly contained as an impurity, but also the case where the lead content is reduced as compared with the conventional case.
  • the bismuth content may be 0.59 to 2.44% by mass, and the silicon content may be 0.30 to 1.68% by mass. Thereby, corrosion resistance can be improved, maintaining cutting workability to some extent.
  • Another aspect of the present invention is also a lead-less brass material.
  • This leadless brass material contains copper, zinc, bismuth, selenium and silicon, the selenium content is 0.04 to 0.58% by mass, and the bismuth content is 0.76 to 1.72% by mass.
  • the silicon content is 0.53 to 1.00% by mass.
  • cutting workability, castability and corrosion resistance can be achieved at a higher level.
  • Still another embodiment of the present invention is also a lead-less brass material.
  • This lead-less brass material is a lead-less brass material containing copper, zinc, bismuth, selenium and silicon, and has a selenium content of 0.04 to 0.15 mass% and a bismuth content of 0. It is 76 to 1.00% by mass, and the silicon content is 0.53 to 1.00% by mass.
  • the material cost can be reduced while achieving both higher machinability, castability and corrosion resistance.
  • the lead content may be less than 0.25% by mass. Thereby, it becomes easy to use for water appliances, such as a faucet metal fitting and a water pipe.
  • the lead content is preferably less than 0.15% by weight, more preferably less than 0.10% by weight, and even more preferably less than 0.05% by weight.
  • Another aspect of the present invention is a water supply device.
  • This water supply device is manufactured using the above lead-less brass material.
  • an alloy material that can simultaneously achieve characteristics such as cutting workability, castability, and corrosion resistance.
  • FIG. 2A is a diagram showing a cross-sectional photograph of a test piece with good corrosion resistance by an evaluation test
  • FIG. 2B is a diagram showing a cross-sectional photograph of a test piece with poor corrosion resistance by an evaluation test.
  • FIG. 3A is an image showing the distribution of copper (Cu) in a lead-less brass material that is one of the examples
  • FIG. 3B is zinc (1) in the lead-less brass material that is one of the examples. It is an image which shows distribution of Zn).
  • FIG. 4A is an image showing the distribution of tin (Sn) in a lead-less brass material that is one of the examples, and FIG.
  • FIG. 4B is a bismuth in a lead-less brass material that is one of the examples. It is an image which shows distribution of Bi).
  • FIG. 5A is an image showing the distribution of selenium (Se) in a lead-less brass material which is one of the examples
  • FIG. 5B is a diagram showing silicon (1) in the lead-less brass material which is one of the examples. It is an image which shows distribution of Si).
  • Ingots made of Comparative Examples 1 to 20 and Examples 1 to 45 showing the components of the additive elements shown in Tables 1 and 2 were produced by a general method. Then, using the ingots of each comparative example and each example, a machinability evaluation test, a castability evaluation test, and a dezincification corrosion resistance evaluation test were performed.
  • the machinability index of 90 or more is indicated by ⁇ , 80 or more and less than 90 by ⁇ , and less than 80 by x.
  • FIG. 1 is a plan view of a both-end restraint test mold used for castability evaluation.
  • This metal mold has a rectangular central mold 11 provided at the center and a pair of rectangular constraining molds 12a and 12b provided at both ends.
  • the central mold 11 and the constraining molds 12a and 12b are made of S45C. These are combined together and fixed to each other by a bolt (not shown) to form a mold.
  • a square recess 13 is formed in the center of the central mold 11. Further, the central mold 11 is formed with a groove 14 that communicates with the recess 13 and extends in the width direction. The recess 13 and the groove 14 have the same depth. The recess 13 is filled with a heat insulating material 16 made of casting sand and wax except for a portion 15 communicating with the groove 14.
  • the central mold 11 is formed with a groove 17 communicating with the groove 14 and the portion 15.
  • the constraining dies 12a and 12b are formed with triangular recesses 18a and 18b communicating with the ends of the groove 14, the portion 15 and the groove 17, respectively.
  • the depths of the grooves 17 and the recesses 18a and 18b are also the same as the recesses 13 and the grooves 14.
  • a double arrow-shaped cavity is formed by the groove 14, the portion 15, the groove 17, and the recesses 18a and 18b.
  • the molten alloy 19 according to the example and the comparative example was poured into the cavity of this mold.
  • the recesses 18a and 18b are restrained, and a solidification contraction force is generated.
  • the central portion of the molten metal 19 in the cavity is delayed by the heat insulating material 16 as compared with the recesses 18a and 18b and becomes a final solidified portion, and the solidification shrinkage force is concentrated. Castability was evaluated by the presence or absence and degree of cracking at the central portion.
  • FIG. 2A is a diagram showing a cross-sectional photograph of a test piece with good corrosion resistance by an evaluation test
  • FIG. 2B is a diagram showing a cross-sectional photograph of a test piece with poor corrosion resistance by an evaluation test.
  • FIG. 3A is an image showing the distribution of copper (Cu) in a lead-less brass material that is one of the examples
  • FIG. 3B is zinc (1) in the lead-less brass material that is one of the examples. It is an image which shows distribution of Zn).
  • FIG. 4A is an image showing the distribution of tin (Sn) in a lead-less brass material that is one of the examples
  • FIG. 4B is a bismuth in a lead-less brass material that is one of the examples. It is an image which shows distribution of Bi).
  • FIG. 3A is an image showing the distribution of copper (Cu) in a lead-less brass material that is one of the examples
  • FIG. 3B is zinc (1) in the lead-less brass material that is one of the examples. It is an image which shows distribution of Zn).
  • FIG. 4A is an image showing the distribution of tin (Sn) in a lead-less brass material that is one of the examples
  • FIG. 4B is a bismuth in a lead-less brass material that
  • FIG. 5A is an image showing the distribution of selenium (Se) in a lead-less brass material which is one of the examples
  • FIG. 5B is a diagram showing silicon (1) in the lead-less brass material which is one of the examples. It is an image which shows distribution of Si).
  • FIGS. 3A to 5B is an image of the same region of the sample.
  • a white (bright) region indicates that the concentration of the corresponding element is relatively high
  • a black (dark) region indicates that the concentration of the corresponding element is relatively low.
  • the white areas shown in FIGS. 3A and 3B indicate that a large amount of copper and zinc are present.
  • a region surrounded by a dotted line in FIG. 3A is a slightly darker region than other white regions.
  • the area surrounded by the dotted line in FIG. 3B corresponding to the area surrounded by the dotted line in FIG. 3A is a brighter area than the other white areas. That is, a region surrounded by a dotted line is a ⁇ phase having a relatively large amount of zinc in the brass alloy, and other white regions are an ⁇ phase having a relatively large amount of copper.
  • the distribution of tin shown in FIG. 4A and the distribution of silicon shown in FIG. 5B are often present in the ⁇ phase as shown by the white area surrounded by a dotted line. Recognize.
  • the distribution of bismuth shown in FIG. 4 (b) and the distribution of selenium shown in FIG. 5 (a) are often present in black regions other than the ⁇ phase and ⁇ phase shown in FIG. 3 (a) and FIG. 3 (b). You can see that
  • Comparative Examples 15 to 19 in which both bismuth and silicon are added there are some which have improved machinability as compared with Comparative Examples 13 and 14 in which only silicon is added. Sex is getting worse. Further, when Comparative Examples 20 to 24 in which both bismuth and selenium are added are seen, although the machinability is improved, the corrosion resistance tends to be poor.
  • the present inventors have conceived that selenium is further added.
  • the leadless brass materials according to Examples 1 to 45 include copper, zinc, bismuth, selenium, and silicon.
  • tin, aluminum (Al), and other impurities may be included as appropriate.
  • the lead-less brass material according to the present embodiment preferably has a selenium content of 0.04 to 0.58 mass%. As shown in Comparative Example 25, when the selenium content is about 0.02% by mass, improvement in cutting workability is not observed. As shown in Examples 1 to 45, the bismuth content is preferably 0.59 to 2.44 mass%, and the silicon content is preferably 0.30 to 1.68 mass%. Thereby, corrosion resistance can be improved, maintaining cutting workability to some extent.
  • Examples 12 to 45 when the bismuth content is 0.76% by mass or more, the machinability is further improved. As shown in Examples 1 to 43, when the bismuth content is 1.72% by mass or less, the castability is improved.
  • the corrosion resistance is further improved when the silicon content is 0.53% by mass or more.
  • the machinability is further improved. improves.
  • the selenium content is 0.04 to 0.58 mass% and the bismuth content is 0.76 to 1.72 mass%.
  • silicon content is 0.53 to 1.00% by mass, cutting workability, castability and corrosion resistance can be achieved at a higher level.
  • the selenium content is 0.04 to 0.15 mass%
  • the bismuth content is 0.76 to 1.00 mass%
  • silicon By making the content of 0.53 to 1.00% by mass, it is possible to reduce material costs while at the same time achieving higher levels of cutting workability, castability, and corrosion resistance.
  • the lead content in the lead-less brass material according to the present embodiment is preferably less than 0.25% by mass. Thereby, it becomes easy to use for water appliances, such as a faucet metal fitting and a water pipe.
  • the lead content is preferably less than 0.15% by weight, more preferably less than 0.10% by weight, and even more preferably less than 0.05% by weight.
  • a water supply device (water faucet) was manufactured by casting using a lead-less brass material containing each element at a rate as shown in each of the above examples. Specifically, in the first step, the materials were prepared so that each faucet fitting was a component of the examples shown in Table 2. Next, in the second step, molding was performed by casting. Then, in the third step, the obtained molded product was cut, and in the fourth step, the product was completed. In this way, even if a water supply device having a complicated internal shape and a non-monotonous external shape is manufactured by casting using the leadless brass material according to the present embodiment, there is no problem due to casting, and cutting is easy. You can get water supplies.
  • the present invention can be used for water appliances such as faucet fittings.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Domestic Plumbing Installations (AREA)

Abstract

The present invention relates to a lead-free brass material and an instrument for water supply, and provides an alloy material which has achieved a good balance among characteristics such as cutting workability, castability and corrosion resistance. The composition of this alloy material, which is a lead-free brass material, contains selenium in an amount of 0.04-0.58% by mass. In addition, this lead-free brass material contains bismuth in an amount of 0.59-2.44% by mass. It is preferable that this lead-free brass material contains silicon in an amount of 0.30-1.68% by mass.

Description

鉛レス黄銅材料および水道用器具Lead-free brass material and water supply equipment
 本発明は、鉛レス黄銅材料および水道用器具に関する。 The present invention relates to a lead-less brass material and a water supply device.
 従来、水道用器具には黄銅系の合金が多く用いられており、このような合金の中には鉛(Pb)を含むものがある。鉛を含む合金を用いて製造された水道用器具は、合金から鉛が溶出し飲料水等を介して人体へ摂取されるおそれが否定できない。そのため、近年、規制等により鉛の低減化や鉛を含まない材料への切替えが強化されつつある。一方、鉛は、鋳造の際に発生する巣の低減や切削加工性の向上に役立つ材料として用いられていた。そのため、単に鉛を入れない、または鉛を低減したといった黄銅材料だと、所望の特性を満足できない。 Conventionally, brass-based alloys are often used for water supply appliances, and some of these alloys contain lead (Pb). There is an undeniable risk that water supply equipment manufactured using an alloy containing lead may be infused into the human body through drinking water or the like when lead is eluted from the alloy. Therefore, in recent years, regulations and the like have been strengthening the reduction of lead and the switching to materials that do not contain lead. On the other hand, lead has been used as a material useful for reducing nests generated during casting and improving cutting workability. Therefore, if the brass material simply does not contain lead or lead is reduced, the desired characteristics cannot be satisfied.
 そこで、鉛のかわりにビスマス(Bi)を添加して切削加工性を改善したとされる無鉛黄銅合金が考案されている(例えば、特許文献1参照)。 Therefore, a lead-free brass alloy has been devised that bismuth (Bi) is added instead of lead to improve the machinability (see, for example, Patent Document 1).
特許第3335002号公報Japanese Patent No. 3335002
 しかしながら、上述の合金では切削加工性以外の鋳造性や耐食性について更なる改善の余地がある。 However, the above-described alloys have room for further improvement in castability and corrosion resistance other than machinability.
 本発明はこうした状況に鑑みてなされており、その目的とするところは、切削加工性や鋳造性、耐食性等の特性を両立し得る合金材料を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide an alloy material capable of simultaneously satisfying characteristics such as cutting workability, castability, and corrosion resistance.
 上記課題を解決するために、本発明のある態様の鉛レス黄銅材料は、銅、亜鉛、ビスマス、セレン及びシリコンを含む。この鉛レス黄銅材料は、セレンの含有量が0.04~0.58質量%である。 In order to solve the above problems, the lead-less brass material according to an aspect of the present invention includes copper, zinc, bismuth, selenium, and silicon. This lead-less brass material has a selenium content of 0.04 to 0.58 mass%.
 この態様によると、切削加工性をある程度維持しつつ鋳造性を向上できる。なお、鉛レスとは、鉛を完全に含まない場合や不純物として僅かに含む場合だけでなく、従来よりも鉛の含有量を低減した場合も含み得る。 According to this aspect, the castability can be improved while maintaining the machinability to some extent. In addition, lead-free may include not only the case where lead is not completely contained or the case where it is slightly contained as an impurity, but also the case where the lead content is reduced as compared with the conventional case.
 ビスマスの含有量が0.59~2.44質量%であり、シリコンの含有量が0.30~1.68質量%であってもよい。これにより、切削加工性をある程度維持しつつ耐食性を向上できる。 The bismuth content may be 0.59 to 2.44% by mass, and the silicon content may be 0.30 to 1.68% by mass. Thereby, corrosion resistance can be improved, maintaining cutting workability to some extent.
 本発明の別の態様もまた、鉛レス黄銅材料である。この鉛レス黄銅材料は、銅、亜鉛、ビスマス、セレン及びシリコンを含み、セレンの含有量が0.04~0.58質量%であり、ビスマスの含有量が0.76~1.72質量%であり、シリコンの含有量が0.53~1.00質量%である。 Another aspect of the present invention is also a lead-less brass material. This leadless brass material contains copper, zinc, bismuth, selenium and silicon, the selenium content is 0.04 to 0.58% by mass, and the bismuth content is 0.76 to 1.72% by mass. The silicon content is 0.53 to 1.00% by mass.
 この態様によると、切削加工性、鋳造性、耐食性をより高いレベルで両立し得る。 According to this aspect, cutting workability, castability and corrosion resistance can be achieved at a higher level.
 本発明のさらに別の態様もまた、鉛レス黄銅材料である。この鉛レス黄銅材料は、銅、亜鉛、ビスマス、セレン及びシリコンを含む鉛レス黄銅材料であって、セレンの含有量が0.04~0.15質量%であり、ビスマスの含有量が0.76~1.00質量%であり、シリコンの含有量が0.53~1.00質量%である。 Still another embodiment of the present invention is also a lead-less brass material. This lead-less brass material is a lead-less brass material containing copper, zinc, bismuth, selenium and silicon, and has a selenium content of 0.04 to 0.15 mass% and a bismuth content of 0. It is 76 to 1.00% by mass, and the silicon content is 0.53 to 1.00% by mass.
 この態様によると、切削加工性、鋳造性、耐食性をより高いレベルで両立しつつ、材料コストを低減できる。 According to this aspect, the material cost can be reduced while achieving both higher machinability, castability and corrosion resistance.
 鉛の含有量が0.25質量%未満であってもよい。これにより、水栓金具や水道管等の水道用器具へ用いやすくなる。鉛の含有量は、好ましくは、0.15質量%未満、より好ましくは、0.10質量%未満、更により好ましくは0.05質量%未満である。 The lead content may be less than 0.25% by mass. Thereby, it becomes easy to use for water appliances, such as a faucet metal fitting and a water pipe. The lead content is preferably less than 0.15% by weight, more preferably less than 0.10% by weight, and even more preferably less than 0.05% by weight.
 本発明の他の態様は水道用器具である。この水道用器具は、上述の鉛レス黄銅材料を用いて製造されている。 Another aspect of the present invention is a water supply device. This water supply device is manufactured using the above lead-less brass material.
 この態様によると、内部形状が複雑で外部形状も単調でない水道用器具を製造しても不具合がなく、また切削加工も容易な水道用器具を得られる。 According to this aspect, it is possible to obtain a water supply device that is free from defects even if a water supply device having a complicated internal shape and a non-monotonous external shape is manufactured and that is easy to cut.
 本発明によれば、切削加工性や鋳造性、耐食性等の特性を両立し得る合金材料を提供することができる。 According to the present invention, it is possible to provide an alloy material that can simultaneously achieve characteristics such as cutting workability, castability, and corrosion resistance.
鋳造性の評価に用いた両端拘束試験用金型の平面図である。It is a top view of the metal mold | die for a both-ends restraint test used for castability evaluation. 図2(a)は、評価試験による耐食性が良好な試験片の断面写真を示す図、図2(b)は、評価試験による耐食性が悪い試験片の断面写真を示す図である。FIG. 2A is a diagram showing a cross-sectional photograph of a test piece with good corrosion resistance by an evaluation test, and FIG. 2B is a diagram showing a cross-sectional photograph of a test piece with poor corrosion resistance by an evaluation test. 図3(a)は、実施例の1つである鉛レス黄銅材料における銅(Cu)の分布を示す画像、図3(b)は、実施例の1つである鉛レス黄銅材料における亜鉛(Zn)の分布を示す画像である。FIG. 3A is an image showing the distribution of copper (Cu) in a lead-less brass material that is one of the examples, and FIG. 3B is zinc (1) in the lead-less brass material that is one of the examples. It is an image which shows distribution of Zn). 図4(a)は、実施例の1つである鉛レス黄銅材料におけるスズ(Sn)の分布を示す画像、図4(b)は、実施例の1つである鉛レス黄銅材料におけるビスマス(Bi)の分布を示す画像である。FIG. 4A is an image showing the distribution of tin (Sn) in a lead-less brass material that is one of the examples, and FIG. 4B is a bismuth in a lead-less brass material that is one of the examples. It is an image which shows distribution of Bi). 図5(a)は、実施例の1つである鉛レス黄銅材料におけるセレン(Se)の分布を示す画像、図5(b)は、実施例の1つである鉛レス黄銅材料におけるシリコン(Si)の分布を示す画像である。FIG. 5A is an image showing the distribution of selenium (Se) in a lead-less brass material which is one of the examples, and FIG. 5B is a diagram showing silicon (1) in the lead-less brass material which is one of the examples. It is an image which shows distribution of Si).
 以下、図面や表を参照しながら、本発明を実施するための形態について各試験に基づいて詳細に説明する。なお、以下に述べる構成は例示であり、本発明の範囲を何ら限定するものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail based on each test with reference to the drawings and tables. In addition, the structure described below is an illustration and does not limit the scope of the present invention at all.
 表1及び表2に添加元素の成分を示す比較例1~20及び実施例1~45からなる鋳塊を一般的な方法で作製した。そして、各比較例および各実施例の鋳塊を用いて、切削加工性評価試験、鋳造性の評価試験、耐脱亜鉛腐食性評価試験を行った。 Ingots made of Comparative Examples 1 to 20 and Examples 1 to 45 showing the components of the additive elements shown in Tables 1 and 2 were produced by a general method. Then, using the ingots of each comparative example and each example, a machinability evaluation test, a castability evaluation test, and a dezincification corrosion resistance evaluation test were performed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (切削加工性評価試験)
 鋳塊から加工した直径26mmの棒材を用いて、外周を下記の条件で切削加工した場合の切削加工性を評価した。条件は、切削速度:150m/min、送り量:0.2mm/rev、切り込み量:2mmである。評価方法は、切削加工時の抵抗値を測定し、黄銅(鉛を0.5~3.0質量%程度含有)の鋳物であるCAC203を基準(切削加工性指数100)に、下記式を用いて切削加工性指数を算出した。
 切削加工性指数=(CAC203の抵抗値/各棒材の抵抗値)×100
(Machinability evaluation test)
Using a rod with a diameter of 26 mm machined from the ingot, the machinability when the outer circumference was machined under the following conditions was evaluated. The conditions are cutting speed: 150 m / min, feed amount: 0.2 mm / rev, and cutting amount: 2 mm. The evaluation method is to measure the resistance value at the time of cutting and use the following formula based on CAC203 which is a cast of brass (containing about 0.5 to 3.0% by mass of lead) (cutting workability index 100). The machinability index was calculated.
Machinability index = (resistance value of CAC203 / resistance value of each bar) × 100
 表1及び表2の切削加工性については、切削加工性指数が90以上を○、80以上90未満を△、80未満を×としている。 Regarding the machinability of Table 1 and Table 2, the machinability index of 90 or more is indicated by ◯, 80 or more and less than 90 by Δ, and less than 80 by x.
 (鋳造性の評価)
 鋳造性を矢印拘束試験法により評価した。図1は、鋳造性の評価に用いた両端拘束試験用金型の平面図である。この試験法では、図1に示す両端拘束試験用金型を用いた。この金型は、中央に設けられる矩形の中央型11と、両端に設けられる一対の矩形の拘束型12a、12bとを有している。これら中央型11及び拘束型12a、12bはS45Cからなる。これらは組み合わせられた状態で図示しないボルトによって互いに固定され、金型とされる。
(Castability evaluation)
Castability was evaluated by the arrow restraint test method. FIG. 1 is a plan view of a both-end restraint test mold used for castability evaluation. In this test method, a die for both ends restraint test shown in FIG. 1 was used. This metal mold has a rectangular central mold 11 provided at the center and a pair of rectangular constraining molds 12a and 12b provided at both ends. The central mold 11 and the constraining molds 12a and 12b are made of S45C. These are combined together and fixed to each other by a bolt (not shown) to form a mold.
 中央型11の中央には正方形状の凹部13が形成されている。また、中央型11には、凹部13と連通しつつ、幅方向に延びる溝14が形成されている。凹部13と溝14とは同一の深さを有している。凹部13内には、溝14と連通する部分15を除き、鋳砂とワックスとからなる断熱材16が充填されている。 A square recess 13 is formed in the center of the central mold 11. Further, the central mold 11 is formed with a groove 14 that communicates with the recess 13 and extends in the width direction. The recess 13 and the groove 14 have the same depth. The recess 13 is filled with a heat insulating material 16 made of casting sand and wax except for a portion 15 communicating with the groove 14.
 中央型11には、溝14及び部分15と連通する溝17が形成されている。拘束型12a、12bには、それぞれ溝14、部分15及び溝17の端部と連通する三角形の凹部18a、18bが形成されている。溝17及び凹部18a、18bの深さも凹部13及び溝14と同一である。溝14、部分15、溝17及び凹部18a、18bによって両矢印形状のキャビティが形成されている。 The central mold 11 is formed with a groove 17 communicating with the groove 14 and the portion 15. The constraining dies 12a and 12b are formed with triangular recesses 18a and 18b communicating with the ends of the groove 14, the portion 15 and the groove 17, respectively. The depths of the grooves 17 and the recesses 18a and 18b are also the same as the recesses 13 and the grooves 14. A double arrow-shaped cavity is formed by the groove 14, the portion 15, the groove 17, and the recesses 18a and 18b.
 この金型のキャビティ内に実施例及び比較例に係る合金の溶湯19を注いだ。キャビティ内の溶湯19は、冷却され、凝固していく過程において、凹部18a、18bが拘束され、凝固収縮力が発生する。キャビティ内の溶湯19の中央部分は、断熱材16によって凹部18a、18bに比べて冷却が遅れて最終凝固部となり、凝固収縮力が集中する。この中央部分での割れの有無や程度により鋳造性を評価した。 The molten alloy 19 according to the example and the comparative example was poured into the cavity of this mold. In the process in which the molten metal 19 in the cavity is cooled and solidified, the recesses 18a and 18b are restrained, and a solidification contraction force is generated. The central portion of the molten metal 19 in the cavity is delayed by the heat insulating material 16 as compared with the recesses 18a and 18b and becomes a final solidified portion, and the solidification shrinkage force is concentrated. Castability was evaluated by the presence or absence and degree of cracking at the central portion.
 表1及び表2の鋳造性については、溝14、部分15及び溝17から形成されている直線状のキャビティ(凹部18a、18bは含まない。)の長さが200mm以上でも割れがない場合を○、200mm以上では割れがあるが150mmでは割れがない場合を△、150mmで割れがある場合を×としている。 Regarding the castability of Table 1 and Table 2, the case where there is no crack even when the length of the linear cavity (not including the recesses 18a and 18b) formed from the groove 14, the portion 15 and the groove 17 is 200 mm or more. ○, a case where there is a crack at 200 mm or more but no crack at 150 mm is Δ, and a case where there is a crack at 150 mm is x.
 なお、表1や表2に示す判定結果は、3つの試験で全て○の場合が「A」判定、3つの試験で1つだけ△で残りが○の場合が「B」判定、3つの試験で1つでも×がある場合または△が2つ以上ある場合が「C」判定である。 The judgment results shown in Table 1 and Table 2 are “A” judgments when all three tests are “good”, and “B” judgments are made when only one “△” and three others are “good”. The case where there is at least one x or the case where there are two or more Δs is “C” determination.
 (耐脱亜鉛腐食性評価試験)
 各鋳塊から作製した試験片を用い、日本伸銅協会技術標準(JBMA T303)に基づき、耐脱亜鉛腐食性評価試験を行った。図2(a)は、評価試験による耐食性が良好な試験片の断面写真を示す図、図2(b)は、評価試験による耐食性が悪い試験片の断面写真を示す図である。
(Dezincification corrosion resistance evaluation test)
A test piece prepared from each ingot was used to perform a dezincification corrosion resistance evaluation test based on the Japan Copper and Brass Association Technical Standard (JBMA T303). FIG. 2A is a diagram showing a cross-sectional photograph of a test piece with good corrosion resistance by an evaluation test, and FIG. 2B is a diagram showing a cross-sectional photograph of a test piece with poor corrosion resistance by an evaluation test.
 表1及び表2の耐食性については、平均脱亜鉛深さが50μm未満の場合を○、平均脱亜鉛深さが50μm以上100μm未満の場合を△、平均脱亜鉛深さが100μm以上の場合を×としている。 Regarding the corrosion resistance of Tables 1 and 2, the case where the average dezincification depth is less than 50 μm is indicated by ○, the case where the average dezincification depth is 50 μm or more and less than 100 μm, Δ, and the case where the average dezincification depth is 100 μm or more × It is said.
 (元素分布)
 次に、本実施の形態の一例である実施例38に係る鉛レス黄銅材料の元素分布をEPMA(Electron Probe Micro Analyser)を用いて測定した。図3(a)は、実施例の1つである鉛レス黄銅材料における銅(Cu)の分布を示す画像、図3(b)は、実施例の1つである鉛レス黄銅材料における亜鉛(Zn)の分布を示す画像である。図4(a)は、実施例の1つである鉛レス黄銅材料におけるスズ(Sn)の分布を示す画像、図4(b)は、実施例の1つである鉛レス黄銅材料におけるビスマス(Bi)の分布を示す画像である。図5(a)は、実施例の1つである鉛レス黄銅材料におけるセレン(Se)の分布を示す画像、図5(b)は、実施例の1つである鉛レス黄銅材料におけるシリコン(Si)の分布を示す画像である。なお、図3(a)~図5(b)に示す各画像は、試料の同一領域を撮像したものである。
(Element distribution)
Next, the element distribution of the lead-less brass material according to Example 38, which is an example of the present embodiment, was measured using an EPMA (Electron Probe Micro Analyzer). FIG. 3A is an image showing the distribution of copper (Cu) in a lead-less brass material that is one of the examples, and FIG. 3B is zinc (1) in the lead-less brass material that is one of the examples. It is an image which shows distribution of Zn). FIG. 4A is an image showing the distribution of tin (Sn) in a lead-less brass material that is one of the examples, and FIG. 4B is a bismuth in a lead-less brass material that is one of the examples. It is an image which shows distribution of Bi). FIG. 5A is an image showing the distribution of selenium (Se) in a lead-less brass material which is one of the examples, and FIG. 5B is a diagram showing silicon (1) in the lead-less brass material which is one of the examples. It is an image which shows distribution of Si). Each of the images shown in FIGS. 3A to 5B is an image of the same region of the sample.
 各図において、白い(明るい)領域は該当元素の濃度が相対的に高いことを示し、黒い(暗い)領域は該当元素の濃度が相対的に低いことを示す。例えば、図3(a)、図3(b)に示す白い領域は、銅と亜鉛が多く存在していることを示す。特に、図3(a)における点線で囲まれた領域は、他の白い領域と比較してわずかに暗い領域となっている。一方、図3(a)における点線で囲まれた領域に対応する図3(b)における点線で囲まれた領域は、他の白い領域よりも更に明るい領域となっている。つまり、点線で囲まれた領域は、黄銅合金において相対的に亜鉛が多いβ相であり、それ以外の白い領域は相対的に銅が多いα相である。 In each figure, a white (bright) region indicates that the concentration of the corresponding element is relatively high, and a black (dark) region indicates that the concentration of the corresponding element is relatively low. For example, the white areas shown in FIGS. 3A and 3B indicate that a large amount of copper and zinc are present. In particular, a region surrounded by a dotted line in FIG. 3A is a slightly darker region than other white regions. On the other hand, the area surrounded by the dotted line in FIG. 3B corresponding to the area surrounded by the dotted line in FIG. 3A is a brighter area than the other white areas. That is, a region surrounded by a dotted line is a β phase having a relatively large amount of zinc in the brass alloy, and other white regions are an α phase having a relatively large amount of copper.
 また、図4(a)に示すスズの分布や図5(b)に示すシリコンの分布は、点線で囲まれている白い領域が示すように、前述のβ相に多く存在していることがわかる。一方、図4(b)に示すビスマスの分布や図5(a)に示すセレンの分布は、図3(a)や図3(b)に示すα相やβ相以外の黒い領域に多く存在していることがわかる。 In addition, the distribution of tin shown in FIG. 4A and the distribution of silicon shown in FIG. 5B are often present in the β phase as shown by the white area surrounded by a dotted line. Recognize. On the other hand, the distribution of bismuth shown in FIG. 4 (b) and the distribution of selenium shown in FIG. 5 (a) are often present in black regions other than the α phase and β phase shown in FIG. 3 (a) and FIG. 3 (b). You can see that
 (添加元素による性能の相違)
 次に、表1や表2に示す各比較例や各実施例の試験結果に基づき、黄銅に添加する元素(特にビスマス、シリコン、セレン)が各特性に与える影響について定性的に説明する。表3は、添加元素の組合せによる性能の相違を相対的に示したものである。
(Difference in performance due to additive elements)
Next, based on the test results of the comparative examples and examples shown in Tables 1 and 2, the influence of elements (particularly bismuth, silicon, selenium) added to brass on each property will be qualitatively described. Table 3 relatively shows the difference in performance depending on the combination of additive elements.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 例えば、鉛の代替材料として用いられることがあるビスマスが添加された比較例8~12では、切削加工性は良好であるが、鋳造割れや耐食性はよくない。これは、鉛に比べてビスマスは鋳造時の巣を埋める性能が低く、残存した鋳造時の巣が鋳造割れの起点となると考えられる。 For example, in Comparative Examples 8 to 12 to which bismuth, which is sometimes used as an alternative material for lead, is added, the machinability is good, but the casting crack and the corrosion resistance are not good. This is because bismuth has a lower ability to fill the nest at the time of casting than lead, and the remaining nest at the time of casting becomes the starting point of the casting crack.
 また、シリコンが添加された比較例13,14では、鋳造性や耐食性は良好であるが、切削加工性が悪化していることがわかる。これは、図5(b)に示すように、シリコンが相対的に亜鉛が多いβ相に多く存在し、β相の腐食を防ぐためと考えられる。また、シリコンの添加により強度が向上し、鋳造割れが発生しにくくなる一方、切削加工性は悪化したと考えられる。 Further, in Comparative Examples 13 and 14 to which silicon was added, it was found that the castability and corrosion resistance were good, but the machinability was deteriorated. As shown in FIG. 5B, this is presumably because silicon is present in a large amount in the β phase, which is relatively rich in zinc, and prevents corrosion of the β phase. In addition, the addition of silicon increases the strength and makes it difficult for casting cracks to occur, while the machinability is thought to have deteriorated.
 そこで、ビスマスとシリコンの両者が添加された比較例15~19を見ると、シリコンのみを添加した比較例13,14と比較して、切削加工性が良化したものもあるが、一方で鋳造性が悪化している。また、ビスマスとセレンの両者が添加された比較例20~24を見ると、切削加工性は良化するものの、耐食性が悪い傾向が見られる。 Accordingly, in Comparative Examples 15 to 19 in which both bismuth and silicon are added, there are some which have improved machinability as compared with Comparative Examples 13 and 14 in which only silicon is added. Sex is getting worse. Further, when Comparative Examples 20 to 24 in which both bismuth and selenium are added are seen, although the machinability is improved, the corrosion resistance tends to be poor.
 本発明者らは以上の知見に基づき更にセレンを添加することに想到した。具体的には、実施例1~45に係る鉛レス黄銅材料は、銅、亜鉛、ビスマス、セレン及びシリコンを含む。また、スズやアルミニウム(Al)、その他の不純物も適宜含み得る。セレンの添加により、セレンがビスマスと共存し(図4(b)、図5(a)参照)、切削加工性が向上したと考えられる。また、セレンがシリコンと共存することで、巣を埋めて鋳造割れを改善できたと考えられる。 Based on the above findings, the present inventors have conceived that selenium is further added. Specifically, the leadless brass materials according to Examples 1 to 45 include copper, zinc, bismuth, selenium, and silicon. Moreover, tin, aluminum (Al), and other impurities may be included as appropriate. By adding selenium, selenium coexists with bismuth (see FIGS. 4B and 5A), and it is considered that the machinability is improved. Also, selenium coexisting with silicon is considered to be able to fill the nest and improve casting cracks.
 本実施の形態に係る鉛レス黄銅材料は、セレンの含有量が0.04~0.58質量%であるとよい。比較例25に示すように、セレンの含有量が0.02質量%程度だと、切削加工性の向上が見られない。なお、実施例1~45に示すように、ビスマスの含有量が0.59~2.44質量%であり、シリコンの含有量が0.30~1.68質量%であるとよい。これにより、切削加工性をある程度維持しつつ耐食性を向上できる。 The lead-less brass material according to the present embodiment preferably has a selenium content of 0.04 to 0.58 mass%. As shown in Comparative Example 25, when the selenium content is about 0.02% by mass, improvement in cutting workability is not observed. As shown in Examples 1 to 45, the bismuth content is preferably 0.59 to 2.44 mass%, and the silicon content is preferably 0.30 to 1.68 mass%. Thereby, corrosion resistance can be improved, maintaining cutting workability to some extent.
 また、実施例12~45に示すように、ビスマスの含有量が0.76質量%以上である場合、切削加工性がより向上する。また、実施例1~実施例43に示すように、ビスマスの含有量が1.72質量%以下である場合、鋳造性が向上する。 Further, as shown in Examples 12 to 45, when the bismuth content is 0.76% by mass or more, the machinability is further improved. As shown in Examples 1 to 43, when the bismuth content is 1.72% by mass or less, the castability is improved.
 また、実施例1~12,14~21,23~25,27~45に示すように、シリコンの含有量が0.53質量%以上であると、耐食性がより向上する。実施例1~19,21,22,24~29,31~37,39~41,44,45に示すように、シリコンの含有量が1.00質量%以下であると、切削加工性がより向上する。 Further, as shown in Examples 1 to 12, 14 to 21, 23 to 25, and 27 to 45, the corrosion resistance is further improved when the silicon content is 0.53% by mass or more. As shown in Examples 1 to 19, 21, 22, 24 to 29, 31 to 37, 39 to 41, 44, 45, when the silicon content is 1.00% by mass or less, the machinability is further improved. improves.
 このように、銅、亜鉛、ビスマス、セレン及びシリコンを含む鉛レス黄銅材料において、セレンの含有量を0.04~0.58質量%、ビスマスの含有量を0.76~1.72質量%、シリコンの含有量を0.53~1.00質量%とすることで、切削加工性、鋳造性、耐食性をより高いレベルで両立し得る。 Thus, in the lead-less brass material containing copper, zinc, bismuth, selenium and silicon, the selenium content is 0.04 to 0.58 mass% and the bismuth content is 0.76 to 1.72 mass%. When the silicon content is 0.53 to 1.00% by mass, cutting workability, castability and corrosion resistance can be achieved at a higher level.
 更に、銅、亜鉛、ビスマス、セレン及びシリコンを含む鉛レス黄銅材料において、セレンの含有量を0.04~0.15質量%、ビスマスの含有量を0.76~1.00質量%、シリコンの含有量を0.53~1.00質量%とすることで、切削加工性、鋳造性、耐食性をより高いレベルで両立しつつ、材料コストを低減できる。 Further, in a lead-less brass material containing copper, zinc, bismuth, selenium and silicon, the selenium content is 0.04 to 0.15 mass%, the bismuth content is 0.76 to 1.00 mass%, silicon By making the content of 0.53 to 1.00% by mass, it is possible to reduce material costs while at the same time achieving higher levels of cutting workability, castability, and corrosion resistance.
 なお、本実施の形態に係る鉛レス黄銅材料における鉛の含有量は0.25質量%未満が好ましい。これにより、水栓金具や水道管等の水道用器具へ用いやすくなる。鉛の含有量は、好ましくは、0.15質量%未満、より好ましくは、0.10質量%未満、更により好ましくは0.05質量%未満である。 In addition, the lead content in the lead-less brass material according to the present embodiment is preferably less than 0.25% by mass. Thereby, it becomes easy to use for water appliances, such as a faucet metal fitting and a water pipe. The lead content is preferably less than 0.15% by weight, more preferably less than 0.10% by weight, and even more preferably less than 0.05% by weight.
 上述の各実施例に示すような割合で各元素を含有する鉛レス黄銅材料を用いて水道用器具(水栓金具)を鋳造で製造した。具体的には、第1の工程において、各水栓金具が表2に示す実施例の成分になるように材料を調合した。次いで、第2の工程において、鋳造により成形した。そして、第3の工程において、得られた成形品に切削加工を施し、第4の工程において、製品を完成させた。このように、本実施の形態に係る鉛レス黄銅材料を用いて内部形状が複雑で外部形状も単調でない水道用器具を鋳造で製造しても、鋳造による不具合がなく、また切削加工も容易な水道用器具を得られる。 A water supply device (water faucet) was manufactured by casting using a lead-less brass material containing each element at a rate as shown in each of the above examples. Specifically, in the first step, the materials were prepared so that each faucet fitting was a component of the examples shown in Table 2. Next, in the second step, molding was performed by casting. Then, in the third step, the obtained molded product was cut, and in the fourth step, the product was completed. In this way, even if a water supply device having a complicated internal shape and a non-monotonous external shape is manufactured by casting using the leadless brass material according to the present embodiment, there is no problem due to casting, and cutting is easy. You can get water supplies.
 以上、本発明を上述の実施の形態や各実施例を参照して説明したが、本発明は上述の各実施の形態や各実施例に限定されるものではなく、各実施例の構成を適宜組み合わせたものや置換したものについても本発明に含まれるものである。また、当業者の知識に基づいて実施の形態や実施例における組合せや処理の順番を適宜組み替えることや各種の設計変更等の変形を実施の形態や実施例に対して加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうる。 The present invention has been described with reference to the above-described embodiments and examples. However, the present invention is not limited to the above-described embodiments and examples, and the configuration of each example is appropriately set. Combinations and substitutions are also included in the present invention. Further, based on the knowledge of those skilled in the art, the combination of the embodiments and examples and the order of processing can be appropriately changed, and various modifications such as design changes can be added to the embodiments and examples. Embodiments to which such modifications are added can also be included in the scope of the present invention.
 本発明は水栓金具等の水道用器具に利用可能である。 The present invention can be used for water appliances such as faucet fittings.
 11 中央型、 12a,12b 拘束型、 13 凹部、 14 溝、 16 断熱材、 17 溝、 18a,18b 凹部、 19 溶湯。 11 Central type, 12a, 12b restraint type, 13 recesses, 14 grooves, 16 thermal insulation, 17 grooves, 18a, 18b recesses, 19 molten metal.

Claims (6)

  1.  銅、亜鉛、ビスマス、セレン及びシリコンを含む鉛レス黄銅材料であって、
     前記セレンの含有量が0.04~0.58質量%であることを特徴とする鉛レス黄銅材料。
    A leadless brass material comprising copper, zinc, bismuth, selenium and silicon,
    A lead-less brass material, wherein the selenium content is 0.04 to 0.58 mass%.
  2.  前記ビスマスの含有量が0.59~2.44質量%であり、
     前記シリコンの含有量が0.30~1.68質量%であることを特徴とする請求項1に記載の鉛レス黄銅材料。
    The bismuth content is 0.59 to 2.44% by mass,
    2. The leadless brass material according to claim 1, wherein the silicon content is 0.30 to 1.68% by mass.
  3.  銅、亜鉛、ビスマス、セレン及びシリコンを含む鉛レス黄銅材料であって、
     前記セレンの含有量が0.04~0.58質量%であり、
     前記ビスマスの含有量が0.76~1.72質量%であり、
     前記シリコンの含有量が0.53~1.00質量%であることを特徴とする鉛レス黄銅材料。
    A leadless brass material comprising copper, zinc, bismuth, selenium and silicon,
    The selenium content is 0.04 to 0.58% by mass,
    The bismuth content is 0.76 to 1.72% by mass,
    A lead-less brass material having a silicon content of 0.53 to 1.00% by mass.
  4.  銅、亜鉛、ビスマス、セレン及びシリコンを含む鉛レス黄銅材料であって、
     前記セレンの含有量が0.04~0.15質量%であり、
     前記ビスマスの含有量が0.76~1.00質量%であり、
     前記シリコンの含有量が0.53~1.00質量%であることを特徴とする鉛レス黄銅材料。
    A leadless brass material comprising copper, zinc, bismuth, selenium and silicon,
    The selenium content is 0.04 to 0.15% by mass,
    The bismuth content is 0.76 to 1.00% by mass,
    A lead-less brass material having a silicon content of 0.53 to 1.00% by mass.
  5.  鉛の含有量が0.25質量%未満であることを特徴とする請求項1乃至4のいずれか1項に記載の鉛レス黄銅材料。 Lead-free brass material according to any one of claims 1 to 4, wherein the lead content is less than 0.25% by mass.
  6.  請求項1乃至5のいずれか1項に記載の鉛レス黄銅材料を用いて製造された水道用器具。 A water supply device manufactured using the lead-less brass material according to any one of claims 1 to 5.
PCT/JP2015/054100 2014-03-13 2015-02-16 Lead-free brass material and instrument for water supply WO2015137048A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014050439A JP2015175008A (en) 2014-03-13 2014-03-13 Lead-less brass material and implement for aqueduct
JP2014-050439 2014-03-13

Publications (1)

Publication Number Publication Date
WO2015137048A1 true WO2015137048A1 (en) 2015-09-17

Family

ID=54071499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054100 WO2015137048A1 (en) 2014-03-13 2015-02-16 Lead-free brass material and instrument for water supply

Country Status (2)

Country Link
JP (1) JP2015175008A (en)
WO (1) WO2015137048A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11028466B2 (en) 2016-01-21 2021-06-08 Fortune Mfg. Co., Ltd. Unleaded free-cutting brass alloys with excellent castability, method for producing the same, and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016630A1 (en) * 2004-08-10 2006-02-16 Sanbo Shindo Kogyo Kabushiki Kaisha Cast copper alloy article and method for casting thereof
JP2010242184A (en) * 2009-04-07 2010-10-28 Toto Ltd Lead-free, free-machining brass excellent in castability and corrosion resistance

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3917304B2 (en) * 1998-10-09 2007-05-23 三宝伸銅工業株式会社 Free-cutting copper alloy
CN100567533C (en) * 2006-01-18 2009-12-09 江西理工大学 Pb-free copper-alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016630A1 (en) * 2004-08-10 2006-02-16 Sanbo Shindo Kogyo Kabushiki Kaisha Cast copper alloy article and method for casting thereof
JP2010242184A (en) * 2009-04-07 2010-10-28 Toto Ltd Lead-free, free-machining brass excellent in castability and corrosion resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11028466B2 (en) 2016-01-21 2021-06-08 Fortune Mfg. Co., Ltd. Unleaded free-cutting brass alloys with excellent castability, method for producing the same, and application thereof

Also Published As

Publication number Publication date
JP2015175008A (en) 2015-10-05

Similar Documents

Publication Publication Date Title
JP5858056B2 (en) Lead-free free-cutting brass with excellent castability
JP5399818B2 (en) Lead-free free-cutting silicon brass alloy
US20110214836A1 (en) Environment-friendly manganese brass alloy and manufacturing method thereof
CN103958708A (en) Brass with excellent corrosion resistance
JP5591661B2 (en) Copper-based alloy for die casting with excellent dezincification corrosion resistance
US20150376737A1 (en) Copper-zinc alloy for a plumbing fitting and method for the production thereof
US20150071813A1 (en) Brass alloy for tap water supply member
JP4413106B2 (en) Aluminum alloy material for heat sink and manufacturing method thereof
JP5953432B2 (en) Copper base alloy
JP5143948B1 (en) Lead-free brass alloy for hot working
US10507520B2 (en) Copper-based alloys, processes for producing the same, and products formed therefrom
JP4210020B2 (en) Aluminum alloy material for heat sinks with excellent thermal conductivity
WO2015137048A1 (en) Lead-free brass material and instrument for water supply
EP3196323A1 (en) Aluminum alloy for die casting, and aluminum alloy die-cast product using same
JP6709012B2 (en) Copper-based alloy
JP6561116B2 (en) Copper alloy for water supply components
CN105821239B (en) The manufacture method for the metal mould casting forging piece being made up of acid bronze alloy
JP3830946B2 (en) Bronze alloy and ingot and wetted parts using the alloy
Mysik et al. Influence of intermetallics on complex alloyed brass hardness
US20150104347A1 (en) Low Shrinkage Corrosion-Resistant Brass Alloy
KR20140096641A (en) Lead-free and corrosion resistant copper alloy for cast
KR20150039729A (en) Lead-free and corrosion resistant copper alloy for cast
JP2013167011A (en) Copper-based alloy for casting and instrument for water supply

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15761902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15761902

Country of ref document: EP

Kind code of ref document: A1