JP2013167011A - Copper-based alloy for casting and instrument for water supply - Google Patents

Copper-based alloy for casting and instrument for water supply Download PDF

Info

Publication number
JP2013167011A
JP2013167011A JP2012154359A JP2012154359A JP2013167011A JP 2013167011 A JP2013167011 A JP 2013167011A JP 2012154359 A JP2012154359 A JP 2012154359A JP 2012154359 A JP2012154359 A JP 2012154359A JP 2013167011 A JP2013167011 A JP 2013167011A
Authority
JP
Japan
Prior art keywords
mass
copper
casting
corrosion resistance
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012154359A
Other languages
Japanese (ja)
Other versions
JP5916544B2 (en
Inventor
Hiromasa Suzuki
宏昌 鈴木
Keishi Ito
継志 伊藤
Fumiyasu Ishiguro
文康 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lixil Corp
Original Assignee
Lixil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lixil Corp filed Critical Lixil Corp
Priority to JP2012154359A priority Critical patent/JP5916544B2/en
Publication of JP2013167011A publication Critical patent/JP2013167011A/en
Application granted granted Critical
Publication of JP5916544B2 publication Critical patent/JP5916544B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Prevention Of Electric Corrosion (AREA)
  • Domestic Plumbing Installations (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper-based alloy for casting capable of exerting erosion-corrosion resistance and dezincification corrosion resistance.SOLUTION: This copper-based alloy contains copper, zinc, tin, aluminum and lead, wherein the tin content is 1.0-2.0 mass%, the aluminum content is 0.7-2.0 mass%, and the zinc equivalent is 35.0-44.0 mass%, and further contains antimony of 0.01-0.1 mass%, lead of 1.8-2.2 mass%, phosphorus of 0.01-0.1 mass%, and iron of less than 0.1 mass%. At least one of silicon and bismuth is substantially 0 mass%.

Description

本発明は、鋳造用銅基合金及びこの合金を用いた水道用器具に関する。   The present invention relates to a copper base alloy for casting and a water supply device using the alloy.

水栓金具や水道管等の水道用器具には、通水路の確保や温度調節といった機能上の要求等から、内部形状が複雑で大型な製品が多く含まれる。このような複雑な形状の製品の場合、効率良く作製できることから一般に鋳造が用いられる。鋳造用材料として、黄銅系合金はJISCAC203、特許文献1、2等が用いられ、青銅系合金はJISCAC406等が用いられている。   Water supply appliances such as faucet fittings and water pipes include many large products with complicated internal shapes due to functional requirements such as securing water passages and temperature control. In the case of a product having such a complicated shape, casting is generally used because it can be efficiently manufactured. As the casting material, JISCAC203, Patent Documents 1 and 2 are used for the brass alloy, and JISCAC406 is used for the bronze alloy.

黄銅系合金は、製造設備の簡便な金型を用いる鋳造が可能なメリットがあるものの、潰食と脱亜鉛腐食との発生が問題となる。ここで、潰食とは水の流れ等により合金が削られる腐食をいい、脱亜鉛腐食とは合金成分中の亜鉛が抜けてしまう腐食をいう。特許文献1、2等、耐脱亜鉛腐食についてはある程度満足できる材料が開発されているが、耐潰食性が不十分なため、潰食が発生しても機能不良に至らない製品に用途が限定されている。   A brass alloy has the merit that it can be cast using a simple mold in a production facility, but the occurrence of erosion and dezincification corrosion becomes a problem. Here, erosion refers to corrosion in which the alloy is scraped by the flow of water or the like, and dezincification corrosion refers to corrosion in which zinc in the alloy components is lost. Patent documents 1 and 2 etc. have developed materials that are satisfactory to some extent with respect to dezincing corrosion resistance, but their use is limited to products that do not lead to malfunction even if erosion occurs due to insufficient corrosion resistance. Has been.

他方、青銅系合金は、高い耐潰食性と耐脱亜鉛腐食とを有するが、緑青が多く発生する。緑青が剥がれた場合に機能部の小孔等が目詰まりを起こし、機能不良に至ることがある。また、青銅系合金は、金型を用いる鋳造が困難であり、設備が大型で粉塵や騒音等が発生しやすい砂型を用いた鋳造でしか生産ができないという問題もある。   On the other hand, bronze alloys have high corrosion resistance and dezincification resistance, but a lot of patina is generated. When the patina is peeled off, the small holes in the functional part may be clogged, resulting in malfunction. In addition, bronze-based alloys are difficult to cast using a mold, and can be produced only by casting using a sand mold that is large in size and easily generates dust and noise.

特開平8−337831号公報JP-A-8-337831 特開2009−263787号公報JP 2009-263787 A

黄銅系合金において、水道用器具に必要な耐潰食性と脱亜鉛腐食との二つの性能を満足することができれば、青銅系合金で発生する緑青の目詰まりによる機能不良の防止や、簡便な設備で幅広い製品の生産が可能となる。このため、耐潰食性及び耐脱亜鉛腐食性を発揮可能な黄銅系の鋳造用銅基合金が望まれている。   If brass alloy can satisfy the two performances of erosion resistance and dezincification corrosion required for water supply equipment, it can prevent malfunction due to clogging of patina generated in bronze alloy and simple equipment. A wide range of products can be produced. For this reason, a brass-based copper-based alloy for casting that can exhibit erosion resistance and dezincification resistance is desired.

本発明は、上記従来の実情に鑑みてなされたものであって、耐潰食性及び耐脱亜鉛腐食性を発揮可能な鋳造用銅基合金を提供することを解決すべき課題としている。また、本発明は、上記性能を発揮する水道用器具を鋳造によって提供することも解決すべき課題としている。   This invention is made | formed in view of the said conventional situation, Comprising: It is set as the problem which should be solved to provide the copper base alloy for casting which can exhibit crushed corrosion resistance and dezincification corrosion resistance. Moreover, this invention also makes it the subject which should solve the provision of the water supply appliance which exhibits the said performance by casting.

本発明の鋳造用銅基合金は、銅、亜鉛、スズ、アルミニウム及び鉛を含む鋳造用銅基合金であって、スズが1.0〜2.0質量%、アルミニウムが0.7〜2.0質量%、亜鉛当量が35.0〜44.0質量%であることを特徴とする(請求項1)。   The copper-based alloy for casting of the present invention is a copper-based alloy for casting containing copper, zinc, tin, aluminum, and lead, and tin is 1.0 to 2.0% by mass, and aluminum is 0.7 to 2. 0 mass% and zinc equivalent are 35.0-44.0 mass% (Claim 1).

発明者らの試験結果によれば、スズ及びアルミニウムの添加により、従来の黄銅系合金にない耐潰食性が発揮される。スズが1.0質量%未満では、耐潰食性が十分でなく、スズが2.0質量%を超えると、鋳造性が損なわれる。アルミニウムが0.7質量%未満では、耐潰食性が十分でなく、アルミニウムが2.0質量%を超えると、アルミニウムの過剰添加が原因と推測される腐食生成物の付着が発生する。また、亜鉛当量を35.0〜44.0質量%に制御することにより高い耐脱亜鉛腐食性が発揮される。亜鉛当量が35.0質量%以上までは、鋳造性が十分であることを確認できており、亜鉛当量が44.0質量%を超えると、耐脱亜鉛腐食性が低下する。   According to the test results of the inventors, the addition of tin and aluminum exhibits erosion resistance that is not found in conventional brass alloys. If tin is less than 1.0 mass%, corrosion resistance is not enough, and if tin exceeds 2.0 mass%, castability will be impaired. If the aluminum content is less than 0.7% by mass, the corrosion resistance is not sufficient, and if the aluminum content exceeds 2.0% by mass, adhesion of corrosion products presumed to be caused by excessive addition of aluminum occurs. Moreover, high dezincification corrosion resistance is exhibited by controlling the zinc equivalent to 35.0 to 44.0% by mass. When the zinc equivalent is 35.0% by mass or more, it has been confirmed that the castability is sufficient, and when the zinc equivalent exceeds 44.0% by mass, the dezincification corrosion resistance is lowered.

したがって、本発明の鋳造用銅基合金によれば、耐潰食性及び耐脱亜鉛腐食性を発揮可能である。   Therefore, according to the copper base alloy for casting of the present invention, it is possible to exhibit erosion resistance and dezincification corrosion resistance.

本発明の鋳造用銅基合金は、アンチモンが0.1質量%以下であることが好ましい。発明者らの試験結果によれば、アンチモンは鋳造用銅基合金の耐脱亜鉛腐食性を向上させる。アンチモンを0.1質量%を超えて含有しても、その作用が頭打ちになることから、上限を0.1質量%とする。アンチモンは0.01〜0.1質量%であることがより好ましい(請求項2)。アンチモンが0.01質量%未満では、耐脱亜鉛腐食性が十分ではない。   The copper base alloy for casting according to the present invention preferably contains 0.1% by mass or less of antimony. According to the test results of the inventors, antimony improves the dezincification corrosion resistance of the copper base alloy for casting. Even if antimony is contained in an amount exceeding 0.1% by mass, the action reaches a peak, so the upper limit is made 0.1% by mass. Antimony is more preferably 0.01 to 0.1% by mass (claim 2). When antimony is less than 0.01% by mass, the dezincification corrosion resistance is not sufficient.

本発明の鋳造用銅基合金は、表1に示すように、鉛が1.8〜2.2質量%、アンチモンが0.01〜0.1質量%、リンが0.01〜0.1質量%、鉄が0.1質量%未満、銅が残部であることが好ましい(請求項3)。発明者らはこれらを満足する鋳造用銅基合金により本発明の効果を確認した。発明者らの試験結果によれば、鉛は鋳造用銅基合金の切削加工性を向上させる。鉛が1.8質量%未満では、切削加工性が十分でなく、鉛が2.2質量%を超えると、引張強さ及び伸びを低下させる。アンチモンは鋳造用銅基合金の耐脱亜鉛腐食性を向上させる。リンは鋳造用銅基合金の耐脱亜鉛腐食性を向上させる。リンが0.1質量%を超えると、引張強さが低下する。リンは0.01〜0.1質量%であることがより好ましい。リンが0.01質量%未満では、耐脱亜鉛腐食性が十分ではない。鉄は不可避の不純物である。鉄が0.1質量%未満であれば、鋳造用銅基合金の特性にほとんど影響がない。   As shown in Table 1, the copper-based alloy for casting of the present invention has a lead content of 1.8 to 2.2 mass%, an antimony content of 0.01 to 0.1 mass%, and a phosphorus content of 0.01 to 0.1. It is preferable that mass%, iron is less than 0.1 mass%, and copper is the balance. The inventors have confirmed the effects of the present invention with a copper-based alloy for casting that satisfies these requirements. According to the test results of the inventors, lead improves the machinability of the copper base alloy for casting. If lead is less than 1.8% by mass, the machinability is not sufficient, and if lead exceeds 2.2% by mass, the tensile strength and elongation are reduced. Antimony improves the dezincification resistance of casting copper-base alloys. Phosphorus improves the dezincification corrosion resistance of casting copper-base alloys. When phosphorus exceeds 0.1 mass%, tensile strength will fall. It is more preferable that phosphorus is 0.01 to 0.1% by mass. When phosphorus is less than 0.01% by mass, the dezincification corrosion resistance is not sufficient. Iron is an inevitable impurity. If iron is less than 0.1% by mass, the properties of the copper-based alloy for casting are hardly affected.

Figure 2013167011
Figure 2013167011

本発明の鋳造用銅基合金は、珪素及びビスマスの少なくとも一方が実質的に0質量%であることが好ましい(請求項4)。これらは鋳造用銅基合金のリサイクルを阻害し易いからである。ここで、実質的に0質量%とは、0.1質量%未満をいう。   In the copper base alloy for casting of the present invention, it is preferable that at least one of silicon and bismuth is substantially 0% by mass. This is because they tend to hinder recycling of the copper base alloy for casting. Here, substantially 0 mass% means less than 0.1 mass%.

本発明の鋳造用銅基合金は、亜鉛当量が40.0質量%未満であることがより好ましい(請求項5)。亜鉛当量が40.0質量%未満であれば、本発明の鋳造用銅基合金は、より良好な耐脱亜鉛腐食性を発揮する。   More preferably, the copper-based alloy for casting of the present invention has a zinc equivalent of less than 40.0% by mass (Claim 5). If the zinc equivalent is less than 40.0% by mass, the copper-based alloy for casting according to the present invention exhibits better dezincification corrosion resistance.

本発明の鋳造用銅基合金は、亜鉛当量が38.0質量%以上であることがより好ましい(請求項6)。亜鉛当量が38.0質量%以上であれば、本発明の鋳造用銅基合金は、より良好な鋳造性を発揮する。   More preferably, the copper-based alloy for casting of the present invention has a zinc equivalent of 38.0% by mass or more. When the zinc equivalent is 38.0% by mass or more, the copper-based alloy for casting of the present invention exhibits better castability.

本発明の水道用器具は、上記鋳造用銅基合金からなることを特徴とする。この水道用器具は鋳造によって製造される。そして、この水道用器具によれば、従来では困難だった耐潰食性及び耐脱亜鉛腐食性を兼ね備えることができる。   The water supply device of the present invention is characterized by comprising the above-described copper-based alloy for casting. This water supply device is manufactured by casting. And according to this water supply apparatus, it can have erosion corrosion resistance and dezincification corrosion resistance which were difficult conventionally.

止水部の模式断面図である。It is a schematic cross section of a water stop part. 耐潰食性評価試験の結果を示すグラフである。It is a graph which shows the result of an erosion resistance evaluation test. 耐潰食性評価試験後の比較例10の表面を示す写真である。It is a photograph which shows the surface of the comparative example 10 after an erosion resistance evaluation test. 耐潰食性評価試験後の比較例6の表面を示す写真である。It is a photograph which shows the surface of the comparative example 6 after an erosion resistance evaluation test. 耐潰食性評価試験後の比較例7の表面を示す写真である。It is a photograph which shows the surface of the comparative example 7 after an erosion resistance evaluation test. 耐潰食性評価試験後の実施例18の表面を示す写真である。It is a photograph which shows the surface of Example 18 after an erosion resistance evaluation test. 耐潰食性評価試験後の実施例4の表面を示す写真である。It is a photograph which shows the surface of Example 4 after an erosion resistance evaluation test. 耐潰食性評価試験後の実施例7の表面を示す写真である。It is a photograph which shows the surface of Example 7 after a corrosion resistance evaluation test. 耐潰食性評価試験後の実施例19の表面を示す写真である。It is a photograph which shows the surface of Example 19 after an erosion resistance evaluation test. 耐潰食性評価試験後の実施例1の表面を示す写真である。It is a photograph which shows the surface of Example 1 after a corrosion resistance evaluation test. 耐潰食性評価試験後の比較例17の表面を示す写真である。It is a photograph which shows the surface of the comparative example 17 after an erosion resistance evaluation test. 耐潰食性評価試験後の比較例1の表面を示す写真である。It is a photograph which shows the surface of the comparative example 1 after an erosion resistance evaluation test. 耐脱亜鉛腐食性評価試験後の比較例7の断面写真である。It is a cross-sectional photograph of Comparative Example 7 after the dezincification corrosion resistance evaluation test. 耐脱亜鉛腐食性評価試験後の実施例18の断面写真である。It is a cross-sectional photograph of Example 18 after the dezincification corrosion resistance evaluation test. 耐脱亜鉛腐食性評価試験後の実施例19の断面写真である。It is a cross-sectional photograph of Example 19 after a dezincification corrosion resistance evaluation test. 耐脱亜鉛腐食性評価試験後の比較例17の断面写真である。It is a cross-sectional photograph of Comparative Example 17 after the dezincification corrosion resistance evaluation test. 耐脱亜鉛腐食性評価試験後の実施例1の断面写真である。It is a cross-sectional photograph of Example 1 after a dezincification corrosion resistance evaluation test. 耐脱亜鉛腐食性評価試験後の実施例4の断面写真である。It is a cross-sectional photograph of Example 4 after a dezincification corrosion resistance evaluation test. 耐脱亜鉛腐食性評価試験後の実施例7の断面写真である。It is a cross-sectional photograph of Example 7 after a dezincification corrosion resistance evaluation test. 耐脱亜鉛腐食性評価試験後の実施例15の断面写真である。It is a cross-sectional photograph of Example 15 after a dezincification corrosion resistance evaluation test. 耐脱亜鉛腐食性評価試験後の比較例6の断面写真である。It is a cross-sectional photograph of Comparative Example 6 after the dezincification corrosion resistance evaluation test. 耐脱亜鉛腐食性評価試験後の比較例10の断面写真である。It is a cross-sectional photograph of Comparative Example 10 after the dezincification corrosion resistance evaluation test. 鋳造性の評価に用いた両端拘束試験用金型の平面図である。It is a top view of the metal mold | die for a both-ends restraint test used for castability evaluation. 鋳造にて試作した水栓金具の外観図である。It is an external view of the faucet fitting made as a prototype by casting. 水栓金具の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of a faucet metal fitting. 実使用相当試験後の実施例18に係り、図(A)はシートの断面写真、図(B)はねじの断面写真である。According to Example 18 after the actual use equivalent test, FIG. (A) is a cross-sectional photograph of the sheet, and FIG. (B) is a cross-sectional photograph of the screw. 実使用相当試験後の実施例19に係り、図(A)はシートの断面写真、図(B)はねじの断面写真である。According to Example 19 after the actual use equivalent test, FIG. (A) is a cross-sectional photograph of the sheet, and FIG. (B) is a cross-sectional photograph of the screw. 実使用相当試験後の比較例17に係り、図(A)はシートの断面写真、図(B)はねじの断面写真である。According to Comparative Example 17 after the actual use equivalent test, FIG. (A) is a cross-sectional photograph of the sheet, and FIG. (B) is a cross-sectional photograph of the screw. 実使用相当試験後の比較例7に係り、図(A)はシートの断面写真、図(B)はねじの断面写真である。According to Comparative Example 7 after the actual use equivalent test, FIG. (A) is a cross-sectional photograph of the sheet, and FIG. (B) is a cross-sectional photograph of the screw. 実使用相当試験後の比較例10に係り、図(A)はシートの断面写真、図(B)はねじの断面写真である。According to Comparative Example 10 after the actual use equivalent test, FIG. (A) is a cross-sectional photograph of a sheet, and FIG. (B) is a cross-sectional photograph of a screw.

以下、本発明を試験に基づいて説明する。   Hereinafter, the present invention will be described based on tests.

表2及び表3に成分を示す実施例1〜19及び比較例1〜18の合金からなる鋳塊を準備した。   Ingots made of the alloys of Examples 1 to 19 and Comparative Examples 1 to 18 whose components are shown in Tables 2 and 3 were prepared.

Figure 2013167011
Figure 2013167011

Figure 2013167011
Figure 2013167011

(耐潰食性評価試験)
各鋳塊から水栓金具の止水部を模したサンプルを切削により製造した。各サンプルの口径は9mm、口径周りのシートは径方向で1mmの寸法である。止水部の機構を図1に示す。図1に示すように、各サンプル1の上方には止水板2が設けられている。各サンプル1の内部を経た試験液3は、止水板2によって折り返され、各サンプル1に当接するようになっている。
(Corrosion resistance evaluation test)
A sample simulating a water stop portion of a faucet fitting was manufactured by cutting from each ingot. The diameter of each sample is 9 mm, and the sheet around the diameter is 1 mm in the radial direction. The mechanism of the water stop part is shown in FIG. As shown in FIG. 1, a water stop plate 2 is provided above each sample 1. The test solution 3 that has passed through the interior of each sample 1 is folded back by the water stop plate 2 and comes into contact with each sample 1.

1%CuCl2水溶液10Lを試験液とし、この試験液を0.3MPaの圧力、5.0L/分の流量で、上記サンプルに対して水栓金具と同様の流路になるように流す耐潰食性評価試験を行った。試験時間は2時間であり、圧力は30分毎に調整した。 10L of 1% CuCl 2 aqueous solution is used as a test solution. A food quality evaluation test was conducted. The test time was 2 hours and the pressure was adjusted every 30 minutes.

各サンプルの重量減少(g)と時間(hr)との関係を求めた。各サンプルの内から、実施例1、4、7、18、19及び比較例1、6、7、10、17の結果を図2に示す。また、上記実施例及び比較例の試験後の表面の写真を図3〜12に示す。   The relationship between weight loss (g) and time (hr) of each sample was determined. FIG. 2 shows the results of Examples 1, 4, 7, 18, and 19 and Comparative Examples 1, 6, 7, 10, and 17 from each sample. Moreover, the photograph of the surface after the test of the said Example and a comparative example is shown to FIGS.

図2及び図3〜12に示す通り、スズ量及びアルミニウム量の添加により合金は耐潰食性が向上する。しかし、スズ量のみを増加した場合、鋳造時に割れが生じることや切削加工性が悪化すること等が一般に知られている。このため、他の性能に悪影響を与えない範囲でスズを添加し、それに加えてアルミニウムを添加することで、他の性能を損なうことなく、スズのみを添加する場合を凌ぐ高い耐潰食性を発揮させることを得た。これは、合金の表面に強固な酸化皮膜が形成されることによると考えられる。   As shown in FIGS. 2 and 3 to 12, the corrosion resistance of the alloy is improved by the addition of tin and aluminum. However, it is generally known that when only the amount of tin is increased, cracks occur during casting, and the machinability deteriorates. For this reason, tin is added within a range that does not adversely affect other performances, and in addition to that, aluminum is added, and the corrosion resistance is higher than when only tin is added without impairing other performances. Got to let. This is considered due to the formation of a strong oxide film on the surface of the alloy.

(耐脱亜鉛腐食性評価試験)
各鋳塊を用い、JBMAT303に基づき、耐脱亜鉛腐食性評価試験を行った。
(Dezincification corrosion resistance evaluation test)
Using each ingot, a dezincification corrosion resistance evaluation test was performed based on JBMAT303.

この結果、脱亜鉛深さは、比較例7が47μm、実施例15が151μm、実施例16が127μm、比較例17が176μm、実施例1が42μm、実施例4が40μm、実施例7が54μm、実施例15が83μm、比較例6が59μm、比較例10が187μmであった。また、試験後の上記実施例及び比較例の断面写真を図13〜22に示す。   As a result, the dezincification depth was 47 μm in Comparative Example 7, 151 μm in Example 15, 127 μm in Example 16, 176 μm in Comparative Example 17, 42 μm in Example 1, 40 μm in Example 4, and 54 μm in Example 7. Example 15 was 83 μm, Comparative Example 6 was 59 μm, and Comparative Example 10 was 187 μm. Moreover, the cross-sectional photograph of the said Example and comparative example after a test is shown to FIGS.

耐脱亜鉛腐食性評価試験の結果より、スズの含有量を1.5質量%として、アルミニウム量を増加させると、耐脱亜鉛腐食性が悪化する傾向が確認され、耐潰食性と耐脱亜鉛腐食性の両立が困難であることがわかる。しかし、亜鉛を減少させて亜鉛当量を40.0質量%以下に制御することでアルミニウム量の増加による耐脱亜鉛腐食性の悪化を抑えることができ、耐潰食性と耐脱亜鉛腐食性の両立が可能となる。   From the results of the dezincification corrosion resistance evaluation test, it was confirmed that when the aluminum content was increased by setting the tin content to 1.5% by mass, the dezincification corrosion resistance tended to deteriorate. It turns out that it is difficult to achieve both corrosive properties. However, by reducing zinc and controlling the zinc equivalent to 40.0 mass% or less, deterioration of dezincification corrosion resistance due to an increase in the amount of aluminum can be suppressed, and both erosion resistance and dezincification corrosion resistance are compatible. Is possible.

(鋳造性の評価)
鋳造性を矢印拘束試験法により評価した。この試験法では、図21に示す両端拘束試験用金型を用いた。この金型は、中央に設けられる矩形の中央型11と、両端に設けられる一対の矩形の拘束型12a、12bとを有している。これら中央型11及び拘束型12a、12bはS45Cからなる。これらは組み合わせられた状態で図示しないボルトによって互いに固定され、金型とされる。
(Castability evaluation)
Castability was evaluated by the arrow restraint test method. In this test method, a both-end restraint test mold shown in FIG. 21 was used. This metal mold has a rectangular central mold 11 provided at the center and a pair of rectangular constraining molds 12a and 12b provided at both ends. The central mold 11 and the constraining molds 12a and 12b are made of S45C. These are combined together and fixed to each other by a bolt (not shown) to form a mold.

中央型11の中央には正方形状の凹部13が形成されている。また、中央型11には、凹部13と連通しつつ、幅方向に延びる溝14が形成されている。凹部13と溝14とは同一の深さを有している。凹部13内には、溝14と連通する部分15を除き、鋳砂とワックスとからなる断熱材16が充填されている。   A square recess 13 is formed at the center of the central mold 11. Further, the central mold 11 is formed with a groove 14 that communicates with the recess 13 and extends in the width direction. The recess 13 and the groove 14 have the same depth. The recess 13 is filled with a heat insulating material 16 made of casting sand and wax except for a portion 15 communicating with the groove 14.

中央型11には、溝14及び部分15と連通する溝17が形成されている。拘束型12a、12bには、それぞれ溝14、部分15及び溝17の端部と連通する三角形の凹部18a、18bが形成されている。溝17及び凹部18a、18bの深さも凹部13及び溝14と同一である。溝14、部分15、溝17及び凹部18a、18bによって両矢印形状のキャビティが形成されている。   The central mold 11 is formed with a groove 17 communicating with the groove 14 and the portion 15. The constraining dies 12a and 12b are formed with triangular recesses 18a and 18b communicating with the ends of the groove 14, the portion 15 and the groove 17, respectively. The depths of the grooves 17 and the recesses 18a and 18b are also the same as the recesses 13 and the grooves 14. A double arrow-shaped cavity is formed by the groove 14, the portion 15, the groove 17, and the recesses 18a and 18b.

この金型のキャビティ内に実施例及び比較例の溶湯19を注いだ。キャビティ内の溶湯19は、冷却され、凝固していく過程において、凹部18a、18bが拘束され、凝固収縮力が発生する。キャビティ内の溶湯19の中央部分は、断熱材16によって凹部18a、18bに比べて冷却が遅れて最終凝固部となり、凝固収縮力が集中する。この中央部分での割れの有無や程度により鋳造性を評価した。   The molten metal 19 of Examples and Comparative Examples was poured into the mold cavity. In the process in which the molten metal 19 in the cavity is cooled and solidified, the recesses 18a and 18b are restrained, and a solidification contraction force is generated. The central portion of the molten metal 19 in the cavity is delayed by the heat insulating material 16 as compared with the recesses 18a and 18b and becomes a final solidified portion, and the solidification shrinkage force is concentrated. Castability was evaluated by the presence or absence and degree of cracking at the central portion.

実施例4等では、割れが発生しなかった。実施例1〜3ではわずかに割れは発生したが両断には至らず、図24に示す止水栓を作製することも出来た。このため、亜鉛当量を35.0質量%以上とすることにより、良好な鋳造性が確保され、亜鉛当量を38.0質量%以上でさらに良好な鋳造性が確保されることが確認された。 In Example 4 and the like, no cracks occurred. In Examples 1 to 3, a slight crack occurred, but it did not reach both ends, and the water stop cock shown in FIG. 24 could be produced. Therefore, it was confirmed that when the zinc equivalent is 35.0% by mass or more, good castability is ensured, and when the zinc equivalent is 38.0% by mass or more, better castability is ensured.

(実使用相当試験)
実施例18、19、比較例7、10、17について、図24に示す水栓金具を試作した上で実使用場面を想定した試験を行った。この水栓金具は、図25に示す製造方法により製造した。
(Equivalent use test)
For Examples 18 and 19, and Comparative Examples 7, 10, and 17, the faucet fitting shown in FIG. This faucet fitting was manufactured by the manufacturing method shown in FIG.

この製造方法では、まず、工程S1において、各水栓金具が表2又は表3の成分になるように材料を調合した。次いで、工程S2において、鋳造により成形した。そして、工程S3において、得られた成形品に切削加工を施し、工程S4において、製品を完成させた。この水栓金具は、図1に示す止水部の機構を持つ。   In this manufacturing method, first, in step S1, materials were prepared so that each faucet fitting was a component of Table 2 or Table 3. Next, in step S2, molding was performed by casting. In step S3, the obtained molded product was cut, and in step S4, the product was completed. This faucet fitting has a water stop mechanism shown in FIG.

試験水は、3%NaClを含み、pHが6.5〜6.6、温度が50°Cである。流量は2500ml/分、試験期間は12週間である。この試験は約20〜30年の実使用に相当する。実施例18、19、比較例7、10、17のシートの断面写真及びねじの断面写真を図26〜30に示す。   The test water contains 3% NaCl, has a pH of 6.5 to 6.6, and a temperature of 50 ° C. The flow rate is 2500 ml / min and the test period is 12 weeks. This test corresponds to an actual use of about 20-30 years. The cross-sectional photograph of the sheet | seat of Example 18, 19 and Comparative Example 7, 10, 17 and the cross-sectional photograph of a screw are shown to FIGS.

図26〜30より、亜鉛当量が40.0質量%以上でも脱亜鉛腐食が発生せず、亜鉛当量が44.0質量%を超えると脱亜鉛腐食が発生することがわかる。つまり、実使用場面においては亜鉛当量が44.0質量%以下であれば、鋳造用銅基合金が高い耐脱亜鉛腐食性を発揮することがわかる。   26 to 30, it can be seen that dezincification corrosion does not occur even when the zinc equivalent is 40.0% by mass or more, and dezincification corrosion occurs when the zinc equivalent exceeds 44.0% by mass. That is, it can be seen that in a practical use scene, if the zinc equivalent is 44.0% by mass or less, the copper-based alloy for casting exhibits high dezincification corrosion resistance.

全ての実施例及び比較例について、同様に耐潰食性評価試験、耐脱亜鉛腐食性評価試験及び鋳造性の評価を行った。上記の耐潰食性評価試験において、試験後の重量減少が約0.4g以下であれば、実際の使用環境で潰食が発生しないと推測されることが、発明者らの実験にて判明している。よって、耐潰食性は、試験後の重量減少が0.4g以下である場合を○とし、重量減少が0.4gより大きい場合を×とした。耐脱亜鉛腐食性は、JBMAT303における脱亜鉛腐食感受性の評価において1種又は2種に相当すれば○とし、1種又は2種には相当しないが、実使用相当試験で脱亜鉛腐食が見られない場合を△とし、○及び△以外を×とした。鋳造性は、矢印拘束試験法において割れがない場合を○とし、わずかに割れがあるが両断されない場合を△とし、割れて両断される場合を×とした。○および△であれば、図24に示す水栓金具を作製でき、実用に耐え得る鋳造性と判断できる。全ての実施例及び比較例における結果を、表4及び表5に示す。   For all of the examples and comparative examples, the erosion resistance evaluation test, the dezincification corrosion resistance evaluation test, and the castability evaluation were performed in the same manner. In the above erosion resistance evaluation test, it was found by the inventors' experiments that if the weight loss after the test is about 0.4 g or less, it is estimated that erosion does not occur in the actual use environment. ing. Therefore, the erosion resistance was evaluated as ◯ when the weight loss after the test was 0.4 g or less, and x when the weight loss was larger than 0.4 g. The anti-dezincing corrosion resistance is ○ if it corresponds to one or two types in the evaluation of dezincification corrosion susceptibility in JBMAT303, but it does not correspond to one or two types, but dezincification corrosion is seen in an actual use equivalent test. The case where there was no △ was marked as △, and the case other than ○ and △ was marked as x. Castability was evaluated as “◯” when there was no crack in the arrow constraint test method, “△” when there was a slight crack but not both ends, and “×” when both ends were cracked. If it is (circle) and (triangle | delta), the faucet metal fitting shown in FIG. 24 can be produced and it can be judged that it is the castability which can be practically used. The results in all Examples and Comparative Examples are shown in Table 4 and Table 5.

Figure 2013167011
Figure 2013167011

Figure 2013167011
Figure 2013167011

したがって、銅、亜鉛、スズ、アルミニウム及び鉛を含み、スズが1.0〜2.0質量%、アルミニウムが0.7〜2.0質量%、亜鉛当量が35.0〜44.0質量%である鋳造用銅基合金であれば、従来の黄銅系合金にない耐潰食性と高い耐脱亜鉛腐食性をも有しながら、鋳造による成形が可能である。   Therefore, it contains copper, zinc, tin, aluminum and lead, tin is 1.0 to 2.0 mass%, aluminum is 0.7 to 2.0 mass%, and zinc equivalent is 35.0 to 44.0 mass%. The casting copper-based alloy can be molded by casting while having crushed corrosion resistance and high dezincification corrosion resistance that are not found in conventional brass alloys.

また、珪素及びビスマスの少なくとも一方が実質的に0質量%であれば、リサイクルを推進することが容易に可能である。   If at least one of silicon and bismuth is substantially 0% by mass, recycling can be easily promoted.

以上において、本発明を実施例に即して説明したが、本発明は上記実施例に制限されるものではなく、その趣旨を逸脱しない範囲で適宜変更して適用できることはいうまでもない。   While the present invention has been described with reference to the embodiments, it is needless to say that the present invention is not limited to the above-described embodiments and can be appropriately modified and applied without departing from the spirit thereof.

本発明は水栓金具等の水道用器具に利用可能である。   The present invention can be used for water supply equipment such as a faucet fitting.

Claims (7)

銅、亜鉛、スズ、アルミニウム及び鉛を含む鋳造用銅基合金であって、
スズが1.0〜2.0質量%、アルミニウムが0.7〜2.0質量%、亜鉛当量が35.0〜44.0質量%であることを特徴とする鋳造用銅基合金。
A copper-based alloy for casting containing copper, zinc, tin, aluminum and lead,
A copper-based alloy for casting, wherein tin is 1.0 to 2.0 mass%, aluminum is 0.7 to 2.0 mass%, and zinc equivalent is 35.0 to 44.0 mass%.
アンチモンが0.01〜0.1質量%である請求項1記載の鋳造用銅基合金。   The copper-based alloy for casting according to claim 1, wherein the antimony is 0.01 to 0.1% by mass. 鉛が1.8〜2.2質量%、アンチモンが0.01〜0.1質量%、リンが0.01〜0.1質量%、鉄が0.1質量%未満、銅が残部である請求項1又は2記載の鋳造用銅基合金。   Lead is 1.8 to 2.2 mass%, antimony is 0.01 to 0.1 mass%, phosphorus is 0.01 to 0.1 mass%, iron is less than 0.1 mass%, and copper is the balance. The copper base alloy for casting according to claim 1 or 2. 珪素及びビスマスの少なくとも一方が実質的に0質量%である請求項1乃至3のいずれか1項記載の鋳造用銅基合金。   The copper-based alloy for casting according to any one of claims 1 to 3, wherein at least one of silicon and bismuth is substantially 0% by mass. 亜鉛当量が40.0質量%未満である請求項1乃至4のいずれか1項記載の鋳造用銅基合金。   The copper-based alloy for casting according to any one of claims 1 to 4, wherein a zinc equivalent is less than 40.0 mass%. 亜鉛当量が38.0質量%以上である請求項1乃至5のいずれか1項記載の鋳造用銅基合金。   The copper base alloy for casting according to any one of claims 1 to 5, wherein a zinc equivalent is 38.0% by mass or more. 請求項1乃至6のいずれか1項記載の鋳造用銅基合金からなることを特徴とする水道用器具。   An appliance for water supply comprising the copper-based alloy for casting according to any one of claims 1 to 6.
JP2012154359A 2012-01-17 2012-07-10 Copper-based alloy for casting and water supply equipment Active JP5916544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012154359A JP5916544B2 (en) 2012-01-17 2012-07-10 Copper-based alloy for casting and water supply equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012007498 2012-01-17
JP2012007498 2012-01-17
JP2012154359A JP5916544B2 (en) 2012-01-17 2012-07-10 Copper-based alloy for casting and water supply equipment

Publications (2)

Publication Number Publication Date
JP2013167011A true JP2013167011A (en) 2013-08-29
JP5916544B2 JP5916544B2 (en) 2016-05-11

Family

ID=49177620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012154359A Active JP5916544B2 (en) 2012-01-17 2012-07-10 Copper-based alloy for casting and water supply equipment

Country Status (1)

Country Link
JP (1) JP5916544B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277732A (en) * 1987-05-08 1988-11-15 Chuetsu Gokin Chuko Kk Corrosion resistant special brass alloy
JPH09176762A (en) * 1995-12-21 1997-07-08 Inax Corp Copper base alloy for casting excellent in corrosion resistance and production of casting using the same
JP2001207228A (en) * 2000-01-24 2001-07-31 Marue Shindo Kk Cast copper alloy and work using the same
WO2009048008A1 (en) * 2007-10-10 2009-04-16 Toto Ltd. Lead-free, free-machining brass having excellent castability
JP2011214095A (en) * 2010-03-31 2011-10-27 Joetsu Bronz1 Corp Lead-free free-machining bronze casting alloy
JP2012207255A (en) * 2011-03-29 2012-10-25 Joetsu Bronz1 Corp Lead-free free-machining bronze alloy for casting

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277732A (en) * 1987-05-08 1988-11-15 Chuetsu Gokin Chuko Kk Corrosion resistant special brass alloy
JPH09176762A (en) * 1995-12-21 1997-07-08 Inax Corp Copper base alloy for casting excellent in corrosion resistance and production of casting using the same
JP2001207228A (en) * 2000-01-24 2001-07-31 Marue Shindo Kk Cast copper alloy and work using the same
WO2009048008A1 (en) * 2007-10-10 2009-04-16 Toto Ltd. Lead-free, free-machining brass having excellent castability
JP2011214095A (en) * 2010-03-31 2011-10-27 Joetsu Bronz1 Corp Lead-free free-machining bronze casting alloy
JP2012207255A (en) * 2011-03-29 2012-10-25 Joetsu Bronz1 Corp Lead-free free-machining bronze alloy for casting

Also Published As

Publication number Publication date
JP5916544B2 (en) 2016-05-11

Similar Documents

Publication Publication Date Title
JP5858056B2 (en) Lead-free free-cutting brass with excellent castability
US10017841B2 (en) Copper alloy casting and method of casting the same
JP4838859B2 (en) Low migration copper alloy
JP6783314B2 (en) Lead-free free-cutting brass alloy with excellent castability, its manufacturing method, and its applications
JP6056947B2 (en) Brass with excellent castability and corrosion resistance
JP2019504209A (en) Low-cost lead-free dezincing resistant brass alloy for casting
JP2010242184A (en) Lead-free, free-machining brass excellent in castability and corrosion resistance
CN101988164A (en) Dezincification resistant brass alloy with low lead content
JP6057109B2 (en) Lead, bismuth and silicon free brass
US10507520B2 (en) Copper-based alloys, processes for producing the same, and products formed therefrom
JP5916544B2 (en) Copper-based alloy for casting and water supply equipment
JP5645570B2 (en) Copper-based alloys for forging and cutting, and water supply equipment
JP6709012B2 (en) Copper-based alloy
JP2009041088A (en) Lead-free free-cutting brass with excellent castability
JP6561116B2 (en) Copper alloy for water supply components
KR100867056B1 (en) Copper alloy
US8293034B2 (en) Lead-free brass alloy
KR101189478B1 (en) Tin bearing copper alloys for die-casting
WO2015137048A1 (en) Lead-free brass material and instrument for water supply
JP3830946B2 (en) Bronze alloy and ingot and wetted parts using the alloy
KR101246598B1 (en) A copper alloy for die-casting
KR101189479B1 (en) A copper alloy for die-casting
TWI485271B (en) Low shrinkage corrosion resistant brass alloy
CN102433461A (en) Anti-dezincification yellow brass alloy
CN101994025A (en) Copper alloy with low lead content

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160405

R150 Certificate of patent or registration of utility model

Ref document number: 5916544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350