KR101832289B1 - Copper-based alloy having excellent forgeability, stress corrosion cracking resistance and dezincification corrosion resistance - Google Patents
Copper-based alloy having excellent forgeability, stress corrosion cracking resistance and dezincification corrosion resistance Download PDFInfo
- Publication number
- KR101832289B1 KR101832289B1 KR1020137028741A KR20137028741A KR101832289B1 KR 101832289 B1 KR101832289 B1 KR 101832289B1 KR 1020137028741 A KR1020137028741 A KR 1020137028741A KR 20137028741 A KR20137028741 A KR 20137028741A KR 101832289 B1 KR101832289 B1 KR 101832289B1
- Authority
- KR
- South Korea
- Prior art keywords
- resistance
- phase
- stress corrosion
- corrosion cracking
- cracking resistance
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/02—Alloys based on copper with tin as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/04—Alloys based on copper with zinc as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J1/00—Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
- B21J1/003—Selecting material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J5/00—Methods for forging, hammering, or pressing; Special equipment or accessories therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/08—Alloys based on copper with lead as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Forging (AREA)
Abstract
질량%에 있어서, Cu: 61.0~63.0%, Pb: 1.3~2.0%, Sn: 1.8~2.8%, Sb: 0.05~0.25%, P: 0.04~0.15이며 잔부가 Zn과 불순물로 이루어져, 공업적으로 만족할 수 있는 피삭성 및 강도를 가지며, 또한 우수한 단조성, 내응력 부식 균열성 및 내탈아연 부식성을 갖는 구리 베이스 합금을 제공하는 것을 목적으로 한다.The steel sheet according to any one of claims 1 to 3, wherein the Cu content is 61.0 to 63.0%, Pb is 1.3 to 2.0%, Sn is 1.8 to 2.8%, Sb is 0.05 to 0.25%, P is 0.04 to 0.15, It is an object of the present invention to provide a copper base alloy having satisfactory machinability and strength and having excellent mono-composition, stress corrosion cracking resistance and anti-slag corrosion resistance.
Description
본 발명은, 단조성, 내응력 부식 균열성 및 내탈아연 부식성이 우수한 구리 베이스 합금에 관한 것이며, 특히 조인트, 밸브 등의, 우수한 단조성과 높은 내응력 부식 균열성 및 내탈아연 부식성이 요구되는 제품의 제조에 적합하다.The present invention relates to a copper base alloy which is excellent in monoaxiality, stress corrosion cracking resistance and anti-slip zinc corrosion resistance, and more particularly to a copper base alloy having excellent monotonicity and high stress corrosion cracking resistance and anti- It is suitable for manufacturing.
내응력 부식 균열성 및 내탈아연 부식성이 우수한 단조용 구리 베이스 합금으로서는, 특허문헌 1에 0.1~0.8%의 Sn, 0.01~0.5%의 Si를 함유하며, Pb: 0.3~3.5%를 갖는 구리 베이스 합금이 개시되어 있지만 단조성이 아직 불충분하였다.As a copper base alloy for forgings having excellent stress corrosion cracking resistance and anti-slag corrosion resistance,
근년, 조인트나 밸브 등의 중공부를 갖는 제품을 중공 단조로 제작하는 경우가 많아지고 있지만, 이에 대응하려면, 열간 변형 저항이 작고, 종래 이상으로 단조성이 우수한 재료가 필요하게 된다.BACKGROUND ART In recent years, products having a hollow portion such as a joint and a valve have been produced by hollow forging in many cases. However, in order to cope with this, a material having a small thermal deformation resistance and excellent monoaxiality than conventional ones is required.
게다가, 이러한 제품에는 내응력 부식 균열성 및 내탈아연 부식성이 우수한 재료인 것이 불가결하다.In addition, it is indispensable that such a product is excellent in stress corrosion cracking resistance and anti-slag corrosion resistance.
본 발명은, 이러한 경향 및 요청에 대응할 수 있도록 이루어진 것으로, 공업적으로 만족할 수 있는 피삭성(被削性) 및 강도를 가지며, 또한 우수한 단조성, 내응력 부식 균열성 및 내탈아연 부식성을 갖는 구리 베이스 합금을 제공하는 것을 목적으로 한다.The present invention has been made to cope with such tendency and demand, and it is an object of the present invention to provide a copper alloy having excellent machinability and strength that can be satisfactorily industrially satisfactory and having excellent mono-composition, stress corrosion cracking resistance and anti- Base alloy.
본 발명은 상기의 목적을 달성하기 위해, 구리 베이스 합금은, 제 1로서, 질량%에 있어서, Cu: 61.0~63.0%, Pb: 1.3~2.0%, Sn: 1.8~2.8%, Sb: 0.05~0.25%, P: 0.04~0.15이며 잔부(殘部)가 Zn과 불순물로 이루어져, 단조성, 내응력 부식 균열성 및 내탈아연 부식성이 우수한 것을 특징으로 한다.In order to achieve the above object, the present invention provides, as a first aspect, a copper base alloy which comprises, as a first component, a composition containing 61.0 to 63.0% of Cu, 1.3 to 2.0% of Pb, 1.8 to 2.8% of Sn, 0.25%, P: 0.04 to 0.15, and the remainder is composed of Zn and impurities, and is characterized by excellent mono-composition, stress corrosion cracking resistance and anti-slag corrosion resistance.
구리 베이스 합금은, 제 2로서, 질량%에 있어서, Cu: 61.0~63.0%, Pb: 1.3~2.0%, Sn: 1.8~2.8%, Sb: 0.05~0.25%, P: 0.04~0.15, 또한, Te: 0.01~0.45%, Se: 0.02~0.45% 중, 적어도 1종의 원소를 함유하며, 잔부가 Zn과 불순물로 이루어져, 단조성, 내응력 부식 균열성 및 내탈아연 부식성이 우수한 것을 특징으로 한다.The second aspect of the present invention is to provide a copper base alloy which comprises 61.0 to 63.0% of Cu, 1.3 to 2.0% of Pb, 1.8 to 2.8% of Sn, 0.05 to 0.25% of Sb, 0.04 to 0.15 of P, , Te: 0.01 to 0.45%, and Se: 0.02 to 0.45%, and the balance of Zn and impurities, and is excellent in mono-composition, stress corrosion cracking resistance and anti-slip zinc corrosion resistance .
본 발명은, 특허문헌 1에 기재된 구리 베이스 합금과 비교하여 Sn 성분의 배합 비율을 높게 함으로써, 단조성을 개선하는 동시에, 다른 성분을 조정함으로써, 내응력 부식 균열성 및 내탈아연 부식성을 향상시킨 것이다.The present invention improves the mono-composition and improves the stress corrosion cracking resistance and the anti-slag corrosion resistance by adjusting the mixing ratio of the Sn component as compared with the copper base alloy described in
본 발명에 따른 구리 베이스 합금은, 열간 중공 단조품 등이나 업셋비(upset ratio)가 높지 않으면 성형이 어려운 열간 단조품이라도 균열이 발생하는 일 없이 제조가 가능하며, 내응력 부식 균열성 및 내탈아연 부식성도 우수하다.The copper base alloy according to the present invention can be manufactured without causing cracks even in a hot forging product which is difficult to be molded unless the upset ratio is high, such as hot forging or the like, and the stress corrosion cracking resistance and the internal zinc corrosion resistance great.
또한, 본 발명에 따른 구리 베이스 합금은 특허문헌 1의 발명과는 상이하여, Si, Ni 등을 첨가할 필요가 없다.Further, the copper base alloy according to the present invention is different from the invention of
도 1은 평가에 이용한 구리 베이스 합금의 성분표를 나타낸다.
도 2는 시험편의 단조성, 내응력 부식 균열성, 내탈아연 부식성 및 기계적 성질의 평가 결과를 나타낸다.
도 3은 Sb의 첨가의 영향을 평가하는데 이용한 합금 조성을 나타낸다.
도 4는 γ상과 α상에 있어서의 성분량의 분석 결과를 나타낸다.
도 5는 탈아연 시험 후의 현미경 사진을 나타낸다.
도 6은 단조성의 시험 방법을 나타낸다.
도 7은 응력 부식 균열 시험에 이용한 샘플 형상과 토크 부가 수나사를 나타낸다.
도 8은 데시케이터 내에 들어가 있는 샘플을 나타낸다.
도 9는 단조성의 시험 결과 사진예를 나타낸다.Fig. 1 shows a composition table of a copper base alloy used for evaluation.
Fig. 2 shows evaluation results of test piece monotonization, stress corrosion cracking resistance, internal zinc corrosion resistance and mechanical properties.
Figure 3 shows the alloy composition used to evaluate the effect of addition of Sb.
Fig. 4 shows the results of analysis of the amounts of components in the? -Phase and the? -Phase.
Figure 5 shows a micrograph after dezincification test.
6 shows a test method for mono-composition.
Fig. 7 shows the sample shape and the torque added male thread used in the stress corrosion cracking test.
Figure 8 shows a sample contained in a desiccator.
Fig. 9 shows a photograph example of a test result of mono-composition.
이하, 본 발명에 있어서 구리 베이스 합금의 성분을 결정한 이유를 설명한다.The reason for determining the components of the copper base alloy in the present invention will be described below.
단조용 황동재에 있어서, 열간 가공 시의 연성(延性)을 확보하려면, β상의 출현이 불가결하지만, 단조 후의 금속 조직중에 α상 외에 β상이 혼재하면, 이 β상을 기점으로 탈아연 부식이 발생하기 쉽다.In the brass for forging, in order to ensure ductility at the time of hot working, the appearance of β phase is indispensable. However, if β phases are mixed in the metal phase after the forging, dezinc corrosion occurs from the β phase easy.
또한, 금속 조직 중에 단단하고 무른 γ상이 출현하면 기계적 성질의 신장이 저하하며, 결정입계에 편석물이 많아지면 응력 부식 균열이 출현하기 쉽다.Further, when a hard and soft γ phase appears in the metal structure, the elongation of the mechanical properties is lowered, and when the segregation is increased in the crystal grain boundaries, stress corrosion cracks are likely to appear.
또한, γ상은 α상과 비교하여 탈아연 부식이 발생하기 쉽다.Further, the? Phase is more susceptible to dezinc corrosion than the? Phase.
Cu 성분은, 63%(이하 모두 질량%)를 초과하면, 열간 가공 시의 변형 저항이 지나치게 커지며, 61%를 하회(下回)하면, 내탈아연 부식성이 저하한다.When the content of the Cu component exceeds 63% (all parts by mass%), the deformation resistance during hot working becomes too large. When the Cu content is lower than 61% (lower), the corrosion resistance of the internal zinc decreases.
Pb는 피삭성을 향상시키기 위한 첨가 원소이며, 본 발명에서 피삭성을 확보하기 위해, Pb 성분을 1.3% 이상을 첨가하는데, 1.8%를 초과하면, 단조성이 저하할 우려를 염려하고 있었지만, 추가 실험에 의해 Pb 성분은 2.0%까지 첨가 가능함을 알 수 있었다.Pb is an additive element for improving machinability. In order to secure machinability in the present invention, Pb component is added in an amount of not less than 1.3%, and when it exceeds 1.8%, there is concern that the composition may decrease. According to the experiment, it was found that the Pb component can be added up to 2.0%.
Sn 성분을 1.8~2.8%의 범위에서 첨가하면 열간 단조성이 개선되는 동시에 Sb와의 병용으로 Sn 단독으로 얻을 수 없었던 내응력 부식 균열성이 개선된다.When the Sn content is added in the range of 1.8 to 2.8%, the hot-phase composition is improved and the stress corrosion cracking resistance, which was not obtained by Sn alone, is improved in combination with Sb.
본원 성분계에 있어서 Sn 성분이 1.8% 미만에서는 단조성이 열화되며, 2.8%를 초과하면 무르게 된다.When the content of Sn in the component system is less than 1.8%, the mono-composition is deteriorated.
Fe 성분은, 본 발명에 있어서 불순물이며, P-Fe 화합물이 증가하여 P가 소비되고, P의 유효 첨가량이 부족하여 내탈아연 부식성이 저하한다.The Fe component is an impurity in the present invention, the P-Fe compound increases, P is consumed, and the effective additive amount of P is insufficient and the internal zinc corrosion resistance is lowered.
따라서, Fe 성분은, 0.1% 이하, 바람직하게는, 0.05% 이하, 더욱 바람직하게는, 0.02% 이하이다.Therefore, the Fe component is 0.1% or less, preferably 0.05% or less, and more preferably 0.02% or less.
또한, 본 발명에서, Ni 및 Si 성분도 불순물이다.Further, in the present invention, Ni and Si components are also impurities.
Ni 성분은, 0.02% 이하가 바람직하고, Si 성분은, 0.01% 이하가 바람직하다.The Ni content is preferably 0.02% or less, and the Si content is preferably 0.01% or less.
Sb 성분은, 내탈아연 부식성을 개선하는 동시에 내응력 부식 균열성을 개선하는데, Sn과의 병용에서 특히 효과가 있다.The Sb component improves the corrosion resistance of the internal zinc and improves the stress corrosion cracking resistance, and is particularly effective in combination with Sn.
유효하게 작용하려면 적어도 0.05%의 첨가가 필요하다.At least 0.05% addition is required to work effectively.
그러나, Sb는 구리 합금을 매우 무르게 하므로, 0.10%가 한계인 것으로 추정하고 있었지만, 추가 실험에 의해 상한은 0.25%인 것으로 판명되었다.However, since Sb makes the copper alloy very rough, it was estimated that 0.10% was the limit, but the upper limit was found to be 0.25% by further experiments.
본원 발명에 따른 구리 베이스 합금은, 단조 후에 실온까지 자연 냉각하면 α상 외에 γ상이 석출하며, 약 5% 이하의 β상이 남아 있는 금속 조직으로 되어 있다.When the copper base alloy according to the present invention is naturally cooled to room temperature after forging, a γ phase is precipitated in addition to the α phase, and the metal phase has a β phase of about 5% or less remaining.
상세에 대해서는 후술하지만, ISO법에 준거하여 탈아연 부식 시험을 실시했는데, 도 5에 금속 조직 사진예를 나타낸 바와 같이 γ상이 탈아연하고 있음을 알 수 있었다.Details will be described later. However, a dezinc corrosion test was conducted in accordance with the ISO method. As shown in Fig. 5, it was found that the γ phase was dezincified as shown in the example of the metal structure photograph.
따라서, 구리 합금 중의 첨가 성분이 α상과 γ상으로 어떠한 국부적 농도로 되어 있는지 EPMA 분석했는데, Sb는 α상보다 γ상에 많이 존재하며, 이 Sb의 첨가량을 증가시키면 γ상에서의 Sb의 농도가 높아져, γ상의 탈아연 부식을 억제하는 효과를 확인할 수 있었다.Therefore, the EPMA analysis of the localized concentrations of the added components in the α-phase and the γ-phase of the copper alloy reveals that Sb exists more in the γ phase than in the α phase. Increasing the amount of Sb increases the concentration of Sb in the γ phase And it was confirmed that the effect of suppressing the de-zinc corrosion on the γ phase was confirmed.
이로부터 Sb 성분은, 0.05~0.25%의 범위가 바람직한 것으로 밝혀졌다.From this, it has been found that the Sb component is preferably in the range of 0.05 to 0.25%.
또한, 바람직하게는 Sb 성분은 0.06% 이상, 더욱 바람직하게는 0.09% 이상이며 0.25% 이하가 좋다.The Sb component is preferably 0.06% or more, more preferably 0.09% or more and 0.25% or less.
지금까지도 탈아연 부식의 원인 중 하나로 γ상의 편석이 있다고 언급되고 있어, 종래에는 γ상을 작게 분산시키는 검토는 제안되어 왔던 것으로 보이나, 본 발명과 같이 γ상 중의 Sb 농도를 높게 하는 방책은 없었다.It is mentioned that there is a? Phase segregation as one of the causes of dezinc corrosion. Conventionally, studies for dispersing? Phase in small amount have been proposed, but there is no way to increase the Sb concentration in the? Phase as in the present invention.
P 성분은, 내탈아연 부식성을 향상시키는 기능이 있다. 또한, P는 Pb의 입계로의 이동을 억제하기 때문에 열간 가공성을 향상시킨다.The P component has a function of improving the internal zinc corrosion resistance. P also suppresses the migration of Pb into the grain boundary, thereby improving hot workability.
P의 적정 첨가량은 0.04~0.15%가 된다.The appropriate amount of P is 0.04 to 0.15%.
Te 성분은, 절삭성을 향상시키는데, 0.01% 이상에서 효과가 있으며, 첨가량에 상응하는 효과를 얻는 점, 및 경제성의 점에서 0.45%를 상한으로 하였다.The Te component improves the machinability. The Te component has an effect at 0.01% or more, an effect corresponding to the additive amount, and an economical efficiency of 0.45%.
Se 성분은, 절삭성을 향상시키지만, 재료 단가가 고가이기 때문에, 극력 억제하는 것이 좋다.The Se component improves the cutting performance, but since the unit cost is high, it is preferable to suppress the Se.
또한, 열간 가공성이 떨어지므로 0.45% 이하가 바람직하다.In addition, since the hot workability deteriorates, it is preferably 0.45% or less.
따라서, Se 성분을 첨가하는 경우는, 0.02~0.45%의 범위가 바람직하다.Therefore, in the case of adding the Se component, the range of 0.02 to 0.45% is preferable.
실시예Example 1 One
도 1에 나타낸 바와 같은 각종 합금 조성의 잉곳(외경 60㎜, 길이 80㎜의 원기둥 형상)을 열간(600~620℃)으로 외경 22㎜의 둥근 막대 형상으로 압출 가공하고, 그 후, 상온까지 공랭(空冷)함으로써 구리 베이스 합금재를 얻었다.An ingot (having an outer diameter of 60 mm and a columnar length of 80 mm) having various alloy compositions as shown in Fig. 1 was extruded into a round rod shape having an outer diameter of 22 mm at a hot (600 to 620 캜) (Air-cooled) to obtain a copper base alloy material.
도 1의 표 중, 발명 합금으로 표시한 칸의 성분은 본 발명의 실시예에 해당하며, 비교예로 표현한 것 중, No. 21~23 및 No. 25, 26은, 합금 성분 중 1개 이상의 성분이 본 발명의 범위로부터 벗어나며, No. 24는 시판재로부터 샘플링한 것이다.In the table of Fig. 1, the components of the column indicated by the inventive alloy correspond to the examples of the present invention. 21 to 23 and No. 25 and 26 show that at least one of the components of the alloy deviates from the scope of the present invention. 24 are sampled from commercial materials.
<평가 시험>≪ Evaluation test >
(1) 단조 시험(1) Forging test
상기에서 얻어진 구리 베이스 합금재를 길이 22㎜로 절단하고, 도 6에 나타내는 시험 방법에 의해 단조성을 평가하였다.The copper base alloy material obtained above was cut to a length of 22 mm, and the monoaxiality was evaluated by the test method shown in Fig.
도 6에서 업셋비(%)={(22-h)/22}×100의 값이 큰 것이 엄격한 시험 방법이 된다.In FIG. 6, it is a strict test method that a value of upset ratio (%) = {(22-h) / 22) × 100 is large.
본 발명에 있어서는, 단조가 어려운 제품을 염두에 두고 있으므로, 업셋비 60~90%에서 단조성을 평가하였다.In the present invention, since the product which is difficult to be forged is considered in mind, the mono-composition was evaluated at an upset ratio of 60 to 90%.
단조 온도는 700, 750, 800℃의 3가지 조건으로 하였다.The forging temperature was set at 700, 750 and 800 ℃.
단조기는 기계 프레스 250톤을 사용하였다.The forging machine used 250 tons of mechanical press.
평가로서는, 업셋비 80%에서, 상기 3종류의 온도 중에서 가장 단조성이 양호한 온도에서의 물품을 선택하고, 균열이 발생하지 않은 것을 ○, 부분적으로 균열이 확인된 것을 △, 전체적으로 균열이 관찰된 것을 ×로 하였다.As the evaluation, the product at the temperature of the single most favorable composition among the three kinds of temperatures was selected at the upset ratio of 80%, and those in which cracks did not occur were evaluated as?, Those in which cracks were partially observed? Was evaluated as x.
도 9의 (a)에 나타낸 사진은, 발명 합금 No. 1의 예이며, (b)는 비교예 No. 22의 예를 나타내고, 단조 온도 800℃에서, 위에서부터 업셋비: 70%, 80%, 90%이다.The photograph shown in Fig. 1 (b) is an example of Comparative Example No. 1; 22, and the upset ratio is 70%, 80%, 90% from the top at a forging temperature of 800 占 폚.
(2) 응력 부식 균열 시험(2) Stress corrosion cracking test
외경이 22㎜인 구리 베이스 합금재를 길이 78㎜로 절단하고, 열간 단조를 행하여 도 7의 (a)에 나타내는 형상으로 마무리하였다.A copper base alloy material having an outer diameter of 22 mm was cut into a length of 78 mm and subjected to hot forging to complete the shape shown in Fig. 7 (a).
암나사부의 외경이 25㎜이며 내측의 나사는 1/2인치의 테이퍼진 암나사로 하였다.The outer diameter of the female thread portion was 25 mm and the inner thread was made of 1/2 inch tapered female thread.
여기에 도 7의 (b)에 나타낸 바와 같은 시일 테이프를 감은 1/2인치의 테이퍼진 수나사의 조인트를 60N·m의 토크로 비틀어 넣고, 암모니아 농도 14%의 암모니아수를 넣은 데시케이터 내에 24시간 방치하여, 시험을 행하였다.The tapered male thread joint of 1/2 inch wound with a sealing tape as shown in FIG. 7 (b) was twisted with a torque of 60 N · m, and the sample was placed in a desiccator containing ammonia water with an ammonia concentration of 14% And the test was conducted.
도 8에 시험 상태를 나타낸다.The test state is shown in Fig.
24시간 경과 후에 데시케이터 내로부터 각 공시재(供試材)를 꺼내 희질산으로 세정한 후에, 육안 확인에 의해 균열 유무의 평가를 행하였다.After 24 hours had elapsed, each specimen was taken out from the desiccator, washed with dilute acid, and evaluated for the presence or absence of cracks by visual inspection.
균열의 발생이 없는 것을 「○」, 균열의 발생이 확인된 것을 「×」로 하였다.&Quot; & cir & ", and " x "
(3) 내탈아연 부식 시험(3) Anti-Zinc corrosion test
ISO법에 준거하여, 시험재를 75±3℃의 CuCl2·2H2O의 12.7g/l 용액에 24시간 침지하고, 탈아연 부식 깊이를 측정하여, 이하의 기준에 의해 평가하였다.According to the ISO method, the test material was immersed in a solution of 12.7 g / l of CuCl 2 .2H 2 O at 75 ± 3 ° C for 24 hours, and the dezinc corrosion depth was measured and evaluated according to the following criteria.
탈아연 깊이 100㎛ 이하인 것은 합격(○), 탈아연 깊이가 100㎛를 초과하는 것은 불합격(×)으로 하였다.When the depth of the zinc depletion is 100 탆 or less, it is determined to be acceptable (∘).
(4) 기계적 성질(4) Mechanical properties
도 1에 나타낸 바와 같은 각종 합금 조성의 잉곳(외경 60㎜, 길이 80㎜의 원기둥 형상)을 열간(600~620℃)으로 외경 10㎜의 둥근 막대 형상으로 압출 가공하고, 그 후, 상온까지 공랭함으로써 구리 베이스 합금재를 얻었다.An ingot (having an outer diameter of 60 mm and a columnar length of 80 mm) having various alloy compositions as shown in Fig. 1 was extruded into a round rod shape having an outer diameter of 10 mm at a hot (600 to 620 캜) Thereby obtaining a copper base alloy material.
이것을 평행부의 직경이 7㎜, 표점 거리(gauge length)는 25밀리가 되도록 기계 가공하여 인장 시험을 행하며, 0.2% 내력, 인장 강도, 파단 신장을 측정하였다.This was subjected to a tensile test by machining such that the diameter of the parallel portion was 7 mm and the gauge length was 25 mm, and the 0.2% proof stress, tensile strength, and elongation at break were measured.
여기서, 인장 강도가 370N/㎜2 이상, 파단 신장이 15% 이상을 판정 기준으로 하였다.Here, the determination standard was a tensile strength of 370 N / mm 2 or more and a breaking elongation of 15% or more.
이들 모두를 만족하는 경우를 ◎, 1항목을 만족하는 경우를 ○, 이들 모두 만족하지 못하는 경우를 ×로 판정하였다.A case of satisfying all of them, a case of satisfying one item, and a case of not satisfying all of them were evaluated as X, respectively.
도 1의 화학 성분과 도 2의 평가 결과를 검토한다.The chemical components of FIG. 1 and the evaluation results of FIG. 2 will be examined.
본 발명에 따른 실시예 중 No. 1~10은, Pb: 1.3~2.0%, Sn: 1.8~2.8%, Sb: 0.05~0.25%, P: 0.04~0.15%의 범위이므로, 단조성, 내응력 부식 균열성, 내탈아연 부식성 및 기계적 성질 중 어느 것도 실용상, 문제가 없었다.Of the examples according to the present invention, 1 to 10 are in a range of 1.3 to 2.0% of Pb, 1.8 to 2.8% of Sn, 0.05 to 0.25% of Sb and 0.04 to 0.15% of P, respectively, so that the composition, stress corrosion cracking resistance, None of the properties were practically problematic.
발명 합금 No. 6~No. 10은 추가적으로 시작(試作) 평가한 것이다.Inventive alloy No. 6 ~ No. 10 is an additional trial evaluation.
합금 No. 6은, Pb 성분량이 1.97%, Sb 성분량이 0.22%였지만, 도 2의 표에 나타낸 바와 같이 단조성, 내응력 부식 균열성, 내탈아연 부식성 및 기계적 성질 중 모든 품질이 기준을 통과하였다.Alloy No. 6 had a Pb component content of 1.97% and an Sb component content of 0.22%, but all of the mono-composition, stress corrosion cracking resistance, internal zinc corrosion resistance and mechanical properties passed through the standards as shown in the table of FIG.
합금 No. 7~No. 10은, Sb의 양을 순서대로 증가시킨 것이다.Alloy No. 7 ~ No. 10 is the order of increasing the amount of Sb.
합금 No. 10은, Sb: 0.144% 첨가한 것보다 약간 무르게 되어, 기계적 성질이 약간 저하하였지만, 그 외의 특성에는 변화가 없었다.Alloy No. 10 was somewhat weaker than that in which 0.144% of Sb was added, and the mechanical properties were slightly lowered, but the other characteristics were not changed.
구리 합금 조직 중의 Sb의 거동에 대해서는, 후술한다.The behavior of Sb in the copper alloy structure will be described later.
이에 대해, 비교예 No. 21은 Sb 성분이 0.01%로 본 발명의 범위, 0.05%보다 적기 때문에 내응력 부식 균열성이 특히 열화되었다.On the other hand, 21 had a Sb content of 0.01%, which is smaller than the range of the present invention, 0.05%, so that the stress corrosion cracking resistance was particularly deteriorated.
비교예 No. 22는 Cu: 63.1%로 63.0%를 초과하며, Pb도 2.09%로 2.0%를 초과하고 있으므로 특히 단조성이 열화되었다.Comparative Example No. 1 22 contained more than 63.0% of Cu (63.1%) and Pb exceeded 2.0% (2.09%).
비교예 No. 23은 Pb가 본 발명의 범위를 초과하고, Sn이 본 발명의 범위 이하이므로 단조성, 내응력 부식 균열성이 특히 열화되었다.Comparative Example No. 1 23, Pb exceeded the range of the present invention and Sn was below the range of the present invention, so that monolithic composition and stress corrosion cracking resistance were particularly deteriorated.
비교예 No. 24의 시판재는 본 발명 합금보다, 기계적 성질 이외의 모든 품질 항목에서 열화되었다.Comparative Example No. 1 24 commercially available materials were deteriorated in all the quality items other than the mechanical properties than the alloy of the present invention.
비교예 No. 25는, Pb가 본 발명의 범위를 초과하고 있으므로 단조성이 약간 열화되었다.Comparative Example No. 1 25 had a slightly deteriorated mono-composition because Pb exceeded the range of the present invention.
비교예 No. 26은, Pb가 본 발명의 범위를 초과하고, Sn과 Sb가 본 발명의 범위 이하이므로, 단조성과 내응력 부식 균열성이 열화되었다.Comparative Example No. 1 26 exhibited deterioration in monotonicity and stress corrosion cracking resistance because Pb exceeded the range of the present invention and Sn and Sb were within the range of the present invention.
Sb의 첨가 효과를 확인하기 위해, 다음과 같은 시험·평가를 실시하였다.In order to confirm the effect of adding Sb, the following test and evaluation were carried out.
도 3의 표에 나타낸 성분의 합금 조성의 잉곳(외경 60㎜, 길이 80㎜의 원기둥 형상)을 열간(600~630℃)으로 외경 17밀리의 둥근 막대 형상으로 압출 가공하고, 그 후, 상온까지 공랭함으로써 구리 베이스 합금재를 얻었다.An ingot having an alloy composition of the components shown in the table of Fig. 3 (columnar shape having an outer diameter of 60 mm and a length of 80 mm) was extruded into a round rod shape having an outer diameter of 17 mm at a hot (600 to 630 캜) A copper base alloy material was obtained by air cooling.
압출 가공에서의 열간 조건은, 단조에 가깝다.The hot condition in the extrusion process is close to forging.
한편, 금속 조직은 압출 방향으로 석출물이 가늘고 길어진다.On the other hand, in the metal structure, the precipitate is elongated in the extrusion direction.
따라서, 압출 가공재가 단조재보다 탈아연 부식 시험 조건이 과혹하다.Therefore, the extrusion-treated material is inferior to the forged material in terms of dezinc corrosion test conditions.
따라서, 가장 탈아연 하기 쉬운 방향인 압출 방향에 수직인 면을 폭로면으로 하고, ISO법에 준거하여, 시험재를 75±3℃의 CuCl2·2H2O의 12.7g/L 용액에 24시간 침지하여, 최대 탈아연 깊이(단위: ㎛)를 구하였다.Therefore, the test piece was immersed in a solution of 12.7 g / L of CuCl 2 .2H 2 O at 75 ± 3 ° C for 24 hours, in accordance with the ISO method, with a plane perpendicular to the extrusion direction, And the maximum dezincification depth (unit: 占 퐉) was determined.
Sb의 첨가량이 높아짐에 따라 내탈아연 부식성은 양호해지지만, 0.15% 이상이 되면 개선 효과에 변화가 관찰되지 않는다.As the amount of Sb added increases, the internal zinc corrosion resistance becomes good, but when the Sb content is more than 0.15%, the improvement effect is not observed.
따라서, 기계적 특성을 고려하여 상한을 0.25%로 하였다.Therefore, the upper limit was set to 0.25% in consideration of the mechanical properties.
Sb의 첨가량을 많게 함으로써 내탈아연 부식성이 양호해지는 이유를 조사하기 위해, EPMA에 의한 미소 부분의 정량 분석을 실시하여, 그 결과를 도 4에 나타낸다.In order to investigate the reason why the amount of Sb added is increased to improve the internal zinc corrosion resistance, quantitative analysis of the minute portion by EPMA is carried out, and the results are shown in Fig.
Sb의 첨가량을 증가시키면, α상 중의 Sb 양에 변화는 관찰되지 않지만 γ상중의 Sb가 증가하고 있다.When the addition amount of Sb is increased, the Sb amount in the? -Phase is increased although the Sb amount in the? -Phase is not observed.
이로부터, γ상 중으로 Sb가 이동하여, 탈아연 부식을 억제하고 있음을 알 수 있었다.From these results, it was found that Sb migrates into the γ phase, thereby suppressing the de-zinc corrosion.
그러나, γ상 중의 Sb가 0.9%를 초과하면 효과는 변하지 않는 것으로 보인다.However, if Sb in the γ phase exceeds 0.9%, the effect does not seem to change.
또한, γ상 중의 Sb 성분량에 주목하면, γ상 중의 Sb 성분량은 0.6~1.3%의 범위가 바람직한 것이 된다.Further, paying attention to the amount of the Sb component in the? Phase, the amount of the Sb component in the? Phase is preferably in the range of 0.6 to 1.3%.
산업상의 이용 가능성Industrial availability
본 발명에 따른 구리 베이스 합금은, 단조성, 내응력 부식 균열성 및 내탈아연 부식성이 우수하기 때문에, 배관 조인트, 밸브류 뿐만 아니라, 각종 단조 제품에 적용할 수 있다.
Since the copper base alloy according to the present invention is excellent in monoaxiality, stress corrosion cracking resistance and anti-slip zinc corrosion resistance, it can be applied not only to piping joints and valves but also to various forging products.
Claims (2)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011089373 | 2011-04-13 | ||
JPJP-P-2011-089373 | 2011-04-13 | ||
PCT/JP2012/055916 WO2012140977A1 (en) | 2011-04-13 | 2012-03-08 | Copper-based alloy having excellent forgeability, stress corrosion cracking resistance and dezincification corrosion resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20140045933A KR20140045933A (en) | 2014-04-17 |
KR101832289B1 true KR101832289B1 (en) | 2018-02-26 |
Family
ID=47009159
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020137028741A KR101832289B1 (en) | 2011-04-13 | 2012-03-08 | Copper-based alloy having excellent forgeability, stress corrosion cracking resistance and dezincification corrosion resistance |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5484634B2 (en) |
KR (1) | KR101832289B1 (en) |
WO (1) | WO2012140977A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2913414B1 (en) * | 2012-10-31 | 2018-10-10 | Kitz Corporation | Brass alloy exhibiting excellent recyclability and corrosion resistance |
JP5953432B2 (en) * | 2013-06-05 | 2016-07-20 | サンエツ金属株式会社 | Copper base alloy |
SE1450094A1 (en) | 2014-01-30 | 2015-07-31 | Arsenic-free brass with improved zinc toughness and cutability | |
WO2017204252A1 (en) * | 2016-05-25 | 2017-11-30 | 三菱伸銅株式会社 | Brass alloy hot-worked article and method for producing brass alloy hot-worked article |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005281800A (en) | 2004-03-30 | 2005-10-13 | Kitz Corp | Copper-based alloy, and ingot and product using it |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0768595B2 (en) * | 1991-11-14 | 1995-07-26 | 三宝伸銅工業株式会社 | Corrosion resistant copper base alloy material |
JP3903297B2 (en) * | 2000-06-30 | 2007-04-11 | Dowaホールディングス株式会社 | Dezincing resistant copper base alloy |
CA2563094C (en) * | 2004-08-10 | 2012-03-27 | Sanbo Shindo Kogyo Kabushiki Kaisha | Copper-based alloy casting in which grains are refined |
-
2012
- 2012-03-08 WO PCT/JP2012/055916 patent/WO2012140977A1/en active Application Filing
- 2012-03-08 KR KR1020137028741A patent/KR101832289B1/en active IP Right Grant
- 2012-03-08 JP JP2013509828A patent/JP5484634B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005281800A (en) | 2004-03-30 | 2005-10-13 | Kitz Corp | Copper-based alloy, and ingot and product using it |
Also Published As
Publication number | Publication date |
---|---|
JP5484634B2 (en) | 2014-05-07 |
WO2012140977A1 (en) | 2012-10-18 |
JPWO2012140977A1 (en) | 2014-07-28 |
KR20140045933A (en) | 2014-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3966896B2 (en) | Brass | |
EP1600516B1 (en) | Lead-free, free-cutting copper alloys | |
KR100375426B1 (en) | Free-cutting copper alloy | |
CA2619357C (en) | Free-cutting copper alloy containing very low lead | |
US6942742B2 (en) | Copper-based alloy excellent in dezincing resistance | |
US6413330B1 (en) | Lead-free free-cutting copper alloys | |
CA2850053C (en) | Leadless free-cutting copper alloy and method for producing the same | |
WO2014117684A1 (en) | Lead-free easy-to-cut corrosion-resistant brass alloy with good thermoforming performance | |
JP4620963B2 (en) | Brass, manufacturing method thereof, and parts using the same | |
WO2007037426A1 (en) | Free-cutting aluminum alloy extrudate with excellent brittle resistance at high temperature | |
US7056396B2 (en) | Copper/zinc alloys having low levels of lead and good machinability | |
KR101832289B1 (en) | Copper-based alloy having excellent forgeability, stress corrosion cracking resistance and dezincification corrosion resistance | |
JP5143948B1 (en) | Lead-free brass alloy for hot working | |
WO2014196518A1 (en) | Copper-based alloy | |
JP5513247B2 (en) | Lead-free copper-based alloy with excellent forging and stress corrosion cracking resistance | |
JP5391986B2 (en) | Al-Cu aluminum alloy member | |
JP4799877B2 (en) | Aluminum alloy excellent in strength and machinability and manufacturing method thereof | |
WO2015151720A1 (en) | Low-lead brass alloy for plumbing member | |
KR20240085468A (en) | Silicon-based lead-free brass alloy with excellent hot machinability | |
TWI576444B (en) | Lead-free brass alloy | |
US20130118309A1 (en) | Lead free dezincification alloy and method of making same | |
KR20240085465A (en) | Low silicon-based lead-free brass alloy with excellent machinability | |
JP2022190708A (en) | Yellow copper alloy having excellent stress corrosion cracking resistance | |
JP2006083443A (en) | Brass material superior in hot workability and machinability | |
JP2010077477A (en) | Free-cutting aluminum alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |