JP5950884B2 - 光走査方法および光走査装置 - Google Patents

光走査方法および光走査装置 Download PDF

Info

Publication number
JP5950884B2
JP5950884B2 JP2013217044A JP2013217044A JP5950884B2 JP 5950884 B2 JP5950884 B2 JP 5950884B2 JP 2013217044 A JP2013217044 A JP 2013217044A JP 2013217044 A JP2013217044 A JP 2013217044A JP 5950884 B2 JP5950884 B2 JP 5950884B2
Authority
JP
Japan
Prior art keywords
light
scanned
optical element
light beam
focal length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013217044A
Other languages
English (en)
Other versions
JP2015079171A (ja
Inventor
増田 麻言
麻言 増田
Original Assignee
増田 麻言
麻言 増田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 増田 麻言, 麻言 増田 filed Critical 増田 麻言
Priority to JP2013217044A priority Critical patent/JP5950884B2/ja
Priority to US14/516,841 priority patent/US9482865B2/en
Publication of JP2015079171A publication Critical patent/JP2015079171A/ja
Application granted granted Critical
Publication of JP5950884B2 publication Critical patent/JP5950884B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0858Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by piezoelectric means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Laser Beam Printer (AREA)
  • Lenses (AREA)

Description

本発明は、光走査方法および光走査装置に関する。
従来、光走査における光ビームの収束方法としては、fθレンズやアークサインレンズを用いて被走査面上で等速走査変換を行うとともに、被走査面上で結像する方法が採られている。
従来、光源から出射される光ビームを光偏向手段により被走査面に走査する光走査装置は、レーザプリンタ等の書込み系やバーコードリーダ等の読込み系で広く用いられている。
高精細が要求される書込み系においては、ビーム径が50μm程度までの収束が要求され、高精度の光走査装置が必要となっている。
特許文献1には、光源から出射される光ビームをねじり梁に支持された振動ミラーからなる光偏向手段で反射して、振動ミラーによる走査速度が被走査面上で一定となるように光ビームの投光タイミングを制御するとともに、光偏向手段の上流側に設けられた可変焦点レンズによって被走査面上で光ビームを収束する光走査装置が開示されている。
また、特許文献2には、二次元的に走査する場合において、光ビームを出射してから被走査面(対象物)からの反射光が戻ってくるまでの時間を計測して、被走査面までの距離を測定する装置が開示されている。
特開2008−197336 特開2012−141265
特許文献1の光走査装置では、ねじり梁に支持された振動ミラーにより走査が行われることから、振動ミラーの振れ角に対する位置検出が困難であり、光偏向手段の基準位置を得ることができず、被走査面での精度の高い走査(描画)ができないという問題点がある。
特許文献2の距離測定装置では、測定対象物との距離が短い場合には極めて短時間の計測が必要となるため、光ビームの出射制御部や時間計測部が極めて高価なものとなる。また、対象物との距離が離れている場合には、計測に必要な反射光を得るために高出力の光源が必要となり、安全性の確保の面に問題点がある。
本発明は、上記の問題点に鑑みてなされたものであり、その目的は、光源から出射される光ビームを光偏向手段により被走査面に走査する光走査装置において、より高い精度で被走査面の走査が可能な光走査方法を提供することにある。
また、本発明は、上記光走査方法を使用するための光走査装置を提供することを目的とする。また、被走査面までの距離が異なっても同一の装置でその被走査面上に同じ高い精度で光ビームを収束することができる光走査装置を提供することを目的とする。さらに、小型軽量で安価な光走査装置を提供することを目的とする。
本発明は、上記光走査方法を用いて三次元的な距離測定ができる距離測定方法およびその距離測定方法を用いる距離測定装置を提供することができる。
本発明は、光源から出射される光ビームを被走査面に走査する光走査方法において、光源から出射される光を被走査面上に収束させる光学素子の焦点距離を光源からの距離が変化する被走査面上の各位置のビームスポット径が均一となるように順次変化させることを特徴とする。
前記光学素子は、光源から出射されるレーザ光を所定の光径の平行光にする第一の光学素子と、第一の光学素子から入射する光ビームの焦点距離を変化させる第二の光学素子と、第二の光学素子からの光ビーム径を当該第二の光学素子の立ち上がり時間を短縮し光偏向手段でのビーム幅変動を抑えるように補正する第三の光学素子とを有し、第三の光学素子からの光ビームを光偏向手段により反射させ、被走査面に当てることを特徴とする。
また、本発明に係る光走査方法は、第二の光学素子により焦点距離が決定され、光偏向手段により前記被走査面に走査される光ビームを光ビーム検知手段により検知して、その検知信号を光偏向手段の同期信号とし、光偏向手段より被走査面に走査される光ビームの光量または被走査面より反射された光ビームの光量を検出し、被走査面に走査される光ビームの光量または被走査面より反射された光ビームの光量が最大値となるように第二の光学素子の焦点距離を制御することを特徴とする。
本発明に係る上記光走査方法を使用する光走査装置は、光源から出射される光ビームを被走査面に走査する光走査装置において、光源から出射される光を被走査面上に収束させる光学素子と、その光学素子の焦点距離を光源からの距離が変化する被走査面上の各位置のビームスポット径が均一となるように順次変化させる手段とを有することを特徴とする。
上記光走査装置において、前記光学素子は、光源から出射されるレーザ光を所定の光径の平行光にする第一の光学素子と、第一の光学素子から入射する光ビームの焦点距離を変化させる第二の光学素子と、第二の光学素子からの光ビーム径を当該第二の光学素子の立ち上がり時間を短縮し光偏向手段でのビーム幅変動を抑えるように補正する第三の光学素子を有し、光偏向手段は、第三の光学素子からの光ビームを反射させて被走査面に走査するものであることを特徴とする。
さらに、本発明は、上記光走査装置において、第二の光学素子により焦点距離が決定され、光偏向手段により被走査面に走査された光ビームを検知する光ビーム検知手段と、光偏向手段より被走査面に走査される光ビームの光量または被走査面から反射された光ビームの光量を検出する光量検出手段と、光ビーム検知手段の検知信号を光偏向手段の同期信号とし、かつ光量検出手段が検出する被走査面に走査される光ビームの光量または反射された反射光ビームの光量が最大値となるように第二の光学素子の焦点距離調整機能を制御する制御手段とを有することを特徴とする。
上記光走査装置において、第一の光学素子はコリメータレンズであり、第二の光学素子は可変焦点レンズであり、光偏向手段は揺動ミラーであり、光ビーム反射手段はハーフミラーであることが好ましい。
そして、上記光走査装置において、揺動ミラーはマイクロマシーニングにより製作されたメムスのミラーであって、超小型の揺動ミラーモジュールに形成されていることが好ましい。
本発明の実施の形態に係る光走査装置の構成と光路を示すブロック図である。 図1に示す光走査装置に使用される可変焦点レンズの一例を示す一部破断分解斜視図である。 可変焦点レンズと揺動ミラーとを同期させる原理を説明する図である。 可変焦点レンズの焦点距離の可変前と可変後のビーム径の変化を示すグラフである。 一次元走査用揺動ミラーの一例を示す斜視図である。 図5の揺動ミラーによる2種類の走査方式を示す図である。 本発明の実施の形態におけるレーザ光出射タイミング、揺動ミラーの揺動タイミング、揺動ミラーの振れ角、可変焦点レンズの焦点変更タイミングの時間関係および光ビーム検知器の光量検出電圧の変動を示すタイムチャートである。 本発明の実施の形態に係る光走査装置の制御系のブロック図である。 本発明の実施例における光走査装置の性能検証条件を示す図である。 図9の性能検証の結果を示すグラフである。 二次元走査用揺動ミラーの一例を示す斜視図である。 本発明の応用例に係る距離測定装置の制御系のブロック図である。 可変焦点レンズを用いる距離測定の原理を説明する図である。 図12の揺動ミラーの走査パターンを示す図である。 本発明の応用例に係る距離測定装置の動作の流れを説明するフローチャートである。
続いて、本発明の実施の形態について、図面を参照しながら詳細に説明する。
[レーザ光走査装置]
図1は本発明の実施の形態に係るレーザ光走査装置10(Laser Scanning Unit:LSU)の構成を示すブロック図である。レーザ光走査装置10は、光源1と、第一の光学素子であるコリメータレンズ2と、第二の光学素子である可変焦点レンズ3と、第三の光学素子であるビーム径補正レンズ4と、光偏向手段である揺動ミラー5と、光ビーム反射手段であるハーフミラー6と、光量検出手段である光ビーム検知器7と、制御部8とを有して構成されている。このレーザ光走査装置10は、光ビームを出射し、被走査面となる感光体ドラム9に当てる。図1において、Bは光路である。
光源1は、レーザダイオード(半導体レーザ)などであり、制御部8の駆動回路81(図8参照)からの駆動信号により所定の波長、たとえば780nmのパルス状のレーザ光を出射する。半導体レーザには、端面発光レーザか面発光レーザがあり、共に使用可能である。面発光レーザの一種には、垂直共振器面発光レーザ(VCSEL)があり、この種のレーザとしては、たとえば850nm,1310nm,1550nmの波長が用いられる。
コリメータレンズ2は、光源1から出射されるレーザ光を所定の光束径、たとえば200μmの平行光束(光ビーム)に整形(変換)して出射する。コリメータレンズ2は、光源1と一体的に設けられ、光源1から出射されたレーザ光が平行光となるように調整された後、光源1と一体的に固定される。本実施の形態では、コリメータレンズ2のF値(焦点距離)は32とし、NA値(開口値)を0.12とし、ビーム輝度確保のため暗くしている。
可変焦点レンズ3は、コリメータレンズ2から入射する光ビームの被走査面上でのビームスポット径を均一でかつ最小にするために、焦点距離を後述される条件で順次変化させるものである。可変焦点レンズ3は、所望の焦点距離にすることができるならば、電気光学変換材料や機械的にレンズを動かす方法等を使うことができる。たとえば、特許文献1に記載の可変焦点レンズを用いることもできる。この実施の形態では、内部が液体で満たされ、後述する圧電素子33に振動を与えると、屈折率が変わり、その共振周波数によって焦点距離を可変させるものとしている。具体的には、焦点距離の調整範囲が250〜300mmで、揺動周波数が2.5KHzのものを使用している。
可変焦点レンズ3は、図2に示すように、可変焦点レンズ部3Aと、固定対物レンズ部3Bとを重ねて構成されている。可変焦点レンズ部3Aは、固定対物レンズ部3Bの焦点距離に対してその距離を変化させるため、以下のように構成されている。
円環状のシリコンスペーサ31,31に対して透光性弾性膜としての薄膜のガラスダイヤフラム32がそれぞれ陽極接合によって接合されている。ガラスダイヤフラム32の表面側には、PZT(Piezoelectric element)等の駆動手段としての圧電素子33がそれぞれスパッタ等の成膜方法によって円環状に形成されている。また、図示されていないが、ガラスダイヤフラム32は、中央部になるほど膜厚が徐々に薄肉となる膜厚分布を有するように形成されており、これにより可変焦点レンズ部3Aの透光性樹脂34の光学収差を低減するようになっている。
固定対物レンズ部3Bは、レンズホルダ35の内周段部と保持リング36との間に固定対物レンズ37を挟持した状態で接着等の手段により固定して形成されている。そして、上述した可変焦点レンズ部3Aと固定対物レンズ部3Bとは接着等の手段により外周部が互いに接合されて一体化されている。
圧電素子33に対する駆動によりガラスダイヤフラム32の曲率が変化する。すると、シリコンスペーサ31,31によって径方向を囲まれ、かつ、ガラスダイヤフラム32によって光軸方向面がカバーされることで、全周囲を囲まれた透光性樹脂34の形状が変化する。この形状変化によって可変焦点レンズ3の焦点距離が変化する。この駆動を振動ミラー5の揺動と同期させることにより、通過する光ビームの焦点距離が変わるように構成されている。
図3は、可変焦点レンズ3の圧電素子33の駆動と揺動ミラー5の揺動との同期を取るための一例を説明する図である。なお、この図3は、図1のレーザ光走査装置10とは異なるものであり、可変焦点レンズ3Aと揺動ミラー5Aの同期をどのように行なうかを調べるためのものである。各符号はレーザ光走査装置10の各部材と同様のものであるため、「A」を付加してある。
図3のように、コリメータレンズ2Aからの平行光は可変焦点レンズ3Aによって所定の位置で最小のビーム径となる。この例では可変焦点レンズ3Aに電圧80Vを印加したときにレンズの焦点距離が最も短くなり、可変焦点レンズ3Aから30cmの位置(図中a1の位置)で最小のビーム径となる。可変焦点レンズ3Aに電圧75Vを印加したときには可変焦点レンズ3Aの焦点距離が長くなり、可変焦点レンズ3Aから35cmの位置(図中a2の位置)で最小のビーム径となる。このように、可変焦点レンズ3は印加する電圧で焦点距離を任意に設定することができる。
たとえば、可変焦点レンズ3Aに電圧を印加せずに揺動ミラー5Aを揺動すると、そのビーム径は揺動の中心で最も小さくなり、揺動の両端に行くほど径は大きくなる(図4の可変前を参照。)。これを可変焦点レンズ3Aに電圧を印加する際に揺動ミラー5Aの揺動状態に合わせ、その印加電圧を変化させることで、どの光ビーム径も揺動中心から離れてもほぼ同じとなる(図4の可変後を参照。)。
図1の可変焦点レンズ3で焦点距離が決定されるビームは、ビーム径補正レンズ4を通過して揺動ミラー5で反射され、被走査面、たとえば、感光体ドラム9上を走査するようになっている。ビーム径補正レンズ4は、可変焦点レンズ3の立ち上がり時間を短縮する機能や揺動ミラー5でのビーム幅変動を抑える機能を有する。この実施の形態では、焦点距離は250mmとなっている。
コリメータレンズ2で平行光束に整形された光ビームは、光偏向手段である揺動ミラー5で感光体ドラム9に向けて反射走査される。揺動ミラー5は、本発明の好ましい実施の形態では、マイクロマシーニングにより製作されたメムス(MEMS:Micro Electro
Mechanical Systems)のミラーであり、超小型の揺動ミラーモジュールに形成されている。
本実施の形態では、揺動ミラー5は、静電気駆動方式により回転トルクが発生されるよう構成されている。静電気駆動方式を採る揺動ミラー5は、図5に示すように、下板51の上面に固着された中板52の上面の両側に固定電極53,53を設けるとともに、その両側の固定電極53,53の間において捩じり支持部材54により可動電極55を支持し、その可動電極55の両側に固定電極53との間に存在する櫛形電極56を備えて構成されている。AC1,AC2は給電部である。
可動電極55の上面には、銀等の反射部材を蒸着してミラー部5aが形成されている。レーザ光の波長や強度、反射効率に応じて適宜材料や蒸着の厚み、および蒸着の層構成が決められる。固定電極53と可動電極55は電極面に平行な空隙を介して交互に配置される。ここで、それぞれの電極に電圧を印加することで、電極間に働く引力と斥力によりミラー部5aを所定の周期で一次元的に揺動させることができる。なお、ミラー部5aは、印加電圧に応じて揺動の周期と振れ幅を設定することができるが、ミラー部5aの揺動周期が短い場合には、揺動周波数はミラー部5aの共振周波数に近いことが好ましい。
本実施の形態で用いる揺動ミラー5は、上記のように、揺動の軸に駆動手段と揺動の大きさを検出できる検出手段を備えた静電気駆動方式が好適である。電磁駆動方式を用いてもよいが、静電気駆動方式の方が、消費電力が少ない利点がある。
本実施の形態では、揺動ミラー5の主走査方向は20kHzで120Vの電圧を印加し、副走査方向は60Hzで50Vの電圧を印加し、主走査方向に40度、副走査方向に20度の振れ角とした。電極に加える印加電圧は、正弦波の他、揺動ミラー5の追従性に応じて台形波や鋸波等適宜設定することができる。本実施例では主走査方向20kHz、副走査方向60Hzのラスタースキャンとしたが、図6の(A)(B)に示すように、副走査方向を鋸波としたラスタースキャン方式や副走査方向を正弦波としたリサージュ方式としてもよい。
本実施例では、図5のように電極53,55間に120Vの電界が作用するようにして20kHzの正弦波でミラー部5aが揺動するようにしている。電極への電圧の印加は、図7のように正負の電圧を印加する方法や、正極性のみの電圧印加や、アナログ的に電圧を変える方法や、PWM変調を行う方法等、電極構成に応じて選択することができる。なお、揺動ミラー5は、温度により機械的な固有振動数が変化することから、フィードバック制御することが好ましい。
制御部8は、一例として、マイクロコンピュータで構成され、図8に示すように、光源1、可変焦点レンズ3の駆動手段33、揺動ミラー5の電極部53,56、光ビーム検知器7および入力部10に接続されている。入力部10は、たとえば画像データを出力する部分などである。
図7は、制御部8の制御による光源1のレーザ光出射タイミング、揺動ミラー5の揺動タイミング、揺動ミラーの振れ角、可変焦点レンズ3の焦点変更タイミングの相互の時間関係および光ビーム検知器7の光量検出電圧の変動を示すタイムチャートである。すなわち、制御部8は、入力部10から走査開始指令信号を入力すると、図7のT2の時点で光源1にレーザ光を出射させるとともに、光ビーム検知器7から光ビーム検知信号を同期信号として可変焦点レンズ3の駆動手段33へ駆動信号を出力し、可変焦点レンズ3の駆動手段33を介して可変焦点レンズ3の厚みを所定の周期で変えて焦点距離を変化させる。そして、制御部8は、光ビーム検知器7からの光量検知信号を順次入力して、感光体ドラム9からの反射ビームの光量が最大値を示すように可変焦点レンズ3の駆動手段33への駆動信号の出力を調整する。これにより、感光体ドラム9を走査する光ビームは、感光体ドラム9において焦点位置を有し、均一でかつ最小のビームスポット径を有する。この状態は、図4の可変後として示される状態と同様となる。
なお、図3のように走査領域内にP1とP2がある場合、図7に示されるように、焦点がa1のときにP1の反射光が最大となる。焦点がa2のときにはa2の焦点距離にあるP2の反射光が最大となる。このように可変焦点レンズ3の焦点位置を順次変えながら反射光を測定することで、各位置における反射光が最大となった位置に反射物(被走査面)が存在すると認識することができる。
光量検出手段である光ビーム検知器7Aは、揺動ミラー5Aの近傍に配置することもできるが、対象物に反射して入射光と同じ方向に反射する正反射光を用いてもよい。この場合は、反射光は揺動ミラー5Aで光源方向に戻ることによる外光の影響を受けないものとすることができる。
揺動ミラー5による走査は、図3に示すように、揺動ミラー5Aを中心とした円弧状の位置でビーム径が最小となる。ここで走査角度に応じて可変焦点レンズ3Aの電圧を変えることで、測定対象領域において直線状の焦点位置とすることができる(図4の可変後を参照)。
図3に示すような構成を採用すると、平面上で焦点位置を取るようにできることから、バーコードの読み取り等にも応用することができる。
本実施の形態に係るレーザ光走査装置10について、図9に示すように、揺動ミラー5の焦点距離を200mm、揺動ミラー5の左右または上下の振れ角を53度(±26.5度)、被走査面における走査範囲を200mmとした場合の性能検証を行なった。なお、揺動ミラー5の焦点距離とは、揺動ミラー5の光ビームが反射する点、すなわち、揺動の中心から感光体ドラム9までの最短距離を意味する。
検証の結果は、図10のグラフに示すとおりである。すなわち、揺動ミラー5の焦点距離を可変にする前は、像高0mm(振れ角の中心)のときは光ビーム径も像面における光ビーム径も65μm程度の最小であるが、像高が0mmよりも低い側(たとえば右へ振れた場合)および高い側(たとえば左へ振れた場合)のいずれにおいても光ビーム径が徐々に拡大し、最大110μmにも達することが示されている。すなわち、走査位置が被走査面の走査範囲の両端に近づくにつれて光ビームスポット径が拡大する。したがって、被走査面(感光体ドラム)9上に形成される画像の品質が低下する。
これに対し、揺動ミラー5の焦点距離を可変にした後は、像高0mmのときと像高が0mmよりも低い側および高い側のいずれにおいても光ビーム径が60μm近傍で変化が少なく、安定していることが示されている。すなわち、揺動ミラー5の焦点距離を順次変化させることにより、光ビーム径を最適化することができること、換言すると、光ビームスポット径が被走査面の走査範囲の全部において均一で最小にすることができることが確認できた。
上記の検証したレーザ光走査装置10においては、揺動ミラー5による一次元走査の全範囲において光源1からレーザ光を出射し、揺動ミラー5から光ビームを被走査面となる感光体ドラム9の位置に反射走査しながら光ビームが被走査面において均一でかつ最小のビームスポット径を有するように可変焦点レンズ3の焦点距離を調整した。このレーザ光走査装置10を書込み系として使用する場合、制御部8は、光源1からのレーザ光に画像データを重畳する前に、レーザ光のみを出射し、揺動ミラー5から光ビームを感光体ドラム9の位置に走査しながら光ビームが被走査面において均一でかつ最小のビームスポット径を有するように調整された可変焦点レンズ3の焦点距離を記憶手段11に記憶させて置く必要がある。そして、レーザ光に画像データを重畳して被走査面となる感光体ドラム9に画像を形成する際に、記憶手段11に記憶された焦点距離が得られるように可変焦点レンズ3の駆動手段31に駆動信号を与えるようにする。なお、上記記憶は装置出荷前に行うのが好ましいが、装置を購入した者が行うようにしてもよい。
上記レーザ光走査装置10の一貫した作用を図1、図9を参照しながら説明すると、光源1より出射されたたとえば780nmのレーザ光はコリメータレンズ2によってビーム径200μmの平行光束に整形される。コリメータレンズ2で平行光束に整形された光ビームは、可変焦点レンズ3、ビーム径補正レンズ4を通り、揺動ミラー5で感光体ドラム9上を軸方向に直線状に走査される。感光体ドラム9は図1中矢印A方向に回転することで、感光体ドラム9の表面に二次元的に静電潜像が形成される。
上記実施の形態のレーザ光走査装置における光源1のレーザ光出射タイミング、可変焦点レンズ3の焦点変更タイミング、揺動ミラー5の揺動タイミングおよび揺動ミラー5の振れ角の時間関係、ならびに光ビーム検知器の光量検出電圧の変動は、図7に例示されるとおりである。
揺動ミラー5と感光体ドラム9表面の走査位置は、走査線上の位置、すなわち像高によって異なり、焦点距離が異なる。ここで、可変焦点レンズ3に像高に応じた電圧を印加して像高の全ての位置で焦点を結ぶように制御する。なお、可変焦点レンズ3と揺動ミラー5が離れて配置されている場合は、可変焦点レンズ3のパワーによって揺動ミラー5に照射されるビーム径に大きな差が生じて感光体ドラム9表面の光ビーム形状に歪が生じることから、可変焦点レンズ3と揺動ミラー5の間にビーム径補正レンズ4を配置することが望ましい。しかし、そのような問題が生じない場合や仕様によっては、このビーム径補正レンズ4は省略してもよい。
本実施例における像高の位置は、揺動ミラー5による走査領域の端部に設けられた光ビーム反射手段であるハーフミラー6と光ビーム検出器7によって決定することができる。
上記のように、本発明の実施の形態によれば、揺動ミラー5から被走査面となる感光体ドラム9までの距離に関わりなく、可変焦点レンズ3が自動的に焦点距離を変化させて走査光ビームが被走査面となる感光体ドラム9において均一でかつ最小のビームスポット径を有するように焦点位置が定められる。このため、書込み系の場合は、画像形成媒体がたとえばA4サイズとA3サイズのいずれに対しても焦点距離を固定した1つの光走査装置を使用することができる。すなわち、従来の装置ではA4とA3の場合、内部の光学系を動かし、調整する必要があったが、この装置では、振れ角を変えるだけで対応できる。
本発明の上述された実施の形態は、可変焦点レンズ3を用いることで、光偏向手段下流側に走査領域幅の長尺のレンズを用いることなく、所定の位置で光ビームを収束することができる。さらに、揺動ミラー5と光ビームの収束位置との距離を任意に設定することができる。
揺動ミラー5は、一次元的に走査するとともに、光ビームの収束位置に配置された感光体ドラム9からの反射光の検出信号を揺動ミラー5の走査に伴う同期信号とする。そのため、揺動ミラー5と感光体ドラム9の間にfθレンズやアークサインレンズのような走査レンズを用いることなく、感光体ドラム9上に焦点が絞られた静電潜像を形成することができる。さらに、焦点の絞られた反射光を検出することで、精度の高い同期信号を得ることができ、極めて良質な画像を得ることができる。焦点の絞られた反射光の検出位置は、感光体ドラム表面以外の位置でもよく、たとえば感光体ドラムへのレーザ光の照射領域外に反射手段を設けて、検出手段の上で焦点を結ぶように配置してもよい。
走査ビームを所定の位置で収束する揺動ミラー5のみで走査ビームの収束位置を変更する場合は、収束位置までの距離が短い場合と遠い場合とで、光偏向面のビーム径に大きな差が生じ、収束位置での光ビームに歪が生じる。ここで、揺動ミラー5に近い位置にビーム径補正レンズ4を配置して光偏向面の光ビーム形状を補正することにより、走査収束位置での光ビームの歪を解消することができる。
本発明の実施の形態に係るレーザ光走査装置10は、電子写真方式の画像形成装置に用いられる光走査装置に用いることができるが、それ以外に、光走査型のバーコード読み取り装置、車載用のレーザレーダ装置などへの応用、あるいはこれらの複合機などの画像形成装置への応用が可能である。また、光偏向手段としてMEMSの揺動ミラー5を用いることによリ、小型化、低騒音化、低消費電力化が可能であり、従来使用されていない分野でのレーザプリンタ、デジタル複写機、レーザプロッタ、レーザファクシミリ等の使用が可能になる。
[距離測定装置]
以上には、光偏向手段に一次元走査を行う揺動ミラー5を用いる光走査装置について説明したが、二次元走査を行う揺動ミラーを用いることにより、本発明に係る上記光走査方法を距離測定方法に応用することができる。その距離測定方法を使用するための距離測定装置は、図1における光走査装置の揺動ミラー5および制御部8の代わりに図11に例示される二次元走査を行う揺動ミラー5Bおよび図12に例示される制御装置8Bを備えることにより構成することができる。
図11に、距離測定装置に好適な二次元走査を行うMEMS型の揺動ミラーの一例として特開2007−333812号公報から引用した揺動ミラー5Bを示す。この揺動ミラー5Bは、互いに直交する第1軸と第2軸の回りに揺動される走査ミラー部51を有する。すなわち、揺動ミラー5Bには、光ビームを反射する走査ミラー部51と、走査ミラー部51を支持するたとえば四角形状の内枠部52と、内枠部52を支持するたとえば四角形状の外枠部53が設けられている。走査ミラー部51は共通の直線上に存在する一対の1次捩り棒54aおよび54bにより内枠部52に支持されている。また、内枠部52は、1次捩じり棒54aおよび54bの振動軸とほぼ直交する方向を振動軸とする一対の2次捩り棒55aおよび55bにより外枠部53に支持されている。
上記構成により、走査ミラー部51と内枠部52は互いに直交する軸周りに揺動する。また、走査ミラー部51を揺動させる軸を主軸とし、内枠部52を揺動させる軸を副軸としている。また、この例においては、1次捩じり棒54aおよび54bを静電力により、2次捩り棒55aおよび55bを電磁力によりそれぞれ駆動する構成としており、2次捩り棒55aおよび55bの対向する方向と直交する方向(主軸の延長する方向)に電磁駆動用マグネット56aおよび56bを、外枠部53を挟み込むように配置している。
1次捩じり棒54aおよび54b、2次捩り棒55aおよび55bは、内側に保持する部材を左右にそれぞれ一定の角度だけねじれるよう所定の弾性力を有する部材であり、それぞれ走査ミラー部51および内枠部52、内枠部52および外枠部53と一体形成してもよい。
外枠部53の対角線上の角部付近に、副軸電極57aおよび57bが設けられている。副軸電極57aから引き出された配線部は、2次捩り棒55aを介して内枠部52の外縁部に敷設され、その縁に沿って数ターンのコイル状にパターン形成され、副軸電磁駆動用コイル58として構成されている。そして、コイル58の終端は、2次捩り棒55bを介して、副軸電極57bに接続されている。
上記構成により、副軸電極57aおよび57bに対して、たとえば駆動周波数が60Hzの交流電圧を印加すると、電磁力が発生し、2次捩り棒55aおよび55bのねじれ作用によって矢印ra方向に揺動する。この場合、2次捩り棒55a、55bの揺動方式は非共振式であり、振動波形は鋸波状となる。
一方、外枠部53の副軸電極57aおよび57bを設けた対角線上とは交差する他の対角線上の角部付近に、主軸電極59aおよび59bが設けられている。主軸電極59aおよび59bからは、外枠部53の裏面側を通って配線部が形成され、たとえば2次捩り棒55aおよび55bを介して内枠部52の1次捩じり棒54aおよび54bとは互いに微小な間隙を介して対向する、たとえば櫛歯状の静電駆動用電極510aおよび510bに接続されている。1次捩じり棒54aおよび54bの両側にも、静電駆動用電極510aおよび510bとピッチを同一とした櫛歯状突起を設け、互いの櫛歯を微小な間隙を介して噛み合わせることにより、静電容量を大とすることができる。
このような構成において、主軸電極15aおよび15bの間に、走査ミラー部51の共振周波数とほぼ一致する、たとえば18kHz程度の交流電圧を印加することにより静電駆動される。このとき1次捩じり棒54aおよび54bのねじれ作用によって矢印rb方向に高速に振動する。この1次捩じり棒(主軸)54aおよび54bの駆動方式は静電式であり、振動方式は共振式であり、振動波形は正弦波である。
走査ミラー部51の材料としては、たとえばシリコンで形成された保持基板の表面に、二酸化シリコン(SiO)等の酸化層と、シリコン等の半導体膜を順に積層したSOI(Silicon On Insulator)基板から、保持基板と酸化層とを選択的に取り除いた半導体膜によって形成することができ、この半導体膜の平坦面が、光の入射面となる走査ミラー部51として用いられる。走査ミラー部51の平坦面には、反射率を高めるために、たとえばアルミニウム(Al)や金(Au)などの反射膜が形成されていてもよい。
制御装置8Bは、図12に示す構成とされ、その揺動ミラー5B(5C)の周辺の構成は図13に示される。この図13は、先に示した図3と同様となっているが、異なる点は、可変焦点レンズ3Aが動作している点である。図12に示すように、制御装置8Bはレーザを出射する光源1、第二の光学素子となる可変焦点レンズ3および光偏向手段となる揺動ミラー5Bまたは5Cの駆動を制御する駆動制御部8’と、光量検出手段となる光ビーム検知器7Aからの検出電圧をアナログからデジタルに変換するA/D変換部11と、二次元の位置情報を記憶するパラメータ記憶部12と、A/D変換部11からの出力値をパラメータ記憶部12に記憶されている二次元の位置情報に基づいてその位置における検出電圧値情報(反射強度)に変換するデータ変換部13と、駆動制御部8’により指定される演算タイミングにおいて検出電圧値が最大となった位置を抽出する演算部14と、測定結果を表示手段等に出力ための測定結果出力インタフェイス15を有している。
駆動制御部8’は、揺動ミラー5Bまたは5Cに、図14に示されるように所定の範囲を1回の走査で水平走査と垂直走査を行わせ、1回の走査を終了すると起点に戻り、これを反復させる。駆動制御部8’における各タイミングは図7の例と同一となるので、説明を省略する。
そして、対象物からの反射光は光量検出手段となる光ビーム検知器7Aでアナログ量として検出され、A/D変換部11でデジタル信号に変換される。データ変換部13では、光ビーム検知器7Aからの検出値と、パラメータ記憶部12に収納されている二次元の位置情報と、第二の光学素子となる可変焦点レンズ3の印加電圧と関連した焦点位置情報(深さ方向の位置情報)を関連付けて、得られた情報が3次元情報に変換される。次に、演算部14において反射強度が最大となった位置を抽出して、測定結果出力インターフェイス部15で所定の出力フォーマットや表示画像として出力される。
図15は、上記の距離測定装置の動作の流れを示すフローチャートである。
制御装置8Bに指令信号が入力すると(ステップ1においてYesの時。以下、ステップをSと記す。)走査を開始する(S2)とともに、可変焦点レンズ3に対する焦点距離変更範囲(距離測定領域)、すなわち、最小焦点距離と最大焦点距離を設定する(S3)。続いて、可変焦点レンズ3に対する焦点距離変更範囲の設定をした後、焦点距離変更範囲の最小焦点距離を設定し(S4)、被走査面からの反射光またはハーフミラー6Aからの反射光を光検出手段となる光ビーム検知器7Aにより受光し(S5)、その光量(受光強度)を測定して測定値をメモリ11aに記録する(S6)。
反射光を受光した後は、焦点距離変更範囲の最小焦点距離よりも1つ大きい焦点距離を設定し(S7)、焦点距離変更回数を計数するカウンタの計数値が所定値に達したか否かを判定する(S8)。カウンタの計数値が所定値に達するまで、S3〜S8の処理が繰り返される。そして、カウンタの計数値が所定値に達したときは、計測値演算処理を行う(S9)。
この計測値演算処理は、データ変換部13と演算部14とが実行する。計測値演算処理においては、図15の右側の点線内に記載されているように、A/D変換部11内のメモリ11aからデジタルの測定値を読み出し(S91)、データ変換部13はX,Y,Z座標(3次元座標)の関連付け処理を行い(S92)、最大値を算出する(S93)。続いて、計測値演算処理において算出された最大値は、計測値として出力される(S10)。
ここで、反射光(受光)の光量の最大値は、設定された焦点距離が距離対象物の被走査位置までの距離と一致したことを意味する。したがって、出力される一連の計測値は、揺動ミラー5Aまたは5Bが一次元揺動をする場合は、測定対象物の二次元の形状(走査線上の凹凸)を表し、揺動ミラー5Aまたは5Bが二次元揺動をする場合は、測定対象物の三次元の形状を表す。
揺動ミラー5Bにより偏向走査された走査ビームは、可変焦点レンズ3Aにより焦点距離が順次長くなるように制御される。ここで、走査光の反射光の正反射成分は揺動ミラー5Bによりコリメータレンズ2の下流側に設けられたハーフミラー6Aにより光ビーム検出器7Aに導光され、反射光量として検出される。
たとえば、走査ビームが手に当たると焦点距離が最も短い、すなわち、手の先端部の反射光が最も強い反射光として検知され、順次焦点距離が長い部分での反射光が手および人体の位置として検出される。この応用例では分解能を1cmとして1秒間に60cmの奥行き方向の計測を可能としたが、可変焦点レンズ3の焦点距離の分解能と走査速度によって任意に設定することができる。また、物体の検出によって分解能を切替えてもよい。
以上のように、この応用例では、可変焦点レンズの分解能と走査速度によって検出の分解能と精度を設定することができることから、従来の反射光の時間を計測する方法では困難であった近距離の測定を安価に行うことができる。また、走査幅を適宜設定することで、近距離で広角な範囲から遠距離で狭い範囲まで用途に応じた設定を行うことができる。
以上、本発明の実施の形態に係るレーザ光走査装置と、その応用例となる距離測定装置について説明したが、本発明の要旨を逸脱しない限り、種々変更実施が可能である。たとえば、揺動ミラー5などを設けず可変焦点レンズから出射する光を直接振らすようにしてもよい。また、光ビームはレーザ光としているが、被走査面の種類によっては他の光としてもよい。
また、被走査面に収束されるビーム光のスポット径は最小となるようにするのが好ましいが、位置によって均一化が困難な場合などにおいては、最小径より少し大きい径にして均一化を図るようにしてもよい。また、第一の光学素子としてコリメータレンズを採用しているが、このコリメータレンズを省略したり、完全な平行光ではなく、略平行光とするレンズを採用してもよい。
10 レーザ光走査装置
1 光源
2 コリメータレンズ(第一の光学素子)
3 可変焦点レンズ(第二の光学素子)
4 ビーム径補正レンズ
5 揺動ミラー(一次元走査光偏向手段)
5A,5B 揺動ミラー(二次元走査光偏向手段)
6 ハーフミラー(光ビーム反射手段)
7 光ビーム検知器(光量検知手段)
8,8B 制御部
9 感光体ドラム(被走査面)

Claims (2)

  1. 光源から出射される光ビームを被走査面に走査する光走査方法において、前記光源から出射される光を前記被走査面上に収束させる光学素子の焦点距離を前記光源からの距離が変化する前記被走査面上の各位置のビームスポット径が均一となるように順次変化させ、
    前記光学素子は、前記光源から出射されるレーザ光を所定の光径の平行光にする第一の光学素子と、前記第一の光学素子から入射する前記光ビームの焦点距離を変化させる第二の光学素子と、前記第二の光学素子からの光ビーム径を当該第二の光学素子の立ち上がり時間を短縮し光偏向手段でのビーム幅変動を抑えるように補正する第三の光学素子とを有し、前記第三の光学素子からの前記光ビームを前記光偏向手段により反射させ、前記被走査面に当て、
    前記第二の光学素子により焦点距離が決定され、前記光偏向手段により前記被走査面に走査される前記光ビームを光ビーム検知手段により検知して、その検知信号を前記光偏向手段の同期信号とし、前記光偏向手段より前記被走査面に走査される前記光ビームの光量または前記被走査面より反射された前記光ビームの光量を検出し、前記被走査面に走査される前記光ビームの光量または前記被走査面より反射された前記光ビームの光量が最大値となるように前記第二の光学素子の焦点距離を制御する、
    ことを特徴とする光走査方法。
  2. 光源から出射される光ビームを被走査面に走査する光走査装置において、前記光源から出射される光を前記被走査面上に収束させる光学素子と、その光学素子の焦点距離を前記光源からの距離が変化する前記被走査面上の各位置のビームスポット径が均一となるように順次変化させる手段とを有し、
    前記光学素子は、前記光源から出射されるレーザ光を所定の光径の平行光にする第一の光学素子と、前記第一の光学素子から入射する前記光ビームの焦点距離を変化させる第二の光学素子と、前記第二の光学素子からの光ビーム径を当該第二の光学素子の立ち上がり時間を短縮し光偏向手段でのビーム幅変動を抑えるように補正する第三の光学素子を有し、前記光偏向手段は、前記第三の光学素子からの前記光ビームを反射させて前記被走査面に走査するものであり
    前記第二の光学素子により焦点距離が決定され、前記光偏向手段により前記被走査面に走査された前記光ビームを検知する光ビーム検知手段と、前記光偏向手段より前記被走査面に走査される前記光ビームの光量または前記被走査面から反射された前記光ビームの光量を検出する光量検出手段と、前記光ビーム検知手段の検知信号を前記光偏向手段の同期信号として、かつ前記光量検出手段が検出する前記被走査面に走査される光ビームの光量または反射された反射光ビームの光量が最大値となるように前記第二の光学素子の焦点距離調整機能を制御する制御手段とを有し、
    前記第一の光学素子はコリメータレンズであり、前記第二の光学素子は可変焦点レンズであり、前記光偏向手段は揺動ミラーであり、
    前記被走査面より反射された光ビームを前記光量検出手段に導く光ビーム反射手段としてハーフミラーを備えた
    ことを特徴とする光走査装置。
JP2013217044A 2013-10-18 2013-10-18 光走査方法および光走査装置 Active JP5950884B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013217044A JP5950884B2 (ja) 2013-10-18 2013-10-18 光走査方法および光走査装置
US14/516,841 US9482865B2 (en) 2013-10-18 2014-10-17 Light scanning method and light scanning unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013217044A JP5950884B2 (ja) 2013-10-18 2013-10-18 光走査方法および光走査装置

Publications (2)

Publication Number Publication Date
JP2015079171A JP2015079171A (ja) 2015-04-23
JP5950884B2 true JP5950884B2 (ja) 2016-07-13

Family

ID=52825941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013217044A Active JP5950884B2 (ja) 2013-10-18 2013-10-18 光走査方法および光走査装置

Country Status (2)

Country Link
US (1) US9482865B2 (ja)
JP (1) JP5950884B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7269274B2 (ja) 2021-03-31 2023-05-08 本田技研工業株式会社 鞍乗型車両

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6100080B2 (ja) * 2013-05-08 2017-03-22 株式会社東芝 プロジェクタ及び携帯端末
DE102015209418A1 (de) * 2015-05-22 2016-11-24 Robert Bosch Gmbh Scanvorrichtung und Scanverfahren
JP6831698B2 (ja) * 2016-12-28 2021-02-17 株式会社ミツトヨ 焦点距離可変レンズ装置
DE102019212446A1 (de) * 2019-08-20 2021-02-25 Robert Bosch Gmbh Verfahren und Recheneinheit zur Ansteuerung wenigstens einer Antriebseinheit wenigstens einer Ablenkungseinheit einer Mikroscannervorrichtung
CN114488555B (zh) * 2022-03-31 2022-08-05 武汉锐科光纤激光技术股份有限公司 光束准直设备、方法、装置、存储介质和电子装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208788A (ja) * 1989-02-09 1990-08-20 Nec Corp 光走査装置
JPH02240669A (ja) * 1989-03-15 1990-09-25 Canon Inc 画像形成装置
JPH0995008A (ja) * 1995-09-29 1997-04-08 Fuji Xerox Co Ltd レーザビーム走査光学装置
JP4497861B2 (ja) * 2003-08-29 2010-07-07 キヤノン株式会社 画像表示装置及びそれを有する撮像装置
JP5228331B2 (ja) * 2007-02-13 2013-07-03 株式会社リコー 光走査装置、画像形成装置、および多色対応の画像形成装置
JP2009014907A (ja) * 2007-07-03 2009-01-22 Konica Minolta Business Technologies Inc 光ビーム走査光学装置
JP5710279B2 (ja) 2011-01-06 2015-04-30 日本信号株式会社 光測距装置
JP2012242719A (ja) * 2011-05-23 2012-12-10 Canon Inc 走査光学系および画像形成装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7269274B2 (ja) 2021-03-31 2023-05-08 本田技研工業株式会社 鞍乗型車両

Also Published As

Publication number Publication date
US20150109649A1 (en) 2015-04-23
US9482865B2 (en) 2016-11-01
JP2015079171A (ja) 2015-04-23

Similar Documents

Publication Publication Date Title
JP5950884B2 (ja) 光走査方法および光走査装置
JP5228331B2 (ja) 光走査装置、画像形成装置、および多色対応の画像形成装置
US5054866A (en) Scanning optical apparatus
US7184187B2 (en) Optical system for torsion oscillator laser scanning unit
US9405121B2 (en) Image display apparatus and head-mounted display
US9575312B2 (en) Light deflector, and devices incorporating the same
WO2007010981A1 (ja) 光走査装置、画像表示装置及び光スキャナの共振周波数変更方法並びに反射ミラー位置の補正方法
JP3543473B2 (ja) 光走査装置
EP2733516A1 (en) Image display apparatus and head-mounted display
JP6926625B2 (ja) 圧電アクチュエータ、光偏向器及び画像投影装置
JP6398599B2 (ja) 光偏向装置、光走査装置、画像投影装置、及びヘッドアップディスプレイ
JP2007152766A (ja) 走査露光装置
JP2009251596A (ja) 光走査装置、これを採用した画像形成装置及び光走査方法
JP5070869B2 (ja) 光走査装置及びそれを備えた網膜走査型画像表示装置
JP2009058616A (ja) 揺動体装置、光偏向装置、及びそれを用いた画像形成装置
JP2012118125A (ja) 光走査装置及びその駆動方法。
JP4476080B2 (ja) 可変焦点型光学装置
JP5716992B2 (ja) 光偏向装置、光走査装置、画像形成装置及び画像投影装置
JP7338403B2 (ja) 光偏向器、画像投影装置、ヘッドアップディスプレイ、レーザヘッドランプ、ヘッドマウントディスプレイ、物体認識装置、及び車両
JP2018155784A (ja) 光偏向装置および画像投影装置
JP3787877B2 (ja) 光走査装置
JP7363352B2 (ja) 可動装置、画像投影装置、ヘッドアップディスプレイ、レーザヘッドランプ、ヘッドマウントディスプレイ、物体認識装置、及び車両
JP3283217B2 (ja) 走査光学系の走査位置補正装置
JP2010210916A (ja) 光走査装置及び画像形成装置
JP3785668B2 (ja) 光走査装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160607

R150 Certificate of patent or registration of utility model

Ref document number: 5950884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250