JP5939606B2 - Superconducting current limiting element - Google Patents

Superconducting current limiting element Download PDF

Info

Publication number
JP5939606B2
JP5939606B2 JP2011239424A JP2011239424A JP5939606B2 JP 5939606 B2 JP5939606 B2 JP 5939606B2 JP 2011239424 A JP2011239424 A JP 2011239424A JP 2011239424 A JP2011239424 A JP 2011239424A JP 5939606 B2 JP5939606 B2 JP 5939606B2
Authority
JP
Japan
Prior art keywords
superconducting
current limiting
limiting element
film
heat sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011239424A
Other languages
Japanese (ja)
Other versions
JP2013098331A (en
Inventor
中 一瀬
中 一瀬
市川 路晴
路晴 市川
嘉輝 斉藤
嘉輝 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2011239424A priority Critical patent/JP5939606B2/en
Publication of JP2013098331A publication Critical patent/JP2013098331A/en
Application granted granted Critical
Publication of JP5939606B2 publication Critical patent/JP5939606B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は超電導限流素子に関し、特に基板上に超電導の薄膜を形成して電路に流れる短絡電流を限流する場合に適用して有用なものである。   The present invention relates to a superconducting current limiting element, and is particularly useful when applied to a case where a superconducting thin film is formed on a substrate to limit a short-circuit current flowing in an electric circuit.

超電導体は、超電導状態において電気抵抗ゼロで大きな電流を流すことができるが、ある決まった電流値(臨界電流)より大きな電流を流すと電気抵抗が発生する。さらに、電流を大きくして行くと、発生する熱のため超電導体の温度が上昇し、常電導状態になって、より大きな電気抵抗を生じる。このような超電導体の特徴を生かして、通常時は抵抗ゼロで、電力系統の短絡事故時には大きな抵抗を発生して事故電流の増大を抑制する超電導限流素子が提案されている。この超電導限流素子は、基板上に形成された超電導薄膜が、短絡時には超電導状態から常電導状態へと転移して、短絡時に流れる大電流を瞬時に抑制することができる。   A superconductor can flow a large current with zero electric resistance in a superconducting state, but an electric resistance is generated when a current larger than a predetermined current value (critical current) flows. Further, when the current is increased, the temperature of the superconductor rises due to the generated heat and becomes a normal conducting state, resulting in a larger electric resistance. A superconducting current limiting element has been proposed that takes advantage of such characteristics of the superconductor to generate zero resistance during normal operation and to generate a large resistance in the event of a short circuit in the power system, thereby suppressing an increase in the accident current. In this superconducting current limiting element, the superconducting thin film formed on the substrate can transition from the superconducting state to the normal conducting state at the time of short circuit, and instantaneously suppress a large current flowing at the time of the short circuit.

ところで、この種の超電導限流素子において、事故直後の限流初期に超電導薄膜の通電電流が急激に増加すると、それに伴って、薄膜中で相対的に臨界電流密度の小さい部分が急激に常電導転移(クエンチ)する。常電導転移した部分で発生する熱が、拡散で除去される熱よりもはるかに大きい場合には、局所的に温度が急上昇して薄膜が焼損してしまう。   By the way, in this type of superconducting current limiting element, when the energizing current of the superconducting thin film suddenly increases in the initial stage of current limiting immediately after the accident, the portion with a relatively small critical current density in the thin film suddenly increases. Transition (quenching). If the heat generated in the part where the normal conducting transition has occurred is much larger than the heat removed by diffusion, the temperature rises locally and the thin film burns out.

このようなホットスポット現象を防止するためには、金や銀等の常電導金属を超電導薄膜の上に蒸着して常電導転移時の分流層(焼損防止のための保護層)として用いるのが一般的な解決策である。しかし、このような金属分流層を付加すると超電導線路の電気抵抗を大きく低下させ、限流時の発熱を増大させるため、分担電界を下げざるを得ない。その結果、要求される限流容量を達成するために素子長が増大し、高価な超電導薄膜を大量に使用しなければならず、これは実用化を阻む大きな障害となっている。   In order to prevent such hot spot phenomenon, a normal conducting metal such as gold or silver is vapor-deposited on the superconducting thin film and used as a shunt layer (protective layer for preventing burnout) during the normal conducting transition. It is a general solution. However, if such a metal shunt layer is added, the electric resistance of the superconducting line is greatly reduced, and heat generation at the time of current limiting is increased, so the shared electric field must be lowered. As a result, in order to achieve the required current limiting capacity, the element length increases and a large amount of expensive superconducting thin film must be used, which is a major obstacle to practical use.

かかる問題を解決することを目的として、絶縁性基板の少なくとも一側面に形成された超電導膜と、該超電導膜の一側面に、第1抵抗部と第2抵抗部とが通電方向に交互に配置されて縞状に形成された常電導抵抗膜を有することで、通電方向に対して垂直方向に縞状を形成する超電導限流素子が提案されている(特許文献1参照)。   For the purpose of solving such a problem, a superconducting film formed on at least one side surface of the insulating substrate, and a first resistance portion and a second resistance portion are alternately arranged in the energizing direction on one side surface of the superconducting film. In addition, a superconducting current limiting element that has a normal conducting resistance film formed in a stripe shape and that forms a stripe shape in a direction perpendicular to the energizing direction has been proposed (see Patent Document 1).

また、他の超電導薄膜限流素子として、絶縁体基板上に形成された超電導薄膜上に純金属の室温抵抗率より2倍以上高い室温抵抗率を有する合金層が形成された分流保護層付超電導薄膜と、分流保護層付超電導薄膜と並列に接続された純金属又は合金からなる線材で作製された分流抵抗と、分流保護層付超電導薄膜と並列に接続され、分流抵抗の20倍以上のインピーダンスを有するコンデンサとからなるものも提案されている。かくして、前記分流保護層付超電導薄膜、分流抵抗及びコンデンサを液体窒素中に配置することにより優れた限流特性を維持したまま電流容量を増加させ、超電導薄膜の面積を低減することを可能にしたものである(特許文献2参照)。   In addition, as another superconducting thin film current limiting element, a superconducting film with a shunt protection layer in which an alloy layer having a room temperature resistivity higher than the room temperature resistivity of a pure metal is formed on a superconducting thin film formed on an insulator substrate. A shunt resistor made of a wire made of a pure metal or an alloy connected in parallel with a thin film and a superconducting thin film with a shunt protection layer, and an impedance more than 20 times the shunt resistance connected in parallel with a superconducting thin film with a shunt protection layer There has also been proposed a capacitor consisting of a capacitor having Thus, by arranging the superconducting thin film with the shunt protection layer, the shunt resistor and the capacitor in liquid nitrogen, the current capacity can be increased while maintaining the excellent current limiting characteristics, and the area of the superconducting thin film can be reduced. (See Patent Document 2).

特開2010−278349号公報JP 2010-278349 A 特開2008−283106号公報JP 2008-283106 A

ところが、特許文献1に開示する超電導限流素子は、第1抵抗部と第2抵抗部とを通電方向に交互に配置して縞状に形成しているので、その分構造が複雑になる。また、特許文献2は、分流保護層付超電導薄膜、分流抵抗およびコンデンサ等を設けているので、部品点数の増大とともに、構造が複雑になるという問題を有している。   However, since the superconducting current limiting element disclosed in Patent Document 1 is formed in stripes by alternately arranging the first resistance portions and the second resistance portions in the energizing direction, the structure is complicated accordingly. Further, Patent Document 2 has a problem that the structure becomes complicated as the number of parts increases because a superconducting thin film with a shunt protection layer, a shunt resistor, a capacitor, and the like are provided.

本発明は、上記問題点に鑑み、超電導膜における相対的な臨界電流密度特性のばらつきの影響を除去し、良好な所定の限流特性を得るとともに、構造を可及的に簡潔にした超電導限流素子を提供することを目的とする。   In view of the above problems, the present invention eliminates the influence of variations in relative critical current density characteristics in a superconducting film, obtains good predetermined current limiting characteristics, and has a superconducting limit with a simplified structure as much as possible. An object is to provide a flow element.

上記目的を達成する本発明の第1の態様は、基板上に超電導膜を形成した超電導限流素子であって、一部に最もクエンチし易い超電導状態破壊の脆弱部となる狭窄部を有する超電導膜と、前記狭窄部のみを覆うように前記狭窄部に当接させたヒートシンクとを有することを特徴とする超電導限流素子にある。 A first aspect of the present invention that achieves the above object is a superconducting current limiting element in which a superconducting film is formed on a substrate, and a superconducting part having a constricted portion that becomes a weakened portion of a superconducting state that is most easily quenched. A superconducting current limiting element having a film and a heat sink abutted on the constriction so as to cover only the constriction.

本発明の第2の態様は、第1の態様に記載する超電導限流素子において、前記狭窄部は、電流の流通方向と直交する方向の中心線に対して線対称となるよう前記流通方向に沿って電路の幅が連続的に漸減する形状となっていることを特徴とする超電導限流素子にある。   According to a second aspect of the present invention, in the superconducting current limiting element according to the first aspect, the constriction is in the flow direction so as to be axisymmetric with respect to a center line in a direction orthogonal to the current flow direction. The superconducting current limiting element has a shape in which the width of the electric circuit continuously decreases along the line.

本発明の第3の態様は、第2の態様に記載する超電導限流素子において、前記狭窄部の縁は曲線で連続されるように形成されていることを特徴とする超電導限流素子にある。   According to a third aspect of the present invention, there is provided the superconducting current limiting element according to the second aspect, wherein an edge of the narrowed portion is formed to be continuous with a curve. .

本発明の第4の態様は、第1〜第3の態様の何れか一つに記載する超電導限流素子において、クエンチ発生後の所定時間後に前記超電導膜と前記ヒートシンクとの間に間隙が形成されるよう前記ヒートシンクを前記超電導膜から離れる方向に移動させる移動機構を有することを特徴とする超電導限流素子にある。   According to a fourth aspect of the present invention, in the superconducting current limiting element according to any one of the first to third aspects, a gap is formed between the superconducting film and the heat sink after a predetermined time after the occurrence of quenching. The superconducting current limiting element has a moving mechanism for moving the heat sink in a direction away from the superconducting film.

本発明によれば、狭窄部が超電導状態から常電導状態へと、よりクエンチし易い超電導状態の脆弱部となるので、クエンチは狭窄部から始まるが、このとき狭窄部に集中する電流によるジュール熱はヒートシンクに良好に吸収される。この結果、狭窄部が焼損することはなく、その間にクエンチ領域を他に広げることができ、常電導状態となった超電導膜の全体で大電流を分担して流すことができる。この結果、超電導膜に狭窄部を形成するとともに、ヒートシンクを追加するというきわめて簡単な構成の変更で超電導膜における相対的な臨界電流密度特性のばらつきの影響を除去して良好な所定の限流特性を得ることができる。また、ヒートシンクは超電導膜の全体ではなく、狭窄部に限定的に当接させるように構成しているので、例え狭窄部がヒートシンクの面で覆われていても液体窒素の冷却熱は、超電導膜のうちヒートシンクで覆われた狭窄部以外の領域が液体窒素に接触することにより良好に伝熱される。この結果、超伝導状態への復旧も良好に実現される。   According to the present invention, since the stenosis part becomes a fragile part of the superconducting state that is more easily quenched from the superconducting state to the normal conducting state, the quench starts from the stenosis part, but at this time, Joule heat due to the current concentrated on the stenosis part Is well absorbed by the heat sink. As a result, the constricted portion is not burned out, and the quench region can be expanded to the other in the meantime, and a large current can be shared and flowed in the entire superconducting film in the normal conducting state. As a result, it is possible to eliminate the influence of variations in relative critical current density characteristics in the superconducting film by forming a constriction in the superconducting film and adding a heat sink, and to achieve good predetermined current limiting characteristics. Can be obtained. In addition, since the heat sink is not limited to the entire superconducting film, but is configured to contact the constricted portion in a limited manner, even if the constricted portion is covered with the surface of the heat sink, the cooling heat of the liquid nitrogen is Of these, regions other than the constricted portion covered with the heat sink are in good contact with the liquid nitrogen, so that heat is transferred well. As a result, the recovery to the superconducting state is also realized well.

さらに、狭窄部はその表面側からヒートシンクで押圧されているので、常電導状態となって流れる電流に伴うジュール熱による膨張も抑制することができる。このことにより、狭窄部の変形も良好に防止される。   Furthermore, since the constriction is pressed by the heat sink from the surface side, expansion due to Joule heat accompanying current flowing in the normal conducting state can be suppressed. As a result, deformation of the constricted portion can be prevented well.

本発明の第1の実施の形態に係る超電導限流素子を概念的に示す斜視図である。1 is a perspective view conceptually showing a superconducting current limiting element according to a first embodiment of the present invention. 本発明の第2の実施の形態に係る超電導限流素子を概念的に示す斜視図である。It is a perspective view which shows notionally the superconducting current limiting element which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る超電導限流素子を概念的に示す斜視図である。It is a perspective view which shows notionally the superconducting current limiting element which concerns on the 3rd Embodiment of this invention.

以下、本発明の実施の形態を図面に基づき詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の第1の実施の形態に係る超電導限流素子を概念的に示す斜視図である。同図に示すように、本形態に係る超電導限流素子は、基板1上に一部が狭窄部2Aとなるように形成された超電導膜2と、狭窄部2Aを覆うように狭窄部2Aに当接させたヒートシンク3とを有する。ここで、基板1は、例えばサファイア基板(アルミナ単結晶基板)等の絶縁体で好適に構成することができる。また、超電導膜2は、基板1上に、必要に応じ酸化物を形成する中間層を介して例えばYBaCu(YBCO)等の高温超電導酸化物の薄膜を作製することで好適に構成することができる。なお、超電導膜2の表面は、通常金、銀等の薄膜で形成した保護膜(図示せず)で覆うことにより液体窒素環境に設置する前の空気中の水分による劣化を防止するとともに、クエンチ時の電流を分流させるようになっている。 FIG. 1 is a perspective view conceptually showing the superconducting current limiting element according to the first embodiment of the present invention. As shown in the figure, the superconducting current limiting element according to this embodiment includes a superconducting film 2 formed on the substrate 1 so that a part thereof becomes the constricted portion 2A, and the constricted portion 2A so as to cover the constricted portion 2A. And a heat sink 3 abutted on. Here, the board | substrate 1 can be suitably comprised with insulators, such as a sapphire board | substrate (alumina single crystal board | substrate), for example. Further, the superconducting film 2 is preferably formed by forming a thin film of a high-temperature superconducting oxide such as YBa 2 Cu 3 O 7 (YBCO) on the substrate 1 through an intermediate layer that forms an oxide if necessary. Can be configured. The surface of the superconducting film 2 is usually covered with a protective film (not shown) formed of a thin film such as gold or silver to prevent deterioration due to moisture in the air before installation in a liquid nitrogen environment, and quenching. The current of time is shunted.

また、ヒートシンク3は、例えば比較的大きな熱伝導率を有するサファイア等のセラミックスのブロックで好適に構成することができる。また、他との絶縁を確保すれば、ヒートシンク3を金属で構成することもできる。特に、大きな熱伝導率を有する銅等の金属で構成すれば超電導膜2がクエンチした場合に流れる電流に起因するジュール熱を良好に吸収することができる。   Moreover, the heat sink 3 can be suitably comprised with the block of ceramics, such as a sapphire which has comparatively big thermal conductivity, for example. Further, the heat sink 3 can be made of metal if insulation from others is ensured. In particular, if it is made of a metal such as copper having a large thermal conductivity, Joule heat caused by the current flowing when the superconducting film 2 is quenched can be satisfactorily absorbed.

本形態における狭窄部2Aは、電流の流通方向(図中の左右方向;以下同じ)と直交する方向の中心線に対して対称となるよう流通方向に沿って電路の幅が連続的に漸減するとともに、その縁が曲線となっている。また、当該超電導限流素子の全体は液体窒素を充填した容器の中に収納されている。   In the narrowed portion 2A in this embodiment, the width of the electric circuit continuously decreases along the flow direction so as to be symmetric with respect to the center line in the direction orthogonal to the current flow direction (left and right direction in the figure; the same applies hereinafter). At the same time, the edges are curved. The entire superconducting current limiting element is accommodated in a container filled with liquid nitrogen.

上述の如き本形態によれば、超電導膜2に相対的な臨界電流密度特性のばらつきを生起していても、狭窄部2Aが超電導状態から常電導状態へと、最もクエンチし易い超電導状態破壊の脆弱部となるので、事故等により大電流が流れた場合には、まず狭窄部2Aがクエンチする。この結果、狭窄部2Aには大電流が集中することにより大きなジュール熱が発生する。しかしながら発生したジュール熱はヒートシンク3に吸収される。この結果、狭窄部2Aがジュール熱により焼損するのを未然に防止し得る。   According to the present embodiment as described above, the superconducting state breakdown is most easily quenched from the superconducting state to the normal conducting state, even if the critical current density characteristic varies relative to the superconducting film 2. Since it becomes a fragile part, when a large current flows due to an accident or the like, the constricted part 2A is first quenched. As a result, large Joule heat is generated due to the concentration of a large current in the constricted portion 2A. However, the generated Joule heat is absorbed by the heat sink 3. As a result, it is possible to prevent the constricted portion 2A from being burned out by Joule heat.

一方、その間で超電導膜2の狭窄部2A以外の領域も順次クエンチする。この結果、事故時等の大電流は超電導膜2の全体で分担してこれを流す。   On the other hand, the region other than the constricted portion 2A of the superconducting film 2 is also quenched in the meantime. As a result, a large current at the time of an accident is shared by the entire superconducting film 2 and flows.

したがって、超電導膜2は事故時等の大電流によって焼損されることなく、この大電流の増大を良好に抑制するともに、大電流が途絶えた後、液体窒素に冷却されて元の超電導状態に戻る。ここで、ヒートシンク3は超電導膜2の全体ではなく、狭窄部2Aに限定的に当接させるように構成しているので、狭窄部2Aがヒートシンク3の下面で覆われていても液体窒素の冷却熱は、超電導膜2のうちヒートシンク3で覆われた狭窄部2A以外の領域が液体窒素に接触することにより良好に伝熱され、狭窄部2Aを含め全体を冷却する。この結果、超伝導状態への復旧も迅速かつ確実に実現される。   Therefore, the superconducting film 2 is not burned by a large current at the time of an accident, etc., and the increase in the large current is suppressed well, and after the large current ceases, it is cooled to liquid nitrogen and returned to the original superconducting state. . Here, the heat sink 3 is not limited to the entire superconducting film 2 but is configured to be brought into contact with the constricted portion 2A in a limited manner. Therefore, even if the constricted portion 2A is covered with the lower surface of the heat sink 3, the cooling of liquid nitrogen is performed. Heat is transferred well when the region other than the constricted portion 2A covered with the heat sink 3 in the superconducting film 2 is in contact with liquid nitrogen, and the entire portion including the constricted portion 2A is cooled. As a result, recovery to the superconducting state can be realized quickly and reliably.

第1の実施の形態では、上述の如く狭窄部2Aの縁が曲線となるように形成したが、この曲線に限る必要はない。第2の実施の形態として図2に示すように、電流の流通方向と直交する方向の中心線に対して線対称となるよう流通方向に沿って電路の幅が連続的に漸減する形状となっていれば、狭窄部12Aの縁が直線であっても構わない。本形態においてもヒートシンク13は狭窄部12Aのみを限定的に覆うように狭窄部12Aに当接させてある。   In the first embodiment, the edge of the narrowed portion 2A is formed as a curve as described above, but it is not necessary to be limited to this curve. As shown in FIG. 2 as the second embodiment, the width of the electric circuit continuously decreases gradually along the flow direction so as to be line-symmetric with respect to the center line in the direction orthogonal to the current flow direction. If so, the edge of the narrowed portion 12A may be a straight line. Also in this embodiment, the heat sink 13 is in contact with the narrowed portion 12A so as to cover only the narrowed portion 12A.

さらに、本発明においては、超電導膜の一部に、他の部分に較べて幅狭の狭窄部、すなわちクエンチし易い超電導状態の脆弱部が形成されていれば良く、狭窄部の形状に特別な限定はない。例えば、図3に示す第3の実施の形態に係る超電導限流素子のような形状であっても良い。同図に示すように、本形態に係る超電導限流素子では、超電導膜22の中央部を矩形にくり抜いた狭窄部22Aが形成され、この狭窄部22Aの上面にヒートシンク23が載置してある。   Furthermore, in the present invention, it is sufficient that a narrow constriction part, that is, a fragile part in a superconducting state that is easy to quench, be formed in a part of the superconducting film as compared with other parts, and the shape of the constriction part is special. There is no limitation. For example, it may be a shape like the superconducting current limiting element according to the third embodiment shown in FIG. As shown in the figure, in the superconducting current limiting element according to this embodiment, a constricted portion 22A is formed by hollowing out the central portion of the superconducting film 22 into a rectangle, and a heat sink 23 is placed on the upper surface of the constricted portion 22A. .

ただ、第2および第3の実施の形態のように狭窄部12A,22Aの外縁形状が直線となっている場合、直線同士が交差する角部が形成されることになるので、この部分に電界が集中する結果、クエンチに対する脆弱部となる虞がある。この点を考慮すれば、図1に示す第1の実施の形態のような曲線形状となっている場合が最も望ましい。   However, when the outer edge shape of the constricted portions 12A and 22A is a straight line as in the second and third embodiments, a corner portion where the straight lines intersect with each other is formed. As a result of concentration, there is a risk of becoming a vulnerable part to quenching. Considering this point, it is most desirable that the curved shape is the same as that of the first embodiment shown in FIG.

要するに、クエンチが必ず狭窄部から始まり、このことにより発生するジュール熱をヒートシンクで吸収することにより狭窄部の焼損を防止しつつ、狭窄部以外の超電導膜にクエンチ領域が広がるような構成になっていれば良い。   In short, quenching always starts from the constriction, and the heat dissipation absorbs the Joule heat generated by the heat sink to prevent burnout of the constriction, while the quench region extends to the superconducting film other than the constriction. Just do it.

さらに、ヒートシンク3,13,23が存在することにより液体窒素の熱がヒートシンク3,13,23に吸収されて特に超電導膜2,12,22中でヒートシンク3,13,23に接触している狭窄部2A,12A,22Aが超伝導状態に復旧するタイミングが遅延する虞がある。これを防止して所定の超伝導状態に速やかに復旧させるためには、クエンチ発生後の所定時間後に超電導膜2,12,22とヒートシンク3,13,23との間に間隙が形成されるようヒートシンク3,13,23を超電導膜から離れる方向(図1〜図3中の上方向)に移動させる移動機構を設けることが有効である。この場合、超電導状態に復旧した後で、ヒートシンク3,13,23を反対方向に移動させて再度狭窄部2A,12A,22Aに接触させる。   Further, due to the presence of the heat sinks 3, 13, and 23, the heat of liquid nitrogen is absorbed by the heat sinks 3, 13, and 23, and in particular, the constriction in contact with the heat sinks 3, 13, and 23 in the superconducting films 2, 12, and 22. There is a possibility that the timing at which the parts 2A, 12A, and 22A are restored to the superconducting state is delayed. In order to prevent this and quickly restore the predetermined superconducting state, a gap is formed between the superconducting films 2, 12, 22 and the heat sinks 3, 13, 23 after a predetermined time after the occurrence of quenching. It is effective to provide a moving mechanism that moves the heat sinks 3, 13, and 23 in a direction away from the superconducting film (upward in FIGS. 1 to 3). In this case, after recovering to the superconducting state, the heat sinks 3, 13, and 23 are moved in the opposite directions and are again brought into contact with the narrowed portions 2A, 12A, and 22A.

本発明は電力系統を運用、保守管理する産業分野や当該産業分野で使用する電気機器を製造販売する産業分野で有効に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be effectively used in an industrial field where an electric power system is operated and maintained, and an industrial field where an electrical device used in the industrial field is manufactured and sold.

1 基板
2,12,22 超電導膜
2A,12A,22A 狭窄部
3,13,23 ヒートシンク
1 Substrate 2, 12, 22 Superconducting film 2A, 12A, 22A Narrowed portion 3, 13, 23 Heat sink

Claims (4)

基板上に超電導膜を形成した超電導限流素子であって、
一部に最もクエンチし易い超電導状態破壊の脆弱部となる狭窄部を有する超電導膜と、
前記狭窄部のみを覆うように前記狭窄部に当接させたヒートシンクとを有することを特徴とする超電導限流素子。
A superconducting current limiting element in which a superconducting film is formed on a substrate,
A superconducting film having a constricted portion, which is a weakened portion of superconducting state destruction that is most easily quenched ,
A superconducting current limiting element, comprising: a heat sink abutted on the narrow portion so as to cover only the narrow portion.
請求項1に記載する超電導限流素子において、
前記狭窄部は、電流の流通方向と直交する方向の中心線に対して線対称となるよう前記流通方向に沿って電路の幅が連続的に漸減する形状となっていることを特徴とする超電導限流素子。
In the superconducting current limiting element according to claim 1,
The constriction portion has a shape in which the width of the electric circuit is continuously reduced along the flow direction so as to be symmetrical with respect to a center line in a direction orthogonal to the flow direction of current. Current limiting element.
請求項2に記載する超電導限流素子において、
前記狭窄部の縁は曲線で連続されるように形成されていることを特徴とする超電導限流素子。
In the superconducting current limiting element according to claim 2,
The superconducting current limiting element is characterized in that the edge of the narrowed portion is formed to be continuous with a curve.
請求項1〜請求項3の何れか一つに記載する超電導限流素子において、
クエンチ発生後の所定時間後に前記超電導膜と前記ヒートシンクとの間に間隙が形成されるよう前記ヒートシンクを前記超電導膜から離れる方向に移動させる移動機構を有する
ことを特徴とする超電導限流素子。
In the superconducting current limiting element according to any one of claims 1 to 3,
A superconducting current limiting element having a moving mechanism for moving the heat sink in a direction away from the superconducting film so that a gap is formed between the superconducting film and the heat sink after a predetermined time after the occurrence of a quench.
JP2011239424A 2011-10-31 2011-10-31 Superconducting current limiting element Expired - Fee Related JP5939606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011239424A JP5939606B2 (en) 2011-10-31 2011-10-31 Superconducting current limiting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011239424A JP5939606B2 (en) 2011-10-31 2011-10-31 Superconducting current limiting element

Publications (2)

Publication Number Publication Date
JP2013098331A JP2013098331A (en) 2013-05-20
JP5939606B2 true JP5939606B2 (en) 2016-06-22

Family

ID=48619991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011239424A Expired - Fee Related JP5939606B2 (en) 2011-10-31 2011-10-31 Superconducting current limiting element

Country Status (1)

Country Link
JP (1) JP5939606B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6455929B2 (en) * 2015-03-06 2019-01-23 国立研究開発法人産業技術総合研究所 Generation method of interband phase difference solitons
DE112019006836T5 (en) * 2019-02-08 2021-10-21 Sumitomo Electric Industries, Ltd. Superconducting wire and continuous current switch

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163005A (en) * 1991-12-12 1993-06-29 Mitsubishi Electric Corp Production of oxide superconductor current-limiting device
JPH05250932A (en) * 1992-03-06 1993-09-28 Mitsubishi Electric Corp Oxide superconductive current limiting conductor and its manufacture

Also Published As

Publication number Publication date
JP2013098331A (en) 2013-05-20

Similar Documents

Publication Publication Date Title
JP5307437B2 (en) Semiconductor device
JP2006196894A5 (en)
JP2005039220A (en) Semiconductor device
WO2017061563A1 (en) Superconducting coil
JP2005116962A (en) Package type semiconductor device
JP2008235856A (en) Semiconductor device
JP5939606B2 (en) Superconducting current limiting element
KR101372396B1 (en) Superconducting current-limiting device of the resistive type with holding element
JP2014508490A5 (en)
WO2012091941A1 (en) Superconducting fault current limiter
JP5552805B2 (en) Oxide superconducting wire connection method
JP2009141266A (en) Semiconductor device
US9111934B2 (en) Semiconductor device
JP2009049257A (en) Superconducting current-limiting element
JP2011159410A (en) Circuit protection element
WO2016020715A1 (en) Current limiter arrangement and method for manufacturing a current limiter arrangement
JP2010238943A (en) Current limiter
JP4119403B2 (en) Superconducting current limiting element
JP3024347B2 (en) Current limiting element
KR20160065329A (en) thermoelectric MODULE
JP7426217B2 (en) superconducting equipment
JP7279723B2 (en) Superconducting wire and persistent current switch
JP4569152B2 (en) Method for manufacturing circuit protection element
WO2004004019A3 (en) Current limiting device with improved heat dissipation
JP5460130B2 (en) Superconducting current limiting element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140814

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160512

R150 Certificate of patent or registration of utility model

Ref document number: 5939606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees