JP6455929B2 - Generation method of interband phase difference solitons - Google Patents

Generation method of interband phase difference solitons Download PDF

Info

Publication number
JP6455929B2
JP6455929B2 JP2015044214A JP2015044214A JP6455929B2 JP 6455929 B2 JP6455929 B2 JP 6455929B2 JP 2015044214 A JP2015044214 A JP 2015044214A JP 2015044214 A JP2015044214 A JP 2015044214A JP 6455929 B2 JP6455929 B2 JP 6455929B2
Authority
JP
Japan
Prior art keywords
phase difference
narrow
current
interband
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015044214A
Other languages
Japanese (ja)
Other versions
JP2016164907A (en
Inventor
康資 田中
康資 田中
柳澤 孝
孝 柳澤
泉 長谷
泉 長谷
有沢 俊一
俊一 有沢
太一郎 西尾
太一郎 西尾
岳 加藤
岳 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Science
National Institute of Advanced Industrial Science and Technology AIST
National Institute for Materials Science
Original Assignee
Tokyo University of Science
National Institute of Advanced Industrial Science and Technology AIST
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Science, National Institute of Advanced Industrial Science and Technology AIST, National Institute for Materials Science filed Critical Tokyo University of Science
Priority to JP2015044214A priority Critical patent/JP6455929B2/en
Publication of JP2016164907A publication Critical patent/JP2016164907A/en
Application granted granted Critical
Publication of JP6455929B2 publication Critical patent/JP6455929B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

本発明は、超伝導環境下で存在し得る成分間(バンド間)位相差ソリトンを発生する方法に関するもので、境界条件制御により各機能を実現する成分間(バンド間)位相差ソリトン回路装置を用いるものである。   The present invention relates to a method for generating an inter-component (inter-band) phase difference soliton that can exist in a superconducting environment, and an inter-component (inter-band) phase-difference soliton circuit device that realizes each function by boundary condition control. It is what is used.

多バンド超伝導体を用いて複数の超伝導成分の位相差を利用した超伝導エレクトロニクスは、例えば本件発明者等も関与した特許文献1及び特許文献2に開示されている。
これらの技術において演算の基本要素となるビットは、成分間位相差ソリトンを利用して構成されており、効率的なソリトン発生方法の開発は、これらエレクトロニクスの基本となる技術である。
なお、伝搬線路が多バンド超伝導体線路の場合、成分間位相差ソリトンは、特にその下位概念とてバンド間位相差ソリトンと称呼されることも多いが、以下、これらを総称して単に「ソリトン」と略して表記する。
Superconducting electronics using a multiband superconductor and utilizing the phase difference of a plurality of superconducting components is disclosed in, for example, Patent Document 1 and Patent Document 2 in which the present inventors are also involved.
In these techniques, the bit that is the basic element of calculation is configured using inter-component phase difference solitons, and the development of an efficient soliton generation method is the basic technique of these electronics.
When the propagation line is a multi-band superconductor line, the inter-component phase difference solitons are often referred to as inter-band phase difference solitons, particularly as a subordinate concept thereof. It is abbreviated as “soliton”.

しかるに、ソリトン発生に関しては、特許文献1、2及び非特許文献1に開示されているように、ソリトンが発生するための境界条件を磁場によって作り出す方法や、非特許文献2に開示されているように、超伝導体に非平衡な電流を流し込み、電流と一緒にソリトンを作り出す方法が提案されている。また、実験的にも非特許文献3、4に開示されているように、磁場によるソリトン発生が検証されている。
一方、ソリトンのように局所的に存在する成分間位相差の発生とは別に、超伝導線路全体に広がる成分間位相差が電流によって誘起できることが非特許文献5、6に開示されている。
However, with respect to soliton generation, as disclosed in Patent Documents 1 and 2 and Non-Patent Document 1, a method for creating a boundary condition for generating solitons by a magnetic field, and Non-Patent Document 2 are disclosed. In addition, a method has been proposed in which a non-equilibrium current is supplied to a superconductor and solitons are produced together with the current. In addition, as disclosed in Non-Patent Documents 3 and 4 experimentally, generation of solitons by a magnetic field has been verified.
On the other hand, it is disclosed in Non-Patent Documents 5 and 6 that a phase difference between components spreading over the entire superconducting line can be induced by current separately from the occurrence of a phase difference between components that exist locally such as solitons.

また、非特許文献7には、バンド間位相差がπであるような多バンド超伝導体に、通常の超伝導体を貼り付けて、この貼り付けた超伝導体が、超伝導近接効果によって貼り付けられた多バンド超伝導体のバンド間位相差を揃えようとする力と、多バンド超伝導体自身がバンド間位相差をπに保とうとするバンド間相互作用に拮抗を使ってソリトンを生み出す方法が開示されている。
特許文献1と特許文献2では、ソリトンを発生する方法として、ソリトンが生み出す位相差と整合する外部磁場を使って、リング状に構成した回路の中にソリトンを生成する方法と、ソリトンと共鳴する光を照射してソリトンを生成する方法が開示されている。
Further, in Non-Patent Document 7, an ordinary superconductor is attached to a multiband superconductor having an interband phase difference of π, and the attached superconductor is obtained by superconducting proximity effect. The soliton is antagonized by the force that tries to align the phase difference between the pasted multiband superconductors and the interband interaction that the multiband superconductor itself tries to keep the interband phase difference at π. A method of producing is disclosed.
In Patent Document 1 and Patent Document 2, as a method of generating solitons, a method of generating solitons in a ring-shaped circuit using an external magnetic field that matches a phase difference generated by solitons, and a resonance with solitons. A method of generating solitons by irradiating light is disclosed.

特開2003−209301号公報JP 2003-209301 A 特開2005−85971号公報JP 2005-85971 A 特開2008−53597号公報JP 2008-53597 A 特開2009−206410号公報JP 2009-206410 A

“Soliton in Two-Band Superconductor”,Y.Tanaka,Physical Reviw Letters, Vol.88, Number 1, 017002“Soliton in Two-Band Superconductor”, Y. Tanaka, Physical Reviw Letters, Vol. 88, Number 1, 017002 “Interband Phase Modes and Nonequilibrium Soliton Structures in Two-Gap Superconductors”, A.Gurevich and V.M.Vinokur, Physical Review Letters, Vol.90, Number 4, 047004“Interband Phase Modes and Nonequilibrium Soliton Structures in Two-Gap Superconductors”, A.Gurevich and V.M.Vinokur, Physical Review Letters, Vol.90, Number 4, 047004 “Interpretation of Abnormal AC Loss Peak Based on Vortex-Molecule Model for a Multicomponent Cuprate Superconductor”,Y.Tanaka, A.Crisan, D.D.Shivagan, A.Iyo, K.Tokiwa, and T.Watanabe, Japanese Jurnal of Applied Physics, Vol.46, No.1, 2007, pp.134-145“Interpretation of Abnormal AC Loss Peak Based on Vortex-Molecule Model for a Multicomponent Cuprate Superconductor”, Y. Tanaka, A. Crisan, DDShivagan, A. Iyo, K. Tokiwa, and T. Watanabe, Japanese Jurnal of Applied Physics, Vol.46, No.1, 2007, pp.134-145 “Magnetic Response of Mesoscopic Superconducting Rings with Two Order Parameters”, H.Bluhm, N.C.Koshnick, M.E.Huber, and K.A.Moler, Physical Review Letters Vol.97, December 8, 237002“Magnetic Response of Mesoscopic Superconducting Rings with Two Order Parameters”, H.Bluhm, N.C.Koshnick, M.E.Huber, and K.A.Moler, Physical Review Letters Vol.97, December 8, 237002 “Phase textures induced by dc-current pair breaking in weakly coupled multilayer structures two-gap superconductors”, A.Gurevich and V.M.Vinokur. Phys.Rev. Lett. Vol.97 (2006) 137003.“Phase textures induced by dc-current pair breaking in weakly coupled multilayer structures two-gap superconductors”, A.Gurevich and V.M.Vinokur.Phys.Rev. Lett. Vol.97 (2006) 137003. “Coherent current states in a two-band superconductors”, Y.S.Yerin and A.N.Omelyanchouk. Low Temp .Phys. Vol.33 (2007) 401-407.“Coherent current states in a two-band superconductors”, Y.S.Yerin and A.N.Omelyanchouk. Low Temp .Phys. Vol.33 (2007) 401-407. “Topological defected-phase soliton and pairing symmetry of a two-band superconductor:Role if the proximity effect”, V.Vakaryuk, V.Stanev, W.C.Lee, and A.Levchenko. Phys. Rev. Lett. 109 (2012) 227003.“Topological defected-phase soliton and pairing symmetry of a two-band superconductor: Role if the proximity effect”, V.Vakaryuk, V.Stanev, WCLee, and A.Levchenko. Phys. Rev. Lett. 109 (2012) 227003 . “Phase slip centers in a two-band superconducing filament:Application to MgB2” V.N.Fenchenko, Y.S.Yerin. Physica C 480 (2012) 120-136.“Phase slip centers in a two-band superconducing filament: Application to MgB2” V.N.Fenchenko, Y.S.Yerin. Physica C 480 (2012) 120-136. Tinkham, Introduction to Supercoductivity 第2版、P123-125.Tinkham, Introduction to Supercoductivity 2nd edition, P123-125. “Specific heat study on CuxBa2Can-1CunOy”,Y.Tanaka, A.Iyo, N.Ariyama, M.Tokumot, S.I.Ikeda, H.Ihara, Physica C:Superconductivity. Volumes 357-360(2001) Pages 222-225.“Specific heat study on CuxBa2Can-1CunOy”, Y. Tanaka, A. Iyo, N. Ariyama, M. Tokumot, S. I. Ikeda, H. Ihara, Physica C: Superconductivity. Volumes 357-360 (2001) Pages 222-225. “Observation of quantum oscillations in a narrow channel with a hole fabricated on a film multiband supercoductors”、Y.Tanaka, G.Kato, T.Nishio and A.Arisawa. Solid State Commun. 201 (2015) 95-97.“Observation of quantum oscillations in a narrow channel with a hole fabricated on a film multiband supercoductors”, Y. Tanaka, G. Kato, T. Nishio and A. Arisawa. Solid State Commun. 201 (2015) 95-97.

しかるに、今までのソリトンの生成方法には、次の問題点があった。
特許文献1や非特許文献6に開示された方法では、整合磁場を作り出す外部回路を、ソリトン回路に併設する必要性がある。この併設する外部回路が、ソリトン回路の小型化・集積化の障害になり、実際のソリトン回路の設計に著しい制限が生じていた。
非特許文献4や非特許文献7に開示された方法は、外部磁場に加え、ソリトンは電流を遮断すると消えてしまい、無電流の状態でソリトンを保ち続けることができなかった。
非特許文献6に開示された方法は、バンド間位相差の発生を電流で行うため、外部磁場は必要ないが、電流を遮断するとバンド間位相差が消えてしまい、ソリトンも発生することができなかった。
非特許文献11でも、バンド間位相差の発生の可能性が指摘されているが、電流を遮断することによってバンド間位相差が消えてしまうという点は上記の方法と同様で、無電流におけるソリトンの安定化に関する技術は開示されていない。
However, conventional soliton generation methods have the following problems.
In the methods disclosed in Patent Document 1 and Non-Patent Document 6, an external circuit that generates a matching magnetic field needs to be provided in the soliton circuit. This additional external circuit has become an obstacle to the miniaturization and integration of the soliton circuit, and there has been a significant limitation on the design of the actual soliton circuit.
In the methods disclosed in Non-Patent Document 4 and Non-Patent Document 7, in addition to the external magnetic field, the soliton disappears when the current is interrupted, and the soliton cannot be maintained in a no-current state.
In the method disclosed in Non-Patent Document 6, since an inter-band phase difference is generated by current, no external magnetic field is required, but when the current is interrupted, the inter-band phase difference disappears and solitons can also be generated. There wasn't.
Non-Patent Document 11 also points out the possibility of the occurrence of an interband phase difference, but is similar to the above method in that the interband phase difference disappears when the current is cut off. The technique regarding stabilization of is not disclosed.

非特許文献5に開示された方法も、バンド間位相差の発生に磁場は必要ないが、バンド間位相差を発生させるには一次相転移を引き起こす必要があった。一次相転移を起こす方法として、一つの成分のみ超伝導を破壊する方法が開示されている。この方法は、超伝導膜2層構造で造った人工的な多バンド超伝導体では実現可能であるが、MgB2(2硼化マグネシウム)などの真性の多バンド超伝導体には適用できないという問題点があった。
また、数値実験の結果によると、非特許文献8に記載されているように、非特許文献5の方法では、バンド間位相差は生み出せなかったという技術的な問題点も明らかにされている。
The method disclosed in Non-Patent Document 5 also does not require a magnetic field to generate an interband phase difference, but it has been necessary to cause a primary phase transition in order to generate an interband phase difference. As a method for causing a first-order phase transition, a method for destroying superconductivity with only one component is disclosed. This method can be realized with an artificial multiband superconductor made of a superconducting film two-layer structure, but cannot be applied to an intrinsic multiband superconductor such as MgB 2 (magnesium diboride). There was a problem.
Further, according to the results of numerical experiments, as described in Non-Patent Document 8, the technical problem that the inter-band phase difference could not be generated by the method of Non-Patent Document 5 has been clarified.

非特許文献2では、バンド毎に定常状態からずれる非平衡電流を注入し、アンバランスな状態を生み出すことによってソリトンを発生させる方法が開示されているが、ソリトンと電流を分離する方法が開示されていなかった。これを解決する方法として、ソリトンと電流を分離する技術が特許文献3に開示されている。
しかし、ソリトンを生み出すようなアンバランス状態の電流を生じさせること自体が容易ではなく、非特許文献2に開示されている方法の実施は困難であった。
Non-Patent Document 2 discloses a method for generating a soliton by injecting a non-equilibrium current that deviates from the steady state for each band and generating an unbalanced state. However, a method for separating the soliton from the current is disclosed. It wasn't. As a method for solving this, Patent Document 3 discloses a technique for separating a soliton and a current.
However, it is not easy to generate an unbalanced current that generates solitons, and it is difficult to implement the method disclosed in Non-Patent Document 2.

特許文献1に開示されている、ソリトンと共鳴するエネルギーを照射する方法では、照射する光などの外場とソリトンとの統合係数が制御できず、この方法においても困難である。
このように、電流を遮断した状態でも安定的に存在するソリトンを、整合磁場回路や非平衡電流(非定常電流)のアンバランス注入や共鳴エネルギー照射によって生成する方法は、実現が極めて難しい。これらの困難さを伴わず、容易にソリトンを発生する技術は見当らなかった。
また、非特許文献3の方法で生成されるソリトンは通常分数渦糸を伴うものであるが、この分数渦糸を取り除く有効な方法は知られていない。
The method of irradiating energy that resonates with solitons disclosed in Patent Document 1 cannot control the integration coefficient between solitons and the external field such as the irradiating light, and this method is also difficult.
As described above, it is extremely difficult to realize a method for generating solitons that exist stably even when the current is cut off by unmatched injection of a matching magnetic field circuit, a non-equilibrium current (unsteady current), and resonance energy irradiation. There has been no technique for easily generating solitons without these difficulties.
In addition, the soliton generated by the method of Non-Patent Document 3 is usually accompanied by a fractional vortex, but an effective method for removing the fractional vortex is not known.

本発明は、上記の問題点に鑑みてなされたもので、外部磁場を利用することなく、非平衡電流のアンバランス注入を行うこともせず、結合係数の制御ができない共鳴エネルギーを照射することもなく、新たな理念に従ってソリトンを発生させる方法、及びその方法を使用するための回路装置を提案せんとする。   The present invention has been made in view of the above-described problems, and does not use an external magnetic field, does not perform unbalanced injection of non-equilibrium current, and irradiates resonance energy that cannot control the coupling coefficient. We propose a method for generating solitons according to a new philosophy and a circuit device for using the method.

本発明は上記目的を達成するため、定常電流を流した状態でソリトンの発生を目論む回路の境界条件を動的に制御することによって、バンド間位相差を発生させ、また回路内に閉じ込めておき、電流を遮断することによって上記のバンド間位相差をソリトンとして回路内に残す方法を提案する。
新たなる発想として、通常の回路では境界条件によって禁止されている電流によって誘起される位相差を、境界条件を変えることによって変化させ、それによってバンド間位相差の発生を許容する原理を利用する。また、境界条件を変化させることによって発生させたバンド間位相差ソリトンの消失を禁止し、電流を遮断した後もソリトンとして回路内に閉じ込めておく原理も利用する。
In order to achieve the above object, the present invention dynamically controls the boundary condition of a circuit that is intended to generate solitons in a state where a steady current flows, thereby generating an interband phase difference and confining it in the circuit. Then, a method of leaving the above-described interband phase difference as a soliton in the circuit by cutting off the current is proposed.
As a new idea, the principle of changing the phase difference induced by the current prohibited by the boundary condition in a normal circuit by changing the boundary condition and thereby allowing the generation of the inter-band phase difference is utilized. Further, the principle of keeping the inter-band phase difference soliton generated by changing the boundary condition from being lost and confining it in the circuit as a soliton after the current is cut off is also used.

すなわち、超伝導環境下において存在し得るソリトンを生じる回路の、一部の超伝導性を電流注入下で破壊して常伝導状態に戻し、自然境界条件を実現することによってバンド間位相差を許容し得る環境とし、当該環境においてバンド間位相差を発生させる。また、電流注入下で、上記の破壊した部分の超伝導を復元し、固定端境界条件とすることによってバンド間位相差が解けることを禁止し、その後、電流を切ることによってバンド間位相差をソリトンとして回路内に残す。
この方法は、非特許文献5に開示されている、線路全体において一つの成分だけの超伝導性を壊すものではない。ソリトンの発生を意図する線路の端部分の超伝導を、両成分(位相差を有する二つのバンド)同時に壊すものである。そのため、実施が著しく容易であり、非特許文献5に開示された技術とは本質的に異なる。
このようにソリトンの発生を意図する線路の境界条件を限定的に制御し、かつ、外部電流によってバンド間位相差を生み出すことを特徴とするソリトン発生方法を提案する。
In other words, some superconductivity of a circuit that generates solitons that can exist in a superconducting environment is destroyed under current injection to return to the normal state, and the interband phase difference is allowed by realizing a natural boundary condition. And an inter-band phase difference is generated in the environment. In addition, under current injection, the superconductivity of the broken part is restored, and it is prohibited to solve the interband phase difference by setting the fixed-end boundary condition, and then the interband phase difference is reduced by cutting off the current. Leave in the circuit as a soliton.
This method does not break the superconductivity of only one component in the entire line disclosed in Non-Patent Document 5. The superconductivity of the end portion of the line intended to generate solitons is broken simultaneously by both components (two bands having a phase difference). Therefore, implementation is remarkably easy and is essentially different from the technique disclosed in Non-Patent Document 5.
In this way, a soliton generation method is proposed in which the boundary condition of a line intended to generate solitons is limitedly controlled and an interband phase difference is generated by an external current.

本発明によると、外部磁場を必要とせずに、線路に流す電流と線路の境界条件を制御することのみにより、ソリトンを精密かつ簡便に発生させることができる。例えば、特許文献4に開示された技術と組み合わせることにより、環境ノイズに対して強靭な量子コンピュータ等に関する超伝導エレクトロニクス技術において、本発明は将来に向けて極めて実践的な基本制御手法や制御回路構造を提案することとなり、これらの技術分野に貢献するところ甚だ大なるものがある。   According to the present invention, a soliton can be generated precisely and simply by controlling the current flowing through the line and the boundary condition of the line without requiring an external magnetic field. For example, in combination with the technology disclosed in Patent Document 4, in the superconducting electronics technology related to a quantum computer that is strong against environmental noise, the present invention is a very practical basic control method and control circuit structure for the future. There is a tremendous amount of contribution to these technical fields.

本発明の実施例によるソリトン回路装置を示す説明図である。It is explanatory drawing which shows the soliton circuit apparatus by the Example of this invention. バンド間位相差の計算機実験の結果を示す説明図である。It is explanatory drawing which shows the result of the computer experiment of a phase difference between bands.

以下、この発明の実施の一形態を説明する。
(実施例)
図1は、本発明の実施例によるソリトン回路装置を示す説明図である。この図は、多バンド超伝導薄膜を使った典型的な超伝導回路を示したもので、電極11と電極12との間に多バンド超伝導薄膜からなる線路13を備えている。なお、多バンド超伝導薄膜の冷却装置等の図示を省略している。
An embodiment of the present invention will be described below.
(Example)
FIG. 1 is an explanatory diagram showing a soliton circuit device according to an embodiment of the present invention. This figure shows a typical superconducting circuit using a multiband superconducting thin film, and a line 13 made of a multiband superconducting thin film is provided between an electrode 11 and an electrode 12. Note that the cooling device for the multiband superconducting thin film is not shown.

線路13は、図1(A)に示したように、太幅部131、細幅部132、および、狭細部133の3つのパートによって構成されている。
太幅部131は、電極11ならびに電極12と各々接続する部分であり、線路13に超伝導電流を流したとき、実質的にバンド間位相差が零と扱える(生じていないとみなせる)線幅を有し、例えば電極11,12と同じ線幅を有している。
細幅部132は、電極11側の太幅部131と電極12側の太幅部131との間を接続するように形成されている。
また、細幅部132は、当該細幅部132の一部分に狭細部133を有している。狭細部133は、線路13に電流が流れたとき細幅部132よりも先に超伝導性が壊れるように、当該細幅部132よりも狭い線幅に形成されている。
電極11と電極12には、線路13に電流を流すための外部電源14が接続されている。
As illustrated in FIG. 1A, the line 13 is configured by three parts including a thick part 131, a narrow part 132, and a narrow detail 133.
The wide width portion 131 is a portion connected to each of the electrode 11 and the electrode 12, and when a superconducting current is passed through the line 13, the line width that can be treated as having substantially no interband phase difference (can be regarded as not occurring) For example, it has the same line width as the electrodes 11 and 12.
The narrow width portion 132 is formed so as to connect between the wide width portion 131 on the electrode 11 side and the wide width portion 131 on the electrode 12 side.
The narrow portion 132 has a narrow detail 133 in a part of the narrow portion 132. The narrow details 133 are formed to have a narrower line width than the narrow portion 132 so that the superconductivity is broken before the narrow portion 132 when a current flows through the line 13.
An external power supply 14 is connected to the electrode 11 and the electrode 12 for flowing a current through the line 13.

線路13等を所定温度まで冷却しておき、外部電源14から定常電流を供給させて電極11,12間に超伝導電流を導通する。
線路13に電流が流れ始めて狭細部133で超伝導性が壊れるまでの期間においては、太幅部131が細幅部132の境界条件を与える。すなわち、ここではバンド間位相差が零になるような固定端が境界条件となる。このような固定端の境界条件では、バンド間位相差は線路13(細幅部132)の中に発生することはできない。
図1(B)に示したように、線路13に電流が流れることによって狭細部133で超伝導性が壊れると、壊れた部分(狭細部133)が細幅部132に対して境界条件を与える。すなわち、ここではバンド間位相差は固定されず、電流だけが流れ込む条件、あるいは流れ出す条件となる。このような条件は「自然境界条件」と呼ばれている。
The line 13 and the like are cooled to a predetermined temperature, and a steady current is supplied from the external power source 14 to conduct a superconducting current between the electrodes 11 and 12.
In the period from when the current starts to flow through the line 13 until the superconductivity is broken at the narrow details 133, the thick portion 131 gives the boundary condition of the narrow portion 132. In other words, the fixed end where the interband phase difference is zero is the boundary condition. Under such a fixed-end boundary condition, an interband phase difference cannot be generated in the line 13 (the narrow portion 132).
As shown in FIG. 1B, when superconductivity is broken in the narrow details 133 due to current flowing in the line 13, the broken portions (narrow details 133) give boundary conditions to the narrow width portion 132. . That is, here, the inter-band phase difference is not fixed, and only the current flows in or out. Such a condition is called a “natural boundary condition”.

前述の自然境界条件ではバンド間位相差は固定されず、太幅部131と細幅部132が接続されている線路端では依然固定端の境界条件を与え、超伝導性が壊れた狭細部133と細幅部132が接続されている線路端で当該自然境界条件となる。
従って、バンド間位相差が図1(B)に示したように細幅部132の中に生じる。この状態から供給電流を低減して行き、狭細部133の超伝導性を回復させると、図1(C)に示したようにバンド間位相差が細幅部132の中に捕獲された状態になる。このバンド間位相差は、細幅部132の中で線路幅が同じである限り、細幅部132を進むにつれて一定の割合で回転する。すなわち、バンド間位相差の回転は細幅部132全体に広がっている。線幅が細い部分では若干速く回転するが、この回転発生に関して原理的に影響を及ぼすものではない。
The above-mentioned natural boundary condition does not fix the inter-band phase difference, and the line end where the thick portion 131 and the narrow portion 132 are connected still gives the fixed end boundary condition, and the narrow details 133 in which superconductivity is broken. The natural boundary condition is satisfied at the line end to which the narrow portion 132 is connected.
Therefore, an inter-band phase difference is generated in the narrow portion 132 as shown in FIG. When the supply current is reduced from this state and the superconductivity of the narrow portion 133 is restored, the interband phase difference is captured in the narrow portion 132 as shown in FIG. Become. As long as the line width is the same in the narrow portion 132, the inter-band phase difference rotates at a constant rate as the narrow portion 132 is advanced. That is, the rotation of the inter-band phase difference spreads over the entire narrow portion 132. Although the rotation is slightly faster in the portion where the line width is narrow, there is no theoretical influence on the generation of this rotation.

前述のように細幅部132全体に広がった回転に対する境界条件は、図1(C)に示した状態においては固定端となる。すなわち、回転の回数は2πの整数倍となり、固定端部分ではバンド間位相差がない状態になる。
2πの整数倍の回転が、固定端により細幅部132に捕獲されると、電流を遮断した場合でも、境界条件を変えることはできないので、回転が解けることはない。
非特許文献1に開示されているように、2πの回転を有するバンド間位相差は、有限の長さを持つソリトンとして安定状態になる。その結果、図1(D)に示したように、ソリトン200(バンド間位相差ソリトン)が細幅部132ならびに狭細部133内に生じる。
As described above, the boundary condition for the rotation spread over the entire narrow portion 132 is a fixed end in the state shown in FIG. That is, the number of rotations is an integral multiple of 2π, and there is no interband phase difference at the fixed end portion.
When rotation of an integral multiple of 2π is captured by the narrow portion 132 by the fixed end, the boundary condition cannot be changed even when the current is interrupted, and therefore the rotation cannot be solved.
As disclosed in Non-Patent Document 1, an interband phase difference having a rotation of 2π becomes a stable state as a soliton having a finite length. As a result, as illustrated in FIG. 1D, a soliton 200 (interband phase difference soliton) is generated in the narrow portion 132 and the narrow detail 133.

次に計算機実験の結果を示す。
図2は、バンド間位相差の計算機実験の結果を示す説明図である。この図は、コヒーレント長の100倍の長さを持つ線路に電流を流したときの、バンド間位相差の計算機実験の結果を表している。なお、この計算機実験は、片方の端を固定端、他方の端を自然境界条件を与えた端として計算したものである。図2において、縦軸は自然境界条件を与えた端における位相差であり、横軸は電流密度である。
上記の計算機実験は、線路内での各バンドの超伝導電子対密度の電子密度は変わらないものとして計算した。この条件は、単バンド超伝導で用いられる計算の条件と同じである。
Next, the results of computer experiments are shown.
FIG. 2 is an explanatory diagram showing the results of a computer experiment of the interband phase difference. This figure shows the result of a computer experiment of the interband phase difference when a current is passed through a line having a length 100 times the coherent length. In this computer experiment, one end is calculated as a fixed end, and the other end is calculated as an end given a natural boundary condition. In FIG. 2, the vertical axis is the phase difference at the end where the natural boundary condition is given, and the horizontal axis is the current density.
In the above computer experiment, the electron density of the superconducting electron pair density of each band in the line was calculated as the same. This condition is the same as the calculation condition used in single-band superconductivity.

上記の計算では、非特許文献9に開示されている式を多バンド超伝導に拡張した次の式を用いた。   In the above calculation, the following formula obtained by extending the formula disclosed in Non-Patent Document 9 to multiband superconductivity was used.

上記の(1)式において、fはヘルムホルツの自由エネルギー、f1、f2は各バンドのバンド内相互作用によるエネルギーであり、その内容は(2)式に示されている。
上記の(2)式において、αi、βiはギンツブルグ方程式の定数、2miは各バンドの電子対の有効質量、niは各バンドの電子対密度である。
上記の(3)式において、finterはバンド間相互作用を与え、γはバンド間相互作用の大きさであり、4γ/α1=0.005になる、としている。これは、典型的な多バンド型多成分超伝導である多層型高温超伝導体におけるパラメータと同じ程度になっている。
In the above equation (1), f is the Helmholtz free energy, f 1 and f 2 are the energy due to the in-band interaction of each band, and the content is shown in equation (2).
In the above equation (2), α i and β i are constants of the Ginzburg equation, 2 m i is the effective mass of the electron pair in each band, and n i is the electron pair density in each band.
In the above equation (3), f inter gives the interband interaction, γ is the magnitude of the interband interaction, and 4γ / α 1 = 0.005. This is about the same as a parameter in a multilayer high temperature superconductor which is a typical multiband multicomponent superconductor.

また、上記の計算機実験においては、α1/α2は0.5、バンド間相互作用はなく、電流が流れていないときの電子対密度についてはバンド1とバンド2で同じ、としている。
(2)式のviは、各バンドにおける超伝導電子対の速度である。このとき超伝導電子対の力学的運動量は次の(4)式で与えられる。
In the above computer experiment, α 1 / α 2 is 0.5, there is no inter-band interaction, and the electron pair density when no current flows is the same in band 1 and band 2.
In equation (2), v i is the velocity of the superconducting electron pair in each band. At this time, the mechanical momentum of the superconducting electron pair is given by the following equation (4).

また、前述のように(1)式の最終項は磁場エネルギーである。このとき、線路13の細幅部132を流れる電流密度Jは各バンドを流れる電流密度Jiの和となる。 Further, as described above, the final term of the equation (1) is magnetic field energy. At this time, the current density J flowing through the narrow portion 132 of the line 13 is the sum of the current density J i flowing through each band.

線路13等を流れる電流密度は、バンド間相互作用がないときの臨界電流密度Jc(γ=0)で規格化されている。図2から、次の(7)式で示した関係で2π以上の回転が線路内(細幅部132内)に入っていることがわかる。 The current density flowing through the line 13 and the like is normalized by the critical current density J c (γ = 0) when there is no interband interaction. From FIG. 2, it can be seen that the rotation of 2π or more is in the line (in the narrow portion 132) in the relationship expressed by the following equation (7).

全電流は、線路の幅に比例する。すなわち、臨界電流密度は、一定の電流を線路に流すときには、線路幅に反比例する。よって、線路の細い部分(図1の細幅部132)の幅を、例えば太い部分(図1の太幅部131)の0.8倍にすれば、次の(8)式で示された電流密度を流すことで、2π以上のバンド間位相差の回転を線路13の細幅部132に与えることができる。なお、この電流密度が狭細部133に流れると、当該狭細部133のみが臨界電流密度を超えた状態になり、図1(B)に「黒色」で着色表示した常伝導状態となる。   The total current is proportional to the line width. That is, the critical current density is inversely proportional to the line width when a constant current is passed through the line. Therefore, if the width of the narrow part (the narrow part 132 in FIG. 1) is, for example, 0.8 times that of the thick part (the wide part 131 in FIG. 1), the following equation (8) is obtained. By passing the current density, rotation of the interband phase difference of 2π or more can be given to the narrow portion 132 of the line 13. Note that when this current density flows through the narrow details 133, only the narrow details 133 exceed the critical current density, and a normal state colored in “black” in FIG. 1B is obtained.

狭細部133に流れていた電流、すなわち(8)式で示された電流密度を減流し、次の(9)式で示された電流密度に低減すると、常伝導状態となっていた狭細部133の超伝導性が復活する。   When the current flowing in the narrow detail 133, that is, the current density expressed by the equation (8) is reduced and reduced to the current density expressed by the following equation (9), the narrow detail 133 that is in the normal state is obtained. The superconductivity of is restored.

狭細部133の超伝導性を復活させることにより、細幅部132ならびに狭細部133において2π以上の回転を捕獲する。このようにバンド間位相差の回転を捕獲した後、外部電源14から供給されている電流を遮断すると、ソリトン200(バンド間位相差ソリトン)を線路13(詳しくは細幅部132および狭細部133)に残すことができる。この計算機実験の結果から、バンド間位相差ソリトンを線路内に残すことが可能であることがわかった。   By restoring the superconductivity of the narrow details 133, the rotation of 2π or more is captured in the narrow portion 132 and the narrow details 133. If the current supplied from the external power supply 14 is cut off after capturing the rotation of the interband phase difference in this way, the soliton 200 (interband phase difference soliton) is connected to the line 13 (specifically, the narrow portion 132 and the narrow portion 133). ). From the results of this computer experiment, it was found that interband phase difference solitons can be left in the line.

以上、本発明に係るバンド間位相差ソリトンの発生方法の実施例について説明したが、本発明はこれに限定されることなく、特許請求の範囲に記載の技術的事項の範囲内で様々な改変が可能であることは言うまでもない。
簡便な構成で、バンド間位相差ソリトンの発生が可能なことを実証したが、本発明は特許文献1〜4に示されたような、他の方法と組み合せることにより、量子コンピュータや通常のコンピュータなどの実現を容易にするものであり、本発明の意義は極めて大きいものがある。
The embodiment of the method for generating the interband phase difference soliton according to the present invention has been described above, but the present invention is not limited to this, and various modifications are possible within the scope of the technical matters described in the claims. It goes without saying that is possible.
Although it has been demonstrated that interband phase difference solitons can be generated with a simple configuration, the present invention can be combined with other methods such as those shown in Patent Documents 1 to 4 to produce a quantum computer or a normal one. The present invention facilitates the realization of computers and the like, and the significance of the present invention is extremely large.

11,12電極
13線路
14外部電源
131太幅部
132細幅部
133狭細部
200ソリトン
11, 12 electrodes 13 lines 14 external power supply 131 wide part 132 narrow part 133 narrow details 200 solitons

Claims (3)

多バンド超伝導膜からなる線路に、
前記線路の両端側に設けられ、外部から電流を供給する各電極とそれぞれ接続する複数の太幅部と、
前記太幅部よりも線幅が細く、前記太幅部間を接続する細幅部と、
前記細幅部よりも線幅が細く、該細幅部の一部分に設けられた狭細部と、
を備え、
前記線路に前記外部から電流を供給し、前記細幅部に流れる電流により前記狭細部の超伝導性を壊して常伝導状態にする第1過程と、
前記狭細部の超伝導性を壊した電流が流れる前記細幅部にバンド間位相差を生じさせる第2過程と、
前記細幅部に流れる電流を減流し、前記狭細部の超伝導性を回復させる第3過程と、
前記狭細部の超伝導性を回復させた後、前記電流を遮断して前記線路にバンド間位相差ソリトンを残留させる第4過程と、
を有することを特徴とするバンド間位相差ソリトンの発生方法。
For lines consisting of multiband superconducting films,
A plurality of thick portions provided on both ends of the line, each connected to each electrode for supplying current from the outside;
The line width is narrower than the thick part, the narrow part connecting the wide parts, and
The line width is narrower than the narrow width part, narrow details provided in a part of the narrow width part,
With
Supplying a current from the outside to the line, and breaking the narrow superconductivity by a current flowing through the narrow portion to a normal state;
A second step of causing an interband phase difference in the narrow portion through which a current that breaks the superconductivity of the narrow details flows;
A third process of reducing the current flowing in the narrow portion and restoring the superconductivity of the narrow details;
After recovering the narrow superconductivity, a fourth step of cutting off the current and leaving an interband phase difference soliton in the line;
A method for generating an interband phase difference soliton, comprising:
前記第1過程は、
2π以上の回転を有するバンド間位相差が生じる電流密度を、前記細幅部に流す、
ことを特徴とする請求項1に記載のバンド間位相差ソリトンの発生方法。
The first process includes
A current density causing an interband phase difference having a rotation of 2π or more is caused to flow in the narrow portion;
The method for generating an interband phase difference soliton according to claim 1.
前記第2過程は、
前記細幅部に流したとき、前記2π以上の回転がバンド間位相差に生じる電流密度で前記狭細部の超伝導性が壊れる、
ことを特徴とする請求項2に記載のバンド間位相差ソリトンの発生方法。
The second process includes
When flowing through the narrow part, the superconductivity of the narrow details is broken by the current density at which the rotation of 2π or more occurs in the inter-band phase difference.
The method for generating an interband phase difference soliton according to claim 2.
JP2015044214A 2015-03-06 2015-03-06 Generation method of interband phase difference solitons Active JP6455929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015044214A JP6455929B2 (en) 2015-03-06 2015-03-06 Generation method of interband phase difference solitons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015044214A JP6455929B2 (en) 2015-03-06 2015-03-06 Generation method of interband phase difference solitons

Publications (2)

Publication Number Publication Date
JP2016164907A JP2016164907A (en) 2016-09-08
JP6455929B2 true JP6455929B2 (en) 2019-01-23

Family

ID=56876795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015044214A Active JP6455929B2 (en) 2015-03-06 2015-03-06 Generation method of interband phase difference solitons

Country Status (1)

Country Link
JP (1) JP6455929B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265202A (en) * 1988-08-31 1990-03-05 Fujitsu Ltd Superconducting ceramic circuit
JPH02281766A (en) * 1989-04-24 1990-11-19 Furukawa Electric Co Ltd:The Superconducting element using oxide superconductor
JP4061372B2 (en) * 2001-11-01 2008-03-19 独立行政法人産業技術総合研究所 Information recording method, calculation method, information transmission method, energy storage method, magnetic flux measurement method, and qubit configuration method using a superconductor having a plurality of bands
JP4010362B2 (en) * 2003-09-09 2007-11-21 独立行政法人産業技術総合研究所 Quantum Turing machine
JP5103667B2 (en) * 2006-08-28 2012-12-19 独立行政法人産業技術総合研究所 Generation method and detection method of interband phase difference soliton, and interband phase difference soliton circuit
JP5352855B2 (en) * 2008-02-29 2013-11-27 独立行政法人産業技術総合研究所 Method for controlling phase difference soliton between components and phase difference soliton circuit apparatus between components
JP5939606B2 (en) * 2011-10-31 2016-06-22 一般財団法人電力中央研究所 Superconducting current limiting element

Also Published As

Publication number Publication date
JP2016164907A (en) 2016-09-08

Similar Documents

Publication Publication Date Title
Krasheninnikov et al. Recent theoretical progress in understanding coherent structures in edge and SOL turbulence
Ni et al. Disorder enhances thermoelectric figure of merit in armchair graphane nanoribbons
Li et al. Interface thermal resistance between dissimilar anharmonic lattices
Wang et al. Chiral anomaly, charge density waves, and axion strings from Weyl semimetals
Kiesel et al. Competing many-body instabilities and unconventional superconductivity in graphene
Longhi et al. Invited Article: Mitigation of dynamical instabilities in laser arrays via non-Hermitian coupling
Li et al. Stabilization of the Quantum Spin Hall Effect by Designed Removal<? format?> of Time-Reversal Symmetry of Edge States
Feraoun et al. Nano-graphene monolayer with higher-order exchange couplings: Monte Carlo study
Cuozzo et al. Microwave-tunable diode effect in asymmetric SQUIDs with topological Josephson junctions
de la Peña et al. Electronic instabilities of the AA‐honeycomb bilayer
JP6455929B2 (en) Generation method of interband phase difference solitons
Karnaukhov Spontaneous breaking of time-reversal symmetry in topological insulators
Vodolazov et al. Negative magnetoresistance in thin superconducting films with parallel orientation of current and magnetic field
Continentino et al. Renormalization group approach to a p-wave superconducting model
Fu et al. Set stability of controlled Chua’s circuit under a non-smooth controller with the absolute value
Chahid et al. Quadristor: a novel device for superconducting electronics
Jarboe et al. A mechanism for the dynamo terms to sustain closed-flux current, including helicity balance, by driving current which crosses the magnetic field
Bagraev et al. Spin-dependent single-hole tunneling in self-assembled silicon quantum rings
Flores et al. Faraday's effect for N-mesoscopic rings with charge discreteness
Ostahie et al. Interface effects on the energy spectrum and quantum transport in two-dimensional topological heterostructures
Gardini et al. Snap-back repellers and chaotic attractors
Plenio et al. Ion Traps as a testbed of classical and quantum statistical mechanics.
Shi et al. Intermittent superconductivity in mesoscopic thin-film rings
Ahmed Mohamed et al. Explanation of Magnetic Destruction of Superconductor Using Schrodinger Equation in the Energy Space
Sakai et al. Anomalous magnetization process in frustrated spin ladders

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181214

R150 Certificate of patent or registration of utility model

Ref document number: 6455929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250