JPH0265202A - Superconducting ceramic circuit - Google Patents
Superconducting ceramic circuitInfo
- Publication number
- JPH0265202A JPH0265202A JP63217013A JP21701388A JPH0265202A JP H0265202 A JPH0265202 A JP H0265202A JP 63217013 A JP63217013 A JP 63217013A JP 21701388 A JP21701388 A JP 21701388A JP H0265202 A JPH0265202 A JP H0265202A
- Authority
- JP
- Japan
- Prior art keywords
- superconducting
- current value
- conductive line
- protective region
- state
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 20
- 230000001681 protective effect Effects 0.000 claims abstract description 9
- 239000000758 substrate Substances 0.000 claims abstract description 8
- 239000004020 conductor Substances 0.000 claims description 26
- 238000000034 method Methods 0.000 abstract description 12
- 239000000463 material Substances 0.000 abstract description 3
- 230000001052 transient effect Effects 0.000 abstract description 3
- 230000002159 abnormal effect Effects 0.000 abstract description 2
- 230000015556 catabolic process Effects 0.000 abstract 1
- 230000007423 decrease Effects 0.000 abstract 1
- 239000010409 thin film Substances 0.000 description 5
- 239000010408 film Substances 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 238000001017 electron-beam sputter deposition Methods 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 239000002887 superconductor Substances 0.000 description 2
- 229910052716 thallium Inorganic materials 0.000 description 2
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910014454 Ca-Cu Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- CNEWPRQQHICZBP-UHFFFAOYSA-N [O].[Cu].[Ba].[La] Chemical compound [O].[Cu].[Ba].[La] CNEWPRQQHICZBP-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical group [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000002784 hot electron Substances 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- CNEOGBIICRAWOH-UHFFFAOYSA-N methane;molybdenum Chemical compound C.[Mo] CNEOGBIICRAWOH-UHFFFAOYSA-N 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical group [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical group [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Containers, Films, And Cooling For Superconductive Devices (AREA)
- Thermistors And Varistors (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要〕
超伝導セラミック回路に関し、
過大電流による回路素子の破壊を防止することを目的と
し、
耐熱性基板の上に形成した超伝導セラミックスよりなる
導体線路の一部に断面積が導体線路よりも小さな保護領
域を設け、この保護領域の臨界電流値を他の導体線路よ
りも小さく設定して超伝導〔産業上の利用分野〕
本発明は超伝導回路の構成に関する。[Detailed Description of the Invention] [Summary] Regarding superconducting ceramic circuits, for the purpose of preventing destruction of circuit elements due to excessive current, a part of a conductor line made of superconducting ceramics formed on a heat-resistant substrate is used. The present invention relates to the configuration of a superconducting circuit by providing a protected area having a smaller cross-sectional area than a conductive line and setting the critical current value of this protected area smaller than that of other conductive lines to provide superconductivity.
アルミニウム(All)、チタン(Ti)など22の元
素およびチタン酸リチウム(LIT103)l炭化モリ
ブデン(MoC)など複数の無機化合物が超伝導現象を
示すことは知られていたが、超伝導転移温度(Tc)は
金属元素については高くてもIOKに止まり、また無機
化合物についてもゲルマリラム化ニオブ(Nb:+Ge
)の23.5Kが最高であって、15に以上の材料は数
えるほどしか存在しなかった。It was known that 22 elements such as aluminum (All) and titanium (Ti) and multiple inorganic compounds such as lithium titanate (LIT103) and molybdenum carbide (MoC) exhibit superconductivity, but the superconducting transition temperature ( Tc) is at most IOK for metal elements, and for inorganic compounds it is niobium germarylamide (Nb: +Ge).
) was the highest at 23.5K, and there were only a few materials with a temperature of 15K or higher.
然し、1986年4月に18Mチューリッヒ研究所のB
ednorz とMullerによってランタン・バリ
ウム・銅・酸素(La−Ba−Cu−0)系の酸化物セ
ラミックスについて高温超伝導現象が発見されて以来、
イツトリウム・バリウム・銅・酸素(Y−Ba−CuO
)系およびYを含む希土類元素−Ba−Cu−0)系に
ついてTcが約90Kを示す超伝導セラミックスが発見
されるに到った。However, in April 1986, B.
Since the discovery of high-temperature superconductivity in lanthanum-barium-copper-oxygen (La-Ba-Cu-0) based oxide ceramics by Ednorz and Muller,
Yttrium, barium, copper, oxygen (Y-Ba-CuO
) system and rare earth element-Ba-Cu-0) system containing Y, superconducting ceramics exhibiting Tc of about 90K have been discovered.
その後、Baをストロンチウム(Sr)やカルシウム(
Ca)に置換したり、Laをビスマス(旧)やタリウム
(T A )に置換したB1−3r−Ca−Cu−0系
(Tc =105K)やT j! −Ba−Ca−Cu
−0系(Tc =118 K)などが発表されている。After that, Ba is replaced with strontium (Sr) and calcium (
B1-3r-Ca-Cu-0 system (Tc = 105K) in which La is replaced with bismuth (old) or thallium (TA), or Tj! -Ba-Ca-Cu
-0 series (Tc = 118 K) etc. have been announced.
さて、大量の情報を高速に処理する情報処理装置、特に
高速化を必要とする電算機部門には高電子移動度トラン
ジスタ(略称HEMT)や共鳴トンネリング・ホットエ
レクトロン・トランジスタ(略称RHET)などガリウ
ム・砒素(GaAs)からなる半導体素子が導入されつ
\あるが、これらの半導体素子は液体窒素(N2)の温
度で特性を発揮することから、か\る半導体素子を搭載
する電子回路を超伝導セラミックスで形成すれば極めて
効果的である。Now, information processing equipment that processes large amounts of information at high speed, especially in the computer sector that requires high speed, uses gallium-based devices such as high electron mobility transistors (abbreviated as HEMT) and resonant tunneling hot electron transistors (abbreviated as RHET). Semiconductor elements made of arsenic (GaAs) are being introduced, but since these semiconductor elements exhibit their characteristics at the temperature of liquid nitrogen (N2), electronic circuits equipped with such semiconductor elements are being manufactured using superconducting ceramics. It is extremely effective if formed with
本発明はこれら超伝導セラミックスよりなる導体線路の
構成に関するものである。The present invention relates to the structure of conductor lines made of these superconducting ceramics.
従来の電子回路の形成法としては薄膜法と厚膜法とがあ
り、共に配線基板としては耐熱性が優れると共に誘電率
が低いアルミナ(α−Aβ203)などのセラミックス
を用い、薄膜法の場合はこの上に電子ビーム蒸着やスパ
ッタなどの方法により金(Au)やタンクル(Ta)な
どの薄膜を形成し、写真蝕刻技術(フォトリソグラフィ
)を用いて選択エツチングを行い、微細パターンからな
る導体線路を形成している。Conventional methods for forming electronic circuits include the thin film method and the thick film method, both of which use ceramics such as alumina (α-Aβ203), which has excellent heat resistance and a low dielectric constant, as the wiring substrate. A thin film of gold (Au) or tankle (Ta) is formed on this by methods such as electron beam evaporation or sputtering, and selective etching is performed using photolithography to form a conductor line consisting of a fine pattern. is forming.
また、厚膜法の場合はスクリーン印刷法によりへ〇ペー
ストや企艮・パラジウム(八g−Pd)ペーストなどの
導体ペーストからなるパターンを作り、これを焼成する
ことにより導体線路を形成している。In addition, in the case of the thick film method, a pattern made of a conductor paste such as He〇 paste or palladium (8g-Pd) paste is created using the screen printing method, and the conductor line is formed by firing this. .
これと同様に超伝導セラミックスを導電拐料として導体
線路を形成することが試みられている。Similarly, attempts have been made to form conductor lines using superconducting ceramics as a conductive material.
すなわち、電子ビーム蒸着法やスパッタ法などの物理的
な方法を用いて電子回路をパターン形成するか、或いは
化学気相成長法(略称CVD法)などのような化学的な
方法を用いて超伝導セラミックスよりなる薄膜を形成し
、写真蝕刻技術により電子回路をパターン形成すること
も研究されている。In other words, an electronic circuit is patterned using a physical method such as electron beam evaporation or sputtering, or a superconductor is formed using a chemical method such as chemical vapor deposition (CVD). Research is also being conducted into forming thin films made of ceramics and patterning electronic circuits using photolithographic techniques.
また、超伝導セラミックスを微粉砕し、これを原料とし
て導体ペーストを作り、スクリーン印刷法により電子回
路を形成することも研究されている。Research is also being carried out on pulverizing superconducting ceramics, making conductive paste using this as a raw material, and forming electronic circuits using screen printing.
薄膜法や厚膜法など各種の方法を用いてアルミナ基板な
どの耐熱性基板上に超伝導セラミックスよりなる電子回
路を形成することが行われているが、この場合の問題は
一般の電子回路と同様にスイッチ叶時などに生ずる過渡
的な過大電流や共振などの回路異常が生じた場合に生ず
る過大電流により回路素子が破壊することである。Electronic circuits made of superconducting ceramics are being formed on heat-resistant substrates such as alumina substrates using various methods such as thin-film and thick-film methods, but the problem in this case is that they are different from those of general electronic circuits. Similarly, circuit elements may be destroyed by excessive current that occurs when a circuit abnormality such as transient excessive current or resonance occurs when a switch is closed.
この対策として、通常の電子回路においては回路にアバ
ランシェダイオードを加えたり、ヒユーズやブレーカ−
など外付するなどの保護手段が講じられているが、超伝
導回路にはこれに適した保護回路が見当たらない。As a countermeasure for this, in ordinary electronic circuits, avalanche diodes are added to the circuit, fuses and breakers are
Although protection measures such as external protection have been taken, no suitable protection circuit has been found for superconducting circuits.
そこで、この保護回路を実用化することが課題である。Therefore, the challenge is to put this protection circuit into practical use.
上記の課題は耐熱性基板の上に形成した超伝導セラミッ
クスよりなる導体線路の一部に断面積がこの導体線路よ
りも小さな保護領域を設け、この保護領域の臨界電流値
を導体線路よりも小さく設定することにより解決するこ
とができる。The above problem is solved by providing a protected area with a smaller cross-sectional area than the conductor line in a part of the conductor line made of superconducting ceramics formed on a heat-resistant substrate, and making the critical current value of this protected area smaller than that of the conductor line. This can be resolved by setting:
本発明は導体線路を流れる電流が臨界電流密度を越える
場合は電流により発生する磁界により超伝導状態が破れ
る現象を利用するものである。The present invention utilizes the phenomenon that when the current flowing through a conductor line exceeds a critical current density, the superconducting state is broken by the magnetic field generated by the current.
すなわち、第1図に示すように導体線路1の一部に断面
積が導体線路1よりも小さな保護領域2を設ける。That is, as shown in FIG. 1, a protection area 2 having a smaller cross-sectional area than the conductor line 1 is provided in a part of the conductor line 1.
こ−で、保it領域2は同図に示すように線路幅を狭く
してもよく、また厚さを薄く形成してもよいが、マスク
蒸着によりパターンを作る場合にも写真蝕刻法を使用す
る場合にも前者のほうが製造プロセスが簡単である。Here, as shown in the figure, the holding area 2 may have a narrow line width or may be formed thinly, but photo-etching may also be used to form a pattern by mask vapor deposition. In this case, the manufacturing process is simpler in the former case.
さて、このように断面積が小さい保護領域2を設りると
超伝導セラミックスにおいては使用材料によって超伝導
状態が常伝導状態になるFB7.界電流密度が決まって
いるので、この値を基にして保護動作が始まるに必要な
断面積を求め、保護領域2のパターンを設計すればよい
。Now, when the protective region 2 with a small cross-sectional area is provided in this way, in superconducting ceramics, depending on the material used, the superconducting state changes to the normal conducting state FB7. Since the field current density is determined, the cross-sectional area necessary for the protection operation to start can be determined based on this value, and the pattern of the protection region 2 can be designed.
第2図は保護領域の動作を示す模式図であって、横軸に
は経過時間(1)を、また縦軸には保護領域を流れる電
流値(1)を示している。FIG. 2 is a schematic diagram showing the operation of the protected area, in which the horizontal axis shows the elapsed time (1), and the vertical axis shows the current value (1) flowing through the protected area.
ずなわら、保護領域に流れる定常電流値3を臨界電流値
4よりも少なく (図の場合は40%)に設定して保護
領域の導体線路を形成している。Of course, the steady current value 3 flowing through the protected area is set to be less than the critical current value 4 (40% in the case of the figure) to form the conductor line in the protected area.
そして、異常現象あるいは過渡現象によって電流が増加
して臨界電流値4を越えると超伝導状態は破れるが、酸
化物超伝導体は常伝導状態で数mΩ・cmと高い抵抗率
を有するため電流値5は0に近い値にまで低下する。When the current increases due to abnormal or transient phenomena and exceeds the critical current value of 4, the superconducting state is broken, but since oxide superconductors have a high resistivity of several mΩ cm in the normal conducting state, the current value 5 drops to a value close to 0.
次に、常伝導状態になった際に保護領域の導体線路に発
生したジュール熱が冷め、再び超伝導状態となると再び
保護領域に流れる電流は定常電流イ直3に戻る。Next, the Joule heat generated in the conductor line in the protected area when it becomes a normal conductive state cools down, and when it becomes a superconducting state again, the current flowing through the protected area returns to the steady current.
このように本発明によればたとえ導体線路に大電流が流
れる場合であっても自動制御が行われることになる。As described above, according to the present invention, automatic control is performed even when a large current flows through the conductor line.
イツトリウム(Y)・バリウム(Ba) ・銅(Cu
)・酸素(○)系超伝導セラミックス(YBa2Cu3
0ヮ−4,但しtJ <0.5)を主成分とする導体ペ
ースI・を用い、スクリーン印刷法によりアルミナ(α
−An zo3)基板の上に第1図に示すような保護領
域2を含む導体線路1をパターン形成した。Yttrium (Y), barium (Ba), copper (Cu
)・Oxygen (○)-based superconducting ceramics (YBa2Cu3
Alumina (α
-An zo3) A conductor line 1 including a protective region 2 as shown in FIG. 1 was patterned on the substrate.
こ\で、導体ベースI・はYBa2Cu3007−dの
組成の超伝導セラミックスを挿解器とボールミルを用い
て平均粒径が2〜3μmの微粒子とした後、有機溶剤と
バインダを加えて混練し、粘度が2000ボイズ(Ps
)のペーストとしたものである。Here, the conductor base I is made by making superconducting ceramics having a composition of YBa2Cu3007-d into fine particles with an average particle size of 2 to 3 μm using an inserter and a ball mill, and then kneading them by adding an organic solvent and a binder. Viscosity is 2000 Boise (Ps
) is made into a paste.
そして、アルゴン(Ar)と02の混合雰囲気中で10
00°Cで30分間焼成した後、同し雰囲気中で900
°Cで1時間アニールして超伝導導体線路を形成したも
のである。Then, in a mixed atmosphere of argon (Ar) and 02
After baking at 00°C for 30 minutes, it was heated to 900°C in the same atmosphere.
A superconducting conductor line was formed by annealing at °C for 1 hour.
こ\で、通常動作時の電流がIAであることから、パタ
ーン形成した線路の厚さは50μmとし、第1図におい
て、導体線路1の幅は200μm、保s!領域2の幅は
50μmとし、また保護領域2の長さは500 μmと
した。Since the current during normal operation is IA, the thickness of the patterned line is 50 μm, and in FIG. 1, the width of the conductor line 1 is 200 μm. The width of region 2 was 50 μm, and the length of protected region 2 was 500 μm.
ごの理由は、YBa2Cu307−aのエビタキソヤル
成長膜についてC軸に垂直に電流を流した場合の臨界電
流密度として1.8 XIO’ A/ cm”の値が報
告されているが(Jpn、J、Appl、Phys、
vol、26.1987)厚膜法で得られる薄膜につい
ては約I Xl05A/cm2である。The reason for this is that a critical current density of 1.8 Appl, Phys.
vol. 26.1987) for thin films obtained by thick film methods, it is approximately I Xl05A/cm2.
そこで、この値から導体線路1の臨界電流を1OAとし
、保護領域2の臨界電流を2.5Aに決めた。Therefore, based on these values, the critical current of the conductor line 1 was determined to be 1OA, and the critical current of the protected area 2 was determined to be 2.5A.
そして、導体線路に電流を流した場合、保護領域2に着
目すると、第2図に示すように、当初の1八より電流が
増加して2.5Aに達すると保護動作が開始し、電流値
ば0となった後、再びIAの定常値に戻った。When a current is passed through the conductor line, focusing on protection area 2, as shown in Figure 2, when the current increases from the initial 18 to 2.5A, the protection operation starts, and the current value After reaching 0, the IA returned to its steady value.
超伝導線路自体に保護領域を設LJで安全動作をさせる
本発明の実施により過大電流の抑制と自動復帰の機能を
もたせることができ、本発明の実施により超伝導回路の
信頼性を向上することが可能になる。By implementing the present invention, which provides a protection area in the superconducting line itself and allows safe operation at LJ, it is possible to provide functions of suppressing excessive current and automatic recovery, and by implementing the present invention, the reliability of the superconducting circuit can be improved. becomes possible.
第1図は本発明に係る保護回路の一例を示す平面図、
第2図は本発明に係る保護領域の動作を示す模式図、
である。
図において、
1は導体線路、 2は保護領域、3は定常
電流値、 4は臨界電流値、である。FIG. 1 is a plan view showing an example of a protection circuit according to the invention, and FIG. 2 is a schematic diagram showing the operation of a protection area according to the invention. In the figure, 1 is a conductor line, 2 is a protected area, 3 is a steady current value, and 4 is a critical current value.
Claims (1)
る導体線路の一部に断面積が該導体線路よりも小さな保
護領域を設け、該保護領域の臨界電流値を導体線路より
も小さく設定することを特徴とする超伝導セラミック回
路。A protective area having a cross-sectional area smaller than that of the conductor line is provided in a part of a conductor line made of superconducting ceramics formed on a heat-resistant substrate, and the critical current value of the protected area is set to be smaller than that of the conductor line. Features a superconducting ceramic circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63217013A JPH0265202A (en) | 1988-08-31 | 1988-08-31 | Superconducting ceramic circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63217013A JPH0265202A (en) | 1988-08-31 | 1988-08-31 | Superconducting ceramic circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0265202A true JPH0265202A (en) | 1990-03-05 |
Family
ID=16697460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63217013A Pending JPH0265202A (en) | 1988-08-31 | 1988-08-31 | Superconducting ceramic circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0265202A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016164907A (en) * | 2015-03-06 | 2016-09-08 | 国立研究開発法人産業技術総合研究所 | Method of generating inter-band phase difference soliton |
-
1988
- 1988-08-31 JP JP63217013A patent/JPH0265202A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016164907A (en) * | 2015-03-06 | 2016-09-08 | 国立研究開発法人産業技術総合研究所 | Method of generating inter-band phase difference soliton |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0265202A (en) | Superconducting ceramic circuit | |
US6242387B1 (en) | High temperature superconductor/insulator composite thin films with Josephson coupled grains | |
Gerber et al. | Nonmonotonic resistivity transitions in granular superconducting ceramics | |
JPH06132571A (en) | Current limiting element and current limiting device | |
JPS63258082A (en) | Superconductive material | |
JPS63283085A (en) | Superconducting device | |
JP2641451B2 (en) | Oxide superconducting integrated circuit | |
JPH04275470A (en) | Product composed of superconductor/insulator structure and manufacture of said product | |
EP0405677B1 (en) | Superconducting electronic thin-layer device and method for fabricating the same | |
JPH03226228A (en) | Current limit resistance device | |
JP2678232B2 (en) | Superconductor device | |
JPS63258083A (en) | Manufacture of superconductive material | |
JP2544390B2 (en) | Oxide superconducting integrated circuit | |
JPH0444280A (en) | Manufacture of superconducting wiring | |
JP2747557B2 (en) | Superconductor device | |
JP2670554B2 (en) | Method for producing oxide superconducting material | |
JP2692131B2 (en) | Superconducting ceramic line | |
JPH01125957A (en) | Superconductor device | |
JPS63245975A (en) | Superconductor device | |
JP2654567B2 (en) | Operation method of superconducting element | |
CA2005224A1 (en) | Superconducting thick films for hybrid circuitry applications | |
JPS63299364A (en) | Manufacture of semiconductor device | |
JP2563557B2 (en) | Voltage nonlinear resistor and manufacturing method thereof | |
JPH01158754A (en) | Manufacture of superconductor element | |
JP2559413B2 (en) | Oxide superconducting integrated circuit |