JPH0265202A - Superconducting ceramic circuit - Google Patents

Superconducting ceramic circuit

Info

Publication number
JPH0265202A
JPH0265202A JP63217013A JP21701388A JPH0265202A JP H0265202 A JPH0265202 A JP H0265202A JP 63217013 A JP63217013 A JP 63217013A JP 21701388 A JP21701388 A JP 21701388A JP H0265202 A JPH0265202 A JP H0265202A
Authority
JP
Japan
Prior art keywords
superconducting
current value
conductive line
protective region
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63217013A
Other languages
Japanese (ja)
Inventor
Atsushi Tanaka
厚志 田中
Nobuo Kamehara
亀原 伸男
Koichi Niwa
丹羽 紘一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63217013A priority Critical patent/JPH0265202A/en
Publication of JPH0265202A publication Critical patent/JPH0265202A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Thermistors And Varistors (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To prevent breakdown of a circuit element due to the excessive current applied to a ceramic circuit by a method wherein a protective region having the cross-sectional area smaller than that of other conductive line is provided on a part of the conductive line consisting of superconducting ceramic formed on a heat-resisting substrate, and the critical current value of said protective region is set smaller than that of other conductive line. CONSTITUTION:A protective region 2, the cross-sectional area of which is smaller than that of a conductive line 1, is provided on a part of the conductive line 1. If a protective region 2 of small cross-section is provided, the density of critical current, the superconducting state of which is converted into a normal conducting state, is determined by the material to be used in superconducting ceramics, and as a result, the conductive line of the protective region is formed by setting the steady-state current value 3, flowing to the protective region, which is smaller than the critical current value 4. When the current is increased by an abnormal phenomenon or transient phenomena and it exceeds the critical current value 4, the superconducting state is broken, and a current value 5 decreases to the value approximate to zero, because an oxide superconducting body maintains a high resistivity of several OMEGA/cm in a normal conductive state.

Description

【発明の詳細な説明】 〔概要〕 超伝導セラミック回路に関し、 過大電流による回路素子の破壊を防止することを目的と
し、 耐熱性基板の上に形成した超伝導セラミックスよりなる
導体線路の一部に断面積が導体線路よりも小さな保護領
域を設け、この保護領域の臨界電流値を他の導体線路よ
りも小さく設定して超伝導〔産業上の利用分野〕 本発明は超伝導回路の構成に関する。
[Detailed Description of the Invention] [Summary] Regarding superconducting ceramic circuits, for the purpose of preventing destruction of circuit elements due to excessive current, a part of a conductor line made of superconducting ceramics formed on a heat-resistant substrate is used. The present invention relates to the configuration of a superconducting circuit by providing a protected area having a smaller cross-sectional area than a conductive line and setting the critical current value of this protected area smaller than that of other conductive lines to provide superconductivity.

アルミニウム(All)、チタン(Ti)など22の元
素およびチタン酸リチウム(LIT103)l炭化モリ
ブデン(MoC)など複数の無機化合物が超伝導現象を
示すことは知られていたが、超伝導転移温度(Tc)は
金属元素については高くてもIOKに止まり、また無機
化合物についてもゲルマリラム化ニオブ(Nb:+Ge
)の23.5Kが最高であって、15に以上の材料は数
えるほどしか存在しなかった。
It was known that 22 elements such as aluminum (All) and titanium (Ti) and multiple inorganic compounds such as lithium titanate (LIT103) and molybdenum carbide (MoC) exhibit superconductivity, but the superconducting transition temperature ( Tc) is at most IOK for metal elements, and for inorganic compounds it is niobium germarylamide (Nb: +Ge).
) was the highest at 23.5K, and there were only a few materials with a temperature of 15K or higher.

然し、1986年4月に18Mチューリッヒ研究所のB
ednorz とMullerによってランタン・バリ
ウム・銅・酸素(La−Ba−Cu−0)系の酸化物セ
ラミックスについて高温超伝導現象が発見されて以来、
イツトリウム・バリウム・銅・酸素(Y−Ba−CuO
)系およびYを含む希土類元素−Ba−Cu−0)系に
ついてTcが約90Kを示す超伝導セラミックスが発見
されるに到った。
However, in April 1986, B.
Since the discovery of high-temperature superconductivity in lanthanum-barium-copper-oxygen (La-Ba-Cu-0) based oxide ceramics by Ednorz and Muller,
Yttrium, barium, copper, oxygen (Y-Ba-CuO
) system and rare earth element-Ba-Cu-0) system containing Y, superconducting ceramics exhibiting Tc of about 90K have been discovered.

その後、Baをストロンチウム(Sr)やカルシウム(
Ca)に置換したり、Laをビスマス(旧)やタリウム
(T A )に置換したB1−3r−Ca−Cu−0系
(Tc =105K)やT j! −Ba−Ca−Cu
−0系(Tc =118 K)などが発表されている。
After that, Ba is replaced with strontium (Sr) and calcium (
B1-3r-Ca-Cu-0 system (Tc = 105K) in which La is replaced with bismuth (old) or thallium (TA), or Tj! -Ba-Ca-Cu
-0 series (Tc = 118 K) etc. have been announced.

さて、大量の情報を高速に処理する情報処理装置、特に
高速化を必要とする電算機部門には高電子移動度トラン
ジスタ(略称HEMT)や共鳴トンネリング・ホットエ
レクトロン・トランジスタ(略称RHET)などガリウ
ム・砒素(GaAs)からなる半導体素子が導入されつ
\あるが、これらの半導体素子は液体窒素(N2)の温
度で特性を発揮することから、か\る半導体素子を搭載
する電子回路を超伝導セラミックスで形成すれば極めて
効果的である。
Now, information processing equipment that processes large amounts of information at high speed, especially in the computer sector that requires high speed, uses gallium-based devices such as high electron mobility transistors (abbreviated as HEMT) and resonant tunneling hot electron transistors (abbreviated as RHET). Semiconductor elements made of arsenic (GaAs) are being introduced, but since these semiconductor elements exhibit their characteristics at the temperature of liquid nitrogen (N2), electronic circuits equipped with such semiconductor elements are being manufactured using superconducting ceramics. It is extremely effective if formed with

本発明はこれら超伝導セラミックスよりなる導体線路の
構成に関するものである。
The present invention relates to the structure of conductor lines made of these superconducting ceramics.

〔従来の技術〕[Conventional technology]

従来の電子回路の形成法としては薄膜法と厚膜法とがあ
り、共に配線基板としては耐熱性が優れると共に誘電率
が低いアルミナ(α−Aβ203)などのセラミックス
を用い、薄膜法の場合はこの上に電子ビーム蒸着やスパ
ッタなどの方法により金(Au)やタンクル(Ta)な
どの薄膜を形成し、写真蝕刻技術(フォトリソグラフィ
)を用いて選択エツチングを行い、微細パターンからな
る導体線路を形成している。
Conventional methods for forming electronic circuits include the thin film method and the thick film method, both of which use ceramics such as alumina (α-Aβ203), which has excellent heat resistance and a low dielectric constant, as the wiring substrate. A thin film of gold (Au) or tankle (Ta) is formed on this by methods such as electron beam evaporation or sputtering, and selective etching is performed using photolithography to form a conductor line consisting of a fine pattern. is forming.

また、厚膜法の場合はスクリーン印刷法によりへ〇ペー
ストや企艮・パラジウム(八g−Pd)ペーストなどの
導体ペーストからなるパターンを作り、これを焼成する
ことにより導体線路を形成している。
In addition, in the case of the thick film method, a pattern made of a conductor paste such as He〇 paste or palladium (8g-Pd) paste is created using the screen printing method, and the conductor line is formed by firing this. .

これと同様に超伝導セラミックスを導電拐料として導体
線路を形成することが試みられている。
Similarly, attempts have been made to form conductor lines using superconducting ceramics as a conductive material.

すなわち、電子ビーム蒸着法やスパッタ法などの物理的
な方法を用いて電子回路をパターン形成するか、或いは
化学気相成長法(略称CVD法)などのような化学的な
方法を用いて超伝導セラミックスよりなる薄膜を形成し
、写真蝕刻技術により電子回路をパターン形成すること
も研究されている。
In other words, an electronic circuit is patterned using a physical method such as electron beam evaporation or sputtering, or a superconductor is formed using a chemical method such as chemical vapor deposition (CVD). Research is also being conducted into forming thin films made of ceramics and patterning electronic circuits using photolithographic techniques.

また、超伝導セラミックスを微粉砕し、これを原料とし
て導体ペーストを作り、スクリーン印刷法により電子回
路を形成することも研究されている。
Research is also being carried out on pulverizing superconducting ceramics, making conductive paste using this as a raw material, and forming electronic circuits using screen printing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

薄膜法や厚膜法など各種の方法を用いてアルミナ基板な
どの耐熱性基板上に超伝導セラミックスよりなる電子回
路を形成することが行われているが、この場合の問題は
一般の電子回路と同様にスイッチ叶時などに生ずる過渡
的な過大電流や共振などの回路異常が生じた場合に生ず
る過大電流により回路素子が破壊することである。
Electronic circuits made of superconducting ceramics are being formed on heat-resistant substrates such as alumina substrates using various methods such as thin-film and thick-film methods, but the problem in this case is that they are different from those of general electronic circuits. Similarly, circuit elements may be destroyed by excessive current that occurs when a circuit abnormality such as transient excessive current or resonance occurs when a switch is closed.

この対策として、通常の電子回路においては回路にアバ
ランシェダイオードを加えたり、ヒユーズやブレーカ−
など外付するなどの保護手段が講じられているが、超伝
導回路にはこれに適した保護回路が見当たらない。
As a countermeasure for this, in ordinary electronic circuits, avalanche diodes are added to the circuit, fuses and breakers are
Although protection measures such as external protection have been taken, no suitable protection circuit has been found for superconducting circuits.

そこで、この保護回路を実用化することが課題である。Therefore, the challenge is to put this protection circuit into practical use.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題は耐熱性基板の上に形成した超伝導セラミッ
クスよりなる導体線路の一部に断面積がこの導体線路よ
りも小さな保護領域を設け、この保護領域の臨界電流値
を導体線路よりも小さく設定することにより解決するこ
とができる。
The above problem is solved by providing a protected area with a smaller cross-sectional area than the conductor line in a part of the conductor line made of superconducting ceramics formed on a heat-resistant substrate, and making the critical current value of this protected area smaller than that of the conductor line. This can be resolved by setting:

〔作用〕[Effect]

本発明は導体線路を流れる電流が臨界電流密度を越える
場合は電流により発生する磁界により超伝導状態が破れ
る現象を利用するものである。
The present invention utilizes the phenomenon that when the current flowing through a conductor line exceeds a critical current density, the superconducting state is broken by the magnetic field generated by the current.

すなわち、第1図に示すように導体線路1の一部に断面
積が導体線路1よりも小さな保護領域2を設ける。
That is, as shown in FIG. 1, a protection area 2 having a smaller cross-sectional area than the conductor line 1 is provided in a part of the conductor line 1.

こ−で、保it領域2は同図に示すように線路幅を狭く
してもよく、また厚さを薄く形成してもよいが、マスク
蒸着によりパターンを作る場合にも写真蝕刻法を使用す
る場合にも前者のほうが製造プロセスが簡単である。
Here, as shown in the figure, the holding area 2 may have a narrow line width or may be formed thinly, but photo-etching may also be used to form a pattern by mask vapor deposition. In this case, the manufacturing process is simpler in the former case.

さて、このように断面積が小さい保護領域2を設りると
超伝導セラミックスにおいては使用材料によって超伝導
状態が常伝導状態になるFB7.界電流密度が決まって
いるので、この値を基にして保護動作が始まるに必要な
断面積を求め、保護領域2のパターンを設計すればよい
Now, when the protective region 2 with a small cross-sectional area is provided in this way, in superconducting ceramics, depending on the material used, the superconducting state changes to the normal conducting state FB7. Since the field current density is determined, the cross-sectional area necessary for the protection operation to start can be determined based on this value, and the pattern of the protection region 2 can be designed.

第2図は保護領域の動作を示す模式図であって、横軸に
は経過時間(1)を、また縦軸には保護領域を流れる電
流値(1)を示している。
FIG. 2 is a schematic diagram showing the operation of the protected area, in which the horizontal axis shows the elapsed time (1), and the vertical axis shows the current value (1) flowing through the protected area.

ずなわら、保護領域に流れる定常電流値3を臨界電流値
4よりも少なく (図の場合は40%)に設定して保護
領域の導体線路を形成している。
Of course, the steady current value 3 flowing through the protected area is set to be less than the critical current value 4 (40% in the case of the figure) to form the conductor line in the protected area.

そして、異常現象あるいは過渡現象によって電流が増加
して臨界電流値4を越えると超伝導状態は破れるが、酸
化物超伝導体は常伝導状態で数mΩ・cmと高い抵抗率
を有するため電流値5は0に近い値にまで低下する。
When the current increases due to abnormal or transient phenomena and exceeds the critical current value of 4, the superconducting state is broken, but since oxide superconductors have a high resistivity of several mΩ cm in the normal conducting state, the current value 5 drops to a value close to 0.

次に、常伝導状態になった際に保護領域の導体線路に発
生したジュール熱が冷め、再び超伝導状態となると再び
保護領域に流れる電流は定常電流イ直3に戻る。
Next, the Joule heat generated in the conductor line in the protected area when it becomes a normal conductive state cools down, and when it becomes a superconducting state again, the current flowing through the protected area returns to the steady current.

このように本発明によればたとえ導体線路に大電流が流
れる場合であっても自動制御が行われることになる。
As described above, according to the present invention, automatic control is performed even when a large current flows through the conductor line.

〔実施例〕〔Example〕

イツトリウム(Y)・バリウム(Ba)  ・銅(Cu
)・酸素(○)系超伝導セラミックス(YBa2Cu3
0ヮ−4,但しtJ <0.5)を主成分とする導体ペ
ースI・を用い、スクリーン印刷法によりアルミナ(α
−An zo3)基板の上に第1図に示すような保護領
域2を含む導体線路1をパターン形成した。
Yttrium (Y), barium (Ba), copper (Cu
)・Oxygen (○)-based superconducting ceramics (YBa2Cu3
Alumina (α
-An zo3) A conductor line 1 including a protective region 2 as shown in FIG. 1 was patterned on the substrate.

こ\で、導体ベースI・はYBa2Cu3007−dの
組成の超伝導セラミックスを挿解器とボールミルを用い
て平均粒径が2〜3μmの微粒子とした後、有機溶剤と
バインダを加えて混練し、粘度が2000ボイズ(Ps
)のペーストとしたものである。
Here, the conductor base I is made by making superconducting ceramics having a composition of YBa2Cu3007-d into fine particles with an average particle size of 2 to 3 μm using an inserter and a ball mill, and then kneading them by adding an organic solvent and a binder. Viscosity is 2000 Boise (Ps
) is made into a paste.

そして、アルゴン(Ar)と02の混合雰囲気中で10
00°Cで30分間焼成した後、同し雰囲気中で900
°Cで1時間アニールして超伝導導体線路を形成したも
のである。
Then, in a mixed atmosphere of argon (Ar) and 02
After baking at 00°C for 30 minutes, it was heated to 900°C in the same atmosphere.
A superconducting conductor line was formed by annealing at °C for 1 hour.

こ\で、通常動作時の電流がIAであることから、パタ
ーン形成した線路の厚さは50μmとし、第1図におい
て、導体線路1の幅は200μm、保s!領域2の幅は
50μmとし、また保護領域2の長さは500 μmと
した。
Since the current during normal operation is IA, the thickness of the patterned line is 50 μm, and in FIG. 1, the width of the conductor line 1 is 200 μm. The width of region 2 was 50 μm, and the length of protected region 2 was 500 μm.

ごの理由は、YBa2Cu307−aのエビタキソヤル
成長膜についてC軸に垂直に電流を流した場合の臨界電
流密度として1.8 XIO’ A/ cm”の値が報
告されているが(Jpn、J、Appl、Phys、 
vol、26.1987)厚膜法で得られる薄膜につい
ては約I Xl05A/cm2である。
The reason for this is that a critical current density of 1.8 Appl, Phys.
vol. 26.1987) for thin films obtained by thick film methods, it is approximately I Xl05A/cm2.

そこで、この値から導体線路1の臨界電流を1OAとし
、保護領域2の臨界電流を2.5Aに決めた。
Therefore, based on these values, the critical current of the conductor line 1 was determined to be 1OA, and the critical current of the protected area 2 was determined to be 2.5A.

そして、導体線路に電流を流した場合、保護領域2に着
目すると、第2図に示すように、当初の1八より電流が
増加して2.5Aに達すると保護動作が開始し、電流値
ば0となった後、再びIAの定常値に戻った。
When a current is passed through the conductor line, focusing on protection area 2, as shown in Figure 2, when the current increases from the initial 18 to 2.5A, the protection operation starts, and the current value After reaching 0, the IA returned to its steady value.

〔発明の効果〕〔Effect of the invention〕

超伝導線路自体に保護領域を設LJで安全動作をさせる
本発明の実施により過大電流の抑制と自動復帰の機能を
もたせることができ、本発明の実施により超伝導回路の
信頼性を向上することが可能になる。
By implementing the present invention, which provides a protection area in the superconducting line itself and allows safe operation at LJ, it is possible to provide functions of suppressing excessive current and automatic recovery, and by implementing the present invention, the reliability of the superconducting circuit can be improved. becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る保護回路の一例を示す平面図、 第2図は本発明に係る保護領域の動作を示す模式図、 である。 図において、 1は導体線路、       2は保護領域、3は定常
電流値、     4は臨界電流値、である。
FIG. 1 is a plan view showing an example of a protection circuit according to the invention, and FIG. 2 is a schematic diagram showing the operation of a protection area according to the invention. In the figure, 1 is a conductor line, 2 is a protected area, 3 is a steady current value, and 4 is a critical current value.

Claims (1)

【特許請求の範囲】[Claims]  耐熱性基板の上に形成した超伝導セラミックスよりな
る導体線路の一部に断面積が該導体線路よりも小さな保
護領域を設け、該保護領域の臨界電流値を導体線路より
も小さく設定することを特徴とする超伝導セラミック回
路。
A protective area having a cross-sectional area smaller than that of the conductor line is provided in a part of a conductor line made of superconducting ceramics formed on a heat-resistant substrate, and the critical current value of the protected area is set to be smaller than that of the conductor line. Features a superconducting ceramic circuit.
JP63217013A 1988-08-31 1988-08-31 Superconducting ceramic circuit Pending JPH0265202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63217013A JPH0265202A (en) 1988-08-31 1988-08-31 Superconducting ceramic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63217013A JPH0265202A (en) 1988-08-31 1988-08-31 Superconducting ceramic circuit

Publications (1)

Publication Number Publication Date
JPH0265202A true JPH0265202A (en) 1990-03-05

Family

ID=16697460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63217013A Pending JPH0265202A (en) 1988-08-31 1988-08-31 Superconducting ceramic circuit

Country Status (1)

Country Link
JP (1) JPH0265202A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016164907A (en) * 2015-03-06 2016-09-08 国立研究開発法人産業技術総合研究所 Method of generating inter-band phase difference soliton

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016164907A (en) * 2015-03-06 2016-09-08 国立研究開発法人産業技術総合研究所 Method of generating inter-band phase difference soliton

Similar Documents

Publication Publication Date Title
JPH0265202A (en) Superconducting ceramic circuit
US6242387B1 (en) High temperature superconductor/insulator composite thin films with Josephson coupled grains
Gerber et al. Nonmonotonic resistivity transitions in granular superconducting ceramics
JPH06132571A (en) Current limiting element and current limiting device
JPS63258082A (en) Superconductive material
JPS63283085A (en) Superconducting device
JP2641451B2 (en) Oxide superconducting integrated circuit
JPH04275470A (en) Product composed of superconductor/insulator structure and manufacture of said product
EP0405677B1 (en) Superconducting electronic thin-layer device and method for fabricating the same
JPH03226228A (en) Current limit resistance device
JP2678232B2 (en) Superconductor device
JPS63258083A (en) Manufacture of superconductive material
JP2544390B2 (en) Oxide superconducting integrated circuit
JPH0444280A (en) Manufacture of superconducting wiring
JP2747557B2 (en) Superconductor device
JP2670554B2 (en) Method for producing oxide superconducting material
JP2692131B2 (en) Superconducting ceramic line
JPH01125957A (en) Superconductor device
JPS63245975A (en) Superconductor device
JP2654567B2 (en) Operation method of superconducting element
CA2005224A1 (en) Superconducting thick films for hybrid circuitry applications
JPS63299364A (en) Manufacture of semiconductor device
JP2563557B2 (en) Voltage nonlinear resistor and manufacturing method thereof
JPH01158754A (en) Manufacture of superconductor element
JP2559413B2 (en) Oxide superconducting integrated circuit