JP2559413B2 - Oxide superconducting integrated circuit - Google Patents

Oxide superconducting integrated circuit

Info

Publication number
JP2559413B2
JP2559413B2 JP62165323A JP16532387A JP2559413B2 JP 2559413 B2 JP2559413 B2 JP 2559413B2 JP 62165323 A JP62165323 A JP 62165323A JP 16532387 A JP16532387 A JP 16532387A JP 2559413 B2 JP2559413 B2 JP 2559413B2
Authority
JP
Japan
Prior art keywords
film
oxide superconducting
thin film
zrc
interlayer insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62165323A
Other languages
Japanese (ja)
Other versions
JPH01272170A (en
Inventor
幹夫 平野
壽一 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62165323A priority Critical patent/JP2559413B2/en
Publication of JPH01272170A publication Critical patent/JPH01272170A/en
Application granted granted Critical
Publication of JP2559413B2 publication Critical patent/JP2559413B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、酸化物高温超電導薄膜集積回路に係り、電
極膜の電気的絶縁、機械的保護及び腐食・反応防止を目
的とした絶縁膜に関する。
Description: TECHNICAL FIELD The present invention relates to an oxide high temperature superconducting thin film integrated circuit, and relates to an insulating film for the purpose of electrical insulation, mechanical protection and corrosion / reaction prevention of an electrode film. .

[従来の技術] トンネル型ジョセフソン接合素子は、2つの超電導薄
膜の間に極めて薄いトンネル障害層を挾んだサンドイッ
チ構造で、極低温(4.2K)における超電導トンネル現象
を応用したスイッチング素子である。この素子は、従来
の半導体素子に比べてスイッチング速度は約1桁早いと
同時に、消費電力は約3桁小さいという特長があり、将
来の超高速計算機用の理論演算素子、記憶素子として期
待されている。それらの素子を構成するための超電導薄
膜には、おもにPb−In−Au合金,Pb−Bi合金,Nb及びNbN
などが用いられている。また抵抗薄膜にはAz−Zn合金,M
o,あるいはMoNxなどが用いられている。さらに上記超電
導薄膜,低抗体薄膜を相互電気的に絶縁するための層間
絶縁膜にはSiO膜、又はSiO2膜が用いられている。
[Prior Art] A tunnel-type Josephson junction element is a switching element that applies a superconducting tunnel phenomenon at a very low temperature (4.2K) with a sandwich structure in which an extremely thin tunnel obstacle layer is sandwiched between two superconducting thin films. . Compared with conventional semiconductor devices, this device has a switching speed of about an order of magnitude and power consumption of about three orders of magnitude, and is expected as a theoretical calculation element and storage element for future ultra-high speed computers. There is. The superconducting thin film for forming those devices is mainly composed of Pb-In-Au alloy, Pb-Bi alloy, Nb and NbN.
Are used. Az-Zn alloy, M
o, or MoNx is used. Further, an SiO film or a SiO 2 film is used as an interlayer insulating film for electrically insulating the superconducting thin film and the low antibody thin film from each other.

ところで、ジョセフソン接合素子は、従来液体ヘリウ
ムをを冷媒として極低温冷却(〜4.2K)しながら所望の
特性を出現させていた。しかし最近希土類元素と銅の複
合酸化物からなる層状ペロブスカイト類似構造が、従来
の金属系超電導材料に比べ著しく高い超電導臨界温度を
示すことがツァイツシュリフトフェルフィジィーク,ビ
ー,コンデンストマター,64号(1986年)189頁(Zeitsc
hrift fur Physik,B−Condensed Matter,64(1986)18
9.)において論じられている。その後の研究によってLa
−Sr−Cu−O系材料ではおよそ30〜40Kで、またY−Ba
−Cu−O系材料では88Kで超電導性を示し抵抗ゼロを示
すことが明らかになった。それらの酸化物超電導材料は
酸化物ないし炭酸塩を用い、これを混合後900℃前後の
高温で反応させ、さらに混合粉砕の後900℃〜1000℃で
熱処理することにより作製することができる。また上述
の酸化物超電導材料を薄膜にするには、高温熱処理によ
って作製した焼結体をターゲットとしたスパッタリング
成膜法が用いられる。このようにして作製した薄膜を90
0℃前後の高温酸素雰囲気中で熱処理することにより、
前述した高臨界温度特性を示す膜が得られる。このよう
な酸化物超電導材料の出現によって、これまで不可能で
あった液体窒素冷媒を用いて動作するジョセフソン接合
素子の作製が可能になった。
By the way, the Josephson junction device has conventionally exhibited desired characteristics while being cryogenically cooled (up to 4.2 K) using liquid helium as a coolant. Recently, however, the layered perovskite-like structure composed of a complex oxide of rare earth elements and copper exhibits a significantly higher superconducting critical temperature than conventional metal-based superconducting materials. (1986) p. 189 (Zeitsc
hrift fur Physik, B-Condensed Matter, 64 (1986) 18
Discussed in 9.). Later research by La
-Sr-Cu-O-based material is about 30-40K, and Y-Ba
It was revealed that the -Cu-O-based material exhibits superconductivity at 88K and zero resistance. These oxide superconducting materials may be prepared by using oxides or carbonates, reacting them at a high temperature of about 900 ° C. after mixing, further mixing and pulverizing, and then heat-treating at 900 ° C. to 1000 ° C. In order to make the above-mentioned oxide superconducting material into a thin film, a sputtering film forming method using a sintered body produced by a high-temperature heat treatment as a target is used. The thin film prepared in this way
By heat treatment in a high temperature oxygen atmosphere around 0 ° C,
A film having the above-mentioned high critical temperature characteristics can be obtained. With the advent of such oxide superconducting materials, it has become possible to fabricate Josephson junction devices that operate using liquid nitrogen refrigerant, which has been impossible until now.

以上のような方法によって形成される酸化物超電導ジ
ョセフソン接合素子の主要素子として、論理演算回路、
記憶回路の集積回路を作製する場合電極膜をはじめ、抵
抗、インダクタ、キャパシタ等薄膜部品を同一チップ内
に形成する必要があり、それらは一般に積層した構造で
実現している。そのため薄膜部品を相互に電気的に隔離
する必要があり、それを目的とした層間絶縁膜を用いて
いる。通常も導体では、そのような層間絶縁膜としてSi
O2,SiO,Si3N4,ポリSi又はアモルファスSiAl2O3膜等が用
いられている。しかしそれらの膜を前述の酸化物超電導
電極薄膜の絶縁膜として用いた場合、前述した酸化物超
電導薄膜の高温、酸素中熱処理によって前記酸化物超電
導薄膜と絶縁膜中のSi元素と反応して超電導特性、例え
ば超電導臨界温度Tcの低下もしくは超電導特性の消失な
どが生じる。一方酸化物超電導薄膜は900℃前後の熱処
理を行うと、薄膜の表面からCu元素が析出し、組成のず
れが生じること、さらには析出したCu元素が酸化してCu
2Oが形成されP型の半導体的な性質を示すようになる。
したがってCuの析出を完全に抑制することが超電導薄膜
の特性劣化を防ぐうえで特に重要になる。つまり前述の
熱処理に対しても超電導電極材料の特性に影響を及ぶこ
とがないようにすることが必須条件である。
As a main element of the oxide superconducting Josephson junction element formed by the above method, a logical operation circuit,
When manufacturing an integrated circuit of a memory circuit, it is necessary to form electrode films, thin film components such as resistors, inductors, and capacitors in the same chip, and these are generally realized by a laminated structure. Therefore, it is necessary to electrically isolate the thin film components from each other, and an interlayer insulating film is used for that purpose. Usually, in conductors, Si is used as such an interlayer insulating film.
O 2 , SiO, Si 3 N 4 , poly-Si or amorphous SiAl 2 O 3 film or the like is used. However, when these films are used as the insulating film of the above-mentioned oxide superconducting ultra-thin film, the oxide superconducting thin film reacts with the Si element in the oxide superconducting thin film and the insulating film by the heat treatment in the oxygen and superconducting thin film. For example, a decrease in the superconducting critical temperature Tc or the disappearance of the superconducting property occurs. On the other hand, when an oxide superconducting thin film is subjected to a heat treatment at about 900 ° C, Cu element is deposited from the surface of the thin film, compositional deviation occurs, and further, the deposited Cu element is oxidized and Cu
2 O is formed and it exhibits a P-type semiconductor property.
Therefore, it is especially important to completely suppress the precipitation of Cu in order to prevent the characteristic deterioration of the superconducting thin film. In other words, it is an essential condition that the characteristics of the superconducting electrode material are not affected by the above heat treatment.

さらに前記YBa2Cu3O7をはじめとするYBa系ペロブスカ
イト構造酸化物超電導材、ならびにSrBa2Cu3O7をはじめ
とするSrBa系ペロブスカイト構造酸化物超電導材はいず
れも水分と反応するため、液体冷媒を用いて冷却を繰返
し行うと大気中の水分を露結させて前記超電導体表面層
より水分が浸み込み、やがて超電導特性が変化し、Tcの
低下ないしは超電導特性が消失するという問題がある。
したがってそのような特性の終時変化、あるいは劣化を
防ぐため、酸化物超電導体が水分と反応することがない
ように保護膜を設け、耐湿性を向上させることが極めて
重要である。
Furthermore, since YBa 2 Cu 3 O 7 and other YBa-based perovskite structure oxide superconducting material, and SrBa 2 Cu 3 O 7 and other SrBa-based perovskite structure oxide superconducting material both react with moisture, When cooling is repeatedly performed using a refrigerant, moisture in the atmosphere is condensed to infiltrate the moisture from the superconductor surface layer, and eventually superconducting properties change, and there is a problem that Tc decreases or superconducting properties disappear. .
Therefore, in order to prevent such a change or deterioration of the properties at the end, it is extremely important to provide a protective film so that the oxide superconductor does not react with moisture and improve the moisture resistance.

[発明が解決しようとする問題点] このように従来技術は酸化物超電導薄膜と層間絶縁物
との反応及び耐水性については配慮されておらず高温酸
化物超電導薄膜デバイスの開発に問題があった。
[Problems to be Solved by the Invention] As described above, the prior art does not consider the reaction between the oxide superconducting thin film and the interlayer insulator and the water resistance, and has a problem in the development of the high temperature oxide superconducting thin film device. .

本発明の目的は高温・熱処理に対しても安定でしかも
耐湿性にも優れた絶縁膜(保護膜も含む)を有した酸化
物超電導集積回路を提供することにある。
An object of the present invention is to provide an oxide superconducting integrated circuit having an insulating film (including a protective film) which is stable to high temperature and heat treatment and has excellent moisture resistance.

[問題点を解決するための手段] 上記目的は、ZrCをはじめZrN,およびZrB2を層間絶縁
膜ならびに保護膜として用いることにより達成される。
[Means for Solving Problems] The above object is achieved by using ZrC, ZrN, and ZrB 2 as an interlayer insulating film and a protective film.

[作用] ZrCは融点が高く絶縁性に優れた誘電体結晶の一種で
あり、低温では単斜晶系で高温では正方晶系の結晶構造
をとり、高温酸化物超電導体物質の代表的なYBa2Cu3O7
と結晶格子のa軸,b軸の格子定数がほぼ等しいため、Y,
Ca,Mgを数%含めて安定化を図った、ZrCを基板としてYB
a2Cu3O7を薄膜状に堆積した場合C軸方向の強い薄膜が
得られる。このようにZrCとYBa2Cu3O7との間では相互に
結晶成長の整合性が極めて良く薄膜の積層構造を形成す
るのに適している。一方前述とは逆にYBa2Cu3O7膜上にZ
rC膜を形成した場合はYBa2Cu3O7膜の層間絶縁膜として
の役割を持たせることができる。つまり前述した高温、
酸素雰囲気中における熱処理に対しても相互拡散が生じ
ることがなく、熱的に安定な積層膜を構成することがで
き、ZrC膜は酸化物超電導薄膜を用いた集積回路素子の
層間絶縁膜薄膜として、また水分に対する保護膜として
十分に用いることが可能である。またZrを主成分とする
窒化物、硼化物もZrCとほぼ同様の効果がある。[実施
例] 以下、本発明の一実施例を第1図により説明する。Sr
TiO3絶縁性基板1の主表面上にY−Cu−OおよびBa−Cu
−O材からなる2枚のスパッタターゲットとするマグネ
トロンスパッタ法により、YBa2Cu3O7膜を約1μmの厚
さに堆積する。その際放電ガスの雰囲気は、Ar又はAr+
10%O2低圧力中であればどちらか雰囲気を選んでも良
い。なお基板材料には前述のSrTiO3結晶の他にMgO,YSZ
のいずれの結晶を用いても良い。基板温度は常温であ
る。その後酸素加圧雰囲気中で920℃−2hrの熱処理を行
いYBa2Cu3O7膜を結晶化させる。
[Function] ZrC is a type of dielectric crystal with a high melting point and excellent in insulating property. It has a monoclinic crystal structure at low temperature and a tetragonal crystal structure at high temperature, and is a typical YBa of high temperature oxide superconductor material. 2 Cu 3 O 7
And the lattice constants of the a and b axes of the crystal lattice are almost equal,
YB using ZrC as a substrate, which is stabilized by including Ca and Mg in several%.
When a 2 Cu 3 O 7 is deposited in a thin film form, a strong thin film in the C-axis direction is obtained. As described above, ZrC and YBa 2 Cu 3 O 7 have extremely good matching of crystal growth with each other and are suitable for forming a thin film laminated structure. On the other hand, contrary to the above, Z on the YBa 2 Cu 3 O 7 film is
When the rC film is formed, the YBa 2 Cu 3 O 7 film can serve as an interlayer insulating film. That is, the high temperature mentioned above,
Mutual diffusion does not occur even in heat treatment in an oxygen atmosphere, and a thermally stable laminated film can be formed.The ZrC film is used as an interlayer insulating film thin film of an integrated circuit element using an oxide superconducting thin film. Further, it can be sufficiently used as a protective film against moisture. Further, nitrides and borides containing Zr as a main component have almost the same effect as ZrC. [Embodiment] An embodiment of the present invention will be described below with reference to FIG. Sr
Y-Cu-O and Ba-Cu are formed on the main surface of the TiO 3 insulating substrate 1.
A YBa 2 Cu 3 O 7 film is deposited to a thickness of about 1 μm by a magnetron sputtering method using two sputtering targets made of —O material. At that time, the atmosphere of the discharge gas is Ar or Ar +
Either atmosphere may be selected as long as it is under 10% O 2 low pressure. In addition to the above-mentioned SrTiO 3 crystal, MgO and YSZ were used as the substrate material.
Any of the crystals may be used. The substrate temperature is normal temperature. Then, the YBa 2 Cu 3 O 7 film is crystallized by performing heat treatment at 920 ° C. for 2 hours in an oxygen pressure atmosphere.

つぎにYBa2Cu3O7膜にAZレジストを用いたフォトエッ
チングプロセスの露光・現象処理により所望のレジスト
パターンを形成する。ついで前記レジストパターンをマ
スクにして5%HNO3水溶液(容量%)でYBa2Cu3O7膜を
エッチングして所望のパターン形状とし、下部電極膜2
を形成する。なお本実施例ではYBa2Cu3O7膜のパターン
形成は前記化学エッチング法のほかにAr等のイオン衝撃
によるドライエッチング法によっても良い。
Next, a desired resist pattern is formed on the YBa 2 Cu 3 O 7 film by exposure / phenomenon treatment in a photoetching process using an AZ resist. Then, using the resist pattern as a mask, the YBa 2 Cu 3 O 7 film was etched with a 5% HNO 3 aqueous solution (volume%) to form a desired pattern, and the lower electrode film 2 was formed.
To form. In this embodiment, the pattern formation of the YBa 2 Cu 3 O 7 film may be carried out by the dry etching method by ion bombardment of Ar or the like in addition to the chemical etching method.

つぎに前記下部電極膜2上に層間絶縁膜となるZrCを
堆積させる。ZrCの膜厚は1.8μmで、ZrC焼結体をスパ
ッタ・ターゲットに用いたマグネトロンスパッタ法によ
って所望の膜厚の絶縁膜を基板の主面上全面に形成す
る。堆積条件の一例は次のようである。Ar+10%O2混合
ガスを用い、ガスの圧力は10mTorr,放電電圧は1Kvで、
膜の堆積速度は約16nm/分である。ついでZrC膜を形成し
た基板1の主面上にAZレジストを塗布し、熱硬化処理を
行ったうえ所望のフォトマスクを用いて露光、現像処理
を行ってレジストパターンを形成する。ついでフレオン
ガスを主成分とするプラズマエッチング法によって前記
ZrCを所望のパターンに形成し、その後レジストを除去
し、層間絶縁層3を形成する。なおその際に下部電極膜
2の一部が露出するように開口部4を設ける。つぎにAr
のプラズマ放電法により層間絶縁膜の開口部より露出し
たYBa2Cu3O7膜表面をクリーニングする。クリーニング
条件はAr圧力10mTorr,rf放電電圧800V,放電時間は20分
である。その後引き続いて上部電極になるYBa2Cu3O7
をスパッタ法により形成する。堆積したYBa2Cu3O7膜の
厚さは3μmである。つぎに前記各々の薄膜を積層した
基板1を加圧酸素雰囲気中において900℃−2hrの熱処理
を行い、さらに100℃/hの速度で徐冷する。この熱処理
の際に前記基板1の主面が、焼結法で作製したYBa2Cu3O
7膜ペレット面に直接接触するように載置する。この熱
処理工程によって下部電極膜2表面に形成された高抵抗
層(組成のずれ、あるいは結晶の乱れなどによって絶縁
性の膜として存在)は、一部低抵抗層に変化し、残るわ
ずかな高抵抗層がトンネル障壁層としての役割を果たす
ようになる。以上の熱処理を行った後、YBa2Cu3O7膜を
フォトエッチングプロセスにより所望のパターンに加工
し、上部電極5を形成する。最後にZrC膜を基板全面に
被着し電極膜の保護膜6を形成する。
Next, ZrC to be an interlayer insulating film is deposited on the lower electrode film 2. The film thickness of ZrC is 1.8 μm, and an insulating film having a desired film thickness is formed on the entire main surface of the substrate by a magnetron sputtering method using a ZrC sintered body as a sputtering target. An example of deposition conditions is as follows. Using Ar + 10% O 2 mixed gas, gas pressure is 10 mTorr, discharge voltage is 1 Kv,
The deposition rate of the film is about 16 nm / min. Then, an AZ resist is applied on the main surface of the substrate 1 on which the ZrC film is formed, and heat-cured, and then exposed and developed using a desired photomask to form a resist pattern. Then, by the plasma etching method whose main component is freon gas,
ZrC is formed into a desired pattern, and then the resist is removed to form the interlayer insulating layer 3. At that time, the opening 4 is provided so that a part of the lower electrode film 2 is exposed. Next Ar
The surface of the YBa 2 Cu 3 O 7 film exposed from the opening of the interlayer insulating film is cleaned by the plasma discharge method of. The cleaning conditions are Ar pressure of 10 mTorr, rf discharge voltage of 800 V, and discharge time of 20 minutes. After that, subsequently, a YBa 2 Cu 3 O 7 film to be the upper electrode is formed by the sputtering method. The thickness of the deposited YBa 2 Cu 3 O 7 film is 3 μm. Next, the substrate 1 on which each thin film is laminated is heat-treated at 900 ° C. for 2 hours in a pressurized oxygen atmosphere, and then gradually cooled at a rate of 100 ° C./h. During this heat treatment, the main surface of the substrate 1 was made of YBa 2 Cu 3 O produced by a sintering method.
7 Place the membrane so that it directly contacts the pellet surface. The high resistance layer (existing as an insulating film due to composition shift or crystal disorder) formed on the surface of the lower electrode film 2 by this heat treatment step is partially changed to a low resistance layer, and a slight residual high resistance. The layer acts as a tunnel barrier layer. After performing the above heat treatment, the YBa 2 Cu 3 O 7 film is processed into a desired pattern by a photoetching process to form the upper electrode 5. Finally, a ZrC film is deposited on the entire surface of the substrate to form a protective film 6 for the electrode film.

以上の方法により、酸化物超電導薄膜を用いたジョセ
フソン集積回路を作製できる。このようにして作製され
た素子の代表的な接合特性は、Jc=3000A/cm2,Rj/Rnn=
8を示す。
By the above method, a Josephson integrated circuit using an oxide superconducting thin film can be manufactured. Typical junction characteristics of the element thus manufactured are Jc = 3000A / cm 2 , Rj / Rnn =
8 is shown.

前記実施例のほかに、トンネル障壁層の形成法として
層間絶縁膜3の開口部4によって露出したYBa2Cu3O7
部電極膜2の表面をAr減圧下のrf放電により清浄化する
とともに、下部電極表面に存在する高抵抗層を完全に除
去したのち、Alを約30Å堆積し、さらに熱酸化処理を行
い前記AlをAl2O3を改質したうえ、上部電極膜のYBa2Cu3
O7膜を形成し、トンネル接合を作製することができる。
この場合も前述の結果と同様の超電導特性が得られる。
In addition to the above-mentioned embodiment, as a method of forming a tunnel barrier layer, the surface of the YBa 2 Cu 3 O 7 lower electrode film 2 exposed by the opening 4 of the interlayer insulating film 3 is cleaned by rf discharge under reduced pressure of Ar, and After completely removing the high-resistivity layer existing on the surface of the lower electrode, Al was deposited to about 30Å, and further thermal oxidation treatment was performed to modify Al into Al 2 O 3 and YBa 2 Cu 3 of the upper electrode film was also formed.
A tunnel junction can be produced by forming an O 7 film.
In this case as well, the same superconducting characteristics as the above results can be obtained.

以上実施例では層絶縁膜としてZrC膜を用いた場合に
ついて述べたが、絶縁膜材料としてZrN膜およびZrB2
を各々用いた場合についても前記実施例と同様の結果が
得られる。また絶縁膜の形成法としてスパッタ成膜法に
ついて述べたが、化学気相成長法(CVD法)によって良
い。
In the above examples, the case where the ZrC film is used as the layer insulating film has been described, but the same results as in the above examples can be obtained when the ZrN film and the ZrB 2 film are used as the insulating film materials. Although the sputtering film formation method has been described as a method for forming the insulating film, a chemical vapor deposition method (CVD method) may be used.

さらに,ZrC,ZrN,ZrB2のいずれか2つ以上を含む薄膜
を絶縁膜として用いた場合についても前記実施例の場合
と同様の結果が得られる。
Further, when the thin film containing any two or more of ZrC, ZrN, and ZrB 2 is used as the insulating film, the same result as in the case of the above embodiment can be obtained.

[発明の効果] 以上述べたように本発明によれば、,ZrC,ZrN,あるい
はZrB2の薄膜を酸化物超電導薄膜のための層間絶縁膜あ
るいは保護膜として用いることにより、従来問題になっ
ていた高温、酸素雰囲気中の熱処理(たとえば920℃−2
hr O2ガス中)を行った後の超電導特性の劣化、あるい
は消減など不良は発生せず、また液体窒素冷媒中浸漬の
繰返しによる水分の侵入も防ぐことができ、酸化物超電
導電極膜の腐食による変化を完全に防止することができ
る。
[Effects of the Invention] As described above, according to the present invention, the use of a thin film of ZrC, ZrN, or ZrB 2 as an interlayer insulating film or a protective film for an oxide superconducting thin film causes a conventional problem. Heat treatment at high temperature in an oxygen atmosphere (for example, 920 ° C-2
No deterioration such as deterioration or loss of superconducting properties after the treatment (in hr O 2 gas), and prevention of moisture intrusion by repeated immersion in liquid nitrogen refrigerant, corrosion of oxide superconducting electrode film It is possible to completely prevent the change due to.

以上のように本発明により素子の安定性は著しく向上
する。
As described above, the stability of the device is remarkably improved by the present invention.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の構成を示す断面図である。 1……基板、2……下部電極膜、3……層間絶縁膜、4
……開口部、5……上部電極膜、6……保護膜。
FIG. 1 is a sectional view showing the structure of an embodiment of the present invention. 1 ... Substrate, 2 ... Lower electrode film, 3 ... Interlayer insulating film, 4
…… Aperture, 5 …… Upper electrode film, 6 …… Protective film.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化物超電導体薄膜を積層して形成したジ
ョセフソン接合を主要回路素子とし、上記回路を構成す
る薄膜部品相互を電気的に絶縁するための層間絶縁膜を
構成してなる超電導集積回路において、ZrC膜、ZrN膜、
ZrB2膜のうちいずれか一つを保護膜を含む層間絶縁膜に
用いたことを特徴とする酸化物超電導集積回路。
1. A superconducting device comprising a Josephson junction formed by laminating oxide superconductor thin films as a main circuit element, and forming an interlayer insulating film for electrically insulating the thin film components constituting the circuit from each other. In integrated circuits, ZrC film, ZrN film,
An oxide superconducting integrated circuit, characterized in that one of the ZrB 2 films is used as an interlayer insulating film including a protective film.
【請求項2】特許請求の範囲第1項において、ZrC膜、Z
rN膜およびZrB2膜のうちいずれか2つ以上を含む薄膜を
保護膜を含む層間絶縁膜として用いたことを特徴とする
酸化物超電導集積回路。
2. The ZrC film, Z according to claim 1
An oxide superconducting integrated circuit characterized in that a thin film containing at least two of an rN film and a ZrB 2 film is used as an interlayer insulating film including a protective film.
JP62165323A 1987-07-03 1987-07-03 Oxide superconducting integrated circuit Expired - Lifetime JP2559413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62165323A JP2559413B2 (en) 1987-07-03 1987-07-03 Oxide superconducting integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62165323A JP2559413B2 (en) 1987-07-03 1987-07-03 Oxide superconducting integrated circuit

Publications (2)

Publication Number Publication Date
JPH01272170A JPH01272170A (en) 1989-10-31
JP2559413B2 true JP2559413B2 (en) 1996-12-04

Family

ID=15810145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62165323A Expired - Lifetime JP2559413B2 (en) 1987-07-03 1987-07-03 Oxide superconducting integrated circuit

Country Status (1)

Country Link
JP (1) JP2559413B2 (en)

Also Published As

Publication number Publication date
JPH01272170A (en) 1989-10-31

Similar Documents

Publication Publication Date Title
US4316785A (en) Oxide superconductor Josephson junction and fabrication method therefor
JP2907832B2 (en) Superconducting device and manufacturing method thereof
US8055318B1 (en) Superconducting integrated circuit technology using iron-arsenic compounds
US5215960A (en) Method for manufacturing oxide superconducting devices
US5877124A (en) Superconducting ceramic pattern and its manufacturing method
US6541789B1 (en) High temperature superconductor Josephson junction element and manufacturing method for the same
JP2544390B2 (en) Oxide superconducting integrated circuit
JP2559413B2 (en) Oxide superconducting integrated circuit
Boikov et al. Epitaxial growth and properties of YBa2Cu3O7− δ/NdGaO3/YBa2Cu3O7− δ trilayer structures
JP3425422B2 (en) Superconducting element manufacturing method
JP2641451B2 (en) Oxide superconducting integrated circuit
EP0325408A2 (en) Semiconductor device having an interconnection layer
JPH0272685A (en) Method for forming weakly coupled superconductor part
JP2717094B2 (en) Method of forming superconducting wiring
JP2908346B2 (en) Superconducting structure
JPH0278282A (en) Josephson element
JP3696158B2 (en) Superconducting element and manufacturing method thereof
JP3186035B2 (en) Laminated thin film for field effect element and field effect transistor using the laminated thin film
JP2907831B2 (en) Josephson element
JP2899287B2 (en) Josephson element
JPH0375204A (en) Production of oxide superconductive film pattern
JP2976427B2 (en) Method of manufacturing Josephson device
JP2980570B2 (en) Superconducting element
JP2773455B2 (en) Manufacturing method of laminated film
JP2835203B2 (en) Superconducting element manufacturing method