JPH05163005A - Production of oxide superconductor current-limiting device - Google Patents

Production of oxide superconductor current-limiting device

Info

Publication number
JPH05163005A
JPH05163005A JP3329094A JP32909491A JPH05163005A JP H05163005 A JPH05163005 A JP H05163005A JP 3329094 A JP3329094 A JP 3329094A JP 32909491 A JP32909491 A JP 32909491A JP H05163005 A JPH05163005 A JP H05163005A
Authority
JP
Japan
Prior art keywords
film
metal
current limiting
oxide
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3329094A
Other languages
Japanese (ja)
Inventor
Hidefusa Uchikawa
英興 内川
Shigeru Matsuno
繁 松野
Shinichi Kinouchi
伸一 木ノ内
Sadajiro Mori
貞次郎 森
Tatsuya Hayashi
龍也 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3329094A priority Critical patent/JPH05163005A/en
Publication of JPH05163005A publication Critical patent/JPH05163005A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To provide a method for producing an oxide superconductor current- limiting device having a large film thickness, a uniform and high critical current over a large area and, therefore, capable of improving the current-limiting effect. CONSTITUTION:By a method for producing an oxide superconductor current- limiting device according to the first invention in this patent, a metal alkoxide or a metal acetylacetonate mainly composed of a cation which is a constituting component of the oxide superconductor is hydrolyzed in a solution containing the above-mentioned substance to generate a sol- or gel-state compound containing the above-mentioned cation. The resultant sol-or gel-state compound is used for preparing an electrolytic solution and, in the electrolytic solution, a cathode composed of a metallic substrate 5 or a substrate coated with a metal coating 7 and an anode are set. A voltage is applied between both the electrodes to form a film-shaped oxide superconductor 6 on the substrate 5 followed by heat treatment. This invention is thus characterized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物超電導体を用い
て電流を通電する導体もしくは例えば短絡電流などの過
大電流を限流することの可能な限流導体の製造方法並び
に酸化物超電導限流導体用超電導膜の製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a conductor which conducts a current by using an oxide superconductor or a current limiting conductor capable of limiting an excessive current such as a short-circuit current, and an oxide superconducting limit. The present invention relates to a method for manufacturing a superconducting film for a flow conductor.

【0002】[0002]

【従来の技術】超電導体は、臨界温度、臨界電流、臨界
磁界のうちいずれかひとつがその値を越えると超電導状
態が破壊され、常電導状態となって電気抵抗が発生、増
大する。この現象を利用して過大電流を限流する超電導
限流器(素子)に関する研究開発が近年盛んになってい
る。この分野全般の技術に関しては、例えば電気学会論
文誌B、110巻、9号、705頁(平成2年)に記載さ
れている。これらの中で、酸化物超電導体を利用した超
電導限流体を用いる限流器素子が最近注目されている。
これに用いる素子の構造は、棒状もしくは板状の超電導
体に蒸着やペーストなどを用いて、超電導体の一部に
銀、金、インジウム等の金属を付着させることによって
一対の電極を形成した簡単なものである。代表例として
は、アドバンシス・イン・スーパーコンダクティビティ
ー(Advances in Superconductivity)、691頁(198
8)に示されたものがある。これはY−Ba−Cu系の
酸化物超電導粉末の焼結体を用い、ドクターブレード法
によってジグザク状(ミアンダ構造)のシートを形成し、
臨界電流を越える電流が流れた場合の常電導状態におけ
る高抵抗化を使用して限流するものである。しかし、こ
のような焼結体(線状、棒状、板状のもの)では一般に臨
界電流を高くすることができないため、短絡電流を限流
できる割合が小さくならざるを得ないという欠点があっ
た。
2. Description of the Related Art In a superconductor, when any one of the critical temperature, the critical current, and the critical magnetic field exceeds the value, the superconducting state is destroyed, and the superconducting state is established and the electric resistance is increased. Research and development on superconducting fault current limiters (elements) that limit excessive currents by utilizing this phenomenon have become active in recent years. The technology of this field in general is described in, for example, the Institute of Electrical Engineers of Japan, Volume B, 110, No. 9, p. 705 (1990). Among these, a fault current limiter element using a superconducting limit fluid using an oxide superconductor has recently been drawing attention.
The structure of the element used for this is a simple structure in which a pair of electrodes are formed by depositing a metal such as silver, gold or indium on a part of the superconductor using vapor deposition or paste on a rod-shaped or plate-shaped superconductor. It is something. As a typical example, Advances in Superconductivity, pp. 691 (198)
There is one shown in 8). This uses a sintered body of Y-Ba-Cu-based oxide superconducting powder to form a zigzag (meaner structure) sheet by the doctor blade method,
The current is limited by increasing the resistance in the normal conducting state when a current exceeding the critical current flows. However, in such a sintered body (linear, rod-shaped, or plate-shaped), the critical current cannot be generally increased, so that the short-circuit current can be limited only by a small proportion. ..

【0003】そこで、基材上に形成された膜状の超電導
体を応用した限流導体(素子)が考えられている。成膜技
術の進歩によって、酸化物超電導薄膜において最近非常
に大きな臨界電流を流せるものが得られるようになっ
た。また、膜状のものは線状など前記のものと比較して
冷却特性が良好であるために安定化材が不要の可能性も
あり、しかも高抵抗にし易いことなどの利点がある。こ
のような超電導薄膜を用いたものの代表例として、第3
7回応用物理学関係連合講演会講演予稿集28P−W−
12(87頁)にあるようなものが挙げられる。ただし、
酸化物超電導薄膜を用いたものでは、膜厚を厚くすると
組成ずれを起こし易く、膜の基材への付着強度が低いた
めに剥離し易いこと、及び大面積に形成すると組成が不
均質になることなどのために、数mm角以下の小さな面
積の場合のみ大きな臨界電流をもつものを得ることがで
きるという大きな欠点を生じることが避けられなかっ
た。従って、このような超電導薄膜を応用した限流素子
においても、事故電流を限流できる割合は小さくならざ
るを得なかった。また、依然として端子部の金属が剥離
し易いという欠点が不可避であった。
Therefore, current limiting conductors (elements) to which a film-shaped superconductor formed on a base material is applied have been considered. Due to the progress of film forming technology, it has recently become possible to obtain an oxide superconducting thin film capable of passing a very large critical current. In addition, since the film-shaped one has better cooling characteristics than the above-described one such as a linear one, there is a possibility that a stabilizer may not be necessary, and further, there is an advantage that the resistance is easily increased. As a typical example using such a superconducting thin film,
Proceedings of 7th Joint Lecture on Applied Physics 28P-W-
12 (page 87). However,
In the case of using an oxide superconducting thin film, a composition deviation tends to occur when the film thickness is increased, and it is easy to peel off because the adhesion strength of the film to the substrate is low, and the composition becomes heterogeneous when formed in a large area. For this reason, it is inevitable that a large defect can be obtained only in the case of a small area of several mm square or less. Therefore, even in the current limiting device to which such a superconducting thin film is applied, the rate at which the fault current can be limited must be reduced. Further, the drawback that the metal of the terminal portion is easily peeled off is still unavoidable.

【0004】[0004]

【発明が解決しようとする課題】以上説明したように、
従来の限流導体(素子)では、線状、棒状、板状の焼結体
を用いたもの及び薄膜状のもののいずれも欠点があり、
短絡(事故)電流を限流できる割合が大きく、しかも端子
部となる電極金属が強固に形成された限流導体を得るこ
とは不可能であった。
As described above,
Conventional current limiting conductors (elements) have drawbacks in both linear, rod-shaped and plate-shaped sintered bodies and thin film-shaped ones.
It has been impossible to obtain a current limiting conductor in which the short-circuit (accident) current can be limited to a large extent and the electrode metal serving as a terminal portion is firmly formed.

【0005】即ち、本発明の目的は、酸化物超電導体を
用いた限流導体において、膜厚が厚く、しかも大面積に
わたって均質で大きな臨界電流を有するために限流効果
を大きくできる導体の製造方法、限流効果が大きく、端
子部を構成する金属が強固に形成された限流導体の製造
方法並びに限流効果が大きな導体を製造することが可能
な酸化物超電導限流導体用超電導膜の製造方法を提供す
ることにある。
That is, an object of the present invention is to manufacture a current-limiting conductor using an oxide superconductor, which has a large film thickness and is homogeneous and has a large critical current over a large area, so that the current-limiting effect can be enhanced. Method, method for producing a current limiting conductor having a large current limiting effect, in which a metal forming a terminal portion is strongly formed, and an oxide superconducting current limiting conductor superconducting film capable of producing a conductor having a large current limiting effect It is to provide a manufacturing method.

【0006】[0006]

【課題を解決するための手段】本発明の第1発明に係る
酸化物超電導限流導体の製造方法は、酸化物超電導体の
構成成分である陽イオンを主成分とする金属アルコキシ
ドまたは金属アセチルアセトナートを含有する液中で、
加水分解によって上記陽イオンを含むゾルまたはゲル状
化合物を生成させ、得られたゾルまたはゲル状化合物を
電解液とし、この電解液中において金属基材または金属
被覆を有する基材を陰極とし、別に陽極を設け、両極間
に電圧を印加して基材上に膜状の酸化物超電導体を形成
し、次に、熱処理を施すことを特徴とする。
According to a first aspect of the present invention, there is provided a method for producing an oxide superconducting current limiting conductor, comprising a metal alkoxide or metal acetylacetate containing a cation which is a constituent of the oxide superconductor as a main component. In a liquid containing nato,
A sol or gel-like compound containing the above cations is produced by hydrolysis, the obtained sol or gel-like compound is used as an electrolytic solution, and a metal base material or a base material having a metal coating in the electrolytic solution is used as a cathode, separately. A feature is that an anode is provided, a voltage is applied between both electrodes to form a film-shaped oxide superconductor on the substrate, and then heat treatment is performed.

【0007】本発明の第2発明に係る酸化物超電導限流
導体の製造方法は、酸化物超電導体の粉末を含有分散し
た液中に、金属からなる基材または金属被覆を有する基
材を陰極とし、別に陽極を設け、両極間に電圧を印加し
て基材上に膜状の酸化物超電導体を形成し、次に、液中
に可溶な所定の金属塩を添加して無電解法または電解法
により、酸化物超電導膜上の一部に電極端子となる金属
被覆を形成した後、熱処理を行うことを特徴とする。
In the method for producing an oxide superconducting current limiting conductor according to the second aspect of the present invention, a base material made of metal or a base material having a metal coating is used as a cathode in a liquid containing and dispersed oxide superconductor powder. Then, another anode is provided, a voltage is applied between both electrodes to form a film-shaped oxide superconductor on the substrate, and then a predetermined metal salt soluble in the liquid is added to the electroless method. Alternatively, a heat treatment is performed after a metal coating to be an electrode terminal is formed on a part of the oxide superconducting film by an electrolytic method.

【0008】本発明の第3発明に係る酸化物超電導限流
導体の製造方法は、酸化物超電導体を構成する金属並び
に銀を含む合金からなる基材を酸化することによって基
材表面に酸化物超電導膜を形成し、酸化物超電導膜上の
一部に電極端子となる金属被覆を形成することを特徴と
する。
In the method for producing an oxide superconducting current limiting conductor according to the third aspect of the present invention, an oxide is formed on the surface of a base material by oxidizing a base material composed of a metal constituting the oxide superconductor and an alloy containing silver. It is characterized in that a superconducting film is formed and a metal coating to be an electrode terminal is formed on a part of the oxide superconducting film.

【0009】本発明の第4発明に係る酸化物超電導限流
導体用超電導膜の製造方法は、基材上に銀の被覆層を形
成した後、主としてオゾンまたは活性酸素種を含有する
ガス雰囲気で、銀被覆層上に酸化物超電導膜を形成する
ことを特徴とする。
In the method for producing a superconducting film for an oxide superconducting current limiting conductor according to the fourth aspect of the present invention, after a silver coating layer is formed on a substrate, it is mainly heated in a gas atmosphere containing ozone or active oxygen species. The oxide superconducting film is formed on the silver coating layer.

【0010】[0010]

【作用】本発明の第1発明に係る酸化物超電導限流導体
の製造方法は、いわゆる電気泳動を利用した電着法を用
いる。これは陽極及び陰極を入れた分散媒中に酸化物超
電導体の粒子を分散させ、通電させることによって帯電
した粒子を導電性の電極表面に析出させる方法である。
従って、電極とする基材は金属もしくは金属被覆を施し
たものを使用する必要がある。この際に、本発明者らの
予備実験によれば、ほとんどの溶媒中において酸化物超
電導体粒子は正に帯電することが判明したため、基材を
陰極とする必要がある。
The method for producing the oxide superconducting current limiting conductor according to the first aspect of the present invention uses an electrodeposition method utilizing so-called electrophoresis. This is a method in which particles of an oxide superconductor are dispersed in a dispersion medium containing an anode and a cathode, and electrified to deposit charged particles on the surface of a conductive electrode.
Therefore, it is necessary to use a metal or a metal-coated base material as the electrode. At this time, according to the preliminary experiments conducted by the present inventors, it was found that the oxide superconductor particles were positively charged in most of the solvents, so that the base material should be the cathode.

【0011】本発明では、特に電着法の電解液に特徴が
ある。すなわち、酸化物超電導体を分散媒中に分散させ
た電解液としていわゆるゾル−ゲル法によるゾルもしく
はゲルの溶液を用いる。この方法は、コーティング膜形
成方法として公知であると同時に、金属酸化膜などの微
粒子を生成させる方法としても知られており、出発原料
に有機溶媒に溶解させた金属アルコキシドもしくは金属
アセチルアセトナートを用いる。これに水を添加するこ
とによって加水分解反応を生じさせ、最終的にこれら金
属の主として水酸化物や酸化物の微粒子を生成させるこ
とができるものである。
The present invention is particularly characterized by the electrolytic solution of the electrodeposition method. That is, a sol or gel solution by a so-called sol-gel method is used as an electrolytic solution in which an oxide superconductor is dispersed in a dispersion medium. This method is known as a method for forming a coating film and also for producing fine particles such as a metal oxide film, and uses a metal alkoxide or metal acetylacetonate dissolved in an organic solvent as a starting material. .. Hydrolysis reaction can be caused by adding water to this, and finally, hydroxides of these metals or fine particles of oxides can be finally produced.

【0012】本発明者らは、酸化物超電導体の構成成分
である陽イオンを主成分とする金属アルコキシドもしく
は金属アセチルアセトナートを含有する液中で、加水分
解によって上記陽イオンを含むゾルまたはゲル状化合物
を生成させたものが、前記電気泳動を利用した電着法の
電解液として最適であることを見出した。本発明では、
電着法で基材上に酸化物超電導膜を形成した後に熱処理
を施して超電導特性を向上させることができる。
The present inventors have found that in a liquid containing a metal alkoxide or metal acetylacetonate whose main component is a cation which is a constituent of an oxide superconductor, a sol or gel containing the above cation by hydrolysis. It was found that the product in which the solid compound was produced was the most suitable as the electrolytic solution for the electrodeposition method utilizing the above-mentioned electrophoresis. In the present invention,
After forming the oxide superconducting film on the substrate by the electrodeposition method, heat treatment can be applied to improve the superconducting characteristics.

【0013】本発明の第2発明に係る酸化物超電導限流
素子の製造方法では、酸化物超電導膜形成直後に電解液
中で金属端子を形成し、その後に熱処理を行うことによ
って接続抵抗の低い膜が得られ、かつ酸化物超電導膜形
成時に銀イオンを含有する電解液中で膜形成を行うと熱
処理後の超電導膜の結晶性が向上し、臨界温度も改善さ
れるとの知見に基づくものである。
In the method for manufacturing an oxide superconducting current limiting element according to the second aspect of the present invention, a metal terminal is formed in an electrolytic solution immediately after the oxide superconducting film is formed, and then heat treatment is performed to reduce the connection resistance. Based on the finding that a film can be obtained and that when the oxide superconducting film is formed in an electrolyte containing silver ions, the crystallinity of the superconducting film after heat treatment is improved and the critical temperature is also improved. Is.

【0014】第2の酸化物超電導限流素子の製造方法も
また、いわゆる電気泳動を利用した電着法を用いるもの
である。これは陽極及び陰極を入れた分散媒中に酸化物
超電導体の粒子を分散させ、通電させることによって帯
電した粒子を導電性の電極表面に析出させる方法であ
る。従って、電極とする基材は金属もしくは金属被覆を
施したものを使用する必要がある。この際に、本発明者
らの予備実験によれば、ほとんどの溶媒中において酸化
物超電導体粒子は正に帯電することが判明したため、基
材を陰極とする必要がある。
The second method for manufacturing the oxide superconducting current limiting element also uses an electro-deposition method utilizing so-called electrophoresis. This is a method in which particles of an oxide superconductor are dispersed in a dispersion medium containing an anode and a cathode, and electrified to deposit charged particles on the surface of a conductive electrode. Therefore, it is necessary to use a metal or a metal-coated base material as the electrode. At this time, according to the preliminary experiments conducted by the present inventors, it was found that the oxide superconductor particles were positively charged in most of the solvents, so that the base material should be the cathode.

【0015】本発明では、基材上に酸化物超電導膜を形
成後、液中に可溶な金属の塩を添加し、無電解法または
電解法によって酸化物超電導膜の一部に金属被膜を形成
する。最後に、このものを熱処理して酸化物超電導限流
導体とする。上記のように酸化物超電導膜に続いて電極
端子となる金属を形成した後に熱処理を行うと、超電導
膜を熱処理した後に金属被膜を形成する場合と比べて金
属被膜の超電導膜に対する付着性が向上するという効果
がある。
In the present invention, after forming an oxide superconducting film on a substrate, a metal salt soluble in a liquid is added, and a metal coating is formed on a part of the oxide superconducting film by an electroless method or an electrolytic method. Form. Finally, this is heat-treated to obtain an oxide superconducting current limiting conductor. As described above, when heat treatment is performed after forming the metal that will be the electrode terminal following the oxide superconducting film, the adhesion of the metal film to the superconducting film is improved compared to the case where the metal film is formed after heat treating the superconducting film. There is an effect of doing.

【0016】更に、超電導膜形成の際に、液中に銀の塩
を添加すること及び陽極として銀を含有する金属を用い
ることのうち少なくとも一つの方法を用いると、最終的
な熱処理後の超電導膜の結晶性並びに超電導特性が向上
する。
Furthermore, when at least one of the method of adding a silver salt in the solution and the method of using a metal containing silver as an anode during the formation of the superconducting film, the superconductivity after the final heat treatment is used. The crystallinity and superconducting properties of the film are improved.

【0017】本発明の第3発明による酸化物超電導限流
導体の製造方法では、酸化物超電導体を構成する金属か
らなる合金を酸化することによって、基材表面に酸化物
超電導体の被覆を生成させる方法を用いる。本発明で
は、この際に基材として酸化物超電導体を構成する金属
と共に銀を含有する合金を使用する。本発明者らの検討
によれば、銀を含有していると、酸化物によって合金表
面を超電導体化する場合に、生成する酸化物超電導膜の
結晶性が銀の何らかの作用により良好になり、これに伴
って超電導特性が向上することが判明したため、本発明
の第3発明の製造方法を完成した。
In the method for producing an oxide superconducting current limiting conductor according to the third aspect of the present invention, an oxide superconductor coating is formed on the surface of a base material by oxidizing an alloy made of a metal constituting the oxide superconductor. Method is used. In the present invention, in this case, an alloy containing silver is used as the base material together with the metal forming the oxide superconductor. According to the study of the present inventors, when silver is contained, when the alloy surface is made into a superconductor by an oxide, the crystallinity of the oxide superconducting film produced is improved by some action of silver, Since it was found that the superconducting property was improved along with this, the manufacturing method of the third invention of the present invention was completed.

【0018】本発明では、電極端子部としてこの超電導
膜の一部に金属被覆を形成し、酸化物超電導体限流素子
とする。更に、上記のように銀を含有する合金を用いる
と、銀を含有しない場合と比べて、この金属被覆の超電
導膜に対する付着性が向上するという効果があること、
並びに含まれている銀は超電導体の特性に悪影響を及ぼ
さないことが明らかとなった。
In the present invention, a metal coating is formed on a part of this superconducting film as an electrode terminal portion to provide an oxide superconductor current limiting element. Furthermore, the use of an alloy containing silver as described above has the effect of improving the adhesion of the metal coating to the superconducting film, as compared with the case of not containing silver.
Moreover, it was revealed that the contained silver does not adversely affect the characteristics of the superconductor.

【0019】本発明の第4発明に係る酸化物超電導限流
導体用超電導膜の製造方法では、スパッタ法、CVD法
酸化物超電導膜法、蒸着法など一般に広く使用される気
相中での成膜法を利用している。本発明では、酸化物超
電導膜を形成する前に、基材上に銀の被覆層を形成す
る。そして、主としてオゾンまたは活性酸素種を含有す
るガス雰囲気中で酸化物超電導膜を形成する。銀の被覆
を予め形成しておくと、超電導膜の結晶性が向上し、臨
界温度も高くなることに伴って、限流効果が大きくなる
という利点が生ずることが分かった。
In the method for producing a superconducting film for an oxide superconducting current limiting conductor according to the fourth aspect of the present invention, a sputtering method, a CVD method, an oxide superconducting film method, a vapor deposition method, or the like, which is widely used, is used. The membrane method is used. In the present invention, a silver coating layer is formed on the substrate before forming the oxide superconducting film. Then, the oxide superconducting film is formed in a gas atmosphere containing mainly ozone or active oxygen species. It has been found that the formation of the silver coating in advance improves the crystallinity of the superconducting film and raises the critical temperature, which brings about the advantage of increasing the current limiting effect.

【0020】更に、超電導膜の製造の際に、酸化物超電
導材料と同時に銀を基材上に堆積させるか、もしくは銀
あるいは銀の化合物を含有する酸化物超電導材料の原料
を使用することの少なくともいずれか一つの方法を用い
ると、臨界温度及び結晶性が更に改善されるため、最終
的な限流効果を更に向上することできる。
Further, at the time of producing the superconducting film, at least silver is deposited on the substrate at the same time as the oxide superconducting material, or at least the raw material of the oxide superconducting material containing silver or a compound of silver is used. By using any one of the methods, the critical temperature and the crystallinity are further improved, so that the final current limiting effect can be further improved.

【0021】[0021]

【実施例】【Example】

実施例1 本実施例は本発明の第1発明を説明するものである。図
1に本実施例による製造方法の一例を示す。図中、(1)
はガラス製電解槽、(2)は電解液(ゾルまたはゲル溶
液)、(3)は陽極、(4)は導電性の基材からなる陰極であ
る。最終的な酸化物超電導膜の組成をYBa2Cu3
7-xとなるように、成分の陽イオンの金属アルコキシド
であるY、Ba、Cuのイソプロポキシドを所定の割合
で150mlのイソプロピルアルコールに溶解した。こ
の溶液を80℃に保温した後、10mlの水をゆっくり
と滴下しながら加水分解を行ったところ、ゲル状の黒茶
色沈澱が生成した。この液を電解液(2)とした。中央部
を細く絞った幅5mm×長さ20mmの短冊状銀板を基
材として用い、これを陰極(4)とした。陽極(3)として白
金スパイラルを使用し、液を超音波洗浄器にて十分に撹
拌後、液温50℃で50〜1000Vの直流定電圧で陰
極上へ電着を行った。この後に、酸素気流中において9
50℃で5時間熱処理し、室温まで徐冷した。この焼成
膜の両端部にスパッタリングによって金を被覆し、これ
にリード線を取り付けて、図2に示す酸化物超電導限流
導体を用いた限流素子を試作した。超電導膜の臨界温度
は85K、厚さは2.5μm、金電極部の厚さは約1μ
mであった。図2において、(5)は基材(銀基板)、(6)は
超電導膜(Y系酸化物超電導膜)、(7)は電極端子用金被
覆、(8)はリード線である。また、超電導膜(6)は上記の
膜厚のほかにも各種の厚さについて作製を試みたとこ
ろ、30μm程度の厚いものまで問題なく作製でき、し
かもこのような厚いものでも臨界温度は85Kと上記の
場合と同様であることが分かった。
Example 1 This example illustrates the first invention of the present invention. FIG. 1 shows an example of the manufacturing method according to this embodiment. In the figure, (1)
Is a glass electrolytic cell, (2) is an electrolytic solution (sol or gel solution), (3) is an anode, and (4) is a cathode made of a conductive base material. The composition of the final oxide superconducting film was changed to YBa 2 Cu 3 O.
The cation metal alkoxides Y, Ba and Cu isopropoxide were dissolved in 150 ml of isopropyl alcohol at a predetermined ratio so as to obtain 7-x . This solution was kept warm at 80 ° C. and then hydrolyzed while slowly adding 10 ml of water thereto, and a gel-like black brown precipitate was formed. This solution was used as the electrolytic solution (2). A strip-shaped silver plate having a width of 5 mm and a length of 20 mm in which the central portion was narrowed was used as a substrate, and this was used as a cathode (4). A platinum spiral was used as the anode (3), the solution was sufficiently stirred with an ultrasonic cleaner, and then electrodeposited on the cathode at a constant DC voltage of 50 to 1000 V at a solution temperature of 50 ° C. After this, in an oxygen stream,
It heat-processed at 50 degreeC for 5 hours, and gradually cooled to room temperature. Both ends of this fired film were coated with gold by sputtering, lead wires were attached to the gold, and a current limiting device using the oxide superconducting current limiting conductor shown in FIG. 2 was manufactured. The superconducting film has a critical temperature of 85 K, a thickness of 2.5 μm, and a gold electrode portion has a thickness of about 1 μm.
It was m. In FIG. 2, (5) is a base material (silver substrate), (6) is a superconducting film (Y-based oxide superconducting film), (7) is a gold coating for electrode terminals, and (8) is a lead wire. In addition, when the superconducting film (6) was produced in various thicknesses other than the above-mentioned thickness, it was possible to produce a thick film of about 30 μm without any problem, and even if such a thick film had a critical temperature of 85K. It was found to be similar to the above case.

【0022】比較のため、スクリーン印刷法及び電子ビ
ーム蒸着法をそれぞれ用い、同一基材上に上記本発明の
ものと同一組成で同一の膜厚に成膜を行い、酸素気流中
にて950℃、5時間の熱処理を施した後、スパッタ法
で金の電極端子を形成するという従来の製造方法による
2種の酸化物超電導限流素子を作製した。超電導体の臨
界温度はいずれも83Kであった。
For comparison, a screen printing method and an electron beam evaporation method are respectively used to form a film having the same composition as that of the present invention and having the same film thickness on the same substrate, and in an oxygen stream at 950 ° C. Two kinds of oxide superconducting current limiting devices were manufactured by a conventional manufacturing method in which after heat treatment for 5 hours, gold electrode terminals were formed by a sputtering method. The critical temperature of each superconductor was 83K.

【0023】上記3種の酸化物超電導限流素子限流素子
について、それぞれ液体窒素中に入れて冷却し、推定短
絡電流が400Aの交流回路(周波数50Hz)で限流実
験を行い、各限流素子の性能の目安である限流波高値を
測定した。その結果、本発明のもの39A、スクリーン
印刷によるもの76A、スパッタ法によるもの71Aと
なった。この結果から明らかなように、本発明の第1発
明による製造方法による酸化物超電導限流素子は、従来
のいずれの方法によるものよりも更に1/2程度に短絡
電流を限流できることが分かった。なお、上記3種の限
流素子の液体窒素温度における臨界電流密度を測定した
ところ、本発明のもの、スクリーン印刷によるもの、電
子ビーム蒸着法によるものにおいて、それぞれ2200
0A/cm2、1200A/cm2及び13000A/c
2であった。三種の素子はすべて同一形状であり、超
電導膜の厚さも同一であることから、前記の限流効果は
主としてこの臨界電流密度の値の大きさによるものと推
定される。
Each of the above-mentioned three kinds of oxide superconducting current limiting devices was subjected to a current limiting experiment in an alternating current circuit (frequency: 50 Hz) having an estimated short circuit current of 400 A by cooling in liquid nitrogen. The current limiting peak value, which is a measure of device performance, was measured. As a result, 39A according to the present invention, 76A by screen printing, and 71A by the sputtering method were obtained. As is clear from these results, it was found that the oxide superconducting current limiting element manufactured by the manufacturing method according to the first aspect of the present invention can limit the short-circuit current to about 1/2 that of any conventional method. .. When the critical current densities of the above three types of current limiting devices at the liquid nitrogen temperature were measured, the results were 2200 in the present invention, screen printing, and electron beam evaporation method.
0 A / cm 2 , 1200 A / cm 2 and 13000 A / c
It was m 2 . Since the three types of elements all have the same shape and the thickness of the superconducting film is the same, it is estimated that the current limiting effect is mainly due to the magnitude of the value of the critical current density.

【0024】すなわち、本発明の第1発明による製造方
法によれば、臨界電流密度が高く、限流効果の大きな限
流素子を製造可能であることが明らかになった。この理
由については現在のところ不明であるが、本発明方法が
ゾル−ゲル法によって生成した金属の水和物等の微粒子
をそのまま基材上に電着の際のエネルギーを利用して付
着させた後、熱処理しているために、超電導膜の結晶性
が良好かつ均質であることによるものと推定される。
That is, it was revealed that the manufacturing method according to the first aspect of the present invention can manufacture a current limiting element having a high critical current density and a large current limiting effect. The reason for this is currently unknown, but the method of the present invention deposits fine particles such as metal hydrates produced by the sol-gel method on the substrate as it is by utilizing the energy during electrodeposition. It is presumed that this is because the superconducting film has good crystallinity and homogeneity due to subsequent heat treatment.

【0025】実施例2 本実施例もまた本発明の第1発明を説明するものであ
る。実施例1で用いた図1に示したものと同一の装置を
使用し、目的とする酸化物超電導膜の組成をBiSrC
aCu2xとなるようにBi、Sr、Ca、Cuのアセ
チルアセトナートを所定の割合で80℃において130
mlのエチルアルコールに溶解した。この溶液中に少量
のアンモニア水を添加した蒸留水10mlを徐々に滴下
して加水分解を行った。これにより、やはりゲル状の加
水分解生成物を含む液を得た。この液を電解液とし、実
施例1と同様の短冊状銀板を基材として用い、これを陰
極とした。陽極として白金スパイラルを使用し、液を超
音波洗浄器にて十分に撹拌後、液温60℃で50〜15
00Vの直流定電圧で陰極上へ電着を行った。この後
に、空気中において865℃で8時間熱処理し、室温ま
で徐冷した。この焼成膜の両端部にスパッタリングによ
って金を被覆し、これにリード線を取り付けて、図2に
示す酸化物超電導限流素子を試作した。超電導膜の臨界
温度は85K、厚さは2.5μm、金電極部の厚さは約
1μmであった。
Example 2 This example also illustrates the first aspect of the present invention. Using the same device as that used in Example 1 and shown in FIG. 1, the composition of the target oxide superconducting film was set to BiSrC.
Acetoacetonate of Bi, Sr, Ca, and Cu at a predetermined ratio so as to be aCu 2 O x is 130 at 80 ° C.
It was dissolved in ml of ethyl alcohol. Hydrolysis was carried out by gradually adding 10 ml of distilled water to which a small amount of aqueous ammonia was added to the solution. As a result, a liquid containing a gelled hydrolysis product was obtained. This solution was used as an electrolytic solution, and a strip-shaped silver plate similar to that used in Example 1 was used as a substrate, which was used as a cathode. Platinum spiral is used as the anode, the solution is thoroughly stirred with an ultrasonic cleaner, and then the solution temperature is 60 ° C for 50 to 15
Electrodeposition was performed on the cathode with a DC constant voltage of 00V. Then, it heat-processed at 865 degreeC in air for 8 hours, and was annealed to room temperature. Both ends of this fired film were covered with gold by sputtering, and lead wires were attached to the gold, and an oxide superconducting current limiting device shown in FIG. 2 was produced. The critical temperature of the superconducting film was 85 K, the thickness was 2.5 μm, and the thickness of the gold electrode portion was about 1 μm.

【0026】比較のため、スクリーン印刷法及び電子ビ
ーム蒸着法をそれぞれ用い、同一基材上に上記本発明の
ものと同一組成で同一の膜厚に成膜を行い、空気中にて
865℃8時間の熱処理を施した後、スパッタ法で金の
電極端子を形成するという従来の製造方法による二種の
酸化物超電導限流素子を試作した。超電導膜の臨界温度
はいずれも83Kであった。
For comparison, a screen printing method and an electron beam evaporation method are respectively used to form a film having the same composition and the same film thickness as those of the present invention on the same base material, and then at 865 ° C. in air. Two types of oxide superconducting current limiting devices were manufactured by a conventional manufacturing method in which a gold electrode terminal was formed by a sputtering method after heat treatment for a long time. The critical temperature of each superconducting film was 83K.

【0027】上記本発明及び従来の三種の限流素子につ
いて、液体窒素中に入れて冷却し、上記実施例1と同一
の回路に接続して限流実験を行った。その結果、実施例
1と全く同一の測定条件において、本発明のものは推定
短絡電流400Aを38Aに限流することができた。こ
れに対してスクリーン印刷によるもの75A、電子ビー
ム蒸着法によるもの70Aとなった。
The current limiting device of the present invention and the conventional three types of current limiting devices were put into liquid nitrogen for cooling and connected to the same circuit as in Example 1 to conduct a current limiting experiment. As a result, under the same measurement conditions as in Example 1, the one of the present invention was able to limit the estimated short-circuit current 400A to 38A. On the other hand, 75A by screen printing and 70A by electron beam evaporation method.

【0028】この結果から明らかなように、本発明の第
1発明の製造方法による酸化物超電導限流素子は、実施
例と同様に従来のいずれの方法によるものよりも更に1
/2程度に短絡電流を限流できることが分かった。な
お、上記三種の限流素子の液体窒素温度における臨界電
流密度を測定したところ、本発明のもの、スクリーン印
刷によるもの、電子ビーム蒸着法によるものにおいて、
それぞれ21500A/cm2、12300A/cm2
び13100A/cm2であった。
As is clear from these results, the oxide superconducting current limiting device according to the manufacturing method of the first invention of the present invention is more excellent than any of the conventional methods, as in the embodiment.
It was found that the short-circuit current could be limited to about / 2. Incidentally, when the critical current density at the liquid nitrogen temperature of the above three kinds of current limiting devices was measured, in the present invention, by screen printing, by electron beam evaporation method,
The values were 21500 A / cm 2 , 12300 A / cm 2 and 13100 A / cm 2 , respectively.

【0029】すなわち、本発明の第1発明の製造方法に
よれば、臨界電流密度が高く限流効果の大きな限流導体
を作成することが可能であることが明らかになった。こ
の理由は前記のように、ゾル−ゲル法によって生成した
微粒子を含む溶液をそのまま電解液として用い、電着の
エネルギーを与えてこの微粒子を基材上に付着させた後
に熱処理したため、超電導膜の結晶性が良好かつ均質に
なったため、超電導特性が改善されたことに起因するも
のと推定される。
That is, according to the manufacturing method of the first invention of the present invention, it became clear that it is possible to produce a current limiting conductor having a high critical current density and a large current limiting effect. The reason for this is that, as described above, the solution containing fine particles generated by the sol-gel method was used as an electrolytic solution as it was, and the fine particles of the superconducting film were heat-treated after applying the energy of electrodeposition to deposit the fine particles on the substrate. It is presumed that this is because the superconducting properties were improved because the crystallinity was good and uniform.

【0030】なお、本発明の第1発明で使用される基材
としては、Al23、SiO2、MgO、SrTiO3
どのセラミックスや単結晶、金、銀、ステンレス、銅、
ニッケルなどの金属もしくはそれらの合金などを挙げる
ことができる。また、セラミックスや単結晶などの絶縁
材料を基材とする場合には、電着の際の陰極となるため
に導電性の金属被覆を施す必要があり、このような被覆
としては金、銀、カーボン、ニッケル、クロムなどの金
属被覆が適当である。ただし、上記の金属または金属被
覆は酸化物超電導膜と反応しにくいものが望ましく、銀
を使用するのが最適である。
The base material used in the first invention of the present invention includes ceramics such as Al 2 O 3 , SiO 2 , MgO and SrTiO 3 , single crystals, gold, silver, stainless steel, copper,
Examples thereof include metals such as nickel and alloys thereof. When an insulating material such as ceramics or single crystal is used as a base material, it is necessary to apply a conductive metal coating in order to serve as a cathode during electrodeposition, and as such a coating, gold, silver, Metallic coatings of carbon, nickel, chrome, etc. are suitable. However, it is desirable that the above-mentioned metal or metal coating is hard to react with the oxide superconducting film, and it is most preferable to use silver.

【0031】本発明の第1発明において、出発原料とし
て使用する酸化物超電導体を構成する成分となる金属の
アルコキシドまたはアセチルアセトナート(誘導体)は、
いかなる構造、形態のものをも用いることができる。金
属アルコキシドでは、アルコキシ基の炭素数が幾つのも
のであっても適当な溶媒に可溶なものであれば使用でき
る。例えば好ましい具体例としては、メトキシ基、エト
キシ基、プロポキシ基、イソプロポキシ基、ブトキシ基
などがある。アセチルアセトナートは、金属元素にアセ
チルアセトナート基が少なくとも一個結合した化合物で
あり、基本骨格が変わらない限り、例えば水素原子がフ
ッ素原子、炭化水素基などに置換されていてもよい。こ
れらの化合物を溶解する溶媒としては、アルコール類、
ケトン類、エステル類等の広範な有機溶媒が挙げられ
る。これらの出発原料を加水分解する際に、添加する水
の量、温度や溶液のpH値などの条件によって加水分解
の進行する程度が異なり、生成物を含有する溶液がゾル
状になったり、またはゲル状になったりする。本発明で
は、いずれの性状のものをも用いることが可能であり、
これらを電解液として使用できることは実験によって確
認された。また、元素によっては加水分解生成物の微粒
子が金属酸化物である場合もあるが、一般にはアモルフ
ァス状の水和物もしくは水酸化物であることが多い。こ
れらは焼成によって完全に金属酸化物となって超電導体
となるため、本発明では電着後に熱処理が必要である。
熱処理の温度は超電導材料の種類によって異なることが
一般に知られており、概ね800〜1000℃の範囲で
あることが周知である。
In the first invention of the present invention, the metal alkoxide or acetylacetonate (derivative) which is a component constituting the oxide superconductor used as a starting material is
Any structure and form can be used. As the metal alkoxide, even if the number of carbon atoms of the alkoxy group is any, it can be used as long as it is soluble in a suitable solvent. For example, preferred specific examples include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group and a butoxy group. Acetylacetonate is a compound in which at least one acetylacetonate group is bonded to a metal element, and as long as the basic skeleton does not change, for example, a hydrogen atom may be substituted with a fluorine atom, a hydrocarbon group or the like. Solvents for dissolving these compounds include alcohols,
A wide range of organic solvents such as ketones and esters can be mentioned. When hydrolyzing these starting materials, the degree of progress of hydrolysis varies depending on the amount of water added, conditions such as temperature and pH value of the solution, and the solution containing the product becomes a sol, or It becomes a gel. In the present invention, any property can be used,
It was confirmed by experiments that these can be used as electrolytes. Further, depending on the element, the fine particles of the hydrolysis product may be a metal oxide, but in general, it is often an amorphous hydrate or hydroxide. Since these are completely converted into metal oxides by firing and become superconductors, heat treatment is required after electrodeposition in the present invention.
It is generally known that the temperature of heat treatment varies depending on the type of superconducting material, and it is well known that the temperature is in the range of approximately 800 to 1000 ° C.

【0032】陽極としては、一般の電解に使用する金属
電極を用いることが可能であるが、実施例で用いた白金
もしくはイリジウム、ロジウム、カーボンのような液中
で安定な不溶性電極を用いる方が好ましい。
As the anode, a metal electrode used in general electrolysis can be used, but it is preferable to use an insoluble electrode which is stable in a liquid such as platinum or iridium, rhodium or carbon used in the examples. preferable.

【0033】基材上に酸化物超電導膜を形成した後に、
電極端子となる金属被覆を形成する方法としては、実施
例で述べたようにスパッタ法などの薄膜形成法、無電解
メッキ法、電解メッキ法、圧着法などいずれを用いても
よい。金属としては、銀、金、インジウムなどが適当で
ある。
After forming the oxide superconducting film on the substrate,
As the method of forming the metal coating to be the electrode terminal, any of the thin film forming methods such as the sputtering method, the electroless plating method, the electrolytic plating method, and the pressure bonding method may be used as described in the embodiments. Suitable metals are silver, gold and indium.

【0034】ところで、実施例1及び2では酸化物系超
電導材料の一例としてY系及びBi系材料を用いたが、
本発明の第1発明の効果はこれらに限らず、La系、T
l系、Nd系等のいずれの酸化物超電導材料においても
発現することを実施例と同様の検討によって確認した。
By the way, in Examples 1 and 2, Y-based and Bi-based materials were used as examples of oxide-based superconducting materials.
The effects of the first invention of the present invention are not limited to these, but are La type, T
It was confirmed by the same examination as in the examples that the oxide superconducting materials such as 1-type and Nd-type oxides were expressed.

【0035】実施例3 本実施例は本発明の第2発明について説明するものであ
る。図1に本発明の製造方法の一例を示す。各成分の酸
化物及び炭酸塩を出発原料とし、乾式粉末法によって作
製したYBa2Cu37-x系酸化物超電導体の粉末2g
を、メチルエチルケトン100mg中に10mgの水と
共に分散したものを電解液(2)とした。中央部を細く絞
った幅5mm×長さ20mmの短冊状銀板を基材として
用い、これを陰極(4)とした。陽極(3)として白金スパイ
ラルを使用し、超音波洗浄器にて十分に撹拌後、液温5
0℃で50〜1000Vの直流定電圧で陰極上へ超電導
粉の電着を行った。続いて、この超電導膜の中央部を絶
縁テープで被覆し、両端部に無電解で金メッキを施し
た。この際、前述の電解液(2)にシアン化金カリウム、
塩化アンモニウム、クエン酸ソーダ及び水を添加し、液
温を90℃としたものをメッキ液とした。メッキ後、酸
素気流中において950℃で5時間熱処理し、室温まで
徐冷した。このようにして図2に示す酸化物超電導限流
素子を試作した。超電導膜の臨界温度は86K、厚さは
3.5μm、金電極部の厚さは約1μmであった。ま
た、超電導膜は上記の膜厚のほかにも各種の厚さについ
て作製を試みたところ、30μm程度の厚いものまで問
題なく作製でき、しかもこのような厚いものでも臨界温
度は86Kと上記の場合と同様であることが分かった。
Example 3 This example illustrates the second aspect of the present invention. FIG. 1 shows an example of the manufacturing method of the present invention. 2 g of YBa 2 Cu 3 O 7-x oxide superconductor powder prepared by dry powder method using oxides and carbonates of each component as starting materials
Was dispersed in 100 mg of methyl ethyl ketone together with 10 mg of water to obtain an electrolytic solution (2). A strip-shaped silver plate having a width of 5 mm and a length of 20 mm in which the central portion was narrowed was used as a substrate, and this was used as a cathode (4). Platinum spiral is used as the anode (3), and after stirring thoroughly with an ultrasonic cleaner, the liquid temperature is 5
Superconducting powder was electrodeposited on the cathode at a constant DC voltage of 50 to 1000 V at 0 ° C. Subsequently, the central portion of this superconducting film was covered with an insulating tape, and both ends were electrolessly plated with gold. At this time, potassium gold cyanide in the electrolytic solution (2),
Ammonium chloride, sodium citrate and water were added and the liquid temperature was adjusted to 90 ° C. to obtain a plating liquid. After plating, the plate was heat-treated at 950 ° C. for 5 hours in an oxygen stream and gradually cooled to room temperature. In this way, the oxide superconducting current limiting device shown in FIG. 2 was manufactured. The critical temperature of the superconducting film was 86 K, the thickness was 3.5 μm, and the thickness of the gold electrode portion was about 1 μm. Further, when the superconducting film was produced by using various thicknesses other than the above-mentioned thickness, it was possible to produce a thick film of about 30 μm without any problem, and even if such a thick film had a critical temperature of 86K, It turned out to be similar to.

【0036】比較のため、スクリーン印刷法及び電子ビ
ーム蒸着法をそれぞれ用い、同一基材上に上記本発明の
ものと同一組成で同一の膜厚に成膜を行い、酸素気流中
にて950℃5時間の熱処理を施した後、スパッタ法で
金の電極端子を形成するという従来の製造方法による2
種の酸化物超電導体限流素子を試作した。超電導体の臨
界温度はいずれも83Kであった。
For comparison, a screen printing method and an electron beam evaporation method are used to form a film having the same composition and the same film thickness as that of the present invention on the same substrate, and the film is formed in an oxygen stream at 950 ° C. After the heat treatment for 5 hours, the gold electrode terminals are formed by the sputtering method according to the conventional manufacturing method.
A kind of oxide superconductor current limiting device was fabricated. The critical temperature of each superconductor was 83K.

【0037】上記3種の酸化物超電導限流素子につい
て、それぞれ液体窒素中に入れて冷却し、推定短絡電流
が400Aの交流回路(周波数50Hz)で限流実験を行
い、各限流素子の性能の目安である限流波高を測定し
た。その結果、本発明のもの35A、スクリーン印刷に
よるもの76A、スパッタ法によるもの70Aとなっ
た。この結果から明らかなように、本発明の製造方法に
よる酸化物超電導体限流素子は従来のいずれの方法によ
るものよりも更に1/2以下に短絡電流を限流できるこ
とが分かった。なお、上記3種の限流素子の液体窒素温
度における臨界電流密度を測定したところ、本発明のも
の、スクリーン印刷によるもの、電子ビーム蒸着法によ
るものにおいて、それぞれ25000A/cm2、12
00A/cm2及び13000A/cm2であった。3種
の素子はすべて同一形状であり、超電導膜の厚さも同一
であることから、前記の限流効果は主としてこの臨界電
流密度の値の大きさによるものと推定される。
The above-mentioned three types of oxide superconducting current limiting devices were each put into liquid nitrogen and cooled, and a current limiting experiment was conducted in an AC circuit (frequency 50 Hz) with an estimated short circuit current of 400 A, and the performance of each current limiting device was examined. The current limiting wave height, which is a guideline for, was measured. As a result, 35A according to the present invention, 76A by screen printing, and 70A by the sputtering method were obtained. As is clear from these results, it was found that the oxide superconductor current limiting device according to the manufacturing method of the present invention can limit the short-circuit current to 1/2 or less as compared with any of the conventional methods. The critical current densities of the above three types of current limiting devices at the liquid nitrogen temperature were measured, and 25000 A / cm 2 and 12 were obtained for the present invention, screen printing, and electron beam evaporation method, respectively.
It was 00 A / cm 2 and 13000 A / cm 2 . Since all three types of elements have the same shape and the thickness of the superconducting film is also the same, it is estimated that the current limiting effect is mainly due to the magnitude of the value of the critical current density.

【0038】即ち、本発明の第2発明による製造方法に
よれば、臨界電流密度が高く、限流効果の大きな限流素
子を製造可能であることが明らかになった。
That is, according to the manufacturing method of the second aspect of the present invention, it became clear that a current limiting element having a high critical current density and a large current limiting effect can be manufactured.

【0039】また、同様の測定を繰り返し行ったとこ
ろ、上記と同様の結果が再現性よく得られた。ただし、
従来の2種の限流素子では、この繰り返し測定によって
電極端子部の金が剥離し、使用できなくなるという不具
合が生じた。即ち、従来の製造方法によるものは、本発
明によるものと比べて性能が劣ることに加えて、電極端
子となる金属被覆の超電導膜に対する付着強度が低く、
ヒートショックによって剥離し易いことが判明した。こ
の付着強度不足は、本発明の第2発明による製造方法の
場合において酸化物超電導膜形成後に熱処理を行い、そ
の後の電極端子となる金を形成した際に、及びこの後に
更に熱処理した際にも同様に起こった。即ち、本発明の
第2発明の製造方法では、酸化物超電導膜形成後に続い
て電極端子となる金属被覆を形成した後に熱処理するこ
とが必要であり、これによって付着性の高い電極端子用
金属被覆が得られる。
When the same measurement was repeated, the same results as above were obtained with good reproducibility. However,
In the conventional two types of current limiting elements, the repeated measurement resulted in the peeling of the gold of the electrode terminal portion, resulting in a problem that it could not be used. That is, the conventional manufacturing method, in addition to the performance inferior to that of the present invention, the adhesion strength of the metal coating to be the electrode terminal to the superconducting film is low,
It was found that it was easily peeled off by heat shock. This lack of adhesion strength is caused by the heat treatment after the oxide superconducting film is formed in the case of the manufacturing method according to the second aspect of the present invention, when the gold to be the electrode terminal is formed thereafter, and also when the heat treatment is further performed thereafter. It happened as well. That is, in the manufacturing method of the second invention of the present invention, it is necessary to form a metal coating to be an electrode terminal after forming the oxide superconducting film, and then perform a heat treatment, whereby a highly adherent metal coating for an electrode terminal is formed. Is obtained.

【0040】実施例4 実施例3と同一の電解液を使用し、液中に硝酸銀1gを
添加するほかは実施例3の場合とすべて同一の条件で同
一形状の銀基板上に超電導膜の電着を実施した。これに
よって形成された超電導膜の臨界温度を測定したところ
88Kが得られた。また、実施例1の硝酸銀を添加しな
いで電着を行った場合と比較して、Y系超電導膜の結晶
性が向上していることをX線回折法によって分析確認し
た。
Example 4 The same electrolytic solution as in Example 3 was used, and 1 g of silver nitrate was added to the solution, but under the same conditions as in Example 3, the superconducting film was formed on a silver substrate of the same shape. I put on my clothes. When the critical temperature of the superconducting film formed by this was measured, 88 K was obtained. In addition, it was confirmed by X-ray diffraction that the crystallinity of the Y-based superconducting film was improved as compared with the case of performing electrodeposition without adding silver nitrate of Example 1.

【0041】更に、硝酸銀を添加する代わりに陽極とし
て銀−パラジウム合金を用いて実施例3の条件でY系超
電導膜を電着した。電着の際には、電解液中に陽極から
少量の銀イオンが溶出し、上記の銀塩を添加した場合と
同様の効果が起こるものと期待された。その結果、生成
した超電導膜の臨界温度は88Kとやはり実施例3の場
合よりも高く、上記と全く同様に実施例3の場合と比較
して、Y系超電導膜の結晶性が向上することを同じくX
線回折法によって分析確認した。
Further, a Y-based superconducting film was electrodeposited under the conditions of Example 3 using a silver-palladium alloy as an anode instead of adding silver nitrate. At the time of electrodeposition, it was expected that a small amount of silver ions would be eluted from the anode into the electrolytic solution, and the same effect as when the above silver salt was added would occur. As a result, the generated superconducting film has a critical temperature of 88 K, which is higher than that in the case of Example 3, and the crystallinity of the Y-based superconducting film is improved in the same manner as in the case of Example 3 just as described above. Also X
It was analyzed and confirmed by the line diffraction method.

【0042】更に、上記2つの場合において、それぞれ
液中にシアン化金カリウム、シアン化カリウム、リン酸
二カリウムを添加し、形成した超電導膜の中央部に実施
例3と同様の絶縁被覆を施した後に、70℃において電
流密度0.1Aで電極端子となる金の被覆を電気メッキ
した。これらを酸素気流中940℃で8時間熱処理した
後に、室温まで徐冷して本発明の第2発明による酸化物
超電導限流素子を製造した。なお、両超電導膜の臨界電
流密度は共に38000A/cm2と実施例3の場合よ
りも向上していた。これら2種の限流導体について、実
施例3の場合と全く同様の測定を行って性能を調査した
ところ、いずれも400Aの推定短絡電流を25Aに限
流することができた。すなわち、実施例3に示した本発
明の方法の場合よりも性能が向上した。
Further, in the above two cases, after potassium gold cyanide, potassium cyanide and dipotassium phosphate were added to the respective liquids and the same insulating coating as in Example 3 was applied to the central portion of the formed superconducting film. At 70 ° C., a gold coating to be an electrode terminal was electroplated with a current density of 0.1 A. These were heat-treated in an oxygen stream at 940 ° C. for 8 hours and then gradually cooled to room temperature to manufacture an oxide superconducting current limiting element according to the second aspect of the present invention. The critical current densities of both superconducting films were 38000 A / cm 2 , which was higher than that of Example 3. When these two types of current-limiting conductors were subjected to the same measurements as in Example 3 to investigate the performance, the estimated short-circuit current of 400 A could be limited to 25 A. That is, the performance was improved as compared with the case of the method of the present invention shown in Example 3.

【0043】この理由は、前記のように酸化物超電導膜
を電着する際に、液中に銀の塩を添加するかもしくは陽
極として銀を含有する金属を用いたために、分析確認し
たようにY系超電導膜の結晶性が向上したことによっ
て、臨界温度、臨界電流密度などの超電導特性が改善さ
れたことに起因するものと考えられる。
The reason for this is that, as described above, when electrodepositing the oxide superconducting film, a silver salt was added to the solution or a metal containing silver was used as an anode, and therefore, it was confirmed by analysis. It is considered that this is because the crystallinity of the Y-based superconducting film is improved and the superconducting properties such as the critical temperature and the critical current density are improved.

【0044】本発明の第2発明に用いる電解液(酸化物
超電導体粒子の分散媒)としては、実施例3及び4で使
用したメチルエチルケトンのほかにメチルイソブチルケ
トン、アセト酢酸エチル、エチルアルコール、イソプロ
ピルアルコール、アセトン、アセチルアセトンなどのア
ルコール類、ケトン類、エステル類等の広範な有機溶媒
が挙げられる。これらの溶媒については、一概に優劣つ
けがたいが、いずれを用いる場合にも数%の水を添加し
て使用すると電着の効率が良好となるようである。そし
て、電着の際に印加する電圧は溶媒の種類によって異な
るが、概ね数10〜2000V程度である。
As the electrolytic solution (dispersion medium of oxide superconductor particles) used in the second invention of the present invention, in addition to the methyl ethyl ketone used in Examples 3 and 4, methyl isobutyl ketone, ethyl acetoacetate, ethyl alcohol, isopropyl. Examples include a wide range of organic solvents such as alcohols, alcohols such as acetone and acetylacetone, ketones and esters. It is generally difficult to make superiority or inferiority with respect to these solvents, but it seems that the efficiency of electrodeposition is improved by adding several% of water in each case. The voltage applied at the time of electrodeposition varies depending on the type of solvent, but is about several tens to 2000 V.

【0045】陽極としては、一般の電解に使用する金属
電極を用いることが可能であるが、実施例3及び4で用
いた白金もしくはイリジウム、ロジウム、カーボンのよ
うな液中で安定な不溶性電極を用いる方が好ましい。
As the anode, a metal electrode used in general electrolysis can be used. However, an insoluble electrode which is stable in a liquid such as platinum or iridium, rhodium or carbon used in Examples 3 and 4 can be used. It is preferable to use.

【0046】基材上に酸化物超電導膜を形成した後に、
電極端子となる金属被覆を形成する方法としては、実施
例3及び4で述べたように無電解法もしくは電解法のい
ずれを用いても良い。
After forming the oxide superconducting film on the substrate,
As a method for forming the metal coating to be the electrode terminal, either the electroless method or the electrolytic method may be used as described in the third and fourth embodiments.

【0047】なお、電解液中に添加する金属の塩として
は、液中に溶解する金属の塩が適当であるが、最終的な
電極端子として最適な銀または金の塩が望ましい。
As the metal salt added to the electrolytic solution, a metal salt that dissolves in the solution is suitable, but a silver or gold salt most suitable for the final electrode terminal is desirable.

【0048】また、実施例4のように、超電導膜を形成
する際に液中に銀塩を添加するかまたは陽極として銀を
含有する金属を用いると、理由は今のところ不明である
が、生成した超電導膜の結晶性並びに超電導特性が向上
する。この際に添加する銀塩としては硝酸銀、酢酸銀、
シアン化銀、シアン化銀カリウムならびに陽極材として
は、純銀、銀−パラジウム合金、銀−イリジウム合金な
どが挙げられる。
Further, as in Example 4, if a silver salt is added to the liquid or a metal containing silver is used as the anode when forming the superconducting film, the reason is not clear at present. The crystallinity and superconducting properties of the generated superconducting film are improved. The silver salts added at this time include silver nitrate, silver acetate,
Examples of silver cyanide, potassium silver cyanide, and an anode material include pure silver, a silver-palladium alloy, and a silver-iridium alloy.

【0049】なお、実施例3及び4では、酸化物系超電
導膜の一例としてY系材料を用いたが、本発明の第2発
明の効果はY系に限らずBi系、Tl系、Nd系等のい
ずれの酸化物超電導材料においても発現することを実施
例と同様の検討によって確認した。
In Examples 3 and 4, the Y-based material was used as an example of the oxide-based superconducting film, but the effect of the second invention of the present invention is not limited to the Y-based material, but Bi-based, Tl-based, and Nd-based materials. It was confirmed by the same examination as in the example that the oxide was expressed in any of the above oxide superconducting materials.

【0050】実施例5 幅5mm、長さ20mm、厚さ1mmの矩形状Y−2B
a−3Cuに3重量%のAg添加した合金を基材として
用いた。これを酸素雰囲気中910℃で15時間、続い
て550℃で5時間熱処理し、表面に酸化物超電導膜を
形成した。その後、この超電導膜の中央部を絶縁テープ
で被覆し、両端部に無電解で金メッキを施した。電解液
としては、シアン化金カリウム、塩化アンモニウム、ク
エン酸ソーダ及び水を添加し、液温を90℃としたもの
を用いた。メッキ後、金被覆にリード線を取り付けて本
発明の第3発明の製造方法による酸化物超電導限流素子
を試作した。超電導膜の臨界温度は86K、厚さは0.
6μm、金電極部の厚さは約1μmであった。
Example 5 Rectangular Y-2B having a width of 5 mm, a length of 20 mm and a thickness of 1 mm
An alloy in which 3% by weight of Ag was added to a-3Cu was used as a base material. This was heat-treated in an oxygen atmosphere at 910 ° C. for 15 hours and then at 550 ° C. for 5 hours to form an oxide superconducting film on the surface. Then, the central portion of this superconducting film was covered with an insulating tape, and both ends were electrolessly plated with gold. As the electrolytic solution, potassium cyanide, ammonium chloride, sodium citrate and water were added and the solution temperature was adjusted to 90 ° C. After plating, a lead wire was attached to the gold coating, and an oxide superconducting current limiting element was manufactured by the manufacturing method of the third invention of the present invention. The superconducting film has a critical temperature of 86K and a thickness of 0.
The thickness of the gold electrode portion was 6 μm, and the thickness was about 1 μm.

【0051】比較のため、上記と全く同一形状でAgを
含有しない合金からなる基材を同じ条件で酸化させ、無
電解法で金の電極端子を形成するという従来の製造方法
による酸化物超電導体限流素子を試作した。超電導体の
臨界温度は83Kであり、本発明のものよりも3K低か
った。また、Y、Ba、Cuの硝酸塩もしくは酸化物を
用い、従来の製造方法である粉末法によって上記本発明
によるものと同一形状の酸化物超電導体の焼結体を作製
し、同じく電極となる金の被覆を形成して限流素子とし
た。この素子の臨界温度は84Kであった。
For comparison, an oxide superconductor manufactured by a conventional manufacturing method in which a base material made of an alloy having exactly the same shape as the above and made of no Ag is oxidized under the same conditions to form gold electrode terminals by an electroless method. A current limiting device was prototyped. The critical temperature of the superconductor was 83K, which was 3K lower than that of the present invention. Further, a sintered body of an oxide superconductor having the same shape as that of the present invention was produced by a powder method which is a conventional production method using a nitrate or an oxide of Y, Ba or Cu, and a gold electrode which was also used as an electrode. To form a current limiting device. The critical temperature of this device was 84K.

【0052】上記3種の限流素子について、それぞれ液
体窒素中に入れて冷却し、推定短絡電流が400Aの交
流回路(周波数50Hz)で限流実験を行い、各限流素子
の性能の目安である限流波高値を測定した。この回路に
おいては、限流素子がない場合の推定短絡電流は400
Aであったため、これを各限流素子によってどこまで限
流できるかによって性能を比較した。
Each of the above three types of current limiting elements was put into liquid nitrogen and cooled, and a current limiting experiment was conducted in an AC circuit (frequency 50 Hz) with an estimated short circuit current of 400 A. A certain limiting current peak value was measured. In this circuit, the estimated short circuit current without a current limiting element is 400
Since it was A, the performance was compared depending on how far it could be limited by each current limiting element.

【0053】その結果、本発明のもの65A、銀を添加
しない従来のもの98A、粉末焼結法によるもの85A
となった。この結果から明らかなように、本発明の第3
発明の製造方法による酸化物超電導限流素子は、従来の
方法によるものよりも更に効率よく短絡電流を限流でき
ることが分かった。即ち、本発明の第3発明の製造方法
によれば、限流効果の大きな限流素子を容易に製造可能
であることが明らかになった。この理由は、現在のとこ
ろ明らかではない。ただし、上記2種のサンプルをX線
回折法で分析評価したところによれば、本発明の場合の
ものの方が従来のものよりも超電導膜の結晶性が良好で
あったことから、合金基材中に銀を含有させると、上記
の結晶性向上効果が生じることに起因して限流効果が良
好になると推察される。
As a result, 65A according to the present invention, 98A according to the prior art without addition of silver, and 85A according to the powder sintering method.
Became. As is clear from this result, the third aspect of the present invention
It has been found that the oxide superconducting current limiting device manufactured by the manufacturing method of the present invention can limit the short-circuit current more efficiently than the conventional method. That is, according to the manufacturing method of the third invention of the present invention, it became clear that a current limiting element having a large current limiting effect can be easily manufactured. The reason for this is currently unclear. However, according to the analysis and evaluation of the above-mentioned two kinds of samples by the X-ray diffraction method, the crystallinity of the superconducting film in the case of the present invention was better than that in the conventional one, so that the alloy substrate It is presumed that the inclusion of silver will improve the current limiting effect due to the above-described crystallinity improving effect.

【0054】上記と同様の測定を繰り返し行ったとこ
ろ、本発明方法による製造された限流素子の限流効果が
どの場合にも優れているという同様の結果が再現性よく
得られた。これに比べて従来の製造方法による2種の素
子は、繰り返し測定の際に電極端子部の金被覆が剥離
し、測定が不可能になった。即ち、本発明による限流素
子では限流効果が大きいのみならず、電極となる金属被
覆が従来の物と比べて強固に形成できることが判明し
た。
When the same measurement as above was repeated, the same result that the current limiting effect of the current limiting element manufactured by the method of the present invention was excellent in any case was obtained with good reproducibility. On the other hand, in the two types of elements manufactured by the conventional manufacturing method, the gold coating on the electrode terminal portion was peeled off during repeated measurement, and the measurement became impossible. That is, it was found that the current limiting element according to the present invention not only has a large current limiting effect, but also that the metal coating to be the electrode can be formed more firmly than the conventional one.

【0055】また、電極端子として金以外の銀、インジ
ウムなどの金属を用いて同様の検討を行ったところ、や
はりいずれの場合にも本発明方法により製造された限流
素子においては、電極端子部の金属被覆が強固になるこ
とが確認されるという上記の結果が得られた。この理由
については明らかでないが、基材である合金中に含有さ
せた銀が酸化処理の際に生成する超電導体中に拡散し、
上記の結晶性向上効果と同時に被覆金属の付着性を高め
る何らかの働きをするものと推察される。
Further, the same examination was carried out using a metal other than gold, such as silver or indium, as the electrode terminal. In any case, the electrode terminal portion was found in the current limiting device manufactured by the method of the present invention. The above results were obtained in which it was confirmed that the metal coating of 1 was strengthened. The reason for this is not clear, but the silver contained in the alloy that is the base material diffuses into the superconductor generated during the oxidation treatment,
It is presumed that, in addition to the above-mentioned crystallinity improving effect, it has some function of enhancing the adhesion of the coating metal.

【0056】ところで、実施例5では、酸化物系超電導
材料の一例としてY系材料を用いたが、本発明の効果は
Y系に限らず、Bi系、Tl系、Nd系等のいずれの酸
化物超電導材料においても発現することを実施例と同様
の検討によって確認した。
By the way, in Example 5, the Y-based material was used as an example of the oxide-based superconducting material, but the effect of the present invention is not limited to the Y-based material, and any oxidation of Bi-based, Tl-based, Nd-based, etc. It was confirmed by the same examination as in the example that it also appeared in the superconducting material.

【0057】即ち、本発明の第3発明で使用する基材合
金としては、酸化によって表面が酸化物超電導体となる
ものであれば用いることが可能である。このような例と
しては、Bi−Sr−Ca−Cu合金、Nd−Ce−C
u合金、La−Sr−Cu合金などが挙げられる。これ
らの合金にAgを含有させて用いることができる。Ag
の含有率としては任意に選定できるが、概ね基材合金全
体の1〜10%の範囲が適当である。
That is, as the base alloy used in the third invention of the present invention, it is possible to use any alloy whose surface becomes an oxide superconductor by oxidation. As such an example, Bi-Sr-Ca-Cu alloy, Nd-Ce-C
Examples include u alloys and La-Sr-Cu alloys. It is possible to use Ag containing these alloys. Ag
Although the content rate of can be arbitrarily selected, a range of about 1 to 10% of the whole base alloy is suitable.

【0058】本発明の第3発明で基材の酸化物超電導膜
によって超電導膜を形成させる際に使用するガス雰囲気
としては、酸素ガス雰囲気、酸素プラズマ、オゾンガス
などの活性酸素雰囲気などを用いることが可能である。
As the gas atmosphere used when forming the superconducting film by the oxide superconducting film as the base material in the third aspect of the present invention, an oxygen gas atmosphere, an oxygen plasma, an active oxygen atmosphere such as ozone gas, etc. may be used. It is possible.

【0059】基材上に本発明方法による酸化物超電導膜
を形成した後に、電極端子となる金属被覆を形成する方
法としては、気相成膜法、無電解メッキ法、電解メッキ
法もしくは圧着法いずれを用いてもよい。電極端子とし
ては、各種の金属を使用できるが、銀または金が好まし
い。
As a method for forming a metal coating to be an electrode terminal after forming an oxide superconducting film by the method of the present invention on a substrate, a vapor phase film forming method, an electroless plating method, an electrolytic plating method or a pressure bonding method. Either may be used. Although various metals can be used for the electrode terminals, silver or gold is preferable.

【0060】実施例6 幅5mm×長さ20mmの矩形状MgO基板を基材とし
て用いた。この上にスパッタ法によって、約0.5μm
の厚さの銀を被覆した。次いで各成分の金属を出発原料
とし、電子ビーム蒸着法によってYBa2Cu37-x
酸化物超電導膜の形成を行った。この際に、オゾン5%
を含有する酸素ガスを導入してガス圧を1.5×10-4
トールに調整し、成膜後この雰囲気中において室温まで
徐冷した。このようにして、本発明の第4発明の製造方
法により超電導膜を製造した。その後、この超電導膜の
中央部を絶縁テープで被覆し、両端部に無電解で金メッ
キを施した。電解液としては、シアン化金カリウム、塩
化アンモニウム、クエン酸ソーダ及び水を添加し、液温
を90℃としたものを用いた。メッキ後、金被覆にリー
ド線を取り付けて酸化物超電導限流素子を試作した。超
電導膜の臨界温度は86K、厚さは0.6μm、金電極
部の厚さは約1μmであった。
Example 6 A rectangular MgO substrate having a width of 5 mm and a length of 20 mm was used as a base material. About 0.5 μm by sputtering
Thickness of silver coated. Next, a metal of each component was used as a starting material, and a YBa 2 Cu 3 O 7-x oxide superconducting film was formed by an electron beam evaporation method. At this time, ozone 5%
Oxygen gas containing is introduced to adjust the gas pressure to 1.5 × 10 −4
The temperature was adjusted to Torr, and after film formation, the film was gradually cooled to room temperature in this atmosphere. Thus, the superconducting film was manufactured by the manufacturing method of the fourth invention of the present invention. Then, the central portion of this superconducting film was covered with an insulating tape, and both ends were electrolessly plated with gold. As the electrolytic solution, potassium cyanide, ammonium chloride, sodium citrate and water were added and the solution temperature was adjusted to 90 ° C. After plating, a lead wire was attached to the gold coating to fabricate an oxide superconducting current limiting device. The critical temperature of the superconducting film was 86 K, the thickness was 0.6 μm, and the thickness of the gold electrode portion was about 1 μm.

【0061】比較のため、上記と同じ電子ビーム蒸着法
を用い、同種の基材上に銀被覆を施さず、上記本発明の
ものと同一組成で同じ膜厚に同一ガス圧の酸素気流中で
成膜を行い、同じく徐冷した後に無電解法で金の電極端
子を形成するという従来の超電導膜の製造方法による酸
化物超電導体限流素子を試作した。超電導体の臨界温度
は83Kであり、本発明のものよりも3K低かった。
For comparison, the same electron beam evaporation method as that described above was used, and the same type of substrate was not coated with silver, and the same composition and film thickness as those of the present invention were applied in an oxygen stream of the same gas pressure. An oxide superconductor current limiting device was manufactured by a conventional method for manufacturing a superconducting film, in which a film was formed, and then slowly cooled, and then gold electrode terminals were formed by an electroless method. The critical temperature of the superconductor was 83K, which was 3K lower than that of the present invention.

【0062】上記2種の限流素子について、それぞれ液
体窒素中に入れて冷却し、推定短絡電流が400Aの交
流回路(周波数50Hz)で限流実験を行い、各限流素子
の性能の目安である限流波高値を測定した。その結果、
本発明のもの55A、従来のもの98Aとなった。この
結果から明らかなように、本発明の第4発明の製造方法
により得られた超電導用を使用した酸化物超電導体限流
素子は、従来の方法によるものより更に1/2程度に短
絡電流を限流できることが分かった。即ち、本発明の製
造方法によれば、限流効果の大きな限流素子用の超電導
膜を製造可能であることが明らかになった。
Each of the above two types of current limiting elements was put into liquid nitrogen and cooled, and a current limiting experiment was conducted in an AC circuit (frequency 50 Hz) with an estimated short circuit current of 400 A. A certain limiting current peak value was measured. as a result,
The present invention is 55A and the conventional one is 98A. As is clear from this result, the oxide superconductor current limiting element using the superconducting material obtained by the manufacturing method of the fourth invention of the present invention has a short-circuit current about half that of the conventional method. It turns out that the current can be limited. That is, it was revealed that the manufacturing method of the present invention can manufacture a superconducting film for a current limiting element having a large current limiting effect.

【0063】この理由は、現在のところ明らかではな
い。ただし、上記2種のサンプルをX線回折法で分析評
価したところによれば、本発明の場合のものの方が超電
導膜の結晶性が良好であったことから、基材上に銀の被
覆層を形成した後にオゾンまたは活性酸素種を含むガス
雰囲気中で成膜を行うと、上記の結晶性向上効果が生じ
ることに起因して限流効果が良好になると推察される。
The reason for this is not clear at present. However, according to the analysis and evaluation of the above-mentioned two kinds of samples by the X-ray diffraction method, the crystallinity of the superconducting film was better in the case of the present invention. It is presumed that if the film is formed in a gas atmosphere containing ozone or an active oxygen species after forming, the current limiting effect is improved due to the above-described crystallinity improving effect.

【0064】上記と同様の測定を繰り返し行ったとこ
ろ、本発明の第4発明により得られた超電導膜を用いた
酸化物超電導限流素子の限流効果がどの場合にも優れて
いるという同様の結果が再現性よく得られた。
When the same measurement as the above was repeated, it was found that the oxide superconducting current limiting element using the superconducting film obtained according to the fourth invention of the present invention was excellent in any case. The results were obtained with good reproducibility.

【0065】実施例7 実施例6と同じ実験の際に、酸化物超電導膜の原料を蒸
着させるのと同時に銀を蒸着させる手法を用いた。ま
た、これとは別に、実施例6のY系超電導膜の出発原料
として、Y、Ba及びAg20%−Cu合金を用いた。
上記以外は実施例6の場合とすべて同一の条件で、かつ
同一形状の基板上に電子ビーム蒸着法によって同一組成
の本発明の第4発明の方法によるY系超電導膜の形成を
実施した。これによって形成された酸化物超電導膜の臨
界温度を測定したところ、ともに88Kが得られた。ま
た、実施例1の銀を同時蒸着しない成膜を行った場合と
比較して、いずれもY系超電導膜の結晶性が更に向上し
ていることをX線回折法によって分析確認した。
Example 7 In the same experiment as in Example 6, a method was used in which silver was vapor-deposited at the same time as the material for the oxide superconducting film was vapor-deposited. Separately from this, Y, Ba and Ag20% -Cu alloys were used as starting materials for the Y-based superconducting film of Example 6.
A Y-type superconducting film having the same composition and the same composition was formed on a substrate having the same shape and the same shape by the electron beam evaporation method under the same conditions as in Example 6 except for the above. When the critical temperature of the oxide superconducting film formed by this was measured, 88 K was obtained in both cases. In addition, it was confirmed by an X-ray diffraction method that the crystallinity of the Y-based superconducting film was further improved in all cases, as compared with the case of performing the film formation in which the silver was not vapor-deposited in Example 1.

【0066】更に、上記の場合において、形成した超電
導膜の中央部に実施例6と同様の絶縁被覆を施した後、
同一条件で電極端子となる金の被覆を無電解メッキし
た。このようにして酸化物超電導限流素子を作製した。
Further, in the above-mentioned case, after applying the same insulating coating as in Example 6 to the central portion of the formed superconducting film,
Under the same conditions, a gold coating to be the electrode terminals was electroless plated. Thus, an oxide superconducting current limiting element was produced.

【0067】これら2種の限流素子について、実施例6
の場合と全く同様の測定を行って性能を調査したとこ
ろ、いずれも400Aの推定短絡電流を38Aに限流す
ることができた。即ち、実施例6に示した場合よりも更
に性能が向上した。この理由は、前記のように酸化物超
電導膜を成膜する際に、超電導膜の原料と同時に銀を基
材上に堆積させるか、もしくは銀の合金を含有する原料
を使用して成膜したため、分析確認したようにY系超電
導膜の結晶性が更に向上したことによって、臨界温度、
臨界電流密度などの超電導特性が改善されたことに起因
するものと推定される。
Example 6 of these two types of current limiting devices
When the performance was investigated by carrying out the same measurement as in the above case, it was possible to limit the estimated short circuit current of 400 A to 38 A in all cases. That is, the performance was further improved as compared with the case shown in Example 6. The reason for this is that, when depositing the oxide superconducting film as described above, silver is deposited on the base material at the same time as the superconducting film raw material or the raw material containing the silver alloy is used. As confirmed by analysis, the crystallinity of the Y-based superconducting film was further improved,
It is presumed that this is due to improvement in superconducting properties such as critical current density.

【0068】なお、本発明の第4発明で使用する基材と
しては、Al23、SiO2、MgO、SrTiO3、Z
rO2、Y23などのセラミックや単結晶、金、銀、ス
テンレス、銅、ニッケルなどの金属もしくはそれらの合
金などを使用することができる。
The base material used in the fourth invention of the present invention includes Al 2 O 3 , SiO 2 , MgO, SrTiO 3 and Z.
Ceramics such as rO 2 and Y 2 O 3 , single crystals, metals such as gold, silver, stainless steel, copper and nickel, or alloys thereof can be used.

【0069】本発明の第4発明では、超電導膜形成前に
予め任意の厚さの銀の被覆層を形成する必要があるが、
この方法としては実施例6及び7に示したように、超電
導膜を成膜する場合と同一の手法を用いるのが最適であ
る。しかし、本発明では必ずしもこの限りでなく、予め
他の成膜手法によって銀の被覆層を形成しておいても良
い。また、銀を基材とする場合にも、銀の被覆層を施す
必要があり、このような被覆を形成しない場合には本発
明の第4発明の効果は生じないことを確認した。
In the fourth invention of the present invention, it is necessary to previously form a silver coating layer having an arbitrary thickness before forming the superconducting film.
As this method, as shown in Examples 6 and 7, it is optimal to use the same method as that for forming the superconducting film. However, the present invention is not limited to this, and the silver coating layer may be previously formed by another film forming method. It was also confirmed that the silver coating layer must be applied even when silver is used as the base material, and the effect of the fourth invention of the present invention does not occur if such a coating is not formed.

【0070】本発明の第4発明で基材への銀被覆後に超
電導膜を形成する際に使用するガス雰囲気としては、例
えば酸素プラズマやオゾンガスのように直接活性な酸素
種を含有するものであっても、またN2Oなどのように
分解によって容易に活性な酸素を発生するガス種であっ
ても用いることが可能である。この時のガス圧として
は、用いる手法によって大きく異なるため、任意の値を
用いてよい。例えばCVD法では、一般にガス圧を高く
取る必要があり、スパッタ法や蒸着法ではガス圧は低い
(真空度が高い)のが普通である。また、オゾンや活性酸
素種のガス中における含有割合も任意に選定できる。
In the fourth invention of the present invention, the gas atmosphere used when the superconducting film is formed after the substrate is coated with silver is one containing a directly active oxygen species such as oxygen plasma or ozone gas. However, it is also possible to use a gas species such as N 2 O that easily generates active oxygen by decomposition. An arbitrary value may be used as the gas pressure at this time, because it greatly differs depending on the method used. For example, the CVD method generally requires a high gas pressure, and the sputtering method and the vapor deposition method have a low gas pressure.
(High vacuum) is normal. Further, the content ratio of ozone or active oxygen species in the gas can be arbitrarily selected.

【0071】基材上に、本発明の第4発明による酸化物
超電導膜を形成した後、電極端子となる金属被覆を形成
する方法としては、気相成膜法、無電解メッキ法、電解
メッキ法もしくは圧着法のいずれを用いてもよい。電極
端子としては、銀または金が好ましい。
As a method for forming a metal coating to be an electrode terminal after forming the oxide superconducting film according to the fourth aspect of the present invention on a base material, there are vapor phase film forming method, electroless plating method and electrolytic plating. Method or pressure bonding method may be used. Silver or gold is preferable for the electrode terminals.

【0072】実施例7のように、酸化物超電導膜と同時
に銀を基材上に堆積させるか、もしくは銀あるいは銀の
化合物を含有する酸化物超電導膜の原料を使用すること
の少なくともいずれか一つの方法を用いると、理由は今
のところ不明であるが、生成した超電導膜の結晶性並び
に超電導特性が更に向上する。この際に使用する成膜法
としては、やはりスパッタ法、CVD法酸化物超電導膜
法、蒸着法など多くの手法を適用できる。銀あるいは銀
の化合物としては純銀、酸化銀、銀合金、硝酸銀、酢酸
銀、塩化銀などが挙げられるが、その分解生成物が超電
導膜に悪影響を及ぼすことがないように、実施例6及び
7で用いた純銀、銀と超電導材料との合金または酸化銀
が好ましい。
As in Example 7, at least one of depositing silver on the base material at the same time as the oxide superconducting film or using a raw material for the oxide superconducting film containing silver or a silver compound. If the two methods are used, the crystallinity as well as the superconducting properties of the produced superconducting film are further improved, although the reason is not clear yet. As a film forming method used at this time, many methods such as a sputtering method, a CVD method oxide superconducting film method, and an evaporation method can be applied. Examples of silver or silver compounds include pure silver, silver oxide, silver alloys, silver nitrate, silver acetate, and silver chloride. Examples 6 and 7 are used so that their decomposition products do not adversely affect the superconducting film. The pure silver, an alloy of silver and a superconducting material, or silver oxide used in 1. is preferable.

【0073】ところで、実施例では酸化物系超電導材料
の一例としてY系材料を用いたが、本発明の第4発明の
効果はY系に限らずBi系、Tl系、Nd系等のいずれ
の酸化物超電導材料においても発現することを実施例と
同様の検討によって確認した。
By the way, in the examples, the Y-based material was used as an example of the oxide-based superconducting material, but the effect of the fourth invention of the present invention is not limited to the Y-based material, and Bi-based, Tl-based, Nd-based, etc. may be used. It was confirmed by the same examination as in the example that the oxide superconducting material was also expressed.

【0074】なお、上記実施例1〜7では、限流導体を
限流素子に用いる場合について説明したが、これに限る
ものではなく、例えば通常の電流を通電する導体として
用いた場合には、通電時の抵抗をほとんどゼロにするこ
とができるので、電力ロスがなく、しかも過大電流が流
れたときにはこれを限流することができることは言うま
でもない。
In the first to seventh embodiments, the case where the current limiting conductor is used for the current limiting element has been described. However, the present invention is not limited to this. For example, when the current limiting conductor is used as a conductor for conducting a normal current, It is needless to say that since the resistance at the time of energization can be made almost zero, there is no power loss, and when an excessive current flows, this can be limited.

【0075】[0075]

【発明の効果】本発明の第1発明は以上説明した通り、
酸化物超電導限流導体の製造方法を、酸化物超電導体の
構成成分である陽イオンを主成分とする金属アルコキシ
ドまたは金属アセチルアセトナートを含有する液中で、
加水分解によって上記陽イオンを含むゾルまたはゲル状
化合物を生成させ、得られたゾルまたはゲル状化合物を
電解液とし、この液中において金属基材または金属被覆
を有する基材を陰極とし、別に陽極を設け、両極間に電
圧を印加して基材上に膜状の酸化物超電導体を形成し、
次に、熱処理を施す構成とすることにより、限流効果
(短絡電流を限流する割合)が大きな限流導体を得ること
ができるという効果がある。
As described above, the first invention of the present invention is as follows.
A method for producing an oxide superconducting current limiting conductor, in a liquid containing a metal alkoxide or metal acetylacetonate containing a cation as a main component which is a constituent of the oxide superconductor,
A sol or gel-like compound containing the above cations is generated by hydrolysis, and the obtained sol or gel-like compound is used as an electrolytic solution. In this solution, a metal base material or a base material having a metal coating is used as a cathode, and another anode is used. And applying a voltage between both electrodes to form a film-shaped oxide superconductor on the substrate,
Next, by applying heat treatment, the current limiting effect
There is an effect that it is possible to obtain a current limiting conductor having a large (rate of limiting the short-circuit current).

【0076】また、本発明の第2発明は、酸化物超電導
限流導体の製造方法を、酸化物超電導材料の粉末を含有
分散する液中に、金属基材または金属被覆を有する基材
を陰極とし、別に陽極を設け、両極間に電圧を印加して
基材上に膜状の酸化物超電導体を形成し、次に、液中に
可溶な所定の金属塩を添加して無電解法または電解法に
より、酸化物超電導膜上の一部に電極端子となる金属被
覆を形成した後、熱処理を行う構成とすることにより、
限流効果(短絡電流を限流する割合)が大きく、しかも電
極端子部となる金属被覆が強固に形成された限流導体を
得ることができるという効果がある。
A second aspect of the present invention is a method for producing an oxide superconducting current limiting conductor, wherein a metal substrate or a substrate having a metal coating is used as a cathode in a liquid containing a powder of an oxide superconducting material. Then, another anode is provided, a voltage is applied between both electrodes to form a film-shaped oxide superconductor on the substrate, and then a predetermined metal salt soluble in the liquid is added to the electroless method. Alternatively, by the electrolytic method, after forming a metal coating to be an electrode terminal on a part of the oxide superconducting film, by performing a heat treatment,
The current limiting effect (rate of limiting the short-circuit current) is large, and further, the current limiting conductor in which the metal coating to be the electrode terminal portion is firmly formed can be obtained.

【0077】また、本発明の第3発明は、酸化物超電導
限流導体の製造方法を、酸化物超電導体を構成する金属
並びに銀を含む合金からなる基材を酸化することによっ
て基材表面に酸化物超電導膜を形成し、酸化物超電導膜
の一部に電極端子となる金属被覆を形成する構成とする
ことにより、限流効果(短絡電流を限流する割合)が大き
く、しかも電極端子部となる金属被覆が強固に形成され
た限流導体を得ることができるという効果がある。
The third aspect of the present invention is a method for producing an oxide superconducting current limiting conductor, in which a base material made of a metal constituting an oxide superconductor and an alloy containing silver is oxidized on the surface of the base material. By forming an oxide superconducting film and forming a metal coating that will become an electrode terminal on a part of the oxide superconducting film, the current limiting effect (rate of limiting the short-circuit current) is large, and the electrode terminal part There is an effect that it is possible to obtain a current limiting conductor having a strongly formed metal coating.

【0078】更に、本発明の第4発明は、酸化物超電導
限流導体用超電導膜の製造方法を、基材上に銀の被覆層
を形成した後、主としてオゾンまたは活性酸素種を含有
するガス雰囲気で、銀被覆層上に酸化物超電導膜を形成
する構成とすることにより、限流効果(短絡電流を限流
する割合)が大きな限流導体を容易に得ることができる
という効果がある。
Furthermore, a fourth aspect of the present invention is a method for producing a superconducting film for an oxide superconducting current limiting conductor, which comprises forming a coating layer of silver on a substrate and then mainly using ozone or a gas containing an active oxygen species. By forming the oxide superconducting film on the silver coating layer in the atmosphere, it is possible to easily obtain a current limiting conductor having a large current limiting effect (rate of limiting the short-circuit current).

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1及び第2発明における酸化物超電
導限流素子の製造方法の模式図である。
FIG. 1 is a schematic diagram of a method for manufacturing an oxide superconducting current limiting device according to the first and second aspects of the present invention.

【図2】本発明の第1及び第2発明で得られた酸化物超
電導限流素子の概略図である。
FIG. 2 is a schematic view of an oxide superconducting current limiting device obtained by the first and second inventions of the present invention.

【符号の説明】[Explanation of symbols]

1 ガラス製電解槽 2 電解液 3 陽極 4 陰極 5 基材 6 超電導膜 7 電極端子用金属被膜 8 リード線 1 Glass Electrolyzer 2 Electrolyte 3 Anode 4 Cathode 5 Base Material 6 Superconducting Film 7 Metal Film for Electrode Terminal 8 Lead Wire

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 39/16 ZAA 8728−4M H02H 9/02 ZAA Z 7335−5G (72)発明者 森 貞次郎 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社中央研究所内 (72)発明者 林 龍也 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社中央研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical indication H01L 39/16 ZAA 8728-4M H02H 9/02 ZAA Z 7335-5G (72) Inventor Sadajiro Mori Amagasaki 8-1-1 Tsukaguchi Honcho, Ichika, Central Research Laboratory, Mitsubishi Electric Corporation (72) Inventor Tatsuya Hayashi 8-1-1, Tsukaguchi Honcho, Amagasaki City Central Research Laboratory, Mitsubishi Electric Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 酸化物超電導体の構成成分である陽イオ
ンを主成分とする金属アルコキシドまたは金属アセチル
アセトナートを含有する液中で、加水分解によって上記
陽イオンを含むゾルまたはゲル状化合物を生成させ、得
られたゾルまたはゲル状化合物を電解液とし、この電解
液中において金属基材または金属被覆を有する基材を陰
極とし、別に陽極を設け、両極間に電圧を印加して基材
上に膜状の酸化物超電導体を形成し、次に、熱処理を施
すことを特徴とする酸化物超電導限流導体の製造方法。
1. A sol or gel-like compound containing the above cation is produced by hydrolysis in a liquid containing a metal alkoxide or metal acetylacetonate containing a cation as a main component, which is a constituent of an oxide superconductor. The obtained sol or gel-like compound is used as an electrolytic solution, and in this electrolytic solution, a metal base material or a base material having a metal coating is used as a cathode, and another anode is provided. A method for producing an oxide superconducting current limiting conductor, which comprises forming a film-shaped oxide superconductor on a substrate, and then performing heat treatment.
【請求項2】 酸化物超電導体の粉末を含有分散した液
中に、金属からなる基材または金属被覆を有する基材を
陰極とし、別に陽極を設け、両極間に電圧を印加して基
材上に膜状の酸化物超電導体を形成し、次に、液中に可
溶な所定の金属塩を添加して無電解法または電解法によ
り、酸化物超電導膜上の一部に電極端子となる金属被覆
を形成した後、熱処理を行うことを特徴とする酸化物超
電導限流導体の製造方法。
2. A substrate in which a metal substrate or a substrate having a metal coating is used as a cathode in a liquid containing an oxide superconductor powder dispersed therein, an anode is separately provided, and a voltage is applied between both electrodes. Form a film-shaped oxide superconductor on top, and then add a predetermined metal salt soluble in the liquid and electroless or electrolytic method to form electrode terminals on a part of the oxide superconducting film. A method for manufacturing an oxide superconducting current limiting conductor, characterized in that heat treatment is performed after forming the metal coating.
【請求項3】 酸化物超電導体を構成する金属並びに銀
を含む合金からなる基材を酸化することによって基材表
面に酸化物超電導膜を形成し、酸化物超電導膜上の一部
に電極端子となる金属被覆を形成することを特徴とする
酸化物超電導限流導体の製造方法。
3. An oxide superconducting film is formed on the surface of the base material by oxidizing a base material composed of a metal forming the oxide superconductor and an alloy containing silver, and an electrode terminal is formed on a part of the oxide superconducting film. A method for producing an oxide superconducting current limiting conductor, which comprises forming a metal coating that becomes
【請求項4】 基材上に銀の被覆層を形成した後、主と
してオゾンまたは活性酸素種を含有するガス雰囲気で、
銀被覆層上に酸化物超電導膜を形成することを特徴とす
る酸化物超電導限流導体用超電導膜の製造方法。
4. After forming a silver coating layer on a substrate, in a gas atmosphere containing mainly ozone or active oxygen species,
A method for producing a superconducting film for an oxide superconducting current limiting conductor, which comprises forming an oxide superconducting film on a silver coating layer.
JP3329094A 1991-12-12 1991-12-12 Production of oxide superconductor current-limiting device Pending JPH05163005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3329094A JPH05163005A (en) 1991-12-12 1991-12-12 Production of oxide superconductor current-limiting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3329094A JPH05163005A (en) 1991-12-12 1991-12-12 Production of oxide superconductor current-limiting device

Publications (1)

Publication Number Publication Date
JPH05163005A true JPH05163005A (en) 1993-06-29

Family

ID=18217546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3329094A Pending JPH05163005A (en) 1991-12-12 1991-12-12 Production of oxide superconductor current-limiting device

Country Status (1)

Country Link
JP (1) JPH05163005A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999033122A1 (en) * 1997-12-19 1999-07-01 Siemens Aktiengesellschaft SUPERCONDUCTOR STRUCTURE WITH HIGH-Tc SUPERCONDUCTOR MATERIAL, METHOD FOR PRODUCING SAID STRUCTURE AND CURRENT-LIMITING DEVICE WITH A STRUCTURE OF THIS TYPE
JP2008103630A (en) * 2006-10-20 2008-05-01 Hitachi Chem Co Ltd Method of manufacturing capacitor material for containing resin substrate
JP2013098331A (en) * 2011-10-31 2013-05-20 Central Research Institute Of Electric Power Industry Superconductive current limiting element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999033122A1 (en) * 1997-12-19 1999-07-01 Siemens Aktiengesellschaft SUPERCONDUCTOR STRUCTURE WITH HIGH-Tc SUPERCONDUCTOR MATERIAL, METHOD FOR PRODUCING SAID STRUCTURE AND CURRENT-LIMITING DEVICE WITH A STRUCTURE OF THIS TYPE
JP2008103630A (en) * 2006-10-20 2008-05-01 Hitachi Chem Co Ltd Method of manufacturing capacitor material for containing resin substrate
JP2013098331A (en) * 2011-10-31 2013-05-20 Central Research Institute Of Electric Power Industry Superconductive current limiting element

Similar Documents

Publication Publication Date Title
JPS61218074A (en) Solid oxide fuel battery tube and manufacture thereof
EP0293981A2 (en) Processes for the manufacture of superconducting inorganic compounds and the products of such processes
Bhattacharya et al. YBaCuO and TlBaCaCuO superconductor thin films via an electrodeposition process
US7048840B1 (en) Method for metal coating the surface of high temperature superconductors
JPH01159399A (en) Production of superconductive material having arbitrary shape
US4870051A (en) Method of forming superconducting ceramics by electrodeposition
Floegel-Delor et al. Reel-to-reel copper electroplating on pulse laser deposition coated conductor
JPH05163005A (en) Production of oxide superconductor current-limiting device
Matsumoto et al. A new preparation method of LaMnO3 perovskite film on SrTiO3 electrode
Adzic et al. Adsorption and alloy formation of zinc layers on silver
Mizuguchi et al. Characterization of YBa2Cu3 O 7− x Layers Prepared by Electrophoretic Deposition
US6332967B1 (en) Electro-deposition of superconductor oxide films
Pawar et al. Electrodeposition of Bi Sr Ca Cu alloyed films from non-aqueous bath
US5244875A (en) Electroplating of superconductor elements
US10309026B2 (en) Stabilization of metallic nanowire meshes via encapsulation
JPH05251763A (en) Manufacture of oxide superconductive current limiting conductor
Velayutham et al. Preparation of a polypyrrole—lead dioxide composite electrode for electroanalytical applications
US5550104A (en) Electrodeposition process for forming superconducting ceramics
DE19964478B4 (en) Process for metallically coating high temperature superconductors comprises galvanically applying copper and a metallic copper sample as anode, and partially covering between the anode and the high temperature superconductor
KR920005095B1 (en) Preparing method of super conductive material
JP2595274B2 (en) Method of forming oxide-based superconductor layer
Bhattacharya et al. Electrodeposited Tl–Ba–Ca–Cu–O Superconductors
CN117431598A (en) Protective coating, preparation method thereof, fuel cell and metal connector of fuel cell
Piperno et al. Electrodeposition of Iron Selenide Films: electrochemical and morphological characterizations
KR940003439B1 (en) Manufacturing method of superconductor meterial